LOA title Home Research Projects Partners Ontologies Events Publications People Contact

PhD course on Modeling in Knowledge Representation: the Parthood Relation


Papers indicated with an asterisk are to be read in priority
  • Allen, J., and Hayes, P. (1985), "A Common-Sense Theory of Time," in Proceedings of the 9th IJCAI, A. Joshi ed., Morgan Kaufmann, pp. 528-531.
  • *Allen, J. F. (1983). "Maintaining knowledge about temporal intervals". Communications of the ACM 26. 832-843.
  • Artale, A., Franconi, E., Guarino, N., and Pazzi, L. (1996), "Part-Whole Relations in Object-Centered Systems: An Overview," Data & Knowledge Engineering, 20, 347-383.
  • Asher, N. and L. Vieu (1995). "Toward a geometry of common sense: A semantics and a complete axiomatization of mereotopology". In C.S. Mellish (ed.), Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI) Vol. 1 (pp. 846-852). Montreal, Canada.
  • Bennett, B. (2001), "A Categorical Axiomatization of Region-Based Geometry," Fundamenta Informaticae, 46, 145-158.
  • *Borgo, S.; Masolo, C., 2007, Full mereogeometries. To appear in Journal of Philosophical Logic. /Papers/MerGeoDe117.pdf
  • Borgo, S., Guarino, N., and Masolo, C. (1996), "A Pointless Theory of Space Based on Strong Connection and Congruence," in KR'96, Principles of Knowledge Representation and Reasoning, L. Carlucci Aiello and S. Shapiro eds., San Mateo (CA): Morgan Kauffmann, pp. 220-229.
  • Clarke, B. L. (1981), "A Calculus of Individuals Based on "Connection"," Notre Dame Journal of Formal Logic, 22, 204-218.
  • Egenhofer, M.J. (1991). "Reasoning about binary topological relations". In O. Gunther & H.-J. Schek (eds.), Advances in Spatial Databases. Proceedings of the Second International Symposium on Large Spatial Databases, Zurich (pp. 143-160). New York, NY: Springer-Verlag.
  • Eschenbach, C., and Heydrich, W. (1993), "Classical Mereology and Restricted Domains," Proceedings of the International Workshop on Formal Ontology in Conceptual Analysis and Representation, 205-217.
  • Eschenbach, C. (1999). "A predication calculus for qualitative spatial representations". In C. Freksa & D.M. Mark (eds.) Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science (pp. 157-172). Springer: Berlin. (Proceedings of COSIT '99. LNCS 1661)
  • Galton, A. (1994), "Lines of Sight," in AI and Cognitive Science '94, Proceedings of the Seventh Annual Conference, M. Keane, P. Cunningham, M. Brady and R. Byrne eds., Dublin University Press, pp. 103-113.
  • *Pat Hayes, 1995, A Catalog of Temporal Theories, Tech report UIUC-BI-AI-96-01, University of Illinois http://www.ihmc.us/users/phayes/Pub/TimeCatalog.pdf
  • Leonard, H. S. & N. Goodman (1940). "The calculus of individuals and its uses". The Journal of Symbolic Logic 5. 45-55.
  • Lesniewski, S. (1982). "On the foundations of mathematics". Topoi 2. 7-52. (abridged English translation of 'O Podstawach Matematyki'.)
  • Link, G. (1997), "Algebraic Semantics in Language and Philosophy", CSLI.
  • Maddux, R. (1994). "Relation Algebras for Reasoning about Time and Space". In: M. Nivat, C. Rattray, T. Rus & G. Scollo (eds.), Algebraic Methodology and Software Technology (AMAST '93), Proceedings of the Third International Conference on Methodology and Software Technology. Springer, Workshops in Computing.
  • Masolo, C., and Vieu, L. (1999), "Atomicity Vs. Infinite Divisibility of Space," in Spatial Information theory. Proceedings of COSIT'99, C. Freksa and D. Mark eds., Berlin: Springer Verlag, pp. 235-250.
  • Nebel, B., and BÄrckert, H.-J. (1995). "Reasoning about temporal relations: A maximal tractable subclass of Allen's interval algebra". Journal of the ACM 42. 43-66.
  • Pelletier, F. (ed.) (1979), "Mass Terms : Some Philosophical Problems", Dordrecht: Reidel.
  • Randell, D., Cui, Z., and Cohn, A. (1992), "A Spatial Logic Based on Regions and Connection," in Principles of Knowledge Representation and Reasoning, Proceedings of the Third International Conference, B. Nebel, C. Rich and W. Swartout eds., San Mateo (CA): Morgan Kaufmann, pp. 165-176.
  • Renz, J., and Nebel, B. (1998). "Efficient methods for qualitative spatial reasoning". In H. Prade (ed.), 13th ECAI-1998. John Miley & Sons.
  • Renz, J., and Nebel, B. (1999). "On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the Region Connection Calculus". Artificial Intelligence 108. 69-123.
  • Renz, J., and Ligozat, G. (2005). "Weak composition for qualitative spatial and temporal reasoning". In Proceedings of the Eleventh International Conference on Principles and Practice of Constraint Programming (CP'05). Sitges, Spain.
  • Roeper, P. (1997). "Region-based topology". Journal of Philosophical Logic 26. 251-309.
  • Simons, P. (1987), Parts - a Study in Ontology, Oxford: Clarendon Press.
  • Tarski, A. (1956), "Foundations of the Geometry of Solids," in Logic, Semantics, Metamathematics, J. Corcoran ed., Oxford: Oxford University Press, pp. 24-30.
  • van Benthem, J. (1983), The Logic of Time, Dordrecht: Reidel.
  • Varzi, A., "Mereology", Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/mereology/
  • *Varzi, A. (1996), "Parts, Wholes, and Part-Whole Relations: The Prospects of Mereotopology," Data and Knowledge Engineering, 20, 259-286. http://www.columbia.edu/~av72/papers/Dke_1996.pdf
  • Winston, M., Chaffin, R., and Herrmann, D. (1987), "A Taxonomy of Part-Whole Relations," Cognitive Science, 11, 417-444.