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Structure

Problem statement, RSAT, decision procedure

Constraint Satisfaction Problems (CSP)

• RSAT as CSP

Systems of Binary Relations

• Base relations

• (Atomic) Concrete/abstract relation algebras

• Composition tables

Constraint-based Reasoning

• Constraint propagation (based on composition tables)

• Backtracking-propagation

How to Evaluate the Result?

• Strong and weak composition

• When does constraint-based reasoning decide RSAT?

Efficiency

• When is constraint propagation sufficient to decide RSAT?
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Problem Statement

Systems of Binary Relations

• Provided by ontologies of time and space

• Specified by first-order axiomatic theories

Inference Tasks

• Is a set of formulae consistent / satisfiable?

• Does a formula follow from a set of formulae?

• …

The general problems are not decidable

• By restricting problems to specific types of formulae one can

derive decidability.
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Decision procedure

Definition

• Given a formal language L and let F be a set of formulae of

L. An algorithm is a decision procedure for F if given an

arbitrary formula A ! L, it terminates and returns the answer

'yes' if A ! F and the answer 'no' if A " F.

Generalization

• Represent (finite) sets of formulae by single formulae to gain

decision procedures for sets of sets of formulae.

Example

• Propositional logic: There are decision procedures for the

sets of valid / satisfiable / contradictory formulae

• Predicate logic: There are no such decision procedures.
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RSAT

Given

• A specification of a finite system of binary relations R
• A finite set of variables {X1, …, Xn}

• A (finite) set S of formulae of the form R(Xi, Xj), where R ! R.

Problem

• Is S satisfiable?

 Representation

• n*n matrix M of relations with M(i, i) = identity, M(i, j) = (M(j, i))-1

• complete directed graph with n nodes and edge labels from 2R

Decidability / Complexity

• depends on R
• 13 Allen-relations: decidable and NP-complete

• RCC: decidable and NP-complete
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Example RSAT

Relations
P: Part O: Overlap DR: disjoint 

EQ: Equivalence/Identity T: universal relation

Variables
• {X1, …, X5}

Two sets of formulae
• {P(X1, X2), O(X1, X3), O(X3, X4), O(X4, X1), DR(X4, X5), P(X2, X5)}

• {P(X1, X2), O(X1, X3), O(X3, X4), O(X4, X1), DR(X5, X4), P(X5, X2)}

Is one of these sets satisfiable?

• How to prove it?

O

DR

Pi

PO PPi

P

PP

T

EQ

Group discussion
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Example RSAT

Relations
P: Part O: Overlap DR: disjoint 

EQ: Equivalence/Identity T: universal relation

Variables
• {X1, …, X5}

The set of formulae
• {P(X1, X2), O(X1, X3), O(X3, X4), O(X4, X1), DR(X4, X5), P(X2, X5)}

Simplified Graph Matrix Representation

O

DR

Pi

PO PPi

P

PP

T

EQ

1

24

5 3

P
DR

O P
O

O

T

T

T

T

EQDRTPiT5

DREQOTO4

TOEQTO3

PTTEQPi2

TOOPEQ1

54321
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Structure

!Problem statement, RSAT, decision procedure

Constraint Satisfaction Problems (CSP)

• RSAT as CSP

Systems of Binary Relations

• Base relations

• (Atomic) Concrete/abstract relation algebras

• Composition tables

Constraint-based Reasoning

• Constraint propagation (based on composition tables)

• Backtracking-propagation

How to Evaluate the Result?

• Strong and weak composition

• When does constraint-based reasoning decide RSAT?

Efficiency

• When is constraint propagation sufficient to decide RSAT?
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Constraint Satisfaction Problems (CSP)

Given

• A (finite) set of variables, {X1, …, Xn}.

• Each variable Xi has a domain Di (possible values).

• A (finite) set of constraints {C1, …, Cm}.

• Each constraint Ci involves some variables and specifies

allowable combinations of values for these variables.

Problem

• Is there an assignment of all the variables to values that

satisfies all given constraints?

• Determine all assignment of the variables to values that

satisfies all given constraints.
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Simple Example for CSP

Map-coloring

• Variables: States (in a spatial configuration)

• Values: Set of colors

• General constraint: Adjacent states need different colors

Representation: Graph

• Nodes: Variables; Node-Labels: Sets of Values

• Edges: Constraints

A

E

I

D

C

B
A I

E D C

B{r, g, b}

{r, g, b}

{r, g, b}

{r, g, b}

{r, g, b}

{r, g, b}

!

!

!

!

!

!

!
!

!
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Constraint Propagation

Basic Idea

• Given: a set of constraints

• Goal: find out, whether there is a solution;

find a/all solution/s

• Method: filter algorithms

• change the problem description

• without changing the set of solutions

• by making implicit restrictions explicit

• where implicit restrictions derive from the interaction of

explicitly given constraints
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Example for Solution of Simple CSP

Solution

• Assignment of states to colors such that adjacent states

have different colors

Representation of a solution

• Graph with unique label at each node such that connected

nodes have different labels.

A

E

I

D

C

B
A I

E D C

B{g}

{b}

{b}

{r}

{g}

{r}

!

!

!

!

!

!

!
!

!
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Simple Example for CSP

This is simple (partly) because

• the domains are finite

• constraints are (at most) binary

• only same/different in domain relevant

• unique labelling guarantees solution

• (but still NP-complete)

A

E

I

D

C

B
A I

E D C

B{g}

{b}

{b}

{r}

{g}

{r}

!

!

!

!

!

!

!
!

!
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Example: Sub-Problems of CSP

Variables: {A, B, C, D, E, I}

Series of Sub-Problems as Simplified Graphs

• develop solutions from solutions of sub-problems

A

E

I

D

C

B

A I

E D C

B{r, g, b}

{r, g, b}

{r, g, b}

{r, g, b}

{r, g, b}

{r, g, b}

!

!

!

!

!

!

!
!

!

A I

E D

B{r, g, b}

{r, g, b}

{r, g, b}

{r, g, b}

{r, g, b}

!

!

!

!

!
!

!

A I

E D

{r, g, b}

{r, g, b}

{r, g, b}

{r, g, b}

!

!

!
!

!

A I

E

{r, g, b}

{r, g, b}

{r, g, b}

!
!

!

A

E

{r, g, b}

{r, g, b}

!

A{r, g, b}
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Example: Sub-Problems of CSP

Variables: {A, B, C, D, E, I}

Series of Sub-Problems as Simplified Graphs

• develop solutions from solutions of sub-problems

A I

E D C

B{g}

{b}

{b}

{r}

{g}

{r}

!

!

!

!

!

!

!
!

!

A I

E D

B{g}

{b}

{b}

{g}

{r}

!

!

!

!

!
!

!

A I

E D

{g}

{b}

{g}

{r}

!

!

!
!

!

A I

E

{g}

{b}

{r}

!
!

!

A

E

{g}

{b}

!

A{g}

A

E

I

D

C

B
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Sub-problem of a CSP

For sub-sets of variables

• Let C be a CSP and V be a sub-set of the variables of C.

•  CV is the sub-problem of C restricted to V iff

• V are the variables of CV,

• the domains for the variables are the same in C and CV

and

• the constraints of CV are exactly those constraints of C
that involve only variables from V.

The sub-problems of a CSP depend on its

representation (not on its solutions).
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Types of Consistency

A CSP C is

• consistent / satisfiable

• iff C has a solution.

• k-consistent

• iff for every set V of k variables and every X ! V every

solution for CV\{X} can be extended to a solution for CV.

• strongly k-consistent

• iff it is i-consistent for every i " k.

• path-consistent

• iff the (explicit) constraint between any two variables is at

least as restrictive as every path in the constraint graph

between the same two variables.
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Observations on Consistency

In complete graphs,

• path consistency is equivalent to

• path consistency for all length-2 paths,

• which is the same as 3-consistency.

A CSP C with n variables is

• globally consistent, iff it is strongly n-consistent.

For a globally consistent CSP

• a solution can be constructed incrementally

• without backtracking.
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RSAT as CSP

• Domain can hold infinitely many possible values

• Constraint: Binary relations between variables

Representation: Complete directed graph

• Nodes: Variables

• Edges: Relation between two variables

• Edge-Labels: Sets of base-relation symbols

R11(x1, x1) # R12(x1, x2) # R21(x2, x1) #
R22(x2, x2) # R13(x1, x3) # R31(x3, x1) #
R23(x2, x3) # R32(x3, x2) # R33(x3, x3) # …

x1

R12

R23 R13

R21

R32

R31

R11

x2

R22

x3

R33
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Structure

!Problem statement, RSAT, decision procedure

!Constraint Satisfaction Problems (CSP)

• RSAT as CSP

Systems of Binary Relations

• Base relations

• (Atomic) Concrete/abstract relation algebras

• Composition tables

Constraint-based Reasoning

• Constraint propagation (based on composition tables)

• Backtracking-propagation

How to Evaluate the Result?

• Strong and weak composition

• When does constraint-based reasoning decide RSAT?

Efficiency

• When is constraint propagation sufficient to decide RSAT?

ICT School 2007 23

System of Binary Relations

Base relations

• finitely many

• jointly exhaustive  ( JE )

• pairwise exclusive / disjoint  ( PD )

"The selection of the set of base relations is formally

restricted but not determined.

General relations

• are disjunctions of base relations

• form an atomic Boolean algebra

Standard representation of relations

• sets of base relations
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Base Relations

O

DR

Pi

PO PPi

P

PP

T 

EQ $ Mereological base relations

O

DR

Pi

PO

PPi

P

PP

T 

EQDC EC

C

NTPP TPP NTPPi TPPi

Mereotopological 

$base relations

P: {EQ, PP}

Pi: {EQ, PPi}

O: {PO, PP, EQ, PPi}

DR: {DC, EC}

O: {PO, NTPP,  TPP, 

      EQ, NTPPi, TPPI}

…
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CSP for Binary Relation Systems

Solution

• Assignment of variables to values such that the base

relation between two assigned values is included in the label

at the edge connecting the two variables

Representation of a solution

• Irreducible graph with unique

base-relation label at each edge

Problems

• How to derive such a graph?

• When does the graph guarantee a solution?

x1

R12

R23 R13

R21

R32

R31

R11

x2

R22

x3

R33
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CSP for Binary Relation Systems

Solution

• Assignment of variables (Xi) to values (ai) such that the base

relation between two assigned values (rij) is included in the

label at the edge connecting the two variables (Rij).

Observation regarding solutions

• If ai, aj, ak are part of a solution then rij ! Rij

and rij ) rik • rkj

Derived ternary constrains

• on edge labels

• from composition of binary relations

Revise labelling
• R'ij = Rij ( Rik • Rkj

x1

R12

R23

R13
x2

x3
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Relation Algebras

• the mathematical (algebraic) approach

Background (Motivation of Tarski)

• Boolean Algebras form adequate models for propositional

logic and monadic predicate logic

• Which type of algebra does the same for logics with binary

relations?

• Predecessors: DeMorgan, Peirce, Schröder

Goal

• Finite system of operators on binary relations

• Axiomatic specification of their interactions
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(Concrete) Relation Algebras

Definition

• The complete relation algebra for a set U is the structure
Rel(U) = *2V, ', (, –, %, V, •, ˘, Id+, where

• V = U & U,

• – is complement formation,

• • is relation composition and

• ˘ is converse formation,

• Id is the identity relation for U.

• Each sub-set of 2V, that is closed under ', (, –, •, ˘ and that

includes the constants %, V, and Id, is a relation algebra.
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Example: Concrete Relation Algebra IdDiff2

Universe with two entities: U2 = {T, F}
•IdDiff2 = {V2, %, Id2, Diff2}

• V2 = U2 & U2 = {(T, T), (T, F), (F, T), (F, F)}
• % = {} = –V2

• Id2 = {(T, T), (F, F)}
• Diff2 = –Id = {(T, F), (F, T)}

•IdDiff2 is closed under –, ', (
•IdDiff2 is closed under ˘

• V2, %, Id2 and Diff2 are symmetric
• V2˘ = V2; %˘ = %; Id2˘ = Id2; Diff2˘ = Diff2

•IdDiff2 is closed under •
• X  ! IdDiff2 : % • X = X • % = %
• X  ! IdDiff2 : Id2 • X = X • Id2 = X
• X  ! {V2, Id2, Diff2}: V2 • X = X • V2 = V2

• Diff2 • Diff2 = Id2

a b

c
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Tabular Presentation IdDiff2

Universe with two entities: U2 = {T, F}
•IdDiff2 = {V2, %, Id2, Diff2}

{(T, F), (F, T)}

{(T, T), (F, F)}

{}

{(T, T), (T, F), (F, T), (F, F)}

Diff2Id2Diff2

Id2Diff2Id2

%V2
%

V2
%V2

˘–

Diff2V2Diff2V2Diff2

V2Id2Id2V2Id2

Diff2Id2
%V2

%

V2V2V2V2V2

Diff2Id2
%V2

'

Id2Diff2%V2Diff2

Diff2Id2
%V2Id2

%%%%%

V2V2
%V2V2

Diff2Id2
%V2•

Diff2%%Diff2Diff2

%Id2
%Id2Id2

%%%%%

Diff2Id2
%V2V2

Diff2Id2
%V2(
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……………

……………

…R3……R1

…V2………

…R2……•

Reading (Strong) Composition Tables

Relation Algebraic Composition Tables

R1 • R2 = R3

Formulated in Predicate Logic
,x y z [R1(x, y) # R2(y, z) - R3(x, z)]
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Tabular Presentation IdDiff3

Universe with three entities: U3 = {r, g, b}
•IdDiff3 = {V3, %, Id3, Diff3}

{(r, g), (g, r), (r, b), (b, r), (g, b), (b, g)}

{(r, r), (g, g), (b, b)}

{}

{(r, r), (g, g), (b, b), (r, g), (g, r), (r, b),
(b, r), (g, b), (b, g)}

Diff3Id3Diff3

Id3Diff3Id3

%V3
%

V3
%V3

˘–

Diff3V3Diff3V3Diff3

V3Id3Id3V3Id3

Diff3Id3
%V3

%

V3V3V3V3V3

Diff3Id3
%V3

'

V3Diff3%V3Diff3

Diff3Id3
%V3Id3

%%%%%

V3V3
%V3V3

Diff3Id3
%V3•

Diff3%%Diff3Diff3

%Id3
%Id3Id3

%%%%%

Diff3Id3
%V3V3

Diff3Id3
%V3(
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Relation Algebra

Definition

• An abstract relation algebra is a structure
*A, +, •, –, 0, 1, •, ˘, 1'+ of the type

    *2, 2, 1, 0, 0, 2, 1, 0+, where

• *A, +, •, –, 0, 1+ is a Boolean algebra and

• *A, •, 1'+ is a monoid

• a˘˘ = a and (a • b)˘ = b˘ • a˘, for a, b ! A, and

• (a • b) • c = 0 . (a˘ • c) • b = 0

• (a • b) • c = 0 . (c • b˘) • a = 0

!Each concrete relation algebra is an abstract relation algebra.

!There are abstract relation algebras that are not isomorphic to

any concrete relation algebra.

a b

c
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Atomic Relation Algebras

Definitions

Let R = *A, +, •, –, 0, 1, •, ˘, 1'+ be a relation algebra.

R is atomic, iff the Boolean Algebra *A, +, •, –, 0, 1+ is atomic.

• The set of atomic relations in an atomic relation algebra is

jointly exclusive and pairwise disjoint (JEPD).

• In atomic relation algebras the behaviour of • and ˘ on the

atoms uniquely determine their complete behaviour.

• If the set of atoms is finite, then the operators • and ˘ can be

represented by tables.

Atomic relation algebra for a set of base relations

• Is there an atomic relation algebra where the base relations

are the atoms?
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Generated Algebras

Definitions

Let R = *A, +, •, –, 0, 1, •, ˘, 1'+ be a relation algebra.

The relation algebra R' = *A', +', •', –', 0, 1, •', ˘', 1'+ is a sub-algebra

of R, iff A' ) A, +' ) +, •' ) •, – ' ) –, •' ) •, ˘' ) ˘.

Let B ) A. The sub-algebra of R generated by B is the smallest sub-

algebra R' = *A', +', •', –', 0, 1, •', ˘', 1'+ of R with B ) A'.

Let B be a set of binary relations over domain U. The algebra

generated by B is the sub-algebra of Rel(U) generated by B.

Atomic relation algebra for a set of base relations

• Even if B is a finite JEPD set of relations, the relation algebra

generated by B need not be atomic.

• Even if it is atomic, the elements of B need not be its atoms.
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Example: Concrete Relation Algebra IdDiff3

Universe with three entities: U3 = {r, g, b}
IdDiff3 = {V3, %, Id3, Diff3}

• is an atomic relation algebra.

• The atoms of IdDiff3 are Id3, Diff3 .

IdDiff3 is generated by {Id3}, {Diff3}.

• ˘ and • are completely determined by their behaviour on the
atoms.

Diff3Diff3

Id3Id3

˘

V3Diff3Diff3

Diff3Id3Id3

Diff3Id3•
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Example: Concrete Relation Algebra Ord!

Rational Numbers: !

• V! = ! & !

Ord! = {V!, %, =!, !! , <!, >! , "!, #!}

• is an atomic relation algebra.

• Atoms: =!, <!, >! .

Ord! is generated by {<!}, {>!}, {"!}, {#!} .

• (The simplicity of this relation algebra depends on the
denseness and unboundedness of the order.)

<!>!

>!<!

=!=!

˘

V!

<!

<!

<!

>!>!>!

V!<!<!

>!=!=!

>!=!•
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Structure

!Problem statement, RSAT, decision procedure

!Constraint Satisfaction Problems (CSP)

• RSAT as CSP

!Systems of Binary Relations

• Base relations

• (Atomic) Concrete/abstract relation algebras

• Composition tables

Constraint-based Reasoning

• Constraint propagation (based on composition tables)

• Backtracking-propagation

How to Evaluate the Result?

• Strong and weak composition

• When does constraint-based reasoning decide RSAT?

Efficiency

• When is constraint propagation sufficient to decide RSAT?
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How to proceed

First

• Consider the simple case

• the set of base relations generates an atomic relation

algebra

• where the base relations are the atoms.

"Composition can be represented by a finite table: The

composition table (CT).

• Study techniques to determine satisfiability.

Then

• Consider in which additional cases the techniques can yield

sound and complete decision procedures.
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Composition Table (CT)

CT: Specifies composition rules for base relations

Rk := CT(ri, rj)  (= ri • rj)

,x z [/y [ri(x, y) # rj(y, z)] . Rk(x, z)]

Composition for disjunctions (CT*)

from composition of base relations (CT)

CT*(R1, R2) = ' {CT(r1, r2) | r1 ! R1, r2 ! R2}

(A . C) # (B . D) 0 ((A 1 B) . (C 1 D))

V3Diff3%V3Diff3

Diff3Id3
%V3Id3

%%%%%

V3V3
%V3V3

Diff3Id3
%V3•

ICT School 2007 41

fif fi =dioo di simo di siodio d s> oi di
mi si

<fi

f fi =f> oi
mi

d>m> oi
mi

o d s> oi di
mi si

d><f

dioisis si =mio di fioio di fidioi d f>< o m
di fi

si

m ods si =smi<d f< o m< o m di
fi

d><s

< mimi>oi d f>s si => oioi d f>oi d f>< o m
di fi

mi

<o d smmf fi =<o d s<<o d s> oi di
mi si

<m

oi di sioi> oi
mi

oi d f>o di fi> oi
mi

o oi d
di =

> oi mi
di si

oi d f>< o m
di fi

oi

< o mo d so di fiooi di si<o oi d
di =

< o m< o m di
fi

o d s> oi di
mi si

<o

dioi di sidio di fioi di sio di fioi di sioi di fidio oi d
di =

> oi di
mi si

< o m
di fi

di

< o m
d s

d> oi
mi d f

d><> oi
mi d f

< o m
d s

Bd><d

>>>< o m
d s

>> oi
mi d f

>> oi mi
d f

>> oi mi
d f

>B>

<< o m
d s

<<< o m
d s

<< o m
d s

<<< o m
d s

B<<

fifsismimoiodid><



ICT School 2007 42

Example: Mereological Relations (RCC-5)

P: Part Pi: has_Part PP: proper part

O: Overlap DR: disjoint PO: proper/partial overlap

EQ: Equivalence/Identity

Taxonomy based presentation

Disjunctive form

,x y z [PO(x, y) # PP(y, z) 0 (PO(x, z) 1 PP(x, z))]

PPi

EQ

PP

PO

DR

EQ

PPPPiPODREQ

PPi

M

~P

DR

PPi

PP~PiDRPP

OPO PPi~PPPi

PO PPM~PPO

~Pi~PiMDR

PPPODR1

O

DR

Pi

PO PPi

P

PP

M 

EQ
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CSP for Binary Relation Systems

Solution

• Assignment of variables (Xi) to values (ai) such that the base

relation between two assigned values (rij) is included in the

label at the edge connecting the two variables (Rij).

Observation regarding solutions

• If ai, aj, ak are part of a solution then rij ! Rij

and rij ) rik • rkj

Derived ternary constrains

• on edge labels

• from composition of binary relations

Revise labelling
• R'ij = Rij ( Rik • Rkj

x1

R12

R23

R13
x2

x3
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Constraint-Propagation Algorithm (Allen 1983)

• N(i, j): Relations between nodes i and j (old / known)

• R(i, j): Relations between nodes i and j (new / to be integrated)

• ToDo: List of edges

PROCEDURE Propagate R(a, b) into N

N(a, b) $ N(a, b) ( R(a, b);

Add edge *a, b+ to ToDo;

WHILE ToDo is not empty DO

Get next edge *i, j+ from ToDo;

FOR EACH node k DO

R(k, j) $ N(k, j) ( CT*(N(k, i), N(i, j));

IF R(k, j) !  N(k, j) THEN add *k, j+ to ToDo; N(k, j) $ R(k, j) FI;

R(i, k) $ N(i, k) ( CT*(N(i, j), N(j, k));

IF R(i, k) !  N(i, k) THEN add *i, k+ to ToDo; N(i, k) $ R(i, k) FI;

OD;

OD;

ICT School 2007 45

Irreducible regarding CT

Definition

• Let B be a set of base relations, CT be a composition table

for B and C be a CSP based on B.

• C is irreducible regarding CT iff

• for every triangle in the graph representation
Xk Rkj Xj, Xk Rki Xi, Xi Rij Xj ! C:      Rkj ) CT*(Rki, Rij)

Observation

• The constraint propagation algorithm terminates with a CSP

graph that is irreducible regarding CT.
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Propagation is not Sufficient

Irreducibility does not imply consistency

• and does not imply unique labels

X Y

Z W

{TPP, TPP-1}

{EQ, NTPP}

{EC, NTPP}{DC, TPP}

{EC, TPP}

{EC, TPP}

Renz & Nebel (1998)
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Enforce unique Labels: Backtracking

• Inspect non-unique labels by backtracking with unique labels

PROCEDURE BacktrackingPropagation R(a, b) into N

Propagate R(a, b) into N;

IF all edges have a unique label in N

THEN RETURN consistent(N);

Get an edge *c, d+ with ambiguous label;

FOR EACH base label L of *c, d+ DO

IF BacktrackingPropagation L(c, d) into a copy of N yields
consistent(N')

THEN RETURN consistent(N');

OD;

RETURN inconsistent;
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Backtracking Propagation

X Y

Z W

{TPP, TPP-1}

{EQ, NTPP}

{EC, NTPP}{DC, TPP}

{EC, TPP}

{EC, TPP}

try

Z/W
X

Y
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Backtracking Propagation

X Y

Z W

{TPP, TPP-1}

{EQ, NTPP}

{EC, NTPP}{DC, TPP}

{EC, TPP}

{EC, TPP}

try

W

ZX Y
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CSP for Binary Relation Systems

Solution

• Assignment of variables to values such that the base

relation between two assigned values is included in the label

at the edge connecting the two variables

Representation of a solution

• Irreducible graph with unique

base-relation label at each edge

Problems

• How to derive such a graph?

• When does the graph guarantee a solution?

x1

R12

R23 R13

R21

R32

R31

R11

x2

R22

x3

R33
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When does irreducibility guarantee consistency?

Let B be a set of base relations, CT be a composition table for
B that represents (strong) composition, and C be a CSP

based on B.

• If in a complete graph-representation of C all edge-labels are

unique and irreducible regarding CT, then C is path-

consistent.

• If for the set B path-consistency with unique labels
guarantees consistency, then C is consistent.
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Structure

!Problem statement, RSAT, decision procedure

!Constraint Satisfaction Problems (CSP)

• RSAT as CSP

!Systems of Binary Relations

• Base relations

• (Atomic) Concrete/abstract relation algebras

• Composition tables

!Constraint-based Reasoning

• Constraint propagation (based on composition tables)

• Backtracking-propagation

How to Evaluate the Result?

• Strong and weak composition

• When does constraint-based reasoning decide RSAT?

Efficiency

• When is constraint propagation sufficient to decide RSAT?
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Strong and Weak Composition

The basic problem

• Assume a set B of JEPD (jointly exhaustive and pairwise

disjoint) binary base relations (such as RCC8) over a
domain D, such that Id(D) ! B and for every relation in B, B

also contains its converse relation.

• The subsets of B represent (binary) relations (disjunctions of

base relations).

• 2B forms a Boolean Algebra (2B contains %, B, {Id(D)} and

2B is closed under ', (, –, ˘).

• However, 2B need not be closed under •.

• Example: In atomic domains, PP • PP !  PP.

"(Strong) composition cannot be represented by 2B.
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Strong and Weak Composition (2)

Weak composition

• Let B be a set of JEPD base relations over a domain D,

including Id(D) and closed under ˘.

• Let weak composition # be a binary operator mapping two
relations R1, R2 ! 2B to the strongest relation in 2B that

includes R1 • R2 (strong/proper composition).

"Composition tables (CT) for weak composition can be finite

and are easy to compute.

"A CSP graph that is irreducible regarding CT need not be

3-consistent / path-consistent.
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……………

……………

…R3……R1

…V2………

…R2……#

Reading Weak Composition Tables

Weak Composition Tables

R1 • R2 ) R3

Formulated in Predicate Logic
,x y z [R1(x, y) # R2(y, z) 2 R3(x, z)]

Most composition tables you will find are weak
composition tables !
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Graph of Base Relations is not Sufficient

A partial solution that cannot be extended

The underlying problem

• Restrictions between two variables enforced by larger

graphs cannot be completely expressed by the edge label.

X

Y

Z

{PP}

{PP}
{PP}

Constraint graph for C Domain D

Solution for C{X, Z}
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Why Weak Compostion Need not be a Problem

3-consistency is too strong

• if our goal is to check consistency.

• The example graph has a solution ! (even within D)

X

Y

Z

{PP}

{PP}
{PP}

Constraint graph for C Domain D

Solution for C
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Refinement to Subatomic Relations

Let C be a consistent base-relation CSP over a domain D and

Xi R Xj ! C be a constraint. Let R' be the set of all pairs

(ai, aj) that appear in any solution of C as values for Xi and

Xj. Thus % !  R' ) R. If R' 3 R, then C refines R to the

subatomic relation R'.

If C refines R to a subatomic relation R' ,

• then at least one solution for Xi R Xj cannot be extended to a
solution for C

• and C cannot be globally consistent.

Renz & Ligozat (2005)
X Y

Z

{PP}

{PP}
{PP}

C refines X PP Z
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The Problem of Refinement

Conflicting refinement can yield inconsistency

• If different CSPs can refine a base relation R to exclusive

subatomic relations, then there can be inconsistent CSPs

with unique labels that are irreducible regarding CT.

Xi

Xj

{R}

C1
C2
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Renz & Ligozat (2005)

Closed under Constraints

Let B be a set of base relations in a domain D. B is closed
under constraints iff for each base relation R ! B all

subatomic relations R', R" 3 R to which R can be refined

have a nonempty intersection.

Theorem

• Let D be a domain, B be a finite set of base relations over D,

and CT a (weak) composition table for B. Then every B-

CSP that is irreducible regarding CT is consistent, iff B is

closed under constraints.
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First Summary: RSAT as CSP

RSAT

• Given: a set S of formulae of the form R(Xi, Xj), where R ! R.

• Problem: Is S satisfiable?

• Can be considered as CSP with infinite domain.

Representation of a solution

• Irreducible graph with unique base-relation label at each edge

Constraint-based reasoning techniques

• Constraint propagation

• Backtracking-propagation

System of base relations

• Reducibility: Composition tables

• Specify operation of composition in a strong or weak manner

• Closed under constraints

• Inconsistencies are guarateed to show up in solution graphs
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Summary: Reasoning

• Sound inference procedures can easily be define.

• General inference problems are not decidable

• (as usual with first-order logic)

• RSAT: The restricted problem is decidable for mereological,

mereotopological, and temporal relations

• … but in general not tractable (NP-hard)

• Restricting the set of allowed relations (to well-behaved

sets)

• can yield tractability

• Using well-behaved sets in backtracking-search

• can yield algorithms that can answer many questions
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Good News & Bad News

Good news

• Closed under constraints

• Mereological base relation {DR, PO, PP, EQ, PPi}

• RCC-8 Mereotopological base relations {DC, EC, PO,

NTPP,  TPP, EQ, NTPPi, TPPI}

Bad news (?)

• To apply constraint-based reasoning

• for other (refined) sets of relations

• and rely on positive outcomes

• one (only) has to check (prove)

• that the new set is closed under constraints.
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Structure

!Problem statement, RSAT, decision procedure

!Constraint Satisfaction Problems (CSP)

• RSAT as CSP

!Systems of Binary Relations

• Base relations

• (Atomic) Concrete/abstract relation algebras

• Composition tables

!Constraint-based Reasoning

• Constraint propagation (based on composition tables)

• Backtracking-propagation

!How to Evaluate the Result?

• Strong and weak composition

• When does constraint-based reasoning decide RSAT?

Efficiency

• When is constraint propagation sufficient to decide RSAT?
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Efficiency

Constraint-based reasoning algorithms

• Backtracking (depth-) search

• intractable for large sets of variables: (NP-hard)

• Constraint propagation

• tractable: O(n3)

Efficient procedures exist

• For RSAT-problems where irreducibility regarding CT is

sufficient for satisfiability

• Restrict the set of available relations (do not require
closedness under –, ')
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Role of Constraint Propagation

Preprocessing

• for backtracking search

• producing irreducible graphs

Forward checking

• as part of backtracking

Complete procedure for restricted languages

• Result of Nebel & Renz (1999): There are sub-sets B 3 ^B 3
^H8 of the 256 RCC8-relations such that if all constraints of

the initial CSP are from these sub-sets, then irreducibility

regarding CTRCC guarantees consistency. (^H8 has 148

relations.)

• Similar results for time; Nebel & Bürckert (1995)

ICT School 2007 67

Backtracking

• is computationally costly

Split-set B

• branches according to division of labels into labels from B

• enforces unique labels

• average branching factor (RCC-8): 4.0

Split-set ^H8

• branches according to division of labels into label from ^H8

• enforces labels from ^H8

• average branching factor (RCC-8): 1.4375
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Complete procedures: Backtracking

• Inspect non-unique labels by backtracking with labels from F

PROCEDURE BacktrackingPropagation2 R(a, b) into N using F

Propagate R(a, b) into N;

IF all edges in N have a label belonging to F

THEN RETURN consistent(N);

Get an edge *c, d+ with label X not in F;

Get a small set S of relations from F such X is the disjunction of S;

FOR EACH member L of  S DO

IF BacktrackingPropagation2 L(c, d) into a copy of N using F
yields consistent(N')

THEN RETURN consistent(N');

OD;

RETURN inconsistent;
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Structure

!Problem statement, RSAT, decision procedure

!Constraint Satisfaction Problems (CSP)

• RSAT as CSP

!Systems of Binary Relations

• Base relations

• (Atomic) Concrete/abstract relation algebras

• Composition tables

!Constraint-based Reasoning

• Constraint propagation (based on composition tables)

• Backtracking-propagation

!How to Evaluate the Result?

• Strong and weak composition

• When does constraint-based reasoning decide RSAT?

!Efficiency

• When is constraint propagation sufficient to decide RSAT?


