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Introduction

• Knowledge Representation (Artificial Intelligence)
• Formal Ontology
• Qualitative Reasoning
• Temporal Reasoning
• Spatial Reasoning
• Natural Language Understanding

• Why the Parthood relation?
• Philosophical, cognitive and linguistic relevance
• Spatial and temporal reasoning based on vague information:

impossibility to use exact coordinates, trajectories in terms of
mathematical functions, and calculus

• Reference to “extended” entities (e.g., temporal periods, spatial
regions), possibly composed of parts of the same nature

• No calculus, yet still a rigorous formal approach: logical theories
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Outline of the course

• Mereology
• Time
• Mereotopology-1
• Exam topic discussion; Mereotopology-2
• Reasoning methods and complexity results
• Mereogeometry
• Mereogeometry
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Formal Relation of Parthood

• Ontology
• Domain of entities +

Language (predicates + logic framework) +
Properties (axioms)

• Formal Ontology
• Formal framework, e.g., logic
• Search for invariants across domains (Husserl)

• Basic structure
• Unary predicates: implication or “is-a”
• Entities: parthood relation

• (my hand,my body), (today,this week), (this room,the university), (one
student,the class), (mereology,formal ontology)…
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A Bit of History

• Mereology
• Lesniewski 1927-1931, On the Foundations of Mathematics
• Greek meros
• Alternative to Set Theory for escaping Russell’s paradox

• “the class of classes that are not members of themselves”
• Expressed in a special logical language of its own “Ontology”

• Link with algebra: Tarski 1935
• The calculus of individuals, “nominalism”

• Leonard & Goodman 1940
• Expressed in first-order logic
• No null individual
• No abstract entities, no hierarchical distinction between individuals: a

single relation of parthood
• Contemporary studies: Peter Simons (1986), Achille Varzi (1996)

• All ontologies use a parthood relation, in the best cases fully specified with
respect to Simons’s work
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Related structures: A math reminder

• Orders
• Lattices
• Boolean Algebras
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Orders-1

• Comparison between entities
• “is more/less … than”: “is bigger than”, “is smaller than”, “is later than”…
• “is to the left of”, “is an ancestor of”, “is a divisor of”, “is part of”…

• Partial order, primitive ≤
• First-order logic with identity
• Reflexive (axiom): ∀x x≤x
• Transitive (axiom): ∀xyz ((x≤y ∧ y≤z) → x≤z)
• Antisymmetric (axiom): ∀xy ((x≤y ∧ y≤x) → x=y)
• Strict order (definition): x<y ≡df x≤y ∧ ¬y≤x
• Inverse order (definition): x≥y ≡df y≤x              no preferred direction

• Strict partial order, primitive <
• Transitive and asymmetric; irreflexive (theorem)
• x≤y ≡df x<y ∨ x=y

• Choice of any of ≤,≥,<, or > as primitive
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Orders-2

• Classical additional properties
• Total order / linear order:  ∀xy (x≤y ∨ y≤x)

• Discrete order:
∀xy (x<y → ∃z1z2(x<z1 ∧ z1≤y ∧ ∀t ¬(x<t ∧ t<z1) ∧ x≤z2 ∧ z2<y ∧ ∀t ¬(z2<t ∧ t<y)))
on finite domains, all orders are discrete

• Dense order: ∀xy (x<y → ∃z(x<z ∧ z<y))

• Bounded order:  ∃x1x2 ∀y (x1≤y ∧ y≤x2)
Bounded to the left, bounded to the right

• Unbounded order:  ∀x ∃y1y2 (y1<x ∧ x<y2)

• Examples: 〈N,≤〉; 〈Z,≤〉; 〈Q,≤〉; 〈R,≤〉
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Orders-3

• Many orders on many domains!
• weights, heights, numbers, instants (precedence), preferences…
 these are not parthood!

• Specificities of Parthood?
• Surely not a linear order
• Dense, discrete, bounded, unbounded: all possible options
• So?

• Well-known order, much related to parthood: set inclusion
• Yet, no need to refer to the membership relation
 Lattices and algebras



ICT School 2007 11

Lattices

• Set equipped with a partial order s.t. any two entities have an infimum and a
supremum
• ∀xy ∃z(z≤x ∧ z≤y ∧ ∀t ((t≤x ∧ t≤y) → t≤z) z is noted x∧y   meet
• ∀xy ∃z(x≤z ∧ y≤z ∧ ∀t ((x≤t ∧ y≤t) → z≤t) z is noted x∨y   join
• Semilattices: join semilattices, meet semilattices

• Set  equipped with two operators, meet (∧) and join (∨) s.t.
• ∀xy (x∧y = y∧x  ∧  x∨y = y∨x) commutativity
• ∀xyz ((x∧y)∧z = x∧(y∧z)  ∧  (x∨y)∨z = x∨(y∨z)) associativity
• ∀xy (x∧(x∨y) = x  ∧  x∨(x∧y) = x) absorption
• Theorem: ∀x (x∧x = x  ∧  x∨x = x) idempotence
• x≤y ≡df x= x∧y,   or equivalently,   x≤y ≡df y= x∨y

• Examples: 〈2D,∩,∪〉; 〈Prop, ∧, ∨〉; 〈{⊥, T}, ∧, ∨〉; 〈N*, gcd, lcm〉; 〈N*, min, max〉
• Equivalence of the two definitions: 〈N, ≤〉 same lattice as 〈N, min, max〉
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• Graph on finite domains
• Convention: all vertical or oblique arcs are implicitly oriented

from bottom to top, strict order
y

x<y
x

• All lattices with 5 elements

Hasse diagrams
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Lattices and Boolean Algebras

• Distributive lattice
• ∀xyz (x∧(y∨z) = (x∧y)∨(x∧z)   ∧   x∨(y∧z) = (x∨y)∧(x∨z))

• Complemented lattice
• ∃x1x2 ∀y (y∧x1=x1 ∧ y∨x2 =x2)     x1 noted 0 or ⊥; x2 noted 1 or T
• Complement operator, noted ' or - s.t. ∀x (x∧x'=0 ∧ x∨x' =1)

• Boolean algebra = complemented distributed lattice
• Examples: 〈Prop, ∧, ∨, ¬, ⊥, T〉; 〈{⊥, T}, ∧, ∨, ¬, ⊥, T〉;

                  〈2D,∩,∪,—,∅,D〉
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Boolean Algebras-2

• De Morgan’s rules are theorems
• (x∧y)’ = x’∨y’
• (x∨y)’ = x’ ∧y’

• Atoms
• At(x) ≡df ¬x=0 ∧ ∀y (y≤x → (y=0 ∨ y=x))

• Atomic algebras
• ∀x ∃y (At(y) ∧ y≤x)

• Complete lattices
• Any subset has a supremum and an infimum
 Finite lattices are complete
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From algebras to Mereology

• No “null” entity

• Not necessarily existence of the universe
• Not necessarily existence of the join and the meet

Yet… properties related to those of Boolean algebras
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Basic Mereology: M

• P, partial order part
(M1) ∀x P(x,x)
(M2) ∀xyz ((P(x,y) ∧ P(y,z)) → P(x,z))
(M3) ∀xy ((P(x,y) ∧ P(y,x)) → x=y)

• Definitions
• PP(x,y) ≡df P(x,y) ∧ ¬P(y,x) proper part
• O(x,y) ≡df ∃z (P(z,x) ∧ P(z,y)) overlap
• PO(x,y) ≡df O(x,y) ∧ ¬P(x,y) ∧ ¬P(y,x)) proper overlap
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• Supplementation
(M4) ∀xy (PP(x,y) → ∃z (P(z,y) ∧ ¬O(z,x)))

Weak supplementation

(M5) ∀xy (¬P(y,x) → ∃z (P(z,y) ∧ ¬O(z,x)))
Strong supplementation

• Extensionality
(E1) ∀xy ((∃z PP(z,x) ∧ ∀z (PP(z,x) ↔ PP(z,y))) → x=y)
(E2) ∀xy (∀z (O(z,x) ↔ O(z,y)) → x=y)

• Theorems
• M+(M5) | (M4); M+(M5) | (E1);  M+(M5) | (E2);
• M+(M4) |−/− (E1); M+ (E1) |−/− (E2);
• M+(E2) | (M4)

Extensional Mereology
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Closure Mereology - 1

• Product
(M6) ∀xy (O(x,y) → ∃z ∀t (P(t,z) ↔ (P(t,x) ∧ P(t,y))))
• z is the product of x and y, noted x•y

• Sum
(M7) ∀xy ∃z ∀t (O(t,z) ↔ (O(t,x) ∨ O(t,y)))
• (E2) entails the unicity of z
• z is the sum of x and y, noted x+y
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Closure Mereology - 2

• Difference
(M8)   ∀xy (∃z (P(z,x) ∧ ¬O(z,y)) → ∃z ∀t (P(t,z) ↔ (P(t,x) ∧ ¬O(t,y))))
• z is the difference of x and y, noted x-y

• Complement
• Existence of the universe, noted U
(M9)   ∃x ∀y P(y,x)
• Definition of the complement:  ~x = U-x  (exists for all x ≠ U)
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Classical/General Extensional Mereology

• General fusion
(M6’)  ∃x φ(x) → ∃z ∀y (O(y,z) ↔ ∃x (φ(x) ∧ O(y,x)))
• Axiom schema, useful for infinite domains
• unicity guaranteed by (E2), z is noted σx φ(x)

• Russell’s description operator ι often used
• σx φ(x) = ιz ∀y (O(y,z) ↔ ∃x (φ(x) ∧ O(y,x)))

• Sum, product and complement as fusions
• x+y = σz (P(z,x) ∨ P(z,y))
• x•y = σz (P(z,x) ∧ P(z,y))
• ~x = σz (¬O(z,x))

• Universe
• U= σx P(x,x)

• No null element! No general fusion of nothing: ¬∃z (z = σx ¬P(x,x))
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Mereology and Algebra

• General Extensional Mereology characterizes complete
Boolean algebras with the null element removed [Tarski 1935],
that is, complete distributed complemented lattices without
bottom.
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Atomicity

• Atoms
• At(x) ≡df ∀y (P(y,x) → y=x)

• Atomicity
(AT1) ∀x ∃y (At(y) ∧ P(y,x))

• Atomic essentialism
(AT2) ∀xy (∀z (At(z) → (P(z,x) →P(z,y))) → P(x,y))

• Theorems
M+(M5)+(AT1) | (AT2)
M+(M5)+(AT2) | (AT1)
M+(AT2) | (M5)
M+(E1)+(AT1) | (E2)
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Mereologies

M

WM
CM

GM
CWM

GWM

AM

ACM

AGM

AGWM

AWM

ACWM

EM

CEM

GEM

AEM

ACEM

AGEM
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Questioning Classical Extensional Mereology

• Some mereotopologies reject even weak supplementation
(Lectures 3&4)

• Extensionality
• Loosing or acquiring parts: identity across time
• Identity between my body and the collection of my organs

• Closure: sum of my nose and Caesar’s toe
Fusion: even stranger scattered infinite sums
• First move: mereotopology to identify “wholes”

• Transitivity?
• My hand is part of me, I’m part of the ICT School College, but my

hand is not part of the College
• The handle is part of the door, the door is part of the house. Is the

handle part of the house?
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Distinguishing various Part-Whole relations

• Linguistic and psychological evidence
• Lyons 1977, Cruse 1986, Winston et al. 1987…

• Part-whole relations and meronomies
• A set of relations

• Member / collection
• This cow / the herd, John / the orchestra

• Sub-collection / collection
• Benelux / EU   (but not USA / NATO)

• Component-Integral Whole
• The handle / the door, the engine / my car

• Portion-Whole
• A piece of cake

• Substance-Whole
• Some sugar / this cake

• Piece-Whole
• The left half of this table


