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Why Mereotopology ?

Formalizing common-sense knowledge
® proved to be much harder than formalized expert knowledge
® is based on a common-sense ontology
® that includes objects of every day live
® rather than sets.

Mathematics (Topology)
® uses set theory to represent real world problems
® provides sophisticated tools for expert reasoning.

Topology: A Reminder

Definition
* A topology on a carrier set D is (given by) a set 7 C 2P
having the following properties
°D, e T
*YSCT[USE T]
VX, YETIXNYET]
* The elements of T are called open sets.
Simple Examples
*{D, @} (trivial topology)
* 2D (discrete topology)
* T,={UM| M C B} (metric based topology)
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Spatial Structure: Mereotopological Calculi

Basic idea
® (extended) regions are basic entities in the spatial ontology
® topological structure is crucial for spatial structure
(— qualitative)
® points and boundaries are abstractions from configurations
of regions

O
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How to proceed?

Select terminologies
® Use notation that is neutral regarding the theories
¢ Identify the common terminological kernel
* Distinguish terms whose definitions differ
* Mereological terminology (def. based on Part-of <)
* Topological terminology (def. based on contact C)
* Mereotopological terminology (def. based on < and C)
Identify a list of axioms
® such that every approach can be identified with a subset

Analyse the interrelation between the axioms

Mereotopologies

A large selection of proposals exist

* Whitehead (1929), Clarke (1981), Randell & Cohn (1989),
Egenhofer (1991), Randell Cui & Cohn (RCC, 1992), Vieu
(1993), Asher & Vieu (A&V, 1995), Roeper (1997),
Eschenbach (CRC, 1999), Borgo, Guarino, Masolo (BGM,
1996)

® Is there a common core to the proposals?
® Which approaches can be combined?
® How to choose between 'the proposals' for an application?
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Select Terminologies




(Selection of) Binary Relations in
Mereotopology

' Identify a List of Axioms

Tt Study interactions
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Basic Assumptions Collected Types of Axioms

\/Principles of extensionality, supplementation (individuation)

The axioms used up to now are
v'Interaction between mereological and topological

M: VXyz[z<xax<y=z<y] Mterac
M: VXY[X<yAy<x=>x=Y] erminology

M: Vx [x<X] ‘/Topological and mereological universes
T: Vx [C(x, X)] v/ Closed regions

T: Vxy [C(x, y) = C(y, X)] ¢ Existence of open regions; divisibility

® A first map

® Atoms and connectedness of space

® Three types of complements and connectedness
® Mereological and topological completeness

M+T:  Vxy[x<y= E(x, y)]
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Extensionality and Interaction of
Mereological and Topological
Terms

Principles of extensionality do not contradict each other

M+ T S
MOGET  ERTWT /)
R |
M+ WET EN<
\ EQ <
M+ ST
EM+T V
EMET L
DY
CRC A&V Clarke
EMHWT
RCC_Roeper BGW
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Extensionality and the interaction between
mereology and topology

ET: Extensional Topology
Vxy [EQ(x,y) = x=Y]
ET|=Vxy[x#y< 3z[C(x,z) & -~C(y, 2)]]
EM: Strong supplementation (Extensional Mereology )
Vxy[x<ey=x<y] o
Vxy[Vz[zOx=zO0y]=>x<Y] \
EM|=Vxy[x#y< Jz[zOXx<> =(zOV)]] E <
M+ST: Strong Mereotopological Interaction
Vxy[E(x, y) = x<y]
Vxy[Vz[C(z,x) = C(z, y)] = x <] V
M+WT: Weak Mereotopological Interaction
Vxy[E(x y) = x <]
M+WT |= Vxy[S(x,y) = x 0]
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Terminological Simplifications in EM+WT

<Y

NN

S EC DR —DR

© ES BC DC O0— S EC—BC DC

E <‘- E—<—=<e
T

TE PE IE < EQ E—< PE—<< TE—<, =—EQ
PTE PIE < < g = PIE <<, PTE —<<,
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Universal Regions (2)

Mereologically and Topologically Different versions for Mereology and Topology

. i M-UNiV(X) <46 VY [y O X]
Universal Regions tuniv(x) <, Yy [C(y, )]

M+T |= ¥x [m-univ(x) = t-univ(x)]

M+OT: Topologically universal regions are
mereologically universal

VX [t-univ(x) => m-univ(x)]

* The grey area is topologically universal .
but not mereologically universal.
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(Second Part of) A first map

M+ T
M+0T M+WT |= M+OT
M+ ET VT WT Closed and Open Regions
\
+TRI0ET
AM«*{F
M+ ST
EMsT
DN
EM+ET L
CRC QENHOET A&V Clarke
EMHWT

RCC__Roenar BGM
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Closed and Open Regions

Point-Set Topology
® Closed sets include all their boundaries.

* Missing connections of closed regions
derive from missing parts.

CL(X) <> Yy Iy <+ x = E(y, X)

M+T |= VX [CL(x) = Vy[3z[C(z, y) A "C(z, )] = Tw [w<y A ~(w O X)]]]
® Open sets do not include their boundaries.

* All connections derive from sharing parts.

* There are no external connections to open regions.

OP(X) <>ger ~3y [EC(y, X)]
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Principles of extensionality do not contradict each other
Mereological extensionality stronger than closedness of regions

M+EK)T S
M+(K)OT
MHET 0
M+T L E <e
\
i M+OT,, ™~
M+ETq, EQ <
\ ‘/
EM+T L
EM+OT -
EM+ET PG
CRC A8V Clarke

RCC__Roenar BGM
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Closed Regions and Closures

A region is closed iff it encloses all regions it covers.
CL(X) <4 Yy [y <* x = E(y, X)]
M+T., : All regions are closed
Vx [CL(x)]
A closure of region y is connected to exactly those
regions that are connected to a region y covers.
Cl(X; 2) <4 YU [C(u, x) = Ty [y <z A C(u, y)]]
M+T |= Vx y [cl(x; z) = Yy [y <* z=> E(y, X)]
M+T |= Vx [CL(x) <> cl(x; X)]
M+KT: All regions have a closure
Vy Ax [cl(x; y)]
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Open Regions, inner parts and interiors

A region is open, iff it has no external contacts.
OP(x) <> 4o =3y [EC(y, X)]
M+T |= Vx [OP(x) <> Vz[C(z, x) = z O x]]
M+T |= Vx [OP(x) <> x < «]
X< Y e X<y aVz[C(z,x)=20Y]

A theory where all regions are open is discrete.
DISCRETE <> 4 Vx [OP(x)]
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Terminological Simplifications in Discrete
Spaces

\ §—C—©0 #-—DR-DC

E < \
T E—<
TE PE E < EQ ™S
1T E—<—< EQ
PIE PE & << § ° N
<< <<, PIE—PE—<<—<< =
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Open Regions, Inner Parts and Interiors

A region is open, iff it has no external contacts.

OP(x) <> g =3y [EC(y, X)]
An interior of a region y is a region connected to exactly those
regions that overlap y.

int(x; ¥) <4 VZ[C(z, X) & 20 )]

I= Vx y z[int(x; ) = (int(y; 2) < EQ(x, y))]
I=Vxy[EQ(x, y) = Vz[inl(x; z) « int(y; 2)]]
I=Vxy[x<>y= Vzlint(z; x) < int(z; y)]]
I=Vxyzlint(z; x) = (int(z, y) < x <> y)]

Open Regions, Inner Parts and Interiors

A region is open, iff it has no external contacts.

OP(X) <> ~ 3y [ECy, )]
An interior of a region y is a region connected to exactly those
regions that overlap y.

int(x; y) <4 VZ[C(z,X) & 20 Y]

M+IT: All regions have an interior
Vy 3x [int(x; y)]

M+T-B: All regions have an inner part
Vx3yly <A
X<y <4 X<y AVZ[C(z,X)=20}]

ICT School 2007 27

ICT School 2007 26

Open Regions, Inner Parts and Interiors

A region is open, iff it has no external contacts.

OP(x) < ger =3y [EC(y, X)]
An interior of a region y is a region connected to exactly those
regions that overlap y.

int(x; ¥) <4 VZ[C(z, X) © 20 )]

M+T I= Vx [OP(x) <> int(x; )]
M+T I= Vx y [int(x; y) = IE(x, y)]
M+T I= Vx y [int(x; y) = x < y]
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Selection from (Third Part of) A first map

M

N{K)WT
Wl

M+WTCL M+(K)ST
ENW%

CRC Q P

A&V Clarke

M+ST¢,
= EM+WT

RCC _Roepar BG
29
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Theories with inner parts and interiors

M+(K)T
M+WT: Vx y [E(x, y) = X <+ J]

M+ST: Vx y [E(x, y) = x <]
M+KT: Vy 3x [cl(x; y)]

M+Tg: Vx y [y <e x = E(y, X)]
EM: Vxy[x<ey=x<}y]
M+T=B: Vx 3y [y < «]

M+IT: Yy 3x [int(x; y)] :/ma\q%\

RCC Roeper BGM

M+KWT

M+T-B = M+WT
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Theories with inner parts and interiors

M+K)T
M+WT: Vx y [E(x, y) = x < }]

M+ST: Vx y [E(x, y) = x <]
M+KT: Yy 3x [cl(x; y)]
M+T¢: Vxy [y <s x = E(y, X)]

M+K)WT

EM: Vxy[x<ey=x<y]

M+T=B: Vx 3y [y < x| A&V Clarke
M+IT: Yy 3x [int(x; y)]

RCC Roeper  BGM
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Theories with inner parts and interiors

M+(K)T

M+WT: Vx y [E(x, y) = x <*y]
M+ST: Vx y [E(x, y) = x <]
M+KT: Vy 3x [cl(x; ¥)]

M+Tg: Vxy [y < x= E(y, X)]
EM: Vxy[x<ey=x<y]
M+T=B: Vx 3y [y < x]

MHT: Yy 3x [int(x; y)]

cL
=EM+T-B
M+IT |= M+T-B

RCC Roeper BGM

M+IT,, |= DISCRETE
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A first map

M+T-B |= M+WT
M+T |= M+T-B
MH#IT,, |= DISCRETE
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Some Remarks on M+T-B

All regions have interior parts.
® In this theory, the mereotopological operators behave
similar to their topological counterparts on regular sets.
All interiors are open. All closures are closed.
M+T-B |= Vx y [int(x; y) = OP(x)]
M+T-B |= Vx y [cl(x; y) = CL(x)]
int and cl do not add region-parts
M+T-B |= Vx y [int(x; y) = x <> ]
M+T-B |= Vx y [cl(x; y) = x <> ]
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The first Map with some Landmarks

M+(K)T
M+(K)OT

MHKET |

M+T,

EM+T

M+(K)IST
N
A&V Clarke
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Some Remarks on M+T-B

All regions have interior parts.

® In this theory, the mereotopological operators behave
similar to their topological counterparts on regular sets.

double cl and int
M+T-B = Vx y z [cl(y; 2) = (cl(x; y) < EQ(x; ¥))]
M+T-B |= Vx y z [int(y; 2) = (int(x; y) < EQ(X; y))]
regularity
M+T-B I= Vx y z [cl(z; y) = (int(x; y) < int(x; 2))]
M+T-B I= Vx y z[int(z; y) = (cl(x; y) <> cl(x; 2))]
interiors are the fusions of the inner parts
M+T-B = Vx y [int(x; y) © Vz[C(x, 2) & Iw[C(w, Z) A W< ¥]]]

ICT School 2007 36



An Interesting Part of the First Map

M+(K)T

Wgor

Mﬂ/K)@T

A&V Clarke
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Connected Space

A Simplified Map

M+(K)T

M+1;(‘L\

EM+T M+(K)IST
A&V Clarke

CRC

"B,

RCC Roeper BGM
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Connectedness of Space and Atomic Regions

A region that is both open and closed is isolated (from the rest
of space)

ISO(X) <> OP(x) A CL(X)
M+T |= Vx [m-univ(x) = I1SO(x)]
M+T¢q\: Only mereologically universal regions are isolated
Vx [ISO(x) = m-univ(x)]
A region without proper parts is an atom
Al(X) gt =3y [y << x]
MA: Every region has an atomic part
Vy 3x [At(x) A x< ]
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Atoms in M+T7B_

A region without proper parts is an atom
At(x) < gt =3y [y << X]

M+T=B |= Vx [At(x) = OP(x)]

M+T-B, = Vx [At(x) = ISO(x)]
MA+T=B,, = Vy [3x[x <y A ISO(X)]]
M+TB¢on o 1= VX [At(x) = m-univ(x)]
M+TBoy o 1= VX [AL(X) = Vy [x < Y]]
M+T=B oy o, IX [A(X)] 1= Yy [m-univ(y)]
M+T7Boy ¢, 3X [At(x)] I= DISCRETE
MA+TBq, ¢ |= DISCRETE
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Connectedness of Space and Atomic Regions

M+T
M+T=B: Vx Ay [y < A] M+I2B

M+T¢,:
Vxyly<ex= E(y, x)]

A&V  Clarke

M+T,
M+Tcon:

Vx [ISO(x) = m-univ(x)]
MA: Yy 3x [At(x) A x<}]
Roeper

CRC RCC BGM
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A Critical Region in the Simplified Map

M+(K)T

A&V Clarke
CRC

P

RCC Roeper BGM
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Connectedness of Space and Atomic Regions

M+T
M+T=B: Vx Ay [y < A] M+I2B
M+T¢,:
Vxyly <ex=E(y, x)]

M+T oy
Vx [ISO(x) = m-univ(x)] ~ M+L

A&V  Clarke

A&V oy Clarkegoy
MA: Yy 3x [At(x) A x <]
Roeper

CRC RCC Roeper,BGM
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Connectedness of Space and Atomic Regions

M+T

M+T=B: Vx 3y [y < x|
M+T.,.:
Vxyly<ex=E(y, x)]

M+Tcon:
Vx [ISO(x) = m-univ(x)]
MA: Yy 3x [At(x) A x <]

M+TB¢ oy ¢rr IX [ALX)]

|= DISCRETE
MA+T-Bq, ¢, I= DISCRETE MAYT g,
ICT School 2007 45

Connected Spaces and Atomic Regions

M+T=B: Vx 3y [y < x|
M+T,: M+T
Vxyly <s x= E(y, ¥)]
M+T¢op:

Vx [ISO(x) = m-univ(x)]
MA: Vy 3x [At(x) A X <]

M+T-B

MA+T,

M+TBoy 1, 3x [At(X)] M+T
|= DISCRETE =
oNeL

MA+T=B¢qy ¢, I= DISCRETE MA+T on oL

\
CRC CRC, RCC Roeper;q, BGM

@

MA+T B, A&Vcon Clarkecoy

A&V oy Llarkegoy a
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Connected Spaces and Atomic Regions

M+T=B: Vx 3y [y < x|
M+T¢,: M+T
Vxyly<ex=E(y, X

M+Tcop:
Vx [ISO(x) = m-univ(x)]
MA: Yy 3x [At(x) A x<}]

MA+T=B

M+TB gy oL, 3¢ [ALX)] M+T
|= DISCRETE

MA+T-B,.\ .. = DISCRETE M T Boonct
CONCL '= MA+T on oL

ICT School 2007 46

A Simplified Map (of Connected Space)

>

M+(K)T cony
M+(K)OT con
M+T conycL

M+(K)T=B(con)

EM+T con

CRC M+ T8 con ot M+K)IST cony
M+ST cony A&V cony  Clarke oy
= EM+WT cop)
M+STBcon) oL
=EM+T B oy
RCC Roepenco‘NJ BGM
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Complements

Mereological Complements

A mereological complement of region y overlaps
exactly those regions that are not covered by y
m-compl(X; y) <4 YW[X O W <= =(W <e )]

M |= Vx y [m-compl(x; y) = 7(x O y)]

M I= Vx y z [m-compl(x; y) = (7(x O z) => y O 2)]

M I= Vx y [m-compl(x; y) <> m-compl(y; X)]

M I= Vx y [m-compl(x; y) = “m-univ(x) A "m-univ(y)]

XM+T: Existence of mereological complements
Yy [=-m-univ(y) = Jx [m-compl(x; y)]]

ICT School 2007

51

Three Types of Complements

A mereological complement of region y overlaps
exactly those regions that are not covered by y
m-compl(X; y) <4 VWX O W = =(W <e )]
A topological complement x of a region y is connected
to exactly those regions that are not enclosed by y
t-compl(x; y) <4 VZ[C(z, X) = -E(z, y)]
A closed complement of region y is connected to
those regions that are not proper inner parts of y and
overlaps those regions that are not part of y.
c-compl(X; y) <4 VZ [C(z, X) & =(z<<, )| A VZ[z0 x = =(z<Y)]
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A Critical Region in the Simplified Map

M+(K)T

coN)
F\M*(K)OT cON)
M+T(00N)CL\,\l\ \
M+OTicon) o M+(K)Tﬁcc’”)\
MH+K)IT con)
\ <]
CRC M+TBcon) et

/\

A&V cony  Clarke oy

RCC Roeper(com BGM
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Mereological Complements

M+(K)T con

M+(K)OT cony
M+(K)T=Bcon

M+K)IT cony
N) CL
M+T-B CON) CL \
CRC ’\
Clarke, A&V
(CON) (CON)
M+KT: Vy 3x [cl(x; ¥)] BOM

M T, Vx [y < x = E(y, %] RCC  Roeperioy
M+OT: Vx [t-univ(x) = m-univ(x)] XM: Vy [-m-univ(y)

M+T-B: Vx Ay [y < 1] => 3x [m-compl(x; y)]]
M+IT: Yy 3x [int(x; y)]
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Topological Complements

A topological complement x of a region y is connected
to exactly those regions that are not enclosed by y
t-compl(x; y) <4 VZ[Clz, X) <> ~E(z, )]

T I= Vx y [t-compl(x; y) = C(x, y)]

M+T I= Vx y [t-compl(x; y) = ~(y O x)]

T I= Vx y z [t-compl(x; y) = (°C(x, z) = C(y, 2))]
T I= Vx y [t-compl(x; y) < t-compl(y; x)]

T I= Vx y [t-compl(x; y) = 7t-univ(x) A t-univ(x)]
M+T I= Vx y [t-compl(x; y) A OP(y) = CL(x)]
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Mereological Complements

M+(K)T=Bcon

XM+(K)OT con) M+(K)
— XM+(K)TB(gon

M+TB con oL

XM+(K)IT cony

M XM Clarke oy A&V con)

pom Mo ot

M+KT: Vy 3x [cl(x; y)] RCC Roepercoy

M+Te, 2 Vxy [y <x = E(y, x)]
M+OT: Vx [t-univ(x) = m-univ(x)] XM: Yy [=m-univ(y)

M+T-B: Vx 3y [y < X] = 3x [m-compl(x; y)]]
M+IT: Vy 3x [int(x; )] XM+OT, |= M+T-B
ICT School 2007 ”

Some Remarks on M+T-B

All regions have interior parts.
M+T-B |= Vx y [t-compl(x; y) = m-compl(x; )]

® In this theory, the mereotopological operators are dual
regarding topological complement.

M+T-B I= Vx y [t-compl(x; y) = (CL(y) < OP(x))]
M+T-B |= Vx y u z [t-compl(x; u) A t-compl(z; y) =
(cl(x; y) = int(u; 2))]
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Topological Complements

A topological complement x of a region y is connected
to exactly those regions that are not enclosed by y
t-compl(x; y) <4 VZ[C(z, X) & -E(z, y)]
M+XT: Existence of topological complements
Yy [-t-univ(y) = 3x [t-compl(x; y)]]
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Topological Complements

VT
M+T-B: Vx 3y [y < x] VTT-B
M+IT: Yy 3x [int(x; y)]
M+KT: Yy 3x [cl(x; y)] MT
M+Tg: Vxy [y <o x
= E(y.x)] E—
M+KT-B
XT: Vy [-t-univ(y) MHKIT
=> Jx [t-compl(x; y)]] MeT
XM: Yy [=m-univ(y)
=> Ix [m-compl(x; y)]] M+T-Bg,
M+IT,, |= DISCRETE A&V Clarke
CRC BGM RCC Roeper
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A Critical Region in the Simplified Map

M+K)T cony
F\\

M+T cony oL -
MH+(K)T-B(con)
D— M) g
\ —

CRC M+T=8B con) oL

A&V(CON) CIarke(CON)

RCC Roeper{Com BGM
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Topological Complements

VT
M+T=B: Vx 3y [y < x| VT8
MHIT: Yy 3x [int(x; y)] VaXT
M+KT: Yy 3x [cl(x; y)]
M+Tg 0 Vxy [y <sx MokT
= E(y, X —
XT: Yy [=t-univ(y)
= Ax[t-compl(x; Il | mexkr
XM: Yy [~m-univ(y) "
e [m-comyp|(x; W] I— .
XTe, = M+XKT-B
M+XIT 1= M+KT A&V Clarke
M+XKT-B |= M+IT

M+XT-B,, |= DISCRETE
CRC BGM RCC Roeper
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Topological and Mereological Complements

M+T

M+T-B: Vx 3y [y <, ] %T,B
_ XMT
M+IT: Vy 3x [int(x; y)] MaXT | VAT
M+KT: Yy Ax [cl(x; y)] S | M
MHTe: Vxyly<ex  wka T
= E(y, X)] N
/ M+KT-B
XT: Yy [~ t-univ(y) M+X&<TM+KT ]
= Jx [t-compl(x; y)]] — XM+KT-B
XM: Vy [-m-univly)  Mlal | | XKD
= 3x [m-compl(x; )] T | Ty, T
M+XTg, ] A =M+XKT-B
+T-
M+XT=B = XM XVXT,, | = )(y\/|+0TcCLL A&V Clarke
XM+XOT,, |I=DISCRETE
CRC BGM RCC Roeper
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Closed Complements

A closed complement of region y is connected to
those regions that are not proper inner parts of y and
overlaps those regions that are not part of y.

c-compl(x; ¥) <4 VZ[C(zZ, X) & =(2<<,y)] A VZ[zO x & =(z<Y)]
X'M+T: Existence of closed complements

Yy [=m-univ(y) = 3x [c-compl(x; y)]]
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Closed Complements

A closed complement of region y is connected to
those regions that are not proper inner parts of y and
overlaps those regions that are not part of y.

c-compl(X; y) 4 VZ [C(z, X) & =(z<<, )] A VZ[zO x = =(z<Y)]

M+T |= Vx y [c-compl(x; ¥) = CL(x) A CL(y)]
M+T |= Vx y [c-compl(x; y) = EC(x, )]

M+T |= Vx y [c-compl(x; y) = m-compl(x; )]
M+ST |= Vx y [c-compl(x; y) = c-compl(y; x)]
EM+T oy I= Vx y [m-compl(x; y) < c-compl(x; y)]
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A Selection from the Simplified Map (of
Connected Space)

M+K)T cony

M+T conycL

EM+T con

CRC

A&V(CON) Clarke(CON)

%\

RCC Roeper(com BGM
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Complements and Connectedness

M+KT: Vy 3x [cl(x; y)]

M+Tg: Vx y [y <e x = E(y, X)]
EM: Vxy[x<oy=x<}y]
M+Ton: VX [ISO(x) = m-univ(x)]

XM: Yy [=m-univ(y)

=> Ix [m-compl(x; ¥)]]
X'M: Yy [=m-univ(y)

=> Jx [c-compl(x; y)]]

M+(K)T

M+Te,

EM+T

Roeper

W\

CON
A&V Clarke

A&V Clarke,
M+Toon oL CON CoN

EM+Tcon

BGM

Roepergoy CRC RCC
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Complements and Connectedness

M+KT: Yy 3x [cl(x; ¥)]
M+T¢: Vx y [y <e x = E(y, x)]
EM: Vx y[x<ey=x<}]
M+T oy VX [ISO(xX) = m-univ(x)]
XM: Yy [~ m-univ(y)

= 3x [m-compl(x; y)]]
X'M: Yy [-m-univ(y)

= Jx [c-compl(x; y)]]

XMHT = XM+Tcop 1
XEM+T oy [= X'M+T

M+K)T

M+Te,

EM+T

m KT
% ALV Clarke
i\

XM+(K)Teon

A&V¢y Clarkegoy

XM+Teon L

XEM+T

EM+T¢on
’J\ XEM+Top

BGM =X
Roeper = XEM+T

XM+T

Roepergqy CRC RCC
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Complements and Connectedness

M+KT: Vy 3x [cl(x; y)] M+(K)T
M+Tg VX y [y <o x = E(y, X)] XV(KT
EM: Vxy[x<ey=x<}] o MY eon A8V Clarke

CL
M+T.oy: VX [ISO(x) = m-univ(x)] XM+(K)T

R e
XM: Vy [=m-univ(y) Mot o A&Vqy Clarkegoy
= 3x [m-compl(x; y)]] [—
EMT XM+Teon oL

X'M: Yy [=m-univ(y) XEM+T

= 3x [c-compl(x; y)]]

BGM XEM+Teoy

Roeperﬂ\

Roepercoy CRC RCC
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All Complements at one Glance

VT
M+T=B: Vx 3y [y < x|

xmgw;

MHIT: Yy 3x [int(x; y)]
MXT NEHT
M+KT: Vy 3x [cl(x; y)] ™ XM+T-B
. XMXT
M+Tg 0 Vxy [y <sx Mo ——
= E(y, X — |
XT: Vy [-t-univ(y) SNiskT | M#KTB
= Jx [t-compl(x; y)]] MXKT | —
XM: Vy [~m-univ(y) o el R
= 3x [m-compl(x; )" —
XMtTg | M+T7Bg XIT
X'M: Yy [~=m-univ(y) M+XTe, I T8 = M+XKT-B
= 3x [c-compl(x; y)]] XWRXT, | = XMtOICCL A&V Clarke
XM+T Roeper
| —
CRC | XWHT-B
= X'¥+OT
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Mereological and Topological
Completeness

Mereological Completeness Conditions

CM: Vy z 3x [m-fus(x; y, z)]
CM: Vyz[y 0z= Ix[m-isct(x;y, z)]]

M
DM: Vyz[+(y<e2)
= Ix [m-diff(x; y, )] 4 \UM\XM

CM
GM: Iy [®]=IxVz[xOz

Mereological Sums, Intersections and
Differences

Overlap-based definitions
(D) m-us(x;y,z) @y VWWO X< WOYyvwOZz)
(D) mHsct(x; Y, z) @y VWWO X< Av[wOVvav<yAav<Z]
(D)  m-diff(x;y,2) < YWWO X< Iv[wOVvav<ya(vOz)
(D) xoy[®] <4 VZ[zOXe y[@AzOVY]

CM: Binary sums and intersections exist, if possible
Vy z Ax [m-fus(x; y, 2)]
Vyz[y O z= Ix [m-isct(x; y, z)]]

DM: Differences exist, if possible
Vy z[~(y <= z) = Ix [m-diff(x; y, 2)]]

GM: Arbitrary sums exist, if possible
y[P]=IxVz[xO0z<Iy[PAyOZ]

< y[@Aryoz DCM_  CUM  XDM _XUM
XM: Vy [=m-univ(y) |

= 3x [m-compl(x; y)] BGM oy
UM+T: 3x [m-univ(x)] // | \

A&V RCC GM_ Roeper

XCM |= DUM
DUM |= XCM Clarke CRC Roeper+GM
GM |= XDCUM
ICT School 2007 71
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Topological Sums and Intersections

Connection-based definitions
(D) tus(xy, z) <>ge YWIC(W, X) <> (Cw, y) v C(w, 2))]
(D) tisct(x;y, z) <> YW [C(W, X) < v [C(w, V) A E(v, y) A E(v, 2)]]
CT: Binary sums and intersections exist, if possible
Vy z Ax [t-fus(x; y, z)]
Yy z [S(y, z) = 3x [t-isct(x; y, z)]]
GT: Arbitrary sums exist, if possible
Jy [@] = Ax Vz [C(X, 2) < Ty [@ A C(y, 2)]]
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Interaction between mereological and
topological sum and intersection principles

From topological to mereological completeness
M+WT |= Vx y z [t-isct(x; y, z) = m-isct(x; y, 2)]
M+T-B |= Vx y z [t-fus(x; y, z) = m-fus(x; y, Z)]
M+CT-B |= CM
From mereological to topological completeness
M+WT,, |= Vxy z [m-isct(x; y, z) < t-isct(x; y, z)]
M+FT: Missing connections mean missing parts,
generalized
Vxyz[Au[C(u,x) A 2(C(u,y) v C(u,2))] = Tww<xAr=(WOyvwO z)]]
M+FT |= Vx y z [m-fus(x; y, z) = t-fus(x; y, z)]
M+FT |= M+T,,
CM+FWT |=CT
M+CT-B, |= M+FT
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Mereological and topological sum and
intersection principles

M+T¢: Vx y [y <o x = E(y, x)]

M+WT
M+WT: Vx y [E(x, y) = x <* ¥]
M+T-B: Vx 3y [y < x] "
M+T4R\

M+FT: Vx y z [m-fus(x; y, 2) T

= t-fus(x; y, z)] + NS
CM: Vyz 3Ix [m-fus(x; y, z)] " ere
CM: Vyz[yoz e

= 3x [mHisct(x; y, 2)]] oo
CT: Vy z Ix [t-fus(x; y, 2)]
CT: Vyz[S(y, 2)

= 3x [tisct(x; y, 2)]]

CRC

ICT School 2007 r

RCC  Roeper

Selection from the first map

M+(K)rcom\
\
M+T con e M+K)WT cony
\
M+(K)T-B(gon)

‘ MAWT con oo

CRC M+T=8B con) oL

A8V(cony  Clarkecon

RCC RoepenCON BGM
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Mereological and topological sum and
intersection principles

M+T

M+T: Vxy [y < x = E(y, X)] W
MAWT: Vx y [E(x, y) = x <+ ]
M+T-B: Vx 3y [y < X] W18
M+FT: Vx y z [m-fus(x; y, z) M+T

= t-fus(x; y, z)] \M\JrLL\\
CM: Vy z 3Ix [m'fUS(X; Y, Z)] i ere
CM: Vyz[yoz M+ET

= Ix [m-isct(x; y, 2)]] \\\\ BG{ -
CT: Vyz3Ix[t-fus(x; y, z)] M+Fm\\
CT: VyzI[S(y,2) Wre

= Ax [t-isct(x; y, z)]] ‘

CRC

M+FT |= M+T,,
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Mereological and topological sum and
intersection principles
M+T

M+T: Vxy [y <o x = E(y, )] MWT
M+WT: Vx y [E(x, y) = x <* }] CMT

M+CT
M+T-B: Vx 3y [y < A i NT-8
M+FT: Vx y z [m-fus(x; y, 2) M+T, CM+CT
= tfus(x; y, 2)] ﬁ\\m }
CM: Yy z 3x [m-fus(x; y, 2)] » $M+Tcu, e
CM: Vyz[yoz < M+T-Bg ere
= 3x[m-isct(x;y, 2)]]  M+ET CM+CT
. X . " e AV
CT: Yy z Ix [t-fus(x; y, 2)] § e e
CT: Vyz[S(y, 2) M+FCT D
= Ax [t-isct(x; y, z)]] M+FT-B
CM+‘FCT
CRC
ICT School 2007 a7
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Mereological and topological sum and
intersection principles

M+T
M+ Vxy [y <o x = E(y, x)]

M+WT: Vx y [E(x, y) = x < ]
M+T=B: Vx 3y [y < x]
M+FT: Vx y z [m-fus(x; y, 2)
= t-fus(x; y, z)]
CM: Vy z 3x [m-fus(x; y, z)]
CM: Vyz[yoz
= 3x [m-isct(x; y, 2)]]
CT: Vyz3x [t-fus(x; y, z)]
CT: Vyz[S(y,2)
= Jx [t-isct(x; y, 2)]]

M+CT-B
Clarke

A8V

cm+ECT MHFWCT

M+CT-B |= CcM CRC CM+EWT

M+CT=B, |= M+FT CNHFT-B
= M+CT=B,,

ICT School 2007
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Mereological and topological sum and
intersection principles

M+T
M+T : Vxy [y <o x = E(y, x)] m\m
MSWT: Yy [E(x ) = x<e)] | o OFT
M+T=B: Vx 3y [y < x] §§ CVRWT  M+T-B
M+FT: Vxyz[m-fus(x;y,z) M+ cMcT | MHCT
= t-fus(x; y, z)] ﬁ\\M\WT CM+WCT
CM: Vy z 3x [m-fus(x; y, 2)] e ?M e |7 —
CM: Vyz[yoz %X\ CNHWT, | M*T By
= Ix[m-isct(y, 2)]]  megr | | oweCTy[MWETa Vk
CT: Vyz3Ix [t-fus(x; y, z)] ERM\* wr | T BG{ e
CT: Vyz[S(y,2) M+ECT —
= Ax [t-isct(x; y, z)]] M+FT-B
cm+ect MHFLCT
CM+FWT |=CT CRC CM+FWT
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Avoid

Discrete spaces
* if you want topological distinctions
Theories of closed regions
¢ if you want interiors in non-discrete spaces
General existence of interiors
¢ if you want theories of closed regions or mereological
extensionality
Theories of closed regions with inner parts
¢ if you want connected space with atoms
¢ if you want to guarantee topological complements

Allow

Space to be connected

¢ i.e. that only mereologically universal regions are isolated
Topologically universal regions that are not
mereologically universal

¢ if you want to guarantee mereological complements without
guaranteeing inner parts
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