Modeling in Knowledge Representation: The Parthood Relation

Stefano Borgo LOA, ISTC, CNR Carola Eschenbach Hamburg University Laure Vieu IRIT, CNRS & LOA, ISTC, CNR Doctorate Course 2006-2007

Why Mereotopology?

Formalizing common-sense knowledge

- proved to be much harder than formalized expert knowledge
- is based on a common-sense ontology
- that includes objects of every day live
- rather than sets.

Mathematics (Topology)

- uses set theory to represent real world problems
- provides sophisticated tools for expert reasoning.

4-Mereotopology (Part 2)

Doctorate Course

Modeling in Knowledge Representation: The Parthood Relation 2006-2007

Topology: A Reminder

Definition

- A *topology* on a carrier set D is (given by) a set $\mathcal{T} \subseteq 2^D$ having the following properties
 - ullet D, $\emptyset \in \mathcal{T}$
 - $\forall S \subseteq T[\bigcup S \in T]$
 - $\forall X, Y \in \mathcal{T}[X \cap Y \in \mathcal{T}]$
- ullet The elements of $\mathcal T$ are called *open sets*.

Simple Examples

- {D, Ø} (trivial topology)
- 2^D (discrete topology)
- $\mathcal{T}_d = \{ \bigcup M \mid M \subseteq \mathcal{B}_d \}$ (metric based topology)

Spatial Structure: Mereotopological Calculi

Basic idea

- (extended) regions are basic entities in the spatial ontology
- topological structure is crucial for spatial structure (→ qualitative)
- points and boundaries are abstractions from configurations of regions

ICT School 2007 5

How to proceed?

Select terminologies

- Use notation that is neutral regarding the theories
- Identify the common terminological kernel
- Distinguish terms whose definitions differ
 - Mereological terminology (def. based on Part-of <)
 - Topological terminology (def. based on contact C)
 - Mereotopological terminology (def. based on < and C)

Identify a list of axioms

• such that every approach can be identified with a subset Analyse the interrelation between the axioms

ICT School 2007

Mereotopologies

A large selection of proposals exist

- Whitehead (1929), Clarke (1981), Randell & Cohn (1989), Egenhofer (1991), Randell Cui & Cohn (RCC, 1992), Vieu (1993), Asher & Vieu (A&V, 1995), Roeper (1997), Eschenbach (CRC, 1999), Borgo, Guarino, Masolo (BGM, 1996)
- Is there a common core to the proposals?
- Which approaches can be combined?
- How to choose between 'the proposals' for an application?

ICT School 2007 6

Select Terminologies

(Selection of) Binary Relations in Mereotopology

ICT School 2007 9

Basic Assumptions Collected

The axioms used up to now are

M: $\forall x \ y \ z \ [z < x \land x < y \Rightarrow z < y]$

M: $\forall x \ y \ [x < y \land y < x \Rightarrow x = y]$

M: $\forall x [x < x]$

T: $\forall x [C(x, x)]$

T: $\forall x \ y \ [C(x, y) \Rightarrow C(y, x)]$

M+T: $\forall x \ y \ [x < y \Rightarrow E(x, y)]$

Identify a List of Axioms

Study interactions

Types of Axioms

- ✓ Principles of extensionality, supplementation (individuation)
- ✓ Interaction between mereological and topological terminology
- √ Topological and mereological universes
- ✓ Closed regions
- Existence of open regions; divisibility
- A first map
- Atoms and connectedness of space
- Three types of complements and connectedness
- Mereological and topological completeness

Extensionality and Interaction of Mereological and Topological Terms

Principles of extensionality do not contradict each other

Extensionality and the interaction between mereology and topology

ET: Extensional Topology

$$\forall x \ y \ [EQ(x, y) \Rightarrow x = y]$$

ET |=
$$\forall x \ y \ [x \neq y \Leftrightarrow \exists z \ [C(x, z) \Leftrightarrow \neg C(y, z)]]$$

EM: Strong supplementation (Extensional Mereology)

 $\forall x \ y \ [x < \cdot y \Rightarrow x < y]$

 $\forall x \ y \ [\forall z \ [z \circ x \Rightarrow z \circ y] \Rightarrow x < y]$

EM |= $\forall x \ y \ [x \neq y \Leftrightarrow \exists z \ [z \circ x \Leftrightarrow \neg(z \circ y)]]$

M+ST: Strong Mereotopological Interaction

 $\forall x \ y \ [E(x, y) \Rightarrow x < y]$

 $\forall x \ y \ [\forall z \ [C(z, x) \Rightarrow C(z, y)] \Rightarrow x < y]$

M+WT: Weak Mereotopological Interaction

 $\forall x \ y \ [\mathsf{E}(x, \ y) \Longrightarrow x <^{\bullet} y]$

 $\mathbf{M+WT} \models \ \forall x \ y \ [S(x, y) \Leftrightarrow x \circ y]$

ICT School 2007 14

ΕQ

Terminological Simplifications in EM+WT

ICT School 2007

Mereologically and Topologically Universal Regions

(Second Part of) A first map

ICT School 2007

Universal Regions (2)

Different versions for Mereology and Topology

$$\begin{array}{l} \text{m-univ}(x) \Leftrightarrow_{\text{def}} \forall y \ [y \odot x] \\ \text{t-univ}(x) \Leftrightarrow_{\text{def}} \forall y \ [C(y, x)] \end{array}$$

 $\mathbf{M+T} \models \forall x [m-univ(x) \Rightarrow t-univ(x)]$

M+OT: Topologically universal regions are mereologically universal

 $\forall x [t-univ(x) \Rightarrow m-univ(x)]$

• The grey area is topologically universal but not mereologically universal.

ICT School 2007

Closed and Open Regions

Closed and Open Regions

Point-Set Topology

- Closed sets include all their boundaries.
 - Missing connections of closed regions derive from missing parts.

$$CL(x) \Leftrightarrow_{def} \forall y [y \lt \bullet x \Rightarrow E(y, x)]$$

$$\mathbf{M+T} \models \forall x \left[\mathsf{CL}(x) \Leftrightarrow \forall y \left[\exists z \left[\mathsf{C}(z,y) \land \neg \mathsf{C}(z,x) \right] \Rightarrow \exists w \left[w < y \land \neg (w \bigcirc x) \right] \right]$$

- Open sets do not include their boundaries.
 - · All connections derive from sharing parts.
 - There are no external connections to open regions.

$$OP(x) \Leftrightarrow_{def} \neg \exists y [EC(y, x)]$$

ICT School 2007

Principles of extensionality do not contradict each other Mereological extensionality stronger than closedness of regions

Closed Regions and Closures

A region is *closed* iff it encloses all regions it covers.

$$CL(x) \Leftrightarrow_{def} \forall y [y \lt \bullet x \Rightarrow E(y, x)]$$

 $\mbox{M+T}_{\mbox{\scriptsize CL}}\mbox{: All regions are closed}$

 $\forall x [CL(x)]$

A *closure* of region *y* is connected to exactly those regions that are connected to a region *y* covers.

$$\operatorname{cl}(x; z) \Leftrightarrow_{\operatorname{def}} \forall u \left[\operatorname{C}(u, x) \Leftrightarrow \exists y \left[y < \cdot z \land \operatorname{C}(u, y) \right] \right]$$

M+T |=
$$\forall x \ y \ [cl(x; z) \Rightarrow \forall y \ [y < \cdot z \Rightarrow E(y, x)]$$

M+T |=
$$\forall x [CL(x) \Leftrightarrow cl(x; x)]$$

M+KT: All regions have a closure

 $\forall y \exists x [cl(x; y)]$

ICT School 2007 22

Open Regions, inner parts and interiors

A region is *open*, iff it has no external contacts.

$$OP(x) \Leftrightarrow_{def} \neg \exists y [EC(y, x)]$$

M+T |=
$$\forall x [OP(x) \Leftrightarrow \forall z [C(z, x) \Rightarrow z \circ x]]$$

M+T |=
$$\forall x [OP(x) \Leftrightarrow x <_i x]$$

$$x \le y \Leftrightarrow_{def} x \le y \land \forall z [C(z, x) \Rightarrow z \bigcirc y]$$

A theory where all regions are open is discrete.

DISCRETE
$$\Leftrightarrow_{\text{def}} \forall x [OP(x)]$$

An *interior* of a region *y* is a region connected to exactly those regions that overlap *y*.

$$int(x; y) \Leftrightarrow_{def} \forall z [C(z, x) \Leftrightarrow z \circ y]$$

$$M+T \models \forall x [OP(x) \Leftrightarrow int(x; x)]$$

Terminological Simplifications in Discrete Spaces

ICT School 2007 25

Open Regions, Inner Parts and Interiors

A region is open, iff it has no external contacts.

$$\mathsf{OP}(x) \Leftrightarrow_{\mathsf{def}} \neg \exists y \, [\mathsf{EC}(y, x)]$$

An *interior* of a region *y* is a region connected to exactly those regions that overlap *y*.

$$int(x; y) \Leftrightarrow_{def} \forall z [C(z, x) \Leftrightarrow z \bigcirc y]$$

$$\vdash \forall x \ y \ z \ [int(x; z) \Rightarrow (int(y; z) \Leftrightarrow EQ(x, y))]$$

$$I = \forall x \ y \ [EQ(x, y) \Rightarrow \forall z \ [int(x; z) \Leftrightarrow int(y; z)]]$$

$$I = \forall x \ y \ [x < \cdot > y \Rightarrow \forall z \ [int(z; x) \Leftrightarrow int(z; y)]]$$

$$I = \forall x \ y \ z \ [int(z; x) \Rightarrow (int(z, y) \Leftrightarrow x < > y)]$$

Open Regions, Inner Parts and Interiors

A region is open, iff it has no external contacts.

$$OP(x) \Leftrightarrow_{def} \neg \exists y [EC(y, x)]$$

An *interior* of a region *y* is a region connected to exactly those regions that overlap *y*.

$$int(x; y) \Leftrightarrow_{def} \forall z [C(z, x) \Leftrightarrow z \circ y]$$

M+IT: All regions have an interior

 $\forall y \exists x [int(x; y)]$

M+T¬B: All regions have an inner part

 $\forall x \exists y [y <_i x]$

$$x \le y \Leftrightarrow_{def} x \le y \land \forall z [C(z, x) \Rightarrow z \bigcirc y]$$

ICT School 2007 26

Open Regions, Inner Parts and Interiors

A region is *open*, iff it has no external contacts.

$$OP(x) \Leftrightarrow_{def} \neg \exists y [EC(y, x)]$$

An *interior* of a region *y* is a region connected to exactly those regions that overlap *y*.

$$int(x; y) \Leftrightarrow_{def} \forall z [C(z, x) \Leftrightarrow z \bigcirc y]$$

$$\mathbf{M+T} \models \forall x [\mathsf{OP}(x) \Leftrightarrow \mathsf{int}(x; x)]$$

M+T
$$\models \forall x \ y \ [int(x; y) \Rightarrow IE(x, y)]$$

$$\mathbf{M+T} \models \forall x \ y \ [\operatorname{int}(x; \ y) \Longrightarrow x < \bullet y]$$

Selection from (Third Part of) A first map

Theories with inner parts and interiors

Theories with inner parts and interiors

ICT School 2007 30

Theories with inner parts and interiors

ICT School 2007 31 ICT School 2007 32

A first map

Some Remarks on M+T¬B

All regions have interior parts.

 In this theory, the mereotopological operators behave similar to their topological counterparts on regular sets.

All interiors are open. All closures are closed.

$$\mathbf{M+T}\neg \mathbf{B} \models \forall x \ y \ [int(x; \ y) \Rightarrow \mathsf{OP}(x)]$$

$$\mathbf{M+T} \neg \mathbf{B} \models \forall x \ y \ [\operatorname{cl}(x; \ y) \Longrightarrow \operatorname{CL}(x)]$$

int and cl do not add region-parts

$$\mathbf{M+T}\neg\mathbf{B} \models \forall x \ y \ [\operatorname{int}(x; \ y) \Rightarrow x < \bullet > y]$$

$$\mathbf{M}+\mathbf{T}\neg\mathbf{B} \models \forall x \ y \ [\operatorname{cl}(x; y) \Rightarrow x \leftrightarrow y]$$

The first Map with some Landmarks

Some Remarks on M+T¬B

All regions have interior parts.

• In this theory, the mereotopological operators behave similar to their topological counterparts on regular sets.

double cl and int

$$\mathbf{M+T}\neg\mathbf{B} \models \forall x\ y\ z\ [\mathsf{cl}(y;z) \Longrightarrow (\mathsf{cl}(x;y) \Leftrightarrow \mathsf{EQ}(x;y))]$$

$$\mathbf{M+T}\neg\mathbf{B} \models \forall x\ y\ z\ [\mathrm{int}(y;z) \Rightarrow (\mathrm{int}(x;y) \Leftrightarrow \mathrm{EQ}(x;y))]$$

regularity

$$\mathbf{M+T}\neg \mathbf{B} \models \forall x \ y \ z \ [\operatorname{cl}(z; y) \Rightarrow (\operatorname{int}(x; y) \Leftrightarrow \operatorname{int}(x; z))]$$

$$\mathbf{M+T} \neg \mathbf{B} \models \forall x \ y \ z \ [int(z; y) \Rightarrow (cl(x; y) \Leftrightarrow cl(x; z))]$$

interiors are the fusions of the inner parts

$$\mathbf{M+T}\neg\mathbf{B} \models \forall x \ y \ [\operatorname{int}(x; \ y) \Leftrightarrow \forall z \ [C(x, \ z) \Leftrightarrow \exists w \ [C(w, \ z) \land w \leq_i y]]]$$

An Interesting Part of the First Map

ICT School 2007 37

Connected Space

A Simplified Map

ICT School 2007 38

Connectedness of Space and Atomic Regions

A region that is both open and closed is *isolated* (from the rest of space)

$$ISO(x) \Leftrightarrow_{def} OP(x) \land CL(x)$$

M+T |= $\forall x [\text{m-univ}(x) \Rightarrow \text{ISO}(x)]$

M+T_{CON}: Only mereologically universal regions are isolated $\forall x [ISO(x) \Rightarrow m\text{-univ}(x)]$

A region without proper parts is an atom

$$At(x) \Leftrightarrow_{def} \neg \exists y [y << x]$$

MA: Every region has an atomic part

$$\forall y \exists x [At(x) \land x < y]$$

ICT School 2007 40

Atoms in M+T¬B_{CL}

A region without proper parts is an atom

$$At(x) \Leftrightarrow_{def} \neg \exists y [y << x]$$

$$\mathbf{M} + \mathbf{T} \mathbf{B} \models \forall x [\mathsf{At}(x) \Rightarrow \mathsf{OP}(x)]$$

$$M+T \neg B_{CI} \models \forall x [At(x) \Rightarrow ISO(x)]$$

$$MA+T \neg B_{CI} = \forall y [\exists x [x < y \land ISO(x)]]$$

$$M+T \neg B_{CON CI} = \forall x [At(x) \Rightarrow m-univ(x)]$$

$$M+T \neg B_{CON CI} = \forall x [At(x) \Rightarrow \forall y [x < y]]$$

$$\mathbf{M} + \mathbf{T} \mathbf{B}_{\mathbf{CON} \, \mathbf{Cl}}$$
, $\exists x \, [\mathsf{At}(x)] \vdash \forall y \, [\mathsf{m} - \mathsf{univ}(y)]$

$$M+T \neg B_{CON CL}$$
, $\exists x [At(x)] \vdash DISCRETE$

$$MA+T \neg B_{CONCL} = DISCRETE$$

ICT School 2007 41

Connectedness of Space and Atomic Regions

A Critical Region in the Simplified Map

ICT School 2007 42

Connectedness of Space and Atomic Regions

Connectedness of Space and Atomic Regions

ICT School 2007 45

Connected Spaces and Atomic Regions

Connected Spaces and Atomic Regions

ICT School 2007 46

A Simplified Map (of Connected Space)

ICT School 2007 47 ICT School 2007

Complements

Mereological Complements

A *mereological complement* of region *y* overlaps exactly those regions that are not covered by *y*

$$\mathsf{m\text{-}compl}(x;\,y) \Leftrightarrow_{\mathsf{def}} \forall w\,[x \circ w \Leftrightarrow \neg(w <^{\bullet}y)]$$

 $\mathbf{M} \models \forall x \ y \ [\mathsf{m\text{-}compl}(x; \ y) \Rightarrow \neg (x \circ y)]$

 $\mathbf{M} \models \forall x \ y \ z \ [\mathsf{m\text{-}compl}(x; \ y) \Rightarrow (\neg (x \circ z) \Rightarrow y \circ z)]$

 $\mathbf{M} \models \forall x \ y \ [\text{m-compl}(x; y) \Leftrightarrow \text{m-compl}(y; x)]$

 $\mathbf{M} \models \forall x \ y \ [\text{m-compl}(x; y) \Rightarrow \neg \text{m-univ}(x) \land \neg \text{m-univ}(y)]$

XM+T: Existence of mereological complements

$$\forall y [\neg m\text{-univ}(y) \Rightarrow \exists x [m\text{-compl}(x; y)]]$$

Three Types of Complements

A *mereological complement* of region *y* overlaps exactly those regions that are not covered by *y*

$$\text{m-compl}(x; y) \Leftrightarrow_{\text{def}} \forall w [x \cap w \Leftrightarrow \neg (w < \cdot y)]$$

A *topological complement x* of a region *y* is connected to exactly those regions that are not enclosed by *y*

t-compl(x; y)
$$\Leftrightarrow_{\text{def}} \forall z [C(z, x) \Leftrightarrow \neg E(z, y)]$$

A *closed complement* of region *y* is connected to those regions that are not proper inner parts of *y* and overlaps those regions that are not part of *y*.

c-compl(x; y)
$$\Leftrightarrow_{\text{def}} \forall z [C(z, x) \Leftrightarrow \neg(z <<_i y)] \land \forall z [z \bigcirc x \Leftrightarrow \neg(z < y)]$$

ICT School 2007 50

A Critical Region in the Simplified Map

ICT School 2007 51 ICT School 2007 5

Mereological Complements

ICT School 2007 53

Topological Complements

A *topological complement x* of a region *y* is connected to exactly those regions that are not enclosed by *y*

t-compl(x; y)
$$\Leftrightarrow_{\text{def}} \forall z [C(z, x) \Leftrightarrow \neg E(z, y)]$$

$$T \models \forall x \ y \ [t-compl(x; \ y) \Rightarrow \neg C(x, \ y)]$$

M+T
$$\vdash \forall x \ y \ [t-compl(x; y) \Rightarrow \neg(y \circ x)]$$

$$T \models \forall x \ y \ z \ [t-compl(x; y) \Rightarrow (\neg C(x, z) \Rightarrow C(y, z))]$$

$$T \models \forall x \ y \ [t-compl(x; \ y) \Leftrightarrow t-compl(y; \ x)]$$

$$T \models \forall x \ y \ [t-compl(x; y) \Rightarrow \neg t-univ(x) \land \neg t-univ(x)]$$

M+T
$$\models \forall x \ y \ [t-compl(x; y) \land OP(y) \Rightarrow CL(x)]$$

Mereological Complements

ICT School 2007 54

Some Remarks on M+T¬B

All regions have interior parts.

$$\mathbf{M+T}\neg \mathbf{B} \models \forall x \ y \ [t\text{-compl}(x; \ y) \Rightarrow \text{m-compl}(x; \ y)]$$

• In this theory, the mereotopological operators are dual regarding topological complement.

$$\mathbf{M+T} \neg \mathbf{B} \models \forall x \ y \ [\text{t-compl}(x; \ y) \Rightarrow (\mathsf{CL}(y) \Leftrightarrow \mathsf{OP}(x))]$$

$$\mathbf{M+T} \neg \mathbf{B} \models \forall x \ y \ u \ z \ [\text{t-compl}(x; \ u) \land \text{t-compl}(z; \ y) \Rightarrow (\mathsf{Cl}(x; \ y) \Leftrightarrow \mathsf{int}(u; \ z))]$$

ICT School 2007 55 ICT School 2007 56

Topological Complements

A *mereological complement* of region *y* overlaps exactly those regions that are not covered by *y*

$$\text{m-compl}(x; y) \Leftrightarrow_{\text{def}} \forall w [x \cap w \Leftrightarrow \neg (w < \cdot y)]$$

A topological complement x of a region y is connected to exactly those regions that are not enclosed by yt-compl(x; y) $\Leftrightarrow_{\text{def}} \forall z [C(z, x) \Leftrightarrow \neg E(z, y)]$

M+XT: Existence of topological complements $\forall y [\neg t\text{-univ}(y) \Rightarrow \exists x [t\text{-compl}(x; y)]]$

ICT School 2007 57

Topological Complements

A Critical Region in the Simplified Map

Topological Complements

ICT School 2007 60

Topological and Mereological Complements

ICT School 2007 61

Closed Complements

A *mereological complement* of region *y* overlaps exactly those regions that are not covered by *y*m-compl(x; y) \Leftrightarrow r-(y) r-(y)

A *closed complement* of region *y* is connected to those regions that are not proper inner parts of *y* and overlaps those regions that are not part of *y*.

c-compl(x; y)
$$\Leftrightarrow_{\text{def}} \forall z [C(z, x) \Leftrightarrow \neg(z <<_i y)] \land \forall z [z \circ x \Leftrightarrow \neg(z < y)]$$

X'M+T: Existence of closed complements

$$\forall y [\neg m\text{-univ}(y) \Rightarrow \exists x [c\text{-compl}(x; y)]]$$

Closed Complements

A *closed complement* of region *y* is connected to those regions that are not proper inner parts of *y* and overlaps those regions that are not part of *y*.

M+T $\models \forall x \ y \ [c-compl(x; \ y) \Rightarrow CL(x) \land CL(y)]$

 $M+T \models \forall x \ y \ [c-compl(x; \ y) \Rightarrow EC(x, \ y)]$

 $\mathbf{M+T} \models \forall x \ y \ [\text{c-compl}(x; y) \Rightarrow \text{m-compl}(x; y)]$

M+ST $\models \forall x \ y \ [c\text{-compl}(x; y) \Rightarrow c\text{-compl}(y; x)]$

 $EM+T_{CON} = \forall x \ y \ [m-compl(x; y) \Leftrightarrow c-compl(x; y)]$

ICT School 2007 62

A Selection from the Simplified Map (of Connected Space)

ICT School 2007 63 ICT School 2007 64

Complements and Connectedness

ICT School 2007 65

Complements and Connectedness

Complements and Connectedness

ICT School 2007 66

All Complements at one Glance

Mereological and Topological **Completeness**

Mereological Completeness Conditions

```
CM: \forall y z \exists x [m-fus(x; y, z)]
```

 $\Leftrightarrow \exists y [\Phi \land y \circ z]]$

UM+T: $\exists x [m-univ(x)]$

XCM |= DUM

DUM |= XCM GM |= XDCUM

CM:
$$\forall y z [y \bigcirc z \Rightarrow \exists x [m-isct(x; y, z)]]$$

DM:
$$\forall v z [\neg (v < \bullet z)]$$

$$\Rightarrow \exists x [m-diff(x; y, z)]]$$

GM:
$$\exists y [\Phi] \Rightarrow \exists x \forall z [x \circ z]$$

$$\Leftrightarrow \exists v [\Phi \land v \circ z]$$

XM: $\forall v [\neg m\text{-univ}(v)]$

 $\Rightarrow \exists x [m-compl(x; y)]]$

ICT School 2007 71

Mereological Sums, Intersections and **Differences**

Overlap-based definitions

- m-fus(x; y, z) $\Leftrightarrow_{def} \forall w [w \circ x \Leftrightarrow (w \circ y \lor w \circ z)]$
- m-isct(x; y, z) $\Leftrightarrow_{def} \forall w [w \cap x \Leftrightarrow \exists v [w \cap v \land v < y \land v < z]]$
- m-diff(x; y, z) $\Leftrightarrow_{def} \forall w [w \cap x \Leftrightarrow \exists v [w \cap v \land v < y \land \neg(v \cap z)]]$
- $\Leftrightarrow_{def} \forall z [z \circ x \Leftrightarrow \exists y [\Phi \land z \circ y]]$ (D) x σy [Φ]

CM: Binary sums and intersections exist, if possible $\forall y z \exists x [m-fus(x; y, z)]$

 $\forall y \ z \ [y \bigcirc z \Rightarrow \exists x \ [m-isct(x; y, z)]]$ DM: Differences exist, if possible

 $\forall y \ z \ [\neg(y < \cdot z) \Rightarrow \exists x \ [m-diff(x; y, z)]]$

GM: Arbitrary sums exist, if possible

 $\exists y [\Phi] \Rightarrow \exists x \forall z [x \circ z \Leftrightarrow \exists y [\Phi \land y \circ z]]$

ICT School 2007 70

Topological Sums and Intersections

Connection-based definitions

- (D) t-fus(x; y, z) $\Leftrightarrow_{def} \forall w [C(w, x) \Leftrightarrow (C(w, y) \vee C(w, z))]$
- (D) t-isct(x; y, z) $\Leftrightarrow_{def} \forall w [C(w, x) \Leftrightarrow \exists v [C(w, v) \land E(v, y) \land E(v, z)]]$

CT: Binary sums and intersections exist, if possible $\forall y z \exists x [t-fus(x; y, z)]$

 $\forall y \ z \ [S(y, z) \Rightarrow \exists x \ [t-isct(x; y, z)]]$

GT: Arbitrary sums exist, if possible $\exists y [\Phi] \Rightarrow \exists x \forall z [C(x, z) \Leftrightarrow \exists y [\Phi \land C(y, z)]]$

ICT School 2007

Interaction between mereological and topological sum and intersection principles

From topological to mereological completeness

```
M+WT |= \forall x \ y \ z \ [\text{t-isct}(x; \ y, \ z) \Rightarrow \text{m-isct}(x; \ y, \ z)]
M+T¬B |= \forall x \ y \ z \ [\text{t-fus}(x; \ y, \ z) \Rightarrow \text{m-fus}(x; \ y, \ z)]
M+CT¬B |= CM
```

From mereological to topological completeness $M+WT_{CL} = \forall x \ y \ z \ [m-isct(x; y, z) \Leftrightarrow t-isct(x; y, z)]$

M+FT: Missing connections mean missing parts, generalized

```
\forall x \ y \ z \ [\exists u \ [C(u, x) \land \neg(C(u, y) \lor C(u, z))] \Rightarrow \exists w \ [w < x \land \neg(w \bigcirc y \lor w \bigcirc z)]]
M+FT \mid = \forall x \ y \ z \ [m-fus(x; y, z) \Rightarrow t-fus(x; y, z)]
M+FT \mid = M+T_{CL}
```

CM+FWT |= CT M+CT¬B_{CL} |= M+FT

mio: B_{CL1} mii.

ICT School 2007 73

Mereological and topological sum and intersection principles

 $M+T_{CI}$: $\forall x \ y \ [y < \bullet x \Rightarrow E(y, x)]$ M+WT **M+WT**: $\forall x \ y \ [E(x, y) \Rightarrow x < \cdot y]$ $\mathbf{M+T}\neg \mathbf{B}: \forall x \exists y [y <_i x]$ **M+FT**: $\forall x y z [m-fus(x; y, z)]$ M+WT_{CI} \Rightarrow t-fus(x; y, z)] M+T¬B_{CI} **CM**: $\forall y z \exists x [m-fus(x; y, z)]$ CM+CTCI M+WCTCL CM: $\forall y z [y \circ z]$ $\Rightarrow \exists x [m-isct(x; y, z)]$ CM+FT M+FWT BGM CT: $\forall y z \exists x [t-fus(x; y, z)]$ CT: $\forall y z [S(y, z)]$ CM+FCT M+FWCT $\Rightarrow \exists x [t-isct(x; y, z)]$ CRC ICT School 2007 75

RCC Roeper

Selection from the first map

Mereological and topological sum and intersection principles

Mereological and topological sum and intersection principles

Mereological and topological sum and intersection principles

Mereological and topological sum and intersection principles

Conclusion

Avoid

Discrete spaces

• if you want topological distinctions

Theories of closed regions

• if you want interiors in non-discrete spaces

General existence of interiors

• if you want theories of closed regions or mereological extensionality

Theories of closed regions with inner parts

- if you want connected space with atoms
- if you want to guarantee topological complements

Allow

Space to be connected

• i.e. that only mereologically universal regions are isolated Topologically universal regions that are not mereologically universal

• if you want to guarantee mereological complements without guaranteeing inner parts

ICT School 2007 81 ICT School 2007 82