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Homework till Monday

• How do your research interest relate to the topics of the
course ?

• In which way do parts / the notion of 'part' play a role in your

area ?

• Which kinds of parts / wholes play a role ?

• Is the spatial structure important (e.g. spatial

connectedness) ?

• Where do temporal notions come up?

• Are temporal instants sufficient for your needs? Where can

time periods be important ?

3-Mereotopology

Doctorate Course

Modeling in Knowledge Representation:

The Parthood Relation
2006-2007
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Why topological notions?

Mereology alone

• does not have any notion of 'whole', 'integrity',

'connectedness'

• does not distinguish spatially coherent (one-piece) entities

from spatially disconnected (multi-piece) entities

• does not distinguish inner parts from boundary parts
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Mathematical Contribution

Point-set Topology

• establishment at the beginning of the 20th century

• general theory for describing continuity

• continuity: predictability of the behavior of a function at the
boundary from the behavior in the interior of a set

• Points are undefined primitive objects

that serve as basis (carrier) for the structure

• Sets of points define and exhibit

the topological structure
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Relations between Points and Sets

Set Theory

• Points are element of the set

• or not.

Topology

• Points are interior to the set (then they are elements of the

set)

• exterior to the set (then they are not elements of the set)

• or boundary points of the set

• boundary points can be elements of the set

• or not.
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Why Mereotopology ?

Formalizing common-sense knowledge

• proved to be much harder than formalized expert knowledge

• is based on a common-sense ontology

• that includes objects of every day live

• rather than sets.

Mathematics (Topology)

• uses set theory to represent real world problems

• provides sophisticated tools for expert reasoning.
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Topology: A Reminder

Definition
• A topology on a carrier set D is (given by) a set T ! 2D

having the following properties

• D, Ø " T
• #S ! T [$S " T ]
• #X, Y " T [X % Y " T ]

• The elements of T are called open sets.

Simple Examples

• {D, Ø}  (trivial topology)

• 2D (discrete topology)
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Topology Based on a Metric Space

Let &D, d' be a metric space, (d: D ( D ) !).

• The open ball (in D) of diameter 0 < * " ! around x is

defined as:

Bd(x, *) = {y " D | d(x, y) < *}

• Let Bd be the set of all open balls around any point of D, i.e.

Bd = {Bd(x, *) | 0 < * " !, x " D}

• Then the set Td = {$M | M ! Bd} is a topology for D.

Examples
• D = ! ; open balls are open intervals

• D = !2 ; open balls are discs without bounding circle line

• D = !3 ; open balls are spheres without surface
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Topology Induced by a Metric

Example: Let &D, d' be a metric space.

• Let Td = {$M | M ! Bd}.

• Show

• D, Ø " Td

• #S ! Td [$S " Td]
• #X, Y " Td [X % Y " Td]

• Show and take advantage of:

#B " Bd [B = ${X " Bd | X ! B} ]
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Points in Topology

Let T be a topology on D, M ! D and p " D.

• interiorPointT(p, M) +def ,X " T [p " X - X ! M]

• exteriorPointT(p, M) +def ,X " T [p " X - X % M = .]

• limitPointT(p, M) +def #X " T [p " X / X % M !  .]

• boundaryPointT(p, M) +def #X " T [p " X /
(X % M !  . - X 0 M)]
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Functions Mapping Sets in Topology

Let T be a topology on D and M ! D.

• intT(M) = {p " D | interiorPointT(p, M)}

• extT(M) = {p " D | exteriorPointT(p, M)}

• clT(M) = {p " D | limitPointT(p, M)}

• bdT(M) = {p " D | boundaryPointT(p, M)}

M1

M2

M3

D

M4 = M1 $ M2 M5 = M2 $ M3
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General Laws for the Mappings Defined

Let T be a topology on D and
M ! D. (drop index T  for simplicity)

• int(M) ! M

• M ! cl(M)

• ext(M) % M = .
• cl(M) = M $ bd(M)

• int(M) = M \ bd(M)

• bd(M) = cl(M) \ int(M)

• ext(M) = int(M-1)

• int(M) = cl(M-1)-1

• cl(M) = int(M-1)-1 = ext(M)-1

• bd(M) = cl(M) % cl(M-1)

• bd(M) = bd(M-1)

• bd(M) = (int(M) $ ext(M))-1

• cl(.) = int(.) = ext(D) = .

• cl(D) = int(D) = ext(.) = D

• int(int(M)) = int(M)

• cl(cl(M)) = cl(M)

• int(ext(M)) = ext(M)

• int(cl(M)) 1 int(M)

• cl(int(M)) ! cl(M)

• bd(int(M)) ! bd(M)

• bd(cl(M)) ! bd(M)
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Open and Closed Sets

Let T be a topology on D and M ! D.

• M is open (OPT(M)) iff M " T.

• M is closed (CLT(M)) iff M-1 " T.

•#M ! D [OPT(M) + M = intT(M)]
•#M ! D [CLT(M) + M = clT(M)]
•#M ! D [OPT(intT(M))]
•#M ! D [OPT(extT(M))]
•#M ! D [CLT(clT(M))]

ICT School 2007 15

Irregular Sets

• cl(int(M1)) 2 cl(M1)

• bd(int(M1)) 2 bd(M1)

• int(cl(M2)) 3 int(M2)

• bd(cl(M2)) 2 bd(M2)
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Regular Sets

Let T be a topology on D and M ! D.

(drop index T  for simplicity)

• M is regular iff cl(int(M)) = cl(M) and int(cl(M)) = int(M).

• M is an open regular set iff OP(M) and int(cl(M)) = int(M).

• M is a closed regular set iff CL(M) and cl(int(M)) = cl(M).

• Unions and intersections of regular sets need not be regular!

• Use (topology-specific) regular union / intersection.
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Basic Concepts of Point-Set Topology

Equivalent axiomatizations based on different

primitives

• Open Set

• a set without a boundary

• Closure

• mapping a set to the set of all its limit points

• Neighborhoods of a point

• a neighborhood of a point is extended around the point in

all 'directions'
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Spatial Structure: Mereotopological Calculi

Basic idea

• (extended) regions are basic entities in the spatial ontology

• topological structure is crucial for spatial structure
() qualitative)

• points and boundaries are abstractions from configurations

of regions
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Topology and Mereology

Beginning of Topology

• Fréchet (1906): Spatial structure of the space of functions

• Hausdorff (1914): General conditions for convergence;

Definition of Topology based on 'Neighborhood'

• Kuratowski (1922): Topology based on 'Closure'

Mereology

• Lesniewski (1927–30): Development of Mereology as

alternative to set-theory

• Leonard & Goodman (1940): Mereology as a 'Calculus of
Individuals'

• Simons (1987): Discussion of alternative axiomatic systems
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Mereotopology (1)

• de Laguna (1922): Points and boundaries as abstractions
from extended regions

• Whitehead (1929): Proposal of a region-based description of

space

• Clarke (1981): Calculus of Individuals based on 'Connection'

• Allen (1981): Time periods in AI

• Randell, Cohn (1989); Vieu (1993): Adaptation of Clarke's

calculus for AI

• Egenhofer (1991): Relations between regions based on

point-set topology for GIS
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Mereotopology (2)

• Randell, Cui, Cohn (1992): Alternative calculus by
'redefining complement'

• Smith (1993): Mereotopology based on 'inner parts'

• Asher & Vieu (1995): geometry of common sense

• Eschenbach & Heydrich (1995): Regions embedded in

extensional Mereology

• Varzi (1996): Discussion of alternative axiomatic systems

• Borgo, Guarino, Masolo (1996): pointless theory of space

• Roeper (1997): Region-based Topology

• Masolo & Vieu (1999): Atoms in Mereotopology

• Eschenbach (1999): Closed Region Calculus

•  … still an open discussion
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Mereotopologies

A large selection of proposals exist

• Whitehead (1929), Clarke (1981), Randell & Cohn (1989),

Egenhofer (1991), Randell Cui & Cohn (RCC, 1992), Vieu

(1993), Asher & Vieu (A&V, 1995), Roeper (1997),

Eschenbach (CRC, 1999), Borgo, Guarino, Masolo (BGM,

1996)

• Is there a common core to the proposals?

• Which approaches can be combined?

• How to choose between 'the proposals' for an application?
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How to proceed?

Select terminologies

• Use notation that is neutral regarding the theories

• Identify the common terminological kernel

• Distinguish terms whose definitions differ

• Mereological terminology (def. based on Part-of <)

• Topological terminology (def. based on contact C)

• Mereotopological terminology (def. based on < and C)

Identify a list of axioms

• such that every approach can be identified with a subset

Analyse the interrelation between the axioms

Select Terminologies
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Problems / Obstacles

• Different assumptions on extensionality

• C-based, !-based, or both ?

• Different terminology

• Example: Complement

(D) x = compl(y) +def #u [u ! x + ,w [u ! w - ¬(w ! y)]]

(D) x = compl(y) +def #u [C(u, x) + ,w [C(u, w) - ¬C(w, y)]]

(D) x = compl(y) +def #u [C(u, x) + ¬(u <<i y)] - 

#u [u ! x + ¬(u < y)]
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Defining Functions: Complements

(D) x = compl(y) +def #u [u ! x + ,w [u ! w - ¬(w ! y)]]

(D) x = compl(y) +def #u [C(u, x) + ,w [C(u, w) - ¬C(w, y)]]

(D) x = compl(y) +def #u [C(u, x) + ¬(u <<i y)] - 
#u [u ! x + ¬(u < y)]

In order to define a function in standard logic
• the definiens should guarantee (within the assumed theory)

• uniqueness

• existence

To allow comparison,
• use unique names

• replace n-ary function-symbol by (n+1)-ary relational symbol

x = namef(y) +def 4(x, y)

id-namer(x; y) +def 4(x, y)
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Mereological Terminology (M):
Mereology: Formalization of the relation of part (<)

M: #x y z [z < x - x < y / z < y]

M: #x y [x < y - y < x / x = y]

M: #x [x < x]

x > y +def y < x

x << y +def x < y - ¬(y < x)

x >> y +def y << x

x ! y +def ,z [z < x - z < y]

x # y +def ¬(x ! y)

x ! y +def x ! y - ¬(x = y)

x " y +def x ! y - ¬(x < y) - ¬(y < x)

x <• y +def #z [z ! x / z ! y]

x •> y +def y <• x

x <•> y +def x <• y - y <• x

<•>

!

#

<

<<=

>

>>

 

<• •>

"

!

M |= #x y [x < y / x ! y]

M |= #x y [x <• y / x ! y]

M |= #x y [x < y / x <• y]

ICT School 2007 28

TE PE IE

PTE PIE

C DR

DCBCS

PSE

EQ

E-1

IE-1 PE-1 TE-1

PIE-1 PTE-1

Binary Topological Relations

T: #x [C(x, x)]

T: #x y [C(x, y) / C(y, x)]

DC(x, y) +def ¬C(x, y)

E(x, y) +def #z [C(z, x) / C(z, y)]

T |= #x y [E(x, y) / C(x, y)]

EQ(x, y) +def E(x, y) - E(y, x)

S(x, y) +def ,z [E(z, x) - E(z, y)]

T |= #x y [S(x, y) / C(x, y)]

T |= #x y [E(x, y) / S(x, y)]

PS(x, y) +def S(x, y) - ¬E(x, y) - ¬E(y, x)

DR(x, y) +def ¬S(x, y)

BC(x, y) +def C(x, y) - ¬S(x, y)
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C DR

DCBCS

PSE

TE PE IE EQ

PTE PIE

E-1

IE-1 PE-1 TE-1

PIE-1 PTE-1

Binary Topological Relations

• connected (C)

• disconnected (DC)

• enclosure (E): x encloses
y iff everything connected
to y is connected to x

• topological equivalence
(EQ): enclosing and being
enclosed

• superposition (S):
enclosing a common
region

• discrete (DR): not
superposed

• boundary-connected (BC):
connected without
superposition

• proper superposition (PS)
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PE(x, y) +def E(x, y) - ¬E(y, x)

IE(x, y) +def #z [C(z, x) / S(z, y)]

T |= #x y [IE(x, y) / E(x, y)]

PIE(x, y) +def IE(x, y) - PE(y, x)

TE(x, y) +def E(x, y) - ¬IE(x, y)

PTE(x, y) +def TE(x, y) - PE(y, x)

C DR

DCBCS

PSE

TE PE IE EQ

PTE PIE

E-1

IE-1 PE-1 TE-1

PIE-1 PTE-1

Binary Topological Relations

ICT School 2007 31

C DR

DCBCS

PSE

TE PE IE EQ

PTE PIE

E-1

IE-1 PE-1 TE-1

PIE-1 PTE-1

Binary Topological Relations

• enclosure (E): x encloses
y iff everything connected
to y is connected to x

• proper enclosure (PE)
• internal enclosure (IE): x

encloses y internally iff
everything connected to y
is superposed to x

• proper internal enclosure
(PIE)

• tangential enclosure (TE):
enclosure and sharing a
boundary-connection

• proper tangential
enclosure (PTE)

• minimal connection,
topological fusion,
closure, interior, exterior
…
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C DR

DCBCS

PSE

TE PE IE EQ

PTE PIE

E-1

IE-1 PE-1 TE-1

PIE-1 PTE-1

Mereological and Topological Terminology

<•>

!

#

<

<<=

>

>>

<• •>

"

!
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Mereotopological Terminology (M+T):

Relating Mereology and Topology

Minimal condition
• Parts are (topologically) enclosed

(A) #x y [x < y / E(x, y)]

• Overlapping regions are (topologically) superposed and,
thus, connected

More specific assumptions
• Replacing Mereology: Identifying the relations part and

enclosure

Mereotopological Notions: Refinement of
Mereological Relations
• External connection (EC): Connection without overlap

• tangential part (<t), internal part (<i)
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C DR

DCBCS

PSE

TE PE IE EQ

PTE PIE

E-1

IE-1 PE-1 TE-1

PIE-1 PTE-1

Mereological and Topological Terminology

<•>

!

#

<

<<=

>

>>

<• •>

"

!

M+T: #x y [x < y / E(x, y)]

M+T |= #x y [x ! y / S(x, y)]

M+T |= #x y [DR(x, y) / x # y]
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Mereological and Topological Terminology

M+T: #x y [x < y / E(x, y)]

M+T |= #x y [x ! y / S(x, y)]

M+T |= #x y [DR(x, y) / x # y]

#

<

<< =

 

<•

DR

C

S

BC DC

E

EQIEPETE

PTE PIE
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#

<

<< =

 

<•

DREC

<i

<<i

<t

<<t

C

S

BC DCES

E

EQIEPETE

PTE PIE

(Selection of) Binary Relations in

Mereotopology

M+T: #x y [x < y / E(x, y)]

M+T |= #x y [x ! y / S(x, y)]

M+T |= #x y [DR(x, y) / x # y]

EC(x, y) +def C(x, y) - ¬(x ! y)

ES(x, y) +def S(x, y) - ¬(x ! y)

x <i y +def x < y - #z [C(z, x) / z ! y]

x <t y +def x < y - ¬x <i y

x <<i y +def x <i y - x << y

x <<t y +def x <t y - x << y



Identify a List of Axioms

Study interactions
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Basic Assumptions Collected

The axioms used up to now are
M: #x y z [z < x - x < y / z < y]

M: #x y [x < y - y < x / x = y]

M: #x [x < x]

T: #x [C(x, x)]

T: #x y [C(x, y) / C(y, x)]

M+T: #x y [x < y / E(x, y)]
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Types of Axioms

• Principles of extensionality, supplementation (individuation)

• Interaction between mereological and topological

terminology

• Topological and mereological universes

• Existence of open and / or closed regions; divisibility

• A first map

• Atoms and connectedness of space

• Three types of complements and connectedness

• (Further axioms for connectedness)

Extensionality and Interaction of

Mereological and Topological

Terms
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Extensionality

Principles of Extensionality
4 is a formula in which x and z occur freely (but y does not)

#x y [x !  y / ,z [4 + ¬4[x/y]]]

#x y [#z [4 + 4[x/y]] / x = y]

For example, the principle of extensionality in set
theory:

#s1 s2 [s1 !  s2 / ,a [a " s1 + ¬(a " s2)]]

#s1 s2 [#a [a " s1 + a " s2] / s1 = s2]

Supplementation in the context of Mereology
(employing antisymmetry of <)

#x y [¬(x < y) / ,z [4 - ¬4[x/y]]]

#x y [#z [4 / 4[x/y]] / x < y]
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Extensionality and the interaction between

mereology and topology

ET: Extensional Topology

#x y [EQ(x, y) / x = y]

ET |= #x y [x !  y + ,z [C(x, z) + ¬C(y, z)]]

EM: Strong supplementation (Extensional Mereology )
#x y [x <• y / x < y]
#x y [#z [z ! x / z ! y] / x < y]

EM |= #x y [x !  y + ,z [z ! x + ¬(z ! y)]]

M+ST: Strong Mereotopological Interaction

#x y [E(x, y) / x < y]

#x y [#z [C(z, x) / C(z, y)] / x < y]

M+WT: Weak Mereotopological Interaction
#x y [E(x, y) / x <• y]

M+WT |=  #x y [S(x, y) + x ! y]

=

E

<

<•

S

EQ
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Space of Theories (Extensionality)

ET: #x y [EQ(x, y) / x = y]

M+WT: #x y [E(x, y) / x <• y]

M+ST: #x y [E(x, y) / x < y]

EM: #x y [x <• y / x < y]

M+ST |= M+WET

EM+WT |= M+ST

M+T

M+ET

M+WT

M+WET

M+ST

EM+T

EM+ET

EM+WT

=

E

<

<•

S

EQ

ICT School 2007 44

Space of Theories (Extensionality)

ET: #x y [EQ(x, y) / x = y]

M+WT: #x y [E(x, y) / x <• y]

M+ST: #x y [E(x, y) / x < y]

EM: #x y [x <• y / x < y]

M+ST |= M+WET

EM+WT |= M+ST

M+T

M+ET

M+WT

M+WET

M+ST

= M+SWET

EM+T

EM+ET

EM+WT

= EM+SWET
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Terminological Simplifications in EM+WT

#

<

<< =

 

<•

DREC

<i

<<i

<t

<<t

C

S

BC DCES

E

EQIEPETE

PTE PIE

#

<

<< =

 

<•

DR

EC

<i

<<i

<t

<<t

C

S BC DC

E

EQIE PE TE

PTEPIE
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Space of Theories (Extensionality)

ET: #x y [EQ(x, y) / x = y]

M+WT: #x y [E(x, y) / x <• y]

M+ST: #x y [E(x, y) / x < y]

EM: #x y [x <• y / x < y]

M+ST |= M+WET

EM+WT |= M+ST

CRC

RCC

Clarke

Roeper

A&V

BGM

M+T

M+ET

M+WT

M+WET

M+ST

EM+T

EM+ET

EM+WT
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Why not M+ST?

M+ST: #x y [E(x, y) / x < y]

Assuming the cells not to

have proper parts:

The black square is enclosed

by the gray area without being

its part.
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(First Part of) A first map

M+WETCL

M+(K)WT

M+(K)WET

M+WTCL

M+(K)T¬B

M+(K)IT
M+(K)ET¬B

M+(K)IET

M+T¬BCL

M+ET¬BCL

M+STCL

= EM+WT

M+(K)ST

M+(K)ST¬B

M+(K)IST

M+ST¬BCL

= EM+T¬B

M+OETCL

M+(K)OT

M+(K)OET

M+OTCL

EM+OET

EM+OT

M+ETCL

M+(K)T

M+(K)ET

M+TCL

EM+ET

EM+T

CRC

RCC

Clarke

Roeper

A&V

BGM

M+ST |= M+WET

EM+WT |= M+ST
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Principles of extensionality do not contradict each other

=

E

<

<•

S

EQ

M+WETCL

M+(K)WT

M+(K)WET

M+WTCL

M+(K)T¬B

M+(K)IT
M+(K)ET¬B

M+(K)IET

M+T¬BCL

M+ET¬BCL

M+STCL

= EM+WT

M+(K)ST

M+(K)ST¬B

M+(K)IST

M+ST¬BCL

= EM+T¬B

M+OETCL

M+(K)OT

M+(K)OET

M+OTCL

EM+OET

EM+OT

M+ETCL

M+(K)T

M+(K)ET

M+TCL

EM+ET

EM+T

CRC

RCC

Clarke

Roeper

A&V

BGM

Mereologically and Topologically

Universal Regions
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Universal Regions

Mereologically universal regions
m-univ(x) +def #y [y ! x]
M |= #x [m-univ(x) + #y [y <• x]]
M |= #x [#y [y < x] / m-univ(x)]
EM |= #x [m-univ(x) + #y [y < x]]

UM: There is a mereologically universal region
,x [m-univ(x)]

Topologically universal regions
t-univ(x) +def #y [C(y, x)]
T |= #x [t-univ(x) + #y [E(y, x)]]
T |= #x [t-univ(x) + #y [S(y, x)]]

UT: There is a topologically universal region
,x [t-univ(x)]
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Universal Regions (2)

Different versions for Mereology and Topology
m-univ(x) +def #y [y ! x]

t-univ(x) +def #y [C(y, x)]

M+T |= #x [m-univ(x) / t-univ(x)]

M+OT: Topologically universal regions are
mereologically universal
#x [t-univ(x) / m-univ(x)]

•The grey area is topologically universal
but not mereologically universal.
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Space of Theories (Universal Regions)

ET: #x y [EQ(x, y) / x = y]

M+WT: #x y [E(x, y) / x <• y]

M+UT: ,x [t-univ(x)]

M+OT: #x [t-univ(x) / m-univ(x)]

UM+T: ,x [m-univ(x)]

M+T

M+ET

CRC

RCC ClarkeRoeper A&V

BGM

M+WT

M+WET
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Space of Theories (Universal Regions)

ET: #x y [EQ(x, y) / x = y]

M+WT: #x y [E(x, y) / x <• y]

M+UT: ,x [t-univ(x)]

M+OT: #x [t-univ(x) / m-univ(x)]

UM+T: ,x [m-univ(x)]

M+T

M+ETM+UT

M+UETCRC

RCC ClarkeRoeper A&V

BGM

M+WT

M+WET

M+WUT

M+WUET
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Space of Theories (Universal Regions)

ET: #x y [EQ(x, y) / x = y]

M+WT: #x y [E(x, y) / x <• y]

M+UT: ,x [t-univ(x)]

M+OT: #x [t-univ(x) / m-univ(x)]

UM+T: ,x [m-univ(x)]

M+WT |= M+OT

M+T

M+ET
M+OT

M+OET

M+UT

M+OUT
M+UET

M+OUET

CRC

RCC ClarkeRoeper A&V

BGM

M+WT

M+WET

M+WUT

M+WUET
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Space of Theories (Universal Regions)

ET: #x y [EQ(x, y) / x = y]

M+WT: #x y [E(x, y) / x <• y]

M+UT: ,x [t-univ(x)]

M+OT: #x [t-univ(x) / m-univ(x)]

UM+T: ,x [m-univ(x)]

UM+T |= UT

M+OUT |= UM

UM+ET |= M+OT

M+T

M+ET
M+OT

M+OET

M+UT

M+OUT

UM+T

M+UET

M+OUET
= UM+ET

CRC

RCC ClarkeRoeper A&V

BGM

M+WT

M+WET

M+WUT

M+WUET
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(Second Part of) A first map

M+WETCL

M+(K)WT

M+(K)WET

M+WTCL

M+(K)T¬B

M+(K)IT
M+(K)ET¬B

M+(K)IET

M+T¬BCL

M+ET¬BCL

M+STCL

= EM+WT

M+(K)ST

M+(K)ST¬B

M+(K)IST

M+ST¬BCL

= EM+T¬B

M+OETCL

M+(K)OT

M+(K)OET

M+OTCL

EM+OET

EM+OT

M+ETCL

M+(K)T

M+(K)ET

M+TCL

EM+ET

EM+T

CRC

RCC

Clarke

Roeper

A&V

BGM

M+WT |= M+OT

Closed and Open Regions
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Closed and Open Regions

Point-Set Topology

• Closed sets include all their boundaries.

• Missing connections of closed regions

derive from missing parts.

CL(x) +def #y [y <• x / E(y, x)]

M+T |= #x [CL(x) + #y [,z [C(z, y) - ¬C(z, x)] / ,w [w < y - ¬(w ! x)]]]

• Open sets do not include their boundaries.

• All connections derive from sharing parts.

• There are no external connections to open regions.

OP(x)  +def ¬,y [EC(y, x)]
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Closed Regions and Closures

A region is closed iff it encloses all regions it covers.

CL(x) +def #y [y <• x / E(y, x)]

M+T
CL

: All regions are closed

#x [CL(x)]

A closure of region y is connected to exactly those
regions that are connected to a region y covers.

cl(x; z) +def #u [C(u, x) + ,y [y <• z - C(u, y)]]

M+T |= #x y [cl(x; z) / #y [y <• z / E(y, x)]

M+T |= #x [CL(x) + cl(x; x)]

M+KT: All regions have a closure

#y ,x [cl(x; y)]
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Theories with Closed Regions and Closures

M+OT: #x [t-univ(x) / m-univ(x)]

M+WT: #x y [E(x, y) / x <• y]

M+ST: #x y [E(x, y) / x < y]

EM: #x y [x <• y / x < y]

M+T
CL

: #x y [y <• x / E(y, x)]

M+KT: #y ,x [cl(x; y)] EM+OT

EM+WT

EM+T

M+OT

M+WT

M+ST

M+T

CRC

RCC

Clarke

Roeper

A&V

BGM=

E

<

<•

S

EQ
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Theories with Closed Regions and Closures

M+OT: #x [t-univ(x) / m-univ(x)]

M+WT: #x y [E(x, y) / x <• y]

M+ST: #x y [E(x, y) / x < y]

EM: #x y [x <• y / x < y]

M+T
CL

: #x y [y <• x / E(y, x)]

M+KT: #y ,x [cl(x; y)]

EM+T |= M+T
CL

M+ST
CL

 |= EM

EM+OT

EM+WT

=M+STCL

M+OTCL

M+WTCL

EM+T

M+TCL

M+OT

M+WT

M+ST

M+T

CRC

RCC

Clarke

Roeper

A&V

BGM=

E

<

<•

S

EQ
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Theories with Closed Regions and Closures

M+OT: #x [t-univ(x) / m-univ(x)]

M+WT: #x y [E(x, y) / x <• y]

M+ST: #x y [E(x, y) / x < y]

EM: #x y [x <• y / x < y]

M+T
CL

: #x y [y <• x / E(y, x)]

M+KT: #y ,x [cl(x; y)]

M+T
CL

 |= M+KT

EM+OT

EM+WT

=M+STCL

M+KOT

M+KWT

M+KST

M+OTCL

M+WTCL

EM+T

M+KT

M+TCL

M+OT

M+WT

M+ST

M+T

CRC

RCC

Clarke

Roeper

A&V

BGM
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Theories with Closed Regions and Closures

M+OT: #x [t-univ(x) / m-univ(x)]

M+WT: #x y [E(x, y) / x <• y]

M+ST: #x y [E(x, y) / x < y]

EM: #x y [x <• y / x < y]

M+T
CL

: #x y [y <• x / E(y, x)]

M+KT: #y ,x [cl(x; y)]

EM+OT

EM+WT

=M+STCL

M+(K)OT

M+(K)WT

M+(K)ST

M+OTCL

M+WTCL

EM+T

M+(K)T

M+TCL

CRC

RCC

Clarke

Roeper

A&V

BGM
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(Third Part of) A first map

M+WETCL

M+(K)WT

M+(K)WET

M+WTCL

M+(K)T¬B

M+(K)IT
M+(K)ET¬B

M+(K)IET

M+T¬BCL

M+ET¬BCL

M+STCL

= EM+WT

M+(K)ST

M+(K)ST¬B

M+(K)IST

M+ST¬BCL

= EM+T¬B

M+OETCL

M+(K)OT

M+(K)OET

M+OTCL

EM+OET

EM+OT

M+ETCL

M+(K)T

M+(K)ET

M+TCL

EM+ET

EM+T

CRC

RCC

Clarke

Roeper

A&V

BGM

M+T
CL

 |= M+KT 

EM+T |= M+T
CL

M+ST
CL

 |= EM 
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Principles of extensionality do not contradict each other

Mereological extensionality stronger than closedness of regions

M+WETCL

M+(K)WT

M+(K)WET

M+WTCL

M+(K)T¬B

M+(K)IT
M+(K)ET¬B

M+(K)IET

M+T¬BCL

M+ET¬BCL

M+STCL

= EM+WT

M+(K)ST

M+(K)ST¬B

M+(K)IST

M+ST¬BCL

= EM+T¬B

M+OETCL

M+(K)OT

M+(K)OET

M+OTCL

EM+OET

EM+OT

M+ETCL

M+(K)T

M+(K)ET

M+TCL

EM+ET

EM+T

CRC

RCC

Clarke

Roeper

A&V

BGM

=

E

<

<•

S

EQ


