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Homework till Monday

® How do your research interest relate to the topics of the

course ?

® In which way do parts / the notion of 'part' play a role in your

area ?

® Which kinds of parts / wholes play a role ?

® |s the spatial structure important (e.g. spatial

connectedness) ?

® Where do temporal notions come up?

*® Are temporal instants sufficient for your needs? Where can

time periods be important ?

3-Mereotopology

Doctorate Course

Modeling in Knowledge Representation:
The Parthood Relation

2006-2007

ICT School 2007

Why topological notions?

Mereology alone

'‘connectedness'

® does not have any notion of 'whole', 'integrity’, I

*® does not distinguish spatially coherent (one-piece) entities
from spatially disconnected (multi-piece) entities
® does not distinguish inner parts from boundary parts .

"

a |
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Mathematical Contribution

Point-set Topology
* establishment at the beginning of the 20t century
¢ general theory for describing continuity

® continuity: predictability of the behavior of a function at the
boundary from the behavior in the interior of a set

® Points are undefined primitive objects
that serve as basis (carrier) for the structure

® Sets of points define and exhibit

the topological structure / /

/
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Why Mereotopology ?

Formalizing common-sense knowledge
® proved to be much harder than formalized expert knowledge
® is based on a common-sense ontology
® that includes objects of every day live
® rather than sets.

Mathematics (Topology)
® uses set theory to represent real world problems
® provides sophisticated tools for expert reasoning.

Relations between Points and Sets

Set Theory
® Points are element of the set
® or not.

Topology

® Points are interior to the set (then they are elements of the
set)

® exterior to the set (then they are not elements of the set)
® or boundary points of the set

* boundary points can be elements of the set

° or not.
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Topology: A Reminder

Definition
* A topology on a carrier set D is (given by) a set 7 C 2P
having the following properties
°D, e T
*VSCT[USe T]
VX, YETXNY€E T]
* The elements of T are called open sets.
Simple Examples
*{D, @} (trivial topology)
* 2D (discrete topology)
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Topology Based on a Metric Space

Let (D, d) be a metric space, (d: D x D — R).
® The open ball (in D) of diameter 0 < ¢ € R around x is
defined as:
By(x, e) ={y €D | d(x, y) <&}

® Let B, be the set of all open balls around any point of D, i.e.

By ={B4(x, &) |0 <e €ER, xE D}
* Then the set 7, = {UM|MC B,} is a topology for D.
Examples
*D = R ; open balls are open intervals

* D = R2; open balls are discs without bounding circle line
* D = R3; open balls are spheres without surface
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Points in Topology

Let T be a topology on D, M C D and p € D.
* interiorPoint(p, M) < IXE T[p € X A XC M]
* exteriorPoint (p, M) < IXE T[p EX A XN M =]
® limitPoint{p, M) <4 VX E T[pEX=XNM# ]

* boundaryPointAp, M) <>, VXE T[p E X =
XNM# & A XZM)]

Topology Induced by a Metric

Example: Let (D, d) be a metric space.
*Let T,={UM|MC B}
® Show
*D, @€ T,
*VSC T [USe 7]
VX, YET,IXNY E T

® Show and take advantage of:
VB e B,[B=U{Xe B, | XC B}
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Functions Mapping Sets in Topology

Let 7 be a topology on D and M C D.
¢ int{M) = {p € D | interiorPoint{p, M)}
® ext-{M) = {p € D | exteriorPoint{p, M)}
°cl{M) = {p € D | limitPoint{p, M)}
* bdAM) = {p € D | boundaryPoint{p, M)}

M,
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M, =M, UM, My =M, U M,
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General Laws for the Mappings Defined

Let 7 be a topology on D and
M C D. (drop index . for simplicity)

*int(M)C M

* M C cl(M)
cextM)NM=0

° cl(M) =M U bd(M)

® int(M) = M \ bd(M)

® bd(M) = cl(M) \ int(M)
°* ext(M) = int(M-")

® int(M) = cl(M-1)-1

° cl(M) = int(M-")" = ext(M)!
® bd(M) = cl(M) N cl(M-")

* bd(M) = bd(M-")

®* bd(M) = (int(M) U ext(M))"

° cl(J) = int(J) = ext(D) = &
¢ cl(D) =int(D) = ext(d) =D

® int(int(M)) = int(M)
® cl(cl(M)) = cl(M)
® int(ext(M)) = ext(M)

* int(cl(M)) 2 int(M)
* cl(int(M)) C cl(M)

* bd(int(M)) C bd(M)
* bd(cl(M)) C bd(M)
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Irregular

N

Sets

® cl(int(M,)) C cl(M,)
® bd(int(M,)) C bd(M,)

I

¢ int(cl(M,)) D int(M,)
® bd(cl(M,)) C bd(M,)

L

I

3

L

Open and Closed Sets

Let 7 be a topology on D and M C D.
* M is open (OPAM))iff M € T.
*Mis closed (CLAM)) iff M € 7.

* VM C D [OP M) < M = int{(M)]
*YM C D [CLAM) < M = cl(M)]
* VM C D [OP int/{M))]

* VM C D [OP (ext(M))]

* VM C D [CL4cl{M))]
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Regular Sets

Let 7 be a topology on D and M C D.

(drop index  for simplicity)
® M is regular iff cl(int(M)) = cl(M) and int(cl(M)) = int(M).
® M is an open regular set iff OP(M) and int(cl(M)) = int(M).
®* M is a closed regular set iff CL(M) and cl(int(M)) = cl(M).

® Unions and intersections of regular sets need not be regular!
® Use (topology-specific) regular union / intersection.

=l
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Basic Concepts of Point-Set Topology

Equivalent axiomatizations based on different
primitives
® Open Set
* a set without a boundary
¢ Closure
* mapping a set to the set of all its limit points
® Neighborhoods of a point

* a neighborhood of a point is extended around the point in
all 'directions'
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Topology and Mereology

Beginning of Topology
® Fréchet (1906): Spatial structure of the space of functions
® Hausdorff (1914): General conditions for convergence;
Definition of Topology based on 'Neighborhood'
¢ Kuratowski (1922): Topology based on 'Closure'
Mereology

® Lesniewski (1927-30): Development of Mereology as
alternative to set-theory

® Leonard & Goodman (1940): Mereology as a 'Calculus of
Individuals'

® Simons (1987): Discussion of alternative axiomatic systems

Spatial Structure: Mereotopological Calculi

Basic idea
® (extended) regions are basic entities in the spatial ontology
® topological structure is crucial for spatial structure
(— qualitative)
® points and boundaries are abstractions from configurations
of regions

O
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Mereotopology (1)

® de Laguna (1922): Points and boundaries as abstractions
from extended regions

* Whitehead (1929): Proposal of a region-based description of
space

® Clarke (1981): Calculus of Individuals based on 'Connection'

® Allen (1981): Time periods in Al

® Randell, Cohn (1989); Vieu (1993): Adaptation of Clarke's
calculus for Al

® Egenhofer (1991): Relations between regions based on
point-set topology for GIS
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Mereotopology (2)

® Randell, Cui, Cohn (1992): Alternative calculus by
'redefining complement'

® Smith (1993): Mereotopology based on 'inner parts'
® Asher & Vieu (1995): geometry of common sense

¢ Eschenbach & Heydrich (1995): Regions embedded in
extensional Mereology

® Varzi (1996): Discussion of alternative axiomatic systems
® Borgo, Guarino, Masolo (1996): pointless theory of space
® Roeper (1997): Region-based Topology

® Masolo & Vieu (1999): Atoms in Mereotopology

® Eschenbach (1999): Closed Region Calculus

¢ ... still an open discussion
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How to proceed?

Select terminologies
® Use notation that is neutral regarding the theories
® |dentify the common terminological kernel
* Distinguish terms whose definitions differ
* Mereological terminology (def. based on Part-of <)
* Topological terminology (def. based on contact C)
* Mereotopological terminology (def. based on < and C)
Identify a list of axioms
® such that every approach can be identified with a subset

Analyse the interrelation between the axioms

Mereotopologies

A large selection of proposals exist

* Whitehead (1929), Clarke (1981), Randell & Cohn (1989),
Egenhofer (1991), Randell Cui & Cohn (RCC, 1992), Vieu
(1993), Asher & Vieu (A&V, 1995), Roeper (1997),
Eschenbach (CRC, 1999), Borgo, Guarino, Masolo (BGM,
1996)

® |s there a common core to the proposals?
® Which approaches can be combined?
®* How to choose between 'the proposals' for an application?
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Select Terminologies




Problems / Obstacles

¢ Different assumptions on extensionality
* C-based, O-based, or both ?
* Different terminology
* Example: Complement
(D) X =compl(y) <4 VuluOx < Iw[uow A 2(w Oy
(D) x = compl(y) < 4o YU [C(u, X) < Iw [C(u, W) A “C(w, y)]]

(D) X = compl(y) <4 YU [C(U, X) & —=(u << y)] A

Vuuox< (u<y)]
ICT School 2007 25

Mereological Terminology (M):
Mereology: Formalization of the relation of part (<)

M:Vxyz[z<xAax<y=z<y]
M: VXy[X<yAy<x=Xx=Y]
M: Vx [x <X]

XY g Y <X

X<<Y g X <Y ATy <x)
X>>Y g Y <<X

XOY & Iz[z<xAZ<Y]
X#Y (X OY)

XOY &4 XOYAT(Xx=Y)
XOY <X Oy ATx<y)A(y<X)
X<y VZ[zOX=20Y]
X*>Y e Y <* X
X<>Y Sge X <Y AY <X

M|=Vxy[x<y=x0Yy]

M|=Vxy[x<ey=x0Y]
M= Vxy[x<y=x<y]

Defining Functions: Complements

(D) x=comply) <4 VU[uO X <= IW[uO WA (WO V)]
(D) X = compl(y) <4 VU [C(u, X) < Iw [C(u, w) A 7C(w, Y)]]
(D) x = compl(y) = 4 YU [C(u, X) = =(u << y)] A
Vuluox< (u<y)]
In order to define a function in standard logic
® the definiens should guarantee (within the assumed theory)
° uniqueness
* existence
To allow comparison,
® use unique names
® replace n-ary function-symbol by (n+1)-ary relational symbol
X = namey(y) < ¢ (X, y)
id-name, (x; ) <> (X, Y)
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Binary Topological Relations

T: VX [C(x, x)]

T: ¥xy [C(x, y) = C(y, X)]
DC(x, y) < ~C(X, ¥)
E(x, §) <4 V2 [C(z, X) = C(z, y)] R
T|= Vxy[E(x, y)=>C(x, y)]

EQ(X, 1) g EfX, 1) A E0Y, %) BC DC

S(x, y) <4 32 [E(z, X) A E(z, ¥)] / PS
T|= ¥xy[S(x, y) = C(x, y)] E\/

T|= ¥xy[E(x, y) = S(x, y)] EQ

PS(X, y) < et S(x, ¥) A =E(x, y) A =E(y, X)

DR(X, y) < g =S(X, y)

BC(X, ¥) < G, ¥) A =S(x, )
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Binary Topological Relations

® connected (C)
® disconnected (DC)

® enclosure (E): x encloses
y iff everything connected
to y is connected to x

® topological equivalence

(EQ): enclosing and being BC DC
enclosed

® superposition (S): 2 PS
enclosing a common
region

* discrete (DR): not EQ
superposed

® boundary-connected (BC):
connected without
superposition

® proper superposition (PS)

DR
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Binary Topological Relations

* enclosure (E): x encloses
y iff everything connected
to y is connected to x

* proper enclosure (PE) /\
® internal enclosure (IE): x DR
encloses y internally iff
everything connected to y
is superposed to x BC DC
® proper internal enclosure
(PIE) ]

® tangential enclosure (TE): 1 PS
enclosure and sharing a
boundary-connection TE PE E EQ IEY PE TE4

® proper tangential
enclosure (PTE)

® minimal connection, PTE PIE PIE-1 PTE"
topological fusion,
closure, interior, exterior

Binary Topological Relations

PE(X, y) <4t E(x, y) A =E(y, %)
[E(x, y) <4 VZ [C(z, X) = S(z, y)]
TI= Vxy [E(x y) = E(x, y)]

PIE(x, y) <4 [E(X, y) A PE(y, X)
TE(X, y) <4 E(x, y) A 7IE(X, ) BC DC
PTE(X, y) <> TE(X, §) A PE(y, X) /T\

8 PS

DR

TE PE IE EQ IE PE! TE

PTE PIE PIE* PTE
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Mereological and Topological Terminology
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Mereotopological Terminology (M+T):
Relating Mereology and Topology

Minimal condition
® Parts are (topologically) enclosed
(A) Vxy[x<y=E(xy)
® Overlapping regions are (topologically) superposed and,
thus, connected
More specific assumptions
*® Replacing Mereology: Identifying the relations part and
enclosure
Mereotopological Notions: Refinement of
Mereological Relations
® External connection (EC): Connection without overlap
® tangential part (<,), internal part (<;)

Mereological and Topological Terminology

M+T: Vx y [x <y = E(x, y)]

M+T [=Vxy[x Oy = S(x, y)] /

M+T |= Vx y [DR(x, y) = x # y]/(\7\
/w

<

PTE  PE el
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Mereological and Topological Terminology

M+T: Vx y [x <y = E(x, y)] /\
M+T |= Vx y [x O y = S(x, y)] ¢ #
M+T |= Vx y [DR(x, y) = x # ]
S DR
/) BC OC
/EN.\
PTE PIE << =
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(Selection of) Binary Relations in
Mereotopology

MHT: Vxy[x<y=E(x y)] PaN
M+T |=Vx y[x O y = S(x, y)] ¢ #
M+T |= Vx y [DR(x, y) = x #] /\/\
S EC DR
EC(x, y) =4 Clx,y) A =(x O ) ¢} ES BC DC

ES(X, §) <4 S(X,¥) A =(xOy) |

<e

rsyewrsyavzlCen=zon AT

XY g X<YAXSY TE PE [E < EQ

XSG Y St XY AXS<Y \/\/M\‘

XY S XY AXSSY L~
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Basic Assumptions Collected

The axioms used up to now are

Identify a List of Axioms M. Vxyz[z<xAx<y=z<y]
M: VXy[x<yay<x=x=Yy]
M: VX [x<X]
T: Vx [C(x, X)]
T. Vxy [Cx, y) = C{y, X)]

Study interactions M+T: Vxy[x<y=E(xy)]
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Types of Axioms

® Principles of extensionality, supplementation (individuation) EXtenSionaIity and InteraCtion Of
® Interaction between mereological and topological Mereo|ogica| and Topo|ogica|
terminology
Terms

® Topological and mereological universes

*® Existence of open and / or closed regions; divisibility
* A first map

® Atoms and connectedness of space

® Three types of complements and connectedness

® (Further axioms for connectedness)
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Extensionality

Principles of Extensionality
W is a formula in which x and z occur freely (but y does not)
Vxyx#y=3z[¥ < -y
Vxy[Vz[¥W < Py = x=Y]
For example, the principle of extensionality in set
theory:
Vs1s2[s1#s2=dafac sl < 7(acs2)
Vs1s2[ValaE sl < aEs2]=>s1=52]

Supplementation in the context of Mereology
(employing antisymmetry of <)
Vxy[=(x<y)=3z[¥ A ~WN]]
Vxy[Vz ¥ = Pxly]] = x<y]

ICT School 2007

Space of Theories (Extensionality)

ET: Vx y [EQ(x, y) = x = }] Mt
M+WT: Vx y [E(x, y) = x<* }] M+WT
M+ST: Vx y [E(x, y) = x <] M+ET
EM: Vxy[x<ey=x<}y] M+WET
EM+T
M+ST |= M+WET M+ST
EM+WT |= M+ST_/\ EMHET
¢ EM+WT

41

Extensionality and the interaction between
mereology and topology

ET: Extensional Topology
Vxy [EQ(x,y) = x=Y]

ET|=Vxy[x#y< 3z[C(x, z) & ~C(y, 2)]]

EM: Strong supplementation (Extensional Mereology )
Vxy[x <oy = x<y]
Vxy[Vz[zOx=2z0y]=>x<Y]

EM|=Vxy[xZy< Jz[zOx< =(z0VY)]

M+ST: Strong Mereotopological Interaction
Vxy[Ekx y)=x<y]

Vxy[Vz[C(z,x) = C(z, y)] = x <]

M+WT: Weak Mereotopological Interaction
Vxy[E(x y)=x <]

M+WT |= Vx y[S(x,y) < x O]

ICT School 2007
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Space of Theories (Extensionality)

ET: Vx y [EQ(x, y) = x = ] M
M+WT: Vx y [E(x, y) = x <* }] M+WT
M+ST: Vx y [E(x, y) = x <]
EM: Vxy[x<ey=x<}y]

M+WET

EN+T |
_ M+ST
M+ST |= M+WET  MSWET
EM+WT |= M+ST EMM
EM+WT
= EM+SWET
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Terminological Simplifications in EM+WT

N

C #
/\/\
S EC DR

P

0— 8 EC—BC DC

E <s E—<—=<e
T
LI - EQ [E—< PE—<< TE—<, =—EQ
TS
PTE PIE N <& = PIE —< PTE —<,
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Why not M+ST?

M+ST: Vxy [E(x,y) = x<Y]

Assuming the cells not to
have proper parts:

The black square is enclosed
by the gray area without being
its part.
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Space of Theories (Extensionality)

ET: Vxy [EQ(x, y) = x =] M T
M+WT: Vx y [E(X, y) = X <+ J] HWT
M+ST: Vx y [E(x, y) = X <] M+ET
EM: Vxy[x<ey=x<}y] M+WET
EM+T
M+ST |= M+WET M+ST
EM+WT |= M+ST o EMLET A8V Clarke
EM+WT

RCC Roeper BGM
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(First Part of) A first map

M+ T
M+ST |= M+WET
MPET  MeTwT EM+WT |= M+ST
M+ {l’
M+ ST
EM+T
EM+ET PN
DY
CRC A&V Clarke
EM+WT

ICT School 2007

RCC_Roepar BGM
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Principles of extensionality do not contradict each other

M+ T

MET T
S

m

TN

M+ WET

M+(1ST

m

=

+

—
II:

EM+ET P
A&V Clarke

EM+WT
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Universal Regions

Mereologically universal regions
mM-univ(x) <4 Yy [y O X]
M |= Vx [m-univ(x) < Yy [y <* X]]
M |= Vx [Vy [y < x] = m-univ(x)]
EM |= Vx [m-univ(x) < Yy [y <x]]
UM: There is a mereologically universal region
3x [m-univ(x)]
Topologically universal regions
t-univ(x) <> g Yy [C(Y, X)]
T |= Vx [t-univ(x) < Yy [E(y, X)]]
T |= Vx [t-univ(x) < Yy [S(y, x)]]
UT: There is a topologically universal region
Ax [t-univ(x)]

w

A—o0

m
[=)
A

Mereologically and Topologically
Universal Regions

RCC _Raepar BGL
49
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Universal Regions (2)

Different versions for Mereology and Topology
M-Univ(x) <> 4o Yy [y O X]
tuniv(x) < e Yy [C(Y, X)]
M+T |= Vx [m-univ(x) = t-univ(x)]

M+OT: Topologically universal regions are

mereologically universal

Vx [t-univ(x) = m-univ(x)]

* The grey area is topologically universal .

but not mereologically universal.

ICT School 2007
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Space of Theories (Universal Regions)

M+T
ET: Vxy [EQ(x, y) = x =]
M+WT: Vx y [E(x, y) = x <* }] M+ET
M+WT
M+UT: 3x [t-univ(x)]
M+OT: Vx [t-univ(x) = m-univ(x)] M+WET
UM+T: 3x [m-univ(x)] CRC GM
RCC Roeper A&V Clarke
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Space of Theories (Universal Regions)

M+T
ET: Vx y [EQ(X, y) = x =]

M+WT: Vx y [E(x, y) = x<* y]
M+UT: 3x [t-univ(x)]
M+OT: Vx [t-univ(x) = m-univ(x)]

M+OT

M+WET
BGM

UM+T: 3x [m-univ(x)]
M+WUT
M+QUET

M+WT |= M+OT
M+WUET

RCC Roeper A&V Clarke
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Space of Theories (Universal Regions)

M+T
ET: Vxy[EQ(x, y) = x=}]
M+WT: Vx y [E(x, y) = x <] m+UT MEET
M+UT: 3x [t-univ(x)] M+ WT

M+OT: Vx [t-univ(x) = m-univ(x)] MHET

UM+T: 3x [m-univ(x)]

BGM

M+WUT

M+WUET
RCC Roeper A&V Clarke
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Space of Theories (Universal Regions)

M+T

ET: Vxy [EQ(x, y) = x =]
M+WT: Vx y [E(x, y) = x <+ }]
M+UT: 3x [t-univ(x)]

M+OT: Vx [t-univ(x) = m-univ(x)]
UM+T: 3x [m-univ(x)]

UMHT |= UT

M+OUT |= UM NFWUET
UM+ET |= M+OT RCC Roeper A&V Clarke
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(Second Part of) A first map

M+ T

N Wt M+WT |= M+OT
WeET [N e

+(XOET
M+ w’
M+ ST
EM+T
\

N Emor

EMM L
CRC ENROET A&V Clarke

EM+WT

ICT School 2007

Closed and Open Regions

Point-Set Topology
® Closed sets include all their boundaries.

* Missing connections of closed regions
derive from missing parts.

CL(X) <> et Yy [y <* x = E(y, X)]

M+T |= Vx [CL(x) « Vy[3z[C(z, y) A 7C(z, x)] = Tw [w <y A 7(w O X)]]]
® Open sets do not include their boundaries.

* All connections derive from sharing parts.

* There are no external connections to open regions.

OP(X) <> ger =3y [EC(y, X)]

RCC _Raepar BGL
57

Closed and Open Regions
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Closed Regions and Closures

A region is closed iff it encloses all regions it covers.
CL(X) <> et Yy [y < x = E(y, X)]
M+T,, : All regions are closed
Vx [CL(x)]
A closure of region y is connected to exactly those
regions that are connected to a region y covers.
cl(X; 2) <> ges VU [Cu, X) <> Ty [y <z A Cu, y)]]
M+T |= Vx y [cl(x; 2) = Vy [y <* z=> E(y, X)]
M+T |= Vx [CL(x) < cl(x; X)]
M+KT: All regions have a closure
Vy Ax [cl(x; y)]

ICT School 2007 60



Theories with Closed Regions and Closures

M+T
M+OT: Vx [t-univ(x) = m-univ(x)]

M+WT: Vx y [E(x, y) = x<* ] M+OT
M+ST: Vx y [E(x, y) = x <]

EM: Vxy[x<oy=x<}y] \\

s EM+T M+ST
M+Tg: Vx y [y <e x = E(y, X)]

M+KT: Vy 3x [cl(x; y)] CRC emror
A&V Clarke
EM+WT
= RCC Roeper BGM
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Theories with Closed Regions and Closures

M+T
M+OT: Vx [t-univ(x) = m-univ(x)]

M+WT: Vx y [E(x, y) = x <* ] M+KT  M+OT
M+ST: Vx y [E(x, y) = x <]
EM: Vxy[x<ey=x<}y]
M+T¢, 2 Vx y [y <o x = E(y, x)]
M+KT: Vy 3x [cl(x; y)]

MiTe,  M#KOT — MeWT
EMAT  M+QTg  M+KWT  M4ST
CRC EMYOT M+WT, M+KST

M+T, |= M+KT A&V Clarke
EM+WT

/zw&
RCC Roeper BGM
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Theories with Closed Regions and Closures

M+T
M+OT: Vx [t-univ(x) = m-univ(x)]

M+WT: Vx y [E(x, y) = x <*¥] M+OT
M+ST: Vx y [E(x, y) = x <]
EM: Vxy[x<ey=x<y]
M+To: Vx y [y <o x = E(y, x)]

M+T,, M+WT

EM} T M+OT,, M+ST

M+KT: Vy 3x [cl(x; y)] o CRC emsoT MsWT,

A&V Clarke

BT T,
M+ST,, |=EM /&
= RCC Roeper BGM
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Theories with Closed Regions and Closures

M+OT: Vx [t-univ(x) = m-univ(x)]

M+WT: Vx y [E(x, y) = x < )] M+(K)T
M+ST: Vx y [E(x, y) = x <]
EM: Vxy[x<ey=x<}y]
M+Te,: Vxy [y <o x = E(y, X)]
M+KT: Vy 3x [cl(x; y)]

M+Te MHK)OT

EM+ T M+QTy  M+(K)WT

+OT  M+WT,  M+(K)ST
A&V Clarke

EM+WT

/zMFK
RCC Roeper BGM

CRC &M
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(Third Part of) A first map

M+(K)T
NH{)OT M+Te, [= N+KT
M+KET | N RIWT EM+T |= M+T¢,
" M+ST,, |= EM
EM
P
CRC A&V Clarke

ICT School 2007

Principles of extensionality do not contradict each other
Mereological extensionality stronger than closedness of regions

M+ T

S

MET MWt o
M+T, E <‘.
f%zsx‘s‘s\\ + 1 WET ]

=
+
m
_|
o
m
(s}
A

EN+T L
ENHET MHWETe, L
\
CRC A&V Clarke
EMWT

RCC _Roepar BGI
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