
Business Process Activity Relationships:
is there anything beyond arrows?

Greta Adamo1,4, Stefano Borgo2, Chiara Di Francescomarino1, Chiara Ghidini1,
Nicola Guarino2, and Emilio M. Sanfilippo3

1 FBK-IRST, Trento, Italy
2 ISTC-CNR Laboratory for Applied Ontology, Trento, Italy

3 Ecole Centrale de Nantes – Laboratoire des Sciences du Numérique – LS2N, Nantes, France
4 University of Genova, DIBRIS, Genova, Italy

{adamo,dfmchiara,ghidini}@fbk.eu
{stefano.borgo,nicola.guarino}@cnr.it

{emilio.sanfilippo@ls2n.fr}

Abstract. Business process modelling languages enable the depiction of the
processes of an organisation by exploiting graphical symbols to denote the key
elements to be represented. Despite the variety of approaches, graphical symbols,
and (in)formal interpretations associated to the different languages, a fundamental
component of every business process modelling language is the representation of
the way activities are related by means of control arcs and gateways. While mul-
tiple kinds of relationships may hold among such activities, mainstream business
process modelling languages seem actually only interested in modelling a single
(very important) kind of relationship, namely the activity execution order within
the control flow. In this paper we investigate the role of another kind of fundamen-
tal relationship between activities, namely ontological dependence, in the context
of business process modelling. In particular, we introduce three forms of generic
ontological dependence, namely historical dependence, causal dependence, and
goal-based co-occurrence. We illustrate different forms in which they can occur,
we introduce a language to express them and we discuss their usefulness in two
concrete use cases.

1 Introduction and Motivations

Business process modelling languages enable the depiction of the processes of an organ-
isation by exploiting graphical symbols to denote the key elements to be represented.
Examples are the sequence of activities to be executed (the so-called control flow),
the actors involved, the data objects required/manipulated by the activities, message
exchanges, and so on.

Despite the variety of approaches, graphical symbols, and their (in)formal interpre-
tations, a fundamental component of every business process modelling language is the
representation of the way activities (and events) are related by means of control arcs
and connectors (gateways). However, while mainstream business process modelling lan-
guages seem actually only interested in modelling a single (very important) kind of
relationship, namely the activity execution order within the control flow, multiple kinds
of other relationships may hold among such activities.



2

Fig. 1. A simple pizza delivery process model.

Consider, for instance, the simple BPMN diagram of Fig. 1. Its control arcs specify
that the execution of a pizza delivery process starts with the order, continues with
the baking of the pizza, the addition of toppings, the delivery, and the payment. In
addition to the relation between activities captured by the control arcs, most human
beings would easily identify further relationships in this process. As a first example,
the (indirect) relationship between Bake pizza and Deliver pizza presupposes an
intrinsic execution order that is independent on this particular process model. Indeed,
delivering a pizza requires having (made) it first. This relation does not depend upon
the way the organisation decides to structure the control flow. On the contrary, it holds
in virtue of the very nature of such activities in the real world, and this influences the
way the real business processes are organised (and thus represented in the model).

As a second example, one may notice that Deliver pizza and Make payment ex-
hibit a different kind of mutual relationship. Indeed, an organisation may freely organise
its own processes asking for payment before or after a delivery. We can nonetheless
assume that the commercial nature of the pizza shop and its business goal of making
money suggests that delivering a pizza must be (sooner or later) associated to a payment
in order to have a meaningful process. These two simple examples show different real
world relations between activities that can hold in the real world. Nonetheless, they are
represented in the same way in the process model of Fig. 1. This happens because the
model only represents the execution order of activities within the control flow.

The inability to account for aspects coming from real world constraints makes the
standard business process modelling notations less informative from an explanatory
perspective, and less robust against possible changes that violate fundamental domain
constraints. Indeed, while the (intentionally very simple) pizza shop example reflects
characteristics of the real world that most of us know, intrinsic aspects of more com-
plex domains may be more difficult to understand, and could be missed by people (or
algorithms) who lack the background knowledge required to understand them.

This may result in crucial modelling mistakes, especially during model redesign. For
example, while common sense would prevent refactoring the pizza process by imposing
to deliver a pizza before baking it, no information in the model actually forbids that.
Similarly, removing the payment activity from the process would dramatically change
its meaning, so as to question whether it should still be considered the “same” process.
On the contrary, the removal of the Add topping to pizza activity would intuitively
be considered just a process refactoring.



3

Characterising relationships between business process activities beyond the control
flow perspective is not trivial, due to the multitude of aspects and features that may
be considered. For example, activity relationships may be distinguished according to
their temporal features, co-occurrence constraints, the nature of actors or participants
involved, and the goals of the business process. Some of these aspects reflect normative
choices (or business rules) concerning the expected process structure, while others are
bound to genuine ontological constraints intrinsic in the activities themselves. In the
remaining of the paper we provide an analysis of some of such constraints, focusing in
particular on temporal co-occurrence, and we apply them to distinguish among different
kinds of activity relationships within business process models. In particular, we provide:

– an analysis of activity co-occurrences in terms of ontological dependences which
allows to select and introduce three forms of generic ontological dependence among
activities, namely historical dependence, causal dependence, and goal-based co-
occurrence (Section 2);

– a first investigation of different forms of historical dependence, causal dependence,
and goal-based co-occurrence, depending on their genuine ontological aspects,
goal-related aspects, and norm-related aspects (Section 3);

– a proposal on how to incorporate historical dependence, causal dependence and goal-
based co-occurrence in business process models by following a hybrid modelling
approach (Section 4);

– an illustration of the usefulness of historical dependence, causal dependence, and
goal-based co-occurrence in two concrete use cases concerning business process
documentation and business process redesign (Section 5).

2 Activity Co-occurrence as Ontological Dependence

The goal of this paper is tomake explicit the nature of the links holding amongst activities
that pertain a business process. We rely here on Weske’s definition [30], according to
which a business process is “a set of activities that are performed in coordination in
an organizational and technical environment. These activities jointly realize a business
goal. Each business process is enacted by a single organization, but it may interact with
business processes performed by other organizations.”

In particular we based our analysis on ontological dependences resulting in co-
occurrence constraints involving activities that occur during the same process execu-
tion. Such constraints hold by necessity in a particular domain, independently of the
way a business process is designed. For example, delivering a pizza necessarily presup-
poses that the pizza has been baked. Similarly, no receive event can occur without a
corresponding send event.

In formal ontology, ontological dependence is a fundamental relationship (or set of
relationships) which can take many forms [5, 10]. In general, an entity is dependent upon
another when it is not ontologically self-sufficient, in the sense that it cannot exist alone.
A basic form of dependence is so-called specific (or rigid) existential dependence, which
holds among two objects when the existence of one necessarily implies the existence of
the other. For instance, we may say that a person is specifically existentially dependent
on her brain. A weaker form is the so-called generic existential dependence, which holds



4

when the existence of an object requires the existence of another of a given kind. For
instance, a human being is generically dependent on a heart (under the assumption that
the heart may be substituted). An even weaker form of dependence may hold between
kinds, when the existence of an instance of one kind requires the existence of an instance
of the other kind. This seems to be enough in our case, since in most business process
models key elements (such as activities in a BPMN model or transitions in a Petri Net)
are indeed understood as kinds, and we are interested in the relationships among them.
However, since the instances of such kinds are temporal entities, we should speak of
occurrence instead of existence, so that instead of existential dependence relationships
we have to talk of co-occurrence dependence relationships. In the following, we shall
introduce three forms of ontological relations that characterize the nature of such co-
occurrence dependence relationships. The reason why we have chosen these specific
forms of ontological dependences between activities is twofold: on the one hand they
are grounded on important generic ontological dependences investigated in literature;
on the other hand they seem to play a fundamental role in all the business processes
(models) that have been examined for this work.

A first type of co-occurrence dependence relationship is historical dependence.
This captures the situation where a certain activity occurrence presupposes that another
activity occurred in the past. For example, an instance of Deliver pizza may occur
only if an instance of Bake pizza occurred beforehand. We shall define historical
dependence as follows:

Let P1 and P2 be business process activities (that is, kinds of actions that may
occur in a business process). We shall say that P1 is historically dependent on
P2 iff, necessarily, whenever an instance x of P1 occurs at time t, there exists
an instance y of P2 that has occurred at a time t′ < t.

Note that historical dependence is a relation holding necessarily, and has therefore
an ontological nature. On the contrary, a mere temporal precedence relation simply
resulting from the fact that two activities precede one another in a particular business
process model may have just a prescriptive nature, if no historical dependence holds
among the same activities. For example, a certain model may say that an activity
Check contract should always precede the activity Sign contract. Although these
activities may be done in any order (since none of them causes or implies the existence
of the other), there is a clear reason to have them in a specific temporal order, but this
reason reflects a business rule and not an ontological constraint.

A stronger type of occurrence dependence relationship is causal dependence. Causal-
ity is notoriously challenging to define [11], and its complete characterisation is behind
the purposes of this work. For our purposes, we assume the following definition, which
characterizes causality in terms of contribution to explanation:

A process activity P1 is causally dependent on P2 iff, necessarily, whenever
an instance x of P1 occurs, there exist an instance y of P2 that occurs before x,
whose occurrence contributes to explain why x occurred.

This definition is admittedly naive, but it seems to be enough for practical cases. For
example, an event of message receiving occurs because an event of message delivering



5

occurred. Analogously, a pizza delivering activity occurs because an ordering event
occurred in the past, and not because a particular pizza was baked. So, the relation be-
tween Deliver pizza and Bake pizza is a historical dependence, while that between
Deliver pizza and Order pizza delivery is a causal dependence. Of course, a
causal dependence implies a historical dependence.

Finally, a third kind of occurrence dependence relationship is what we shall call
goal-based co-occurrence5:

Let G be a goal, typically associated to a certain business process. The process
activities P1 and P2 are goal-based co-occurrence iff the occurrence of both
P1 and P2 is necessary for the satisfaction of G.

Consider that no temporal constraint is imposed on P1 and P2, which may occur in
whatever order. In other terms, we only say that, for the satisfaction of G, instances of
P1 cannot occur if instances of P2 do not occur, and vice versa. Consider, for example,
the activity Deliver pizza in Fig.1. Given the nature of our process’ goal, which may
be stated as “Selling pizza”, both Deliver pizza and Make payment (for the pizza)
are necessary for the satisfaction of such goal, and they are therefore co-occurrent with
respect to such goal. Assuming that no historical dependence holds necessarily between
the two activities, a process re-factoring is possible, where the delivery occurs before the
payment. What is necessary, however, is that the payment occurs sooner or later. Note
that goal-based co-occurrence is symmetric, differently from the previous two relations.

Note that, for the sake of simplicity, we are considering here only relationships
between pairs of activities. Nonetheless the dependences introduced in this section
could be generalised to multiple activities or to process patterns / sub-processes.

3 Forms of Occurrence Dependence

As already stated in Section 1, dependence relationships between business process
activities can bemotivated by different aspects of theworld a real process is embedded in.
In this section we exemplify, by means of examples, the role that (i) genuine ontological
constraints (hereafter ‘laws of nature’), (ii) the goal of the process, and (iii) norms
can play in determining historical dependence, causal dependence and goal-based co-
occurrence. While the categories considered here are not meant to be exhaustive, they
are of fundamental importance for the representation of business processes. Genuine
ontological dependence exists because of the way the real world is structured and cannot
be circumvented by business processes. Dependences related to the goal often refer, in
our opinion, to the very nature of the process. They may be circumvented, but their
violations may have dramatical effects on the meaningfulness of the process. Finally,
laws and regulations often define a social world as important as the physical one for
business processes. Also in this case, dependences may be violated but their violations
have strong effects on the compliance of the process w.r.t. the normative world that
regulates them (see e.g., [13]).

5 While co-occurrences may, in principle, be based on different elements, goals seem to play a
fundamental role in co-occurrences in all the business processes (models) we have examined
for this work. We leave the investigation of other forms of co-occurrences for future work.



6

3.1 Historical dependence

Historical dependence seems to play an important role in business process models and
may come in different forms. A first example is provided by pairs of activities that pertain
the “switch” between two complementary states such as turning on and off, entering and
exiting and so on. A paradigmatic example in business process models is constituted
by the activities Login and Logout from a web page in a session. While it is possible
the login occurs without a logout, the opposite can not occur. If a logout does occur,
then the login must have occurred. This is a particular case of historical dependence
and is due to a ‘law of nature’ that can be generalised, as we said, to all changes
between complementary and mutually exclusive binary states. Different examples still
due to ‘laws of nature’ are the ones of Bake pizza and Deliver pizza discussed
in previous sections, or the one of an administrative procedure of applying for a PhD
position in which an applicant submits the PhD request (application form) to the PhD
office, which is then checked for compliance to the submission rules. Submit PhD
application and Check PhD application are connected together by a historical
dependence as the PhD office can not check something that has not been submitted. By
generalisation, the two forms of historical dependence mentioned here depend upon a
‘law of nature’ that determines that one can perform an activity on an artefact only if
this artefact exists and is available.

An example of historical dependence related to the goal of the process is the one
involving two Make diagnosis and Propose treatment activities in a healthcare
process. While a diagnosis is not a genuine ontological constraint for the proposal of
a treatment, the goal of the process of providing an effective (if not the best) cure to a
patient triggers this historical dependence in a meaningful process.

A further example of historical dependence may be due to normative laws. For
instance, in an on-line shopping purchase a Login activity may be a normative necessary
pre-requisite for the execution of a Purchase goods activity, in order to certify the
identity of the customer. Similarly to the example above,while a login is not ontologically
needed for a customer in order to buy something, the social world determined by the
norm imposes that a customer identification via Login is strictly necessary in order to
accomplish an e-buy activity.

3.2 Causal dependence

A first form of causal dependence, due to a sort of ‘law of nature’, is the one that holds
between Send and Receive activities (events, in certain notations). Indeed the activity
Send message not only is an existential requirement for Receive message to exist
but it also causes the receipt of the message itself.

Further examples of causal dependence can be found if we focus on the goal of
a business process. Consider again the pizza example. In this example Order pizza
delivery causes several further activities in the process, and in particular Deliver
pizza. Note that this is not due to a ‘law of nature’ but to the goal of the pizza shop,
which is the one of making money by selling pizzas to customers and fulfilling their
(customers) expectations. While causal dependence is also historical dependence the



7

opposite does not hold as Bake pizza does not cause its delivery. Indeed a pizza (or
any good) is not sold just because it is made but because someone asked for it.

Normative regulations can also refer to activities that are involved in a causal de-
pendence. Consider for instance the activity First use of software and Evaluate
terms and conditions. In this example, the first usage of a just installed software
triggers the evaluation of terms and conditions and also motivates/explains why this
activity occurs in a software installation process. Similarly to the above this is not due
to a ‘law of nature’ but to normative requirements regulating the usage of artefacts (the
software, in our case).

3.3 Goal-based co-occurrence

When it comes to the goal of the process, a typical example of goal-based co-occurrence
is the one involving the activities Deliver good and Pay for good in the context
of an economically motivated selling-oriented business process, of which Deliver
pizza and Make payment (for pizza) in Fig. 1 is a specific example already illustrated
in Section 4. As a further example, consider the annual evaluation process of an employer
in a given organisation. Whenever the goal is to ensure a transparent and fair evaluation,
a goal-based co-occurrence may involve two activities Send evaluation to Human
Resources and Send evaluation to employer executed by the employer’s boss.
Indeed the provision of the evaluation to Human Resources is required to make the
evaluation adopted by the organisation, while with the provision of the evaluation to
the employer provides a possibility to highlight unfair treatments, and they are jointly
required to achieve the overall goal.

4 Modelling Dependence relationships in Business Processes

In Sections 2 and 3 we have introduced the historical dependence, the causal dependence
and the goal-based co-occurrence, and illustrated, by means of examples, their occur-
rence in typical business process scenarios. Here we introduce a simple language for
expressing these dependences, investigate their meaning in terms of temporal properties,
and make a proposal on how to include them in (hybrid) business process models.

First of all we define the syntax of dependence expressions. Let T = {T1, . . . , Tn}
be an alphabet of business process activities. A dependence expression is an expression
of the form Cooc(Ti, Tj), Hist(Ti, Tj), and Cause(Ti, Tj), where Ti, Tj ∈ T, i 6= j.6
Next, we need to understand what is the meaning of these expressions and what does it
mean to enforce them upon a business process model.

A first question we need to clarify is whether dependence expressions concern a
business process diagram (only) or execution paths. From the description of dependences
provided in the previous sections, it is clear that they refer to process execution paths.
Indeed when we state, e.g, that activities Deliver pizza and Make payment (for
pizza) co-occur in a process model we do not simply intend that they both should appear

6 We follow previous work in the area of BPM and focus on process models with no repeating
activities, in the spirit of [1]. The investigation of dependences between repeated activities
occurring in loops is left for future work.



8

in a diagram in whatsoever position of the control flow (perhaps as mutually exclusive
choices) or none should, but also the more stringent constraint that each actual pizza
production process execution must contain both or none. A similar reading holds for a
historical or a causal dependence.

Since dependence expressions have effects on finite execution traces, a way to
characterise (some of) their effects on process executions is to describe them using
Linear-time Temporal Logic (ltlf ) with f inite execution semantics [6]. Cooc(Ti, Tj)
states that either Ti and Tj co-occur in a process execution or they both do not appear.
This corresponds, in ltlf to the formula ♦Ti ↔ ♦Tj . Hist(Ti, Tj) states that the
execution of Tj necessarily requires a previous execution of Ti. An occurrence of Ti,
nonetheless does not depend upon Tj . In particular, when Tj is not present in the
trace, Ti can either occur or not. This corresponds, in ltlf to the formula ¬Tj W Ti.
Cause(Ti, Tj) states that the execution of Tj necessarily requires a previous execution
of Ti and the previous execution of Ti is necessary to explain the execution of Tj . Thus
both Ti and Tj must occur in the execution in this order (or none of them does). This
corresponds, in ltlf to the formula¬Tj W Ti∧�(Ti → ♦Tj). Given this interpretation
of dependence expressions, we can note that a causal dependence enforces also a goal-
based co-occurrence and a historical dependence.

Note that the characterisation of dependence expressions provided above only con-
cerns some necessary temporal properties that these expressions should enforce upon
a process execution. A formal characterisation of historical dependence, causal depen-
dence and goal-based co-occurrence, that takes into account also their ontological nature
is left for future work.

Incorporating Dependence Expressions in (Hybrid) Process Models. Dependence ex-
pressions are not meant to be used on their own. Instead, they are thought of as ex-
pressions that complement a business process model and provide the ability to capture
aspects from the real world (including the social world and goal oriented aspects) that
otherwise would be lost. In particular, in case of procedural process models, such as
BPMN models or WF-nets, we envisage a model of a real process P as composed of
two separate (but related) parts: a procedural model (diagram) and a set of dependence
expressions. This proposal is in line with several recent work in the BPM field (see e.g.,
[18, 7]) where so-called hybrid models are introduced as a way to combine a procedural
component that describes all the allowed control flows in an imperative manner and a
declarative component that describes only what should not be violated. The two parts
are kept separated so as not to hamper the perceptual discriminability of the various
model elements [20].

Given the characterisation of Cooc(Ti, Tj), Hist(Ti, Tj), and Cause(Ti, Tj) in
terms of ltlf one may consider the idea of exploiting the declarative language de-
clare [23] to represent dependence expressions. Indeed, it is easy to note that the
interpretation of the three expressions provided here creates a correspondence be-
tween Cooc(Ti, Tj), Hist(Ti, Tj), and Cause(Ti, Tj) and the declare patterns co--
existence(Ti, Tj), precedence(Ti, Tj), and succession(Ti, Tj), respectively (see Ta-
ble 1, where the graphical notation and the formalisation in terms of ltlf of relevant
declare patterns is proposed). The exploitation of declare would leverage an existing
modelling language, thus avoiding the burden of a new notation.Moreover, the investiga-



9

Table 1. Graphical notation and LTL formalisation of some Declare templates.

template formalization notation description

response(A,B) �(A→ ♦B) A •−−−I B If A occurs, B must
eventually follow

precedence(A,B) ¬BW A A −−−I• B B can occur only if A
has occurred before

co-existence(A,B) ♦A↔ ♦B A •−−−• B If B occurs, then A occurs,
and viceversa

succession(A,B) response (A,B) ∧ precedence(A,B) A •−−I• B A occurs if and only if
it is followed by B

tion proposed here could be seen as a sort of ontological grounding of specific declare
patterns. Nonetheless, we prefer not to commit to this proposal in this paper. In fact,
flattening e.g., a causal relation onto a succession pattern would have three undesirable
consequences: first, it would overload the meaning of declare patterns with notions that
are outside declare (the notion of causality in this case); second, it would reduce on-
tological dependence to mere temporal patterns; third, it would ‘transfer’ to ontological
dependences entailments that are only valid for temporal patterns. As an example, while
co-existence(Ti, Tj) and precedence(Ti, Tj) entail succession(Ti, Tj), it would be
incorrect to state that a goal-based co-occurrence and a historical dependence between
two activities also force the validity of a causal dependence among them.

Nevertheless, the formalisation of dependence expressions in terms of ltlf enables
us to leverage existing techniques and tools (e.g., [16, 7]) for the automated check and
repair of a procedural model with respect to dependence expressions, at least for what
concerns their temporal characterisation.

5 Application Scenarios

In this section we describe two application scenarios which could benefit of the analy-
sis carried out in the previous sections: business process documentation and business
process redesign.

5.1 Business Process Documentation

Business process models are often used by organizations as a means for documenting
the procedures carried out. However, the information contained in the model sometimes
is not enough in order to make clear the reasons why some parts of the process model
have been designed in a certain way.

Let us consider a realistic scenario of an Intake process for elderly patients with
mental problems, inspired by the procedure reported in [9] that describes the process
carried out in a healthcare institution of the Eindhoven region. The Intake process
starts when the institute receives a notice by the family doctor of the person who needs
the treatment. The notice is answered, recorded and printed. The patient’s folder is
retrieved, if it already exists, or it is created, if the patient has never been registered
in the healthcare information system, and the notice added to the patient’s folder. Two



10

intakers (a social-medical worker and a physician) are then assigned to the patient and the
assignments stored in the system. Two cards containing information about the patient,
one per intaker, are printed and handed out. Meanwhile, if needed, the medical file of
the patient is requested to the patient’s doctor and, whenever it is received, the document
is added to the patient’s folder. Once the medical file is available for the appointment,
the patient can meet the intakers and is asked to pay the ticket. At the end of each of the
two meetings, the patient’s folder is enriched with the new information acquired by the
intakers. When the documentation by each of the two intakers has been collected, it is
evaluated and a treatment for the patient decided.

Fig. 2 reports the Intake process described in BPMN and annotated with some
hypothetical activity cycle time (including both processing and waiting time) as well as
with the probability distribution of the alternative branches.

Fig. 2. Intake process of a healthcare institute

Let us assume that a new director has been appointed, and she has been provided
with the institute business process models in order to get familiar with the procedures
carried out in the institute. When looking at the Intake process model in Fig. 2 (in which
data objects are not reported to ease the readability, and activity labels, as often happens,
are not extremely informative), she is only able to grasp the execution ordering of the
activities currently carried on in the institute, while missing other types of dependences
among them. This lack of information could result in possible misunderstandings of
the process model as well as of what it represents. By only looking at the model, she
may ask the reason why in the model the activity Assign intakers occurs before the
activity Update pat (ient) file with first intaker information.

Table 2 reports the dependence expressions identified among the activities of the
Intake process. Some of the dependences are real-world ones, i.e., they depend on laws
of nature, others relate to the business goal of the process, while others pertain to norms.
The dependence expressions are grouped accordingly in Table 2.

Among the law-of-nature dependences, a historical dependence can be identified
between the activities Record notice and Print notice. Intuitively, printing a no-



11

tice demands for a state of the world in which the notice is in an electronic format, i.e., it
requires that it has been (electronically) recorded. Similarly, a historical dependence ex-
ists between the Retrieve patient folder and all the activities that demand for the
existence of the folder in order to be executed (i.e., Add notice to patient folder,
Update pat. folder with medical file, Update pat. folder with first
intaker info, Update pat. folder with second intaker info). A historical
dependence also exists between the activities Print cards and Hand out cards, as
handing out card demands for a state of the world in which the cards have been printed
out. Few causal dependences can also be identified, as for instance between the activi-
ties Receive notice and Answer notice (the notice answer is caused or explained
by the notice receipt), between the activities Ask for medical file and Receive
medical file (the receipt of the medical file is caused by the request of the file to the
doctor) and between the activities Ask for ticket payment and Receive ticket
payment (the payment reception is caused by the payment request).

Among the business goal dependences, a goal-based co-occurrence can be identi-
fied between the activities Receive ticket payment and Determine treatment
plan. Indeed, due to the business nature of the Intake process, in order to get the
process accomplished, both determining the treatment plan for the patient and getting
the ticket paid for the service are necessary activities. Removing the occurrence of
one of the two activities would change the process into a different one. However, the
two activities are not bound by any temporal constraint. Similarly, for the goal-based
co-occurrence between the activities Receive ticket payment and Discuss and
evaluate patient info. Moreover, a historical dependence can be identified be-
tween the activities Discuss and evaluate patient and Determine treatment
plan. Indeed, in an Intake process, a decision on the treatment plan of a patient cannot
be taken, unless the patient’s information has been carefully evaluated. Last but not
least, a causal dependence relationship holds between the activity Receive notice
and the activity Discuss and evaluate patient. The discussion and evaluation of
the patient is indeed triggered (in an Intake process) by the request to start an intake
procedure. Similarly for the causal dependence between the activities Receive notice
and the activity Determine treatment plan.

Finally, among the norm-based dependence expressions, two historical dependences
can be identified (between the pair Assign intakers and Update pat. folder
with first intaker information and between the pair Assign intakers and
Update pat. folder with second intaker information). Indeed, an intaker
is allowed to report information in the patient folder only if she has been appointed to
do it, i.e., a historical dependence relationship holds between the two activities (and,
hence, the latter cannot occur before the former).

The additional information that the dependence expressions are able to provide,
makes it clear to the new director that a dependence relationship holds between the
activities Assign intakers and Update pat. folder with first intaker
information, as well as the reason why they have to occur in that specific order.
Hence, making explicit these dependences helps the new director to understand why the
procedure has been designed as it is.



12

Ontological dependences

Law-of-nature Hist(RECN,PN) Hist(RPF,ANPF) Hist(RPF,UPFMF)
Hist(RPF,UPFFI) Hist(RPF,UPFSI) Hist(PC,HC)
Cause(RN,AN) Cause(AMF,RMF) Cause(ATP,RTP)

Business Goal Cause(RN,DEP) Cause(RN,DTP) Hist(DEP,DTP)
Cooc(RTP,DTP) Cooc(RTP,DEP)

Norm Hist(AI,UPFFI) Hist(AI,UPFSI)
Table 2. Dependence expressions characterizing the Intake process.

5.2 Business Process Redesign

It is often the case that business process models need to be redesigned. This can be due to
different reasons e.g., because the world, the organization or the procedure they describe
changes, or for optimization reasons. Several approaches and techniques have been
investigated in the BPM community in order to support business analysts in business
process redesign (see e.g., [9, 24]).

Let us assume, that the new director of the healthcare institute, in order to better
understand the efficiency of her institute, has appointed a business analyst to analyze
the processes carried out in the institute. By analyzing the process under the perspec-
tive of evaluating its cycle time, the business analyst notices that the process presents
some bottlenecks. Indeed, the activities Print notice, Receive Payment Ticket
and Receive medical file have a high average duration time (6, 12 and 24 hours,
respectively). In the first case, the high duration time is due to the fact that only one
printer is available in the institute, while in the second and in the third case this is due
to the response time required by patients and medical doctors to pay the ticket and to
provide the medical file, respectively. Moreover, although in the last case the request of
the file from the doctor is optional, it is needed in 95% of the cases. This causes a high
average process cycle time7 (= 53.4h). In order to solve the issue, the institute director,
at the suggestion of the business analyst, decides to redesign the process.

7 The computation of the average process cycle time is based on flow analysis [9] and depends
on the structure of the process. In this case, the average time required for a process execution
is given by the average time required by: (i) the sum of the time required by the activities
in sequence before the first split AND gateway, which is, in turn, given by the sum of the
average times of the activities in sequence ((1 + 1 + 1.2 + 6 + 0.5 + 2 + 0.5)h= 12.2h);
(ii) the sum of the times required by the most costly branches of the two AND blocks, i.e., the
one dealing with the optional request to the doctor of the medical file and the one related to
the ticket payment receipt. The former is computed as the weighted (with the corresponding
probabilities) average of the two alternative branches between the XOR split and the XOR
join, (i.e., ((0.95 ∗ (0.5 + 24 + 1.5)) + (0 ∗ 0.05))h= 24.7h), while the second is the sum
of the average cycle time of the activities Ask for ticket payment and Receive ticket
payment, (i.e., (0.5 + 12)h=12.5h), respectively; and (iii) the time required by the last two
activities (i.e., (3+1)h=4h). The average cycle time is hence (12.2+24.7+12.5+4)h= 53.4h.



13

In order to reduce the overall cycle time of the procedure, the business analyst
suggests to apply two business process behaviour heuristics: parallelism and resequenc-
ing [9].While the first heuristic consists of evaluating what “can be executed in parallel”,
the second one consists of “moving the activities to more convenient places” [9]. Ac-
cording to the process re-design heuristics, the business analyst suggests to (i) parallelize
the printing of the notice and the enrichment of the patient file up to the storing of the
intaker assignments; (ii) anticipate the request of the payment to the patients and the
request of the medical file to the doctor. Fig. 3 shows the redesigned model. Such a
redesign allows the healthcare institute to save about 16.5 hours of average cycle time
by reducing the cycle time from 53.4 to 36.9 hours - as most of the flow related to the
notice management and to the intaker assignment is actually in parallel with the costly
time required for waiting for the medical file.

Fig. 3. Intake process redesigned according to the analyst’s suggestions

However, by looking at the dependence expressions reported in Table 2, the business
analyst can easily notice that, while anticipating the request of the medical file to the
doctor and the ticket payment to the patient (depicted in green in the diagram) does
not violate any of the identified dependences, this is not the case for the parallelization
of the printing notice and the enrichment of the patient folder (marked in red). Indeed
a historical dependence relationship holds between the activity Add notice to the
patient folder and the activity Print notice, so that swapping them would result
in an incorrect model.

Automated Check of Dependence Expression Enforcement. As reported in Section 4, the
formalisation of dependence expressions in terms of ltlf , allows us to take advantage
of existing works (e.g., [16, 7]) for the automated check of the enforcement of declar-
ative properties or rules on procedural models, explanation of possible violations and
repair actions. For instance, in the scenario described above, these techniques can be
leveraged by the analyst to detect the inconsistency between the ontological dependence
expressions and the redesigned process model, thus enabling the application of the only
redesign heuristics that do not violate any dependence expression.



14

6 Related work

We can roughly classify the literature related to this paper into three main groups: (i)
works dealing with the analysis of business process model notations and its elements;
(ii) works leveraging ontological analysis of business process modelling notations and
its elements; and, finally, (iii) works combining declarative and procedural models.

Several papers in the literature focus on the analysis of the elements involved in
business processes and business process modelling languages. Many of these works
provide a comparison of different modelling notations [15, 29] or develop metamodels
of business process models across notations [14, 19]. Other works, instead, take an
ontological perspective to achieve the same goal. Indeed, some of them use ontologies
for guiding the development of conceptual models and domain ontologies [4] or for
semantically enriching business process models [25, 12, 21], while others provide upper-
level ontologies for business processes [22].

The second category of works leverages ontological analysis to deal with business
process notations and business process model elements. Within this category, we can
findworks using the ontological analysis of business process elements (e.g., participants)
across notations, such as [2]. In [26] the authors offer an ontological analysis of BPMN
2.0 elements and choreography diagram elements, respectively, with particular emphasis
on the ontological characterization of BPMN events and activities. In [3] an effort
towards a semantic foundation of the notion of role in the enterprise is provided.However,
none of these works deals with the analysis of dependences among activities.

Indeed, although many efforts have been carried on so far in order to characterize
ordering relationships between business process activities, an ontological analysis of
these dependences has not been proposed yet. The analysis presented in this paper has
been stimulated by philosophical and ontological papers like [5], [10] and [17] which
are strongly focused on defining and classifying ontological dependences, and where
distinctions like weak vs rigid, ontological vs existential dependence are presented.
Dependence as a schema is further discussed in [27] where an initial list of qualifications
is also attempted (financial, practical, physiological, functional, ontological, logical and
so on). Investigations on ordering relationships between activities are present also in
the BPM community. An example is [8], where a definition of causal relation has been
proposed as a sequence of events that can not be ordered in the opposite direction.
Nevertheless, none of these works explicitly deals with ontological dependences in the
context of business processes.

Several works combining declarative and procedural models have been recently
investigated in the literature, some of which also provide automated support to deal
with such a combination. Examples of the latter are works dealing with the automated
discovery of hybrid process models [28, 18], the automated check of a declarative
formula on a procedural model [16], as well as the automated enforcement of the
declarative component on the procedural one [7].

7 Conclusions

Existing business process modelling notations mainly focus on the representation of a
specific kind of relationship between activities, that is their execution ordering within the



15

control flow. However, the relationships between their activities of real-world processes
are much richer and go beyond such a privileged relationship, covering relational con-
straints of different nature (e.g., ontological ones). In this paper we provided a character-
isation of three ontological relationships (a.k.a. dependences) between business process
activities: historical dependence, causal dependence, and goal-based co-occurrence. We
introduced a language (for expressing them), made a proposal on how to incorporate
them in business process models by adopting a hybrid approach, and showed their
importance by discussing two application scenarios.

In the future, on the one hand, we would like to further investigate the ontological
dependences between business process activities, by analysing the role and the ontologi-
cal implications that business process participants (e.g., data objects, actors) have on the
characterization of these ontological dependences; on the other hand, we are interested
to extend our exploration of ontological relationships also to the relationships between
activities and other types of business process participants.

Acknowledgments This research has been partially carried out within the Euregio
IPN12 KAOS, which is funded by the “European Region Tyrol-South Tyrol-Trentino”
(EGTC) under the first call for basic research projects.

References

1. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

2. Adamo, G., Borgo, S., Di Francescomarino, C., Ghidini, C., Guarino, N., Sanfilippo, E.M.:
Business processes and their participants: An ontological perspective. In: Proc. of the 16th
Int. Conf. of the Italian Association for Artificial Intelligence (AI*IA 2017). LNCS, vol.
10640, pp. 215–228. Springer (2017)

3. Almeida, J.P.A., Guizzardi, G., Santos Jr, P.S.: Applying and extending a semantic foundation
for role-related concepts in enterprise modelling. Enterprise Information Systems 3(3), 253–
277 (2009)

4. Benevides, A.B., Guizzardi, G.: A model-based tool for conceptual modeling and domain
ontology engineering in ontouml. In: International Conference on Enterprise Information
Systems. pp. 528–538. Springer (2009)

5. Correia, F.: Ontological dependence. Philosophy Compass 3(5), 1013–1032 (2008)
6. De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on LTL on finite traces: Insensi-

tivity to infiniteness. In: Proc. of the 28th AAAI Conference on Artificial Intelligence. pp.
1027–1033. AAAI Press (2014)

7. De Masellis, R., Francescomarino, C.D., Ghidini, C., Laponin, A., Maggi, F.M.: Rule prop-
agation: Adapting procedural process models to declarative business rules. In: 21st IEEE
International Enterprise Distributed Object Computing Conference, (EDOC 2017). pp. 165–
174. IEEE Computer Society (2017)

8. Desel, J.: Validation of process models by construction of process nets. In: Business Process
Management, Models, Techniques, and Empirical Studies. LNCS, vol. 1806, pp. 110–128.
Springer (2000)

9. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management. Springer Publishing Company, Incorporated (2013)

10. Fine, K.: Ontological dependence. Proc. of the Aristotelian Society 95(n/a), 269–290 (1994)



16

11. Galton, A.: States, processes and events, and the ontology of causal relations. In: Proceedings
of the 7th Int. Conf. on Ontology in Information Systems (FOIS 2012). Frontiers in Artificial
Intelligence and Applications, vol. 239, pp. 279–292. IOS Press (2012)

12. Ghidini, C., Di Francescomarino, C., Rospocher,M., Tonella, P., Serafini, L.: Semantics-based
aspect-oriented management of exceptional flows in business processes. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42(1), 25–37 (2012)

13. Governatori, G., Rotolo, A.: Norm compliance in business process modeling. In: Semantic
Web Rules. pp. 194–209. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

14. Heidari, F., Loucopoulos, P., Brazier, F., Barjis, J.: A meta-meta-model for seven business
process modeling languages. In: Business Informatics (CBI), 2013 IEEE 15th Conference
on. pp. 216–221. IEEE (2013)

15. List, B., Korherr, B.: An evaluation of conceptual business process modelling languages. In:
Proc. of the 2006 ACM symposium on Applied computing. pp. 1532–1539. ACM (2006)

16. Lohmann, N., Fahland, D.: Where did I go wrong? - explaining errors in business process
models. In: Proc. of the 12th Int. Conf. on Business Process Management (BPM 2014).
LNCS, vol. 8659, pp. 283–300. Springer (2014)

17. Lowe, E.J.: The Possibility of Metaphysics: Substance, Identity, and Time. Clarendon Press
(1998)

18. Maggi, F.M., Slaats, T., Reijers, H.A.: The automated discovery of hybrid processes. In: Proc.
of the 12th International Conference on Business Process Management (BPM 2014). LNCS,
vol. 8659, pp. 392–399. Springer (2014)

19. Mili, H., Tremblay, G., Jaoude, G.B., Lefebvre, É., Elabed, L., Boussaidi, G.E.: Business
process modeling languages: Sorting through the alphabet soup. ACM Computing Surveys
(CSUR) 43(1), 4 (2010)

20. Moody, D.L.: The “Physics” of Notations: Toward a Scientific Basis for Constructing Visual
Notations in Software Engineering. IEEE Transactions on Software Engineering 35(6), 756–
779 (November/December 2009)

21. Natschläger, C.: Towards aBPMN2.0 ontology. In: Proc. of the 3rd Int.Workshop onBusiness
Process Model and Notation (BPMN 2011). LNBIP, vol. 95, pp. 1–15. Springer (2011)

22. Nicola, A.D., Lezoche, M., Missikoff, M.: An ontological approach to business process
modeling. In: Proc. of 3rd Indian Int. Conf. on Artificial Intelligence. pp. 1794–1813 (2007)

23. Pesic, M., Schonenberg, H., van der Aalst, W.: DECLARE: Full Support for Loosely-
Structured Processes. In: Proceedings of the 11th IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2007). pp. 287–300. IEEE Computer Society (2007)

24. Reijers, H.A., Liman Mansar, S.: Best practices in business process redesign: an overview
and qualitative evaluation of successful redesign heuristics. Omega 33(4), 283–306 (2005)

25. Rospocher, M., Ghidini, C., Serafini, L.: An ontology for the Business Process Modelling
Notation. In: Proc. of 8th Int. Conf. on Formal Ontology in Information Systems (FOIS 2014).
Frontiers in Artificial Intelligence and Applications, vol. 267, pp. 133 – 146. IOS Press (2014)

26. Sanfilippo, E.M., Borgo, S., Masolo, C.: Events and activities: Is there an ontology behind
bpmn? In: Proc. of 8th Int. Conf. on Formal Ontology in Information Systems (FOIS 2014).
Frontiers in Artificial Intelligence and Applications, vol. 267, pp. 147–156. IOS Press (2014)

27. Simons, P.: Parts: a Study in Ontology. Clarendon Press, Oxford, Oxford (1987)
28. Smedt, J.D., Weerdt, J.D., Vanthienen, J.: Fusion miner: Process discovery for mixed-

paradigm models. Decision Support Systems 77, 123–136 (2015)
29. Söderström, E., Andersson, B., Johannesson, P., Perjons, E., Wangler, B.: Towards a frame-

work for comparing process modelling languages. In: Proc. of 14th Int. Conf. on Advanced
Information Systems Engineering (CAiSE). LNCS, vol. 2348, pp. 600–611. Springer (2002)

30. Weske, M.: Business Process Management. Concepts, Languages, Architectures. Springer
(2012)


