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1. Introduction

[0 Threeinterpretations of (1 (and consequently of <¢):

— Deontic

A = It ought to be the case that A (often written OA)
— Epistemic

DA = The agent, X, believesthat A (often written BA)

DA = The agent, X, knows that A (often written KA)
— Tempora

CA = It will aways bethe casethat A (often written GA)

A = It has always been the case that A (often written HA)

2. Deonticinterpretation of modalities

[0 Basic normal system of deontic logic isKD (aso known asD*)
D OA® ¢A (‘Ought’ implies ‘can’)

O Oisoftenwritten O (for Obligatory) and < (i.e., @01Q) iswritten P (for Permissible). So:
D OA® PA (‘Ought’ implies ‘can’)

Of course we don’'t want

T OA® A (‘Ought’ implies‘is’)

[0 FACT: thefollowing are equivalent to D in any K-system:
oD @O (A UDA) (No impossible obligation)
OoD* B(OAUOBGA) (No incompatible obligations)

— Intuitively, these principles express different thoughts, so their equivalence is a defect of any K-
system, hence of any modal logic which admits of a Kripke-style semantics.



— In other words, to avoid this result we must go “below K”, hence work with aweaker
Montague-style semantics.

3. Deontic semanticsala Kripke

[0 Intuitive interpretation of the accessibility relation:

aRb U b isdeontically admissible from the point of view of a

Thus:

EOA U EAforeveryb suchthataRb
U Aistruein every deonticaly admissible world
U It ought to be the case that A

0 Equivaently:
{b: aRb} = the proposition that represents the standards of obligation for theworld a.
Thus:

EOA U E Aforeveryb suchthataRb
0 {b:aRb}i {b:EA}
U {b:aRb} i ||A|"
U theproposition expressed by A isentailed by the standard of obligation for a.
O Recdl that D corresponds to the conditioOn that R be serial: " a$b(aRb).
— Obligations should be non-vacuous. [If R=@, then I'g” OA vacuoudly.]
— There may be more than one deontically accessible world, due to non-deontic facts.

— If aRb, then b need not be perfect: there may be gt b such that bRg (i.e., the standards of
obligation for b may be different from those of a):
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. Looking for extensions (KD systems)

OA® A
A® OPA

OA® OOA

@ @ :

better perfect

PA® OPA

Every obligationisredized
inacceptable

What isthe caseis obligatorily permissible
Inacceptable

Obligations remain such in every deontic aternative
= Standards of obligations do not decrease
= No fewer obligations

? acceptable?

Permissions remain such in every deontic alternative
= standards of obligations do not increase
= no more obligations

/ \ > accentable?
OP, @ / Z"P[
©
[’DJO
(Z)OPO
O(OA® A) Obligations ought to be realized
(one of the few unconditional O -principles)
P Rmust be secondarily reflexive: aRb ® bRb
? acceptable? Note: this means that
if £ OA andE @A, thenbRa for no bl W
I.e,, a isone of the worst possible worlds
OOA® OA What is not obligatory is not obligatorily obligatory
@OA® BOOA = dengity: aRb ® $g(aRgU gRb)
[0 sounds good
(D*1) (D*2)
D4 KD44 . KD4U
(D*)/ (D*3)
KD45
KDU KD5




5. Problemswith these theories (all KD systems)

[0 There are two sorts of problems:

— Correctness
— Adequacy

[0 Correctness: two problems
1) Obligationsadwaysexist (however trivia they may be)
Fo O(AUDA)
Thus: There exists no world where we are absolutely free

2) Two important principles become indistinguishable

Feo QO(AUQA) « @(OAUO@A)
| |

No impossible obligation No incompatible obligations
=‘Qught’ implies‘can’
[0 Adequacy:

— Cannot express conditional obligations

If you cough, then you ought to apologize

I I
A B

= conditional obligation of B given A, written O (B/A).

Two only options:

@ O@®B/A) = A® OB Thisis T whenever A isF
If the earth isflat, then you ought to apologize.
() OB/A) =, O(A® B) Thisis T whenever OGA or OBisaso T

If you steal books, then you ought to eat pizza.
If you cough, then you ought to pay taxes.

— Other problem: Chisholm’s paradox:

0] John ought to go to help his neighbors

(i) If Johnisgoing to help his neighbors, he ought to tell them heis going.

(iii)  If Johnisnot going to help his neighbors, he ought not to tell them he is going.
(iv)  John doesnot go to help his neighbors.



(i)—(iii) seem areasonable and consistent set of requirements. Y et the fact that John does not go
to help hisneighbors, i.e,, (iv), is enough to yield a contradiction. Formally:

(1) OH given

(2 OH® T) given

(3) ZH® OgT given

4) @OH given

5) OMH®T)® (OH® OT) K

6 OT 1), (2), (5), RPL
7  O@T (3), (4), RPL

(8) OTUO@T (6), (7), RPL

9) @(OTUOGT) Equivalent to D
(100 ~ (8), (9), RPL

— Thedternative symbolization of (ii) following (a):
(2) H® OT
avoids the problem, but at the price of making (ii) alogical consequence of (iv) (by RPL).

— Similarly, the dternative symbolization of (iii) following (b)
(3) O(H ® dT)
avoids the problem, but at the price of making (iii) alogical consequence of (i) viathe theorems

(5) H® (BH® 2T PL
(6) OH® O(@H® @) (5), RE

— So:

either O (/) must be assumed as a primitive
or O( /) isdefinable in terms of some other kind of conditional

. A weaker system

KD could also be axiomatized as:

A® B

RM
OA® OB

oD @O(AUBA)
N OAUZA)
C (OAUOB)® O(AUB)



By correctness problem 1) (“obligations always exist”), we want to get rid of N

— But thisisaK- theorem.

— Thismeans we need a system weaker than K, hence not complete with respect to Kripke models.
— We need minimal models

By correctness problem 2), we must also get rid of the equivalence
FOAUDA) « B(OAUOBTA)

— But thisis provable even without N

1. (OAUOZA)® OAUBZA) C
2. @ O(AUDA) oD
3. B(OAUOBA) 1,2 PL

— Sowe must also get rid of C or OD.
— ButOD isOK, soitisC that must go.

[0 Theresulting system D = RM + D isnot normal (= not aK system).

[0 D isdetermined by the class of minimal models such that

1) ifXCYI N,,thenX] N,andYT N,  (supplemented)
2) @i N,

. Even weaker?

There are problems with D, too.
Ross paradox (from Alf Ross, 1941).
— RM impliesthat

F, PA® P(AUB).

1. D(AUB) ® @A PL
2. O@(AUB) ® OBA 1, RM
3. @OPA® BOB(AUB) 2, PL
4. PA® P(AUB). DfP

But thisis counterintuitive:

Peter may drink water @ Peter may drink either water or whiskey



— Infact, it seems natural to suppose that
Peter may drink either water or whiskey ® Peter may drink water and he may drink whiskey
This corresponds to the following, which is not atheorem of D:

P(AUB) ® (PA UPB)

O Akvisgt puzze.
— Consider the epistemic operator Peter knows that, written K. Since knowledge implies truth,
F KA® A
RM impliesthat
F, OKA® OA

— But thisis counterintuitive:
Peter ought to know that thereisafire® There ought to be afire

[0 Conclusion: D isalso too strong...

8. Epistemic inter pretation of modalities

[0 Starting point:

— O asabelief operator, written B
BA =4 theagent, X, believesthat A

— Alternative notation: B(AX), convenient for first-order or multi-agent extensions (where we may
want to quantify over agents)

[0 A lot depends on what we mean by “believes’
* implicit vsexplicit
e persuasion vsopinion
. etc.

[0 KD45 =thelogic of full belief

D BA® OBJA (coherence)
4 BA® BBA (positive introspection)
5 OBA® BUBA (negative introspection)



[0 Semantics
— possible worlds = possible representations (consistent and complete) of reality
— aRb iff b isepistemically possible (= conceivable) for the agentin a
— |'=a” BA U xthinksthat A isungiveupable (=a constant element of all of representations)

O Determination
— Rissaidl, trangtive, euclidean. So, standard situation looks like this;

O
<)

— Note:
not F: BA® A so T fails: beliefs need not be true
£ B(BA® A) s0 U holds: beliefs are believed to be true
[0 Problems

— RK impliesclosure of beliefs under logical implication P full (implicit?) belief
To avoid this, one must go for minima models (hon-normal systems)

— Then we have the following:

£ @B(A UGA)  whenever al N,
E B(AU®GA)  whenever @l N,

3. Adding Knowledge

[0 Notation:
KA =, theagent, x, knowsthat A

[0 Thiscan be defined interms of B if we accept the principle that knowledge istrue belief:
DfK KA « BAUA



[0 But one might prefer to have DfK as atheorem.

— This can be obtained in the mixed system Kmix defined by:

D BA® OBOJA (coherence)
TK KA® A

?1 KA® BA

4K KA® KKA (introspection)
22 BA® KBA (introspection)
?3 JBA® KOBA (introspection)
24 (BAUA) ® KA

0 Note therule RN for K isderivablein Kmix:

RN E A

Kmix

E KA

Kmix

— This means omniscience

— Again, to avoid it one must go for minimal models (non-normal systems)

[0 Theorems:
Femx KA « BAUA (=DfK)
Femix BA « BKA

F BA « OKGKA

Kmix

[0 So, the belief operator B is also definable in terms of K.
— Axiomatization using only K?
— option 1issimply to replace B by @K@K in Kmix

— option 2 isto give abetter axiomatization of K:

T KA® A

4 KA® KKA

5 (BAUA) ® KA
A® (BA® KA)

A® (BKOKA® KA)
A® (COAUDA)

[0 Fact: KD45 isequivalent to KT45 upon the obvious trand ations:
BA « @K@KA or KA« BAUA



[0 Other theories

1. KT4GisthesameasK T4+ D-for-belief

Proof:
1. OKOKA ® KOKJA axiom G
2. OKOKA ® ODKITKIDA DN
3. BA « @BJA subst.

— Note: KT4G isthe same system as Kmix, but with ?4 replaced by
BA « BKA
Clearly, KT45 I| KT4G

But also, KT4G I| KT45

I I
$42 44

2. KT5isnot goodif BA « GKOKA

For otherwise
1 OKDDA « KOKIDA axiom 5
2. OKA « KOKA DN
3. OKA « OOKDKA DN
4, OKA « @BA DfB
5. BA « KA PL U unacceptable

10. Temporal logic

00 Modalities:
FA A
FA it will sometime be the casethat A — e e
GA it will ways be the case that A
= OFOA
A m
PA it has sometime be the case that A — e e
HA it has always be the case that A
= OPOA
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[0 Minimal tenselogic K,

— Axioms:
SystemK for G
+ SystemK for H
+ A® GPA
+ A® HFA
— Theorems:
F PGA® A
F FHA® A 1 JA ® GPJA ax
2. OGPJA® A PL
3. FOPOA® A dfF
4. FHA® A dfH
— More generaly:
FoA U A%, where A* isthe mirror image of A

(replace G/H and F/P)
— This means symmetry past/future

[0 Semantics:
— Note: amultimodal system

— ingenerd: one Rfor each modality
[0 Determination: al standard models
— providedaR;o U aR.,b
— dternatively: same Rin two directions (the direction of time)

11. Temporal logic (linear extensions)

[0 Two main possibilities:

linear: . . . . i . . . .
A A
N T _— N
branching: FA U,FB PA L{PB
F(A UB) F(AUB)
B B
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[0 Basiclinear system CL (Cocchiarella):

K, +4¢ FFA ® FA future trangitivity
FPPA® PA past transitivity
RL (FAUFB) ® (F(AUB) UF(A UFB) UF(FAUB)) right linearity
LL (PAUPB) ® (P(AUB) UP(A UPB) UP(PAUB)) left linearity

[0 Semantics: Rmust be:
— trangdtive
— rightlinear: aRb & aRg P a=b or bRgor gRb
— leftlinear:  bRa & gRa P b=gor bRgor gRb

[0 System SL: non-ending time (Dana Scott)

CL+D GA® FA seridity
HA® PA "

[0 System PL: densetime (Prior)

SL + 49, FA® FFA aRb P $g(aRg& gRb)
FPA® PPA

[0 System PC, : circular time (Prior)

K,+ 40 FFA ® FA
GA® A
GA® HA

12. Temporal logic (branching extensions)

[0 System CR (Cocchiarella)
K, +4¢ (= CL minuslinearity)
[0 SystemK, (Rescher + Urquhart)

CR+LL (= branching admitted only in the future)
symmetry P/F fails
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