MODAL LOGIC 21— SENTENTIAL MODAL LOGIC: DEVELOPMENTS
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1. Generalizations of the G schema

AchilleC. Varz

[0 DEFINITION: Wheref any modality (@, ¢, or 0):

if n=0 f"A=A
if n=k+1 frA=ff*A

[0 FACT: Consider the schema

Gk,l,m,n - Ok DI A® Dm <>n A

Then:

G = O0OA® OCA isjust G-t t?

D = DA® A isjust GO0

T OA® A isjust  G>'°°

B A® O0A isjust  G>%*!

4 = DA® OCA isjust  G»120°

5 = OA® 0A isjust GYot?

0 DEFINITION
if =0 aR'b U a=b
if n=k+l aR'b U aRgfor someg W such that gR*b

[J DEFINITION

A standard model .4 = aV, R, Pfi isk|mn-incestual iff aR*b & aR™gb $d(bR'd & gR"d)
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Soin particular:

Al isincestua  iff ./ is1111-incestual
A isseria iff . is0101-incestua
A isreflexive  iff . is0100-incestual
Al issymmetric iff ./ is0011-incestual
A istrangtive iff ./ 1s0120-incestual
A iseuclidean iff .4 is1011-incestual

(The proofs of these equivalences se are just derivationsin first order logic with identity.)

EXAMPLE: .4/ isserid iff .4 is0101-incestual

Proof: k m I n

Al is0101-incestua b "a" b" gaR’b & aR°gpP $d(bR'd & gR'd)]
p "a" b" ga=b & a=gb $d(bRd & gRd)]
p a=a & a=a b $d(aRd & aRd)
p a=a b $d(aRd)
p $d(aRd)

p " a$d(aRd)

p A s serid

A isserid p " a$d(aRd)

p $d(aRd)

p $d(aRd & aRd)

p a=b & a=gb $d(bRd & gRd)

p "a" b" ga=b & a=gb $d(bRd & gRd)]

=} "a" b" gaR’b & aR°gb $d(bR'd & gR'd)]
p A is 0101-incestual

FACT

The schema G*'""™" isvalid in the class of al k| mn-incestual standard models

COROLLARY

Theschema G isvdidintheclassof all incestual standard models
Theschema D isvdidintheclassof all serial standard models
Theschema T isvdidintheclassof all reflexive  standard models
Theschema B isvaidintheclassof dl symmetric standard models
Theschema 4 isvdidintheclassof all transitive standard models
Theschema 5 isvdidintheclassof all euclidean standard models
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G*!'™" isnot the most general schema.
For instance, the following are not instances of G*''™ "

G, 00 A® O OA
Gr O@A® A)® DA

Indeed there are more general schemes with interesting properties—e.g.
SahlO" (A® B) (with resrtictions on the form of A and B)

But Gr and Gc are still not covered by such a schema.

. Characterizability (for Kripkean modal logics)

QUESTION 1:

Does every moda formula correspond to some first-order definable R?
i.e, givenaformulaA, isthere dways afirst-order sentencef so that, for every .4 = an, R, Pi

E A (modadly) iff E f (quantificationaly) ?

ANSWER ISNO

— Gehmn YES "a" b" gaRb & aR"gb $d(bR'd & gR"d)]

— Sahl YES complicated condition

— Gr NO thereisacondition on R (see test), but not first-order definable
— G, NO not first-order definable (though G, U4 is)

QUESTION 2:
What about the other way around? Does every R correspond to amodal formula?

ANSWERISNO

— E.g. Reflexivity "a(@Ra) P OA® A
Irreflexivity " a(daRa) P no characteristic wif
i.e, if awff istruein every irreflexive modd, then it
istruein every model
— Dittofor

Asymmetry " a(aRb® @bRa)
Antisymmetry " a(aRb & bRa ® a=b)
Intrangitivity " a(aRb & bRg® JaRg)



3. Axiomatic systems (for Kripkean modal logics)

[0 A system of modal logic is normal iff it contains every instance of

DfO  OA« @OOA
K O(A® B)® (DA® CIB)

and is closed under therule

RN A

OA
[0 Theorem: Every normal system S of modal logic satisfies the Principle of Duality:
<fA® yB U Fsy*B® f*A

wheref andy are any modalities (sequences of @, 0 and <) and f * and y * are obtained from
by interchanging O and <.

[0 Main normal systems:

— K =thesmallest system

— The main extensions are obtained by adding one or more of the following:

D OA® OA
T OA® A

B A® O0A
4 OA® DA
5 CA® OCA

— Naming conventions:

KS ... §
isthe (smallest) extension of K obtained by taking the schemas S, ... S, as axioms.
(The order of the S does not matter.)

— E.g., KT5 isthe smallest system of modal logic obtained by adding T and 5—etc.

[ Facts:

— There are 2°=32 possible combinations
— Only 15 of these are distinct
— Generd picture: Chellasfigure 4.1 on p. 132.



0 Example
KTD = KT
Proof: Obvioudly
KTi KTD.
So we only show that
KTD i KT.

Tothisend it issufficient to show that every instance of D is atheorem of KT

1. Fo OA® A T
2. FoA® OA duality principle
3. Fo OA® OA 14PL

[0 Other examples:
KT5 = KTD5 = KTB5 = KT45 = KTDB5 = KTD45 = KTB45 = KTDB45 (ThisisSH)
— Every instance of D isatheorem of KT5: obvious from above

— Every ingtance of B isatheorem of KT5:

1 Fos CA® OCA 5
2. Fos A® CA dual of T
3. Fo.A® OCA 12PL
— Every ingtance of 4 isatheorem of KT5:
1 Fos CA® OCA 5
2. Fos COA® DA 5¢ (duality principle)
3. Fos OCOA® DDA 2,RM
4. Fos DA® OCOA B (which is atheorem of KT5)
5. Fors DA® OOA 34, PL

4. Reduction laws for modalities

[0 Definition: two modalitiesf andy are equivaent (in system S) iff for al sentences
FfA« yA

[0 Example: in KT5 there are at mogt 6 distinct modalities: A, ¢ A, OA, GA, @O A, DOA.



a) kg ODA« OA

D) s OOAK OA

C) hyps OCA« OA

d) b OOA« DA
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Fos COA« DA

Fers O OO@O@OGBOCOA
Fors O OOZO@O0OC0A
Fors OOOOOOC0A

12, P

4
T¢
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12, P

1%
5¢
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Dfé

PL + REP
Df¢

d) above
a) above
c) above
d) above
a) above
c) above
d) above

[0 Infact, you can just drop al modalities except for the last (plus negation, if necessary)

0 Remarks:

1) Thesereduction laws fix an upper bound; alower bound (to the effect that there are no further
reduction laws) follows from completeness.

2) Only 7 of the 15 basic systems in the picture have finitely many distinct modalities:
KT4 K5 KD5 K45 KB4 KD45 KT5

3) Two systems may have the same modalities, but differ with respect to the patterns of

implication among them (though not the other way around).

— eg KT5 and KD45 have the same six modalities, but T is only provablein KT5.



