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Abstract. We present a comprehensive approach to ontology evaluation and 
validation, which have become a crucial problem for the development of 
semantic technologies. Existing evaluation methods are integrated into one sigle 
framework by means of a formal model. This model consists, firstly, of a meta-
ontology called O2, that characterises ontologies as semiotic objects. Based on 
O2 and an analysis of existing methodologies, we identify three main types of 
measures for evaluation: structural measures, that are typical of ontologies 
represented as graphs; functional measures, that are related to the intended use 
of an ontology and of its components; and usability-profiling measures, that 
depend on the level of annotation of the considered ontology. The meta-
ontology is then complemented with an ontology of ontology validation called 
oQual, which provides the means to devise the best set of criteria for choosing 
an ontology over others in the context of a given project. Finally, we provide a 
small example of how to apply oQual-derived criteria to a validation case.  

1. Introduction 

The need for evaluation methodologies in the field of ontology development and 
reuse emerged as soon as 1994 (see [21]) and it has grown steadily ever since. Yet, no 
comprehensive and global approach to this problem has been proposed to date. This 
situation may become a serious obstacle for the success of semantic technologies, 
especially in industrial and commercial sectors. A typical example in this sense is the 
development of the Semantic Web. On the one hand, the idea of conveying semantics 
through ontologies definitely arouses the interest of large parts of the ICT Industry. 
Ontologies promise to be crucial components of web-like technologies that are able to 
cope with high interconnection, constant change and incompleteness. On the other 
hand, however, the lack of well-understood and shared notions of ontology evaluation 
and validation significantly slows down the transition of ontologies from esoteric 
symbolic structures to reliable industrial components. 
In this paper we look at existing ontology-evaluation methods from the perspective of 
their integration into one single framework. To this end, we set up a formal model for 
ontology evaluation that consists, in the first place, of a meta-ontology – called O2 – 
which characterises ontologies as semiotic objects. O2 is meant to provide a 
foundation to the elements and features that are targeted by evaluation. Secondly, 
based on O2 and an overview of the state of the art (cf. [8]), we provide a provisional 
catalogue of qualitative and quantitative measures for evaluating ontologies. We 
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identify three main types of measures: structural measures, that are typical of 
ontologies represented as graphs; functional measures, that are related to the intended 
use of an ontology and of its components, i.e. their function; usability-profiling 
measures, that depend on the level of annotation of the considered ontology. Thirdly, 
the meta-ontology is complemented with an ontology of ontology validation – oQual 
– which allows to pick up ontology elements by means of O2, provides quality-
parameters and, when feasible, their ordering functions. Both O2 and oQual are partly 
formalized in FOL and are currently maintained as OWL models, plugged into the 
DOLCE ontology library and its design patterns [25]. In practice, we model ontology 
evaluation as a diagnostic task based on ontology descriptions. Such descriptions 
make explicit some knowledge items that are crucial to ontology validation, like e.g.: 
roles and functions of the elements of the considered ontology; parameters for the 
descriptions that typically denote the quality of an ontology; and functions that 
compose those parameters according to a preferential ordering. At the end of the 
paper, we sketch an analytic examples of the trade-offs needed when composing 
principles with conflicting parameters, i.e. an application of oQual-derived criteria to 
a validation case. Finally, some conclusions are drawn. 

2. O2: a semiotic meta-ontology 

The use of meta-ontologies is becoming relevant within the semantic web, because of 
their easy integration and the shared construction methods with ontologies proper.  

 

Fig. 1. A UML class diagram depicting the main notions from the O2 ontology 
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[12], for instance, have recently proposed an Ontology Metadata Vocabulary. 
Following this tendency, we characterize an ontology as a semiotic object, i.e. an 
object constituted by an information object and an intended conceptualization 
established within a communication setting. The basic intuition behind this part of our 
proposal is that information can be constituted by any pattern that is used to represent 
another pattern, whereas that representation is interpretable by some rational agent as 
an explanation, an instruction, a command, etc. This is an idea that goes back at least 
to Peirce (cf. [17]). 
This intuition is formalized by applying an ontology design pattern called 
Information↔Description (see [7]), and originates a new pattern called O2 (because it 
is a “meta-ontology”). O2, in turn, formalizes the following specification: a) an 
ontology is information of a special kind; b) its patterns are graph-like structures; c) 
they represent intended conceptualizations, i.e. internal representations (by a rational 
agent) of entity types. For example, it is perfectly possible to define an ontology for 
subways, but one will hardly consider the graph of the London Underground as an 
ontology - at most, the latter can be considered as a model of an appropriate subway 
ontology. 
In O2 (Fig.1), an ontology graph has an intended conceptualization and a formal 
semantic space admitted by the conceptualization. The graph and the 
conceptualization are ‘kept together’ by a rational agent who encodes/interprets the 
graph, while internally representing its intended conceptualization.  
An agent can also provide a profile containing metadata that express a “description” 
of the ontology, e.g. a method to measure the structural or functional properties of an 
ontology graph, its resulting attributes, its possible quality criteria and values, as well 
as its lifecycle annotations, such as provenance and informal annotations. A good 
profile typically enhances or enforces the usability of an ontology. 

3. Measures for ontology evaluation 

The literature on ontology evaluation is fragmentary. Most approaches address more 
or less specific evaluation issues but often do it unsystematically. Only [11] tries to 
disentangle issues by providing a classification grid for ontology evaluation methods. 
Such grid allows to present methods in terms of answers to the following questions: 
what is the considered method/tool like (Structure)? Subordinately: what is its goal 
(Goal)? What functions are supported by it (Function)? At which stage of 
development of an ontology may it be applied (Application)? Furthermore, how 
useful is the method? Subordinately: for which type of users is it conceived (Users 
types: Knowledge Engineers, Project Managers, Application Users, Ontology 
Developers)? How relevant is it to practice (Usefulness)? How usable is it 
(Usability)? For which type of uses was it conceived in the first place (Use cases)? 
Partly based on such grid, and on an analysis of the related most relevant literature 
(notably, [24], [14], [23], [19], [18], [9], [6], and [16]), we have devised a large 
amount of possible measurement methods for ontologies and framed them in the 
pattern provided by O2. 
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We introduce here the main distinctions among measure sets, and provide a few 
examples for some of them. For the full list of identified measures and the detailed 
state-of-the-art review, see [8]. 

3.1 Measure types  

As explained above, by ontology we mean a semiotic object including graph objects, 
formal semantic spaces, conceptualizations, and annotation profiles; therefore, we 
propose to measure ontologies relatively to three main dimensions: structural, 
functional, and usability-profiling. 
The structural dimension of ontologies focuses on syntax and formal semantics, i.e. 
on ontologies represented as graphs.  In this form, the topological, logical and meta-
logical properties of an ontology can be measured by means of a context-free metric. 
The functional dimension is related to the intended use of a given ontology and of its 
components, i.e. their function in a context. The focus is on the conceptualization 
specified by an ontology. 
Finally, the usability-profiling dimension focuses on the ontology profile 
(annotations), which typically addresses the communication context of an ontology 
(i.e. its pragmatics). 
Notice that those dimensions follow a partition into logical types: structurally, we 
look at an ontology as an (information) object; functionally, we look at it as a 
language (information object+intended conceptualization), and from the usability 
viewpoint, we look at its meta-language (the profile about the semiotic context of an 
ontology). Therefore, the dimension types correspond to the constituents of the O2 
pattern and heterogeneous measurement methods are needed. 

3.2 Measuring the structural dimension 

In our treatment of the structural dimension, the idea is to define a general function 
like the following: 

! 

M = D,S,mp,c , where dimension D is a graph property or 
concept we want to measure: the intensional counterpart of the metric space; the set of 
graph elements S is a collection of elements in the graph (which may be seen as the 
ontology structure); mp is a measurement procedure; and c is a coefficient of 
measurement error. 
The value of M is a real number obtained by applying a measurement procedure mp 
for a dimension D to a set S of graph elements, modulo a coefficient c (if any), i.e. 
(with an operational semantics): 

! 

mpD,c,S yields
" # " " m $ %

 
Within the possible sets of graph elements, we have considered  the following : 

 
• The set of graph nodes G from a graph g, G ⊆ S 
• The set of root nodes ROO ⊆ G, where the root nodes are those having no outgoing 

is-a arcs in a graph g. 
• The set of leaf nodes LEA ⊆ G, where the leaf nodes are those having no ingoing 

is-a arcs in a graph g. 
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• The sets of sibling nodes SIBj∈G connected to a same node j in a graph g through is-
a arcs. 

• The set of paths P where ∀j∈P ⇒ j⊆G, where a path j is any sequence of directly 
connected nodes in a digraph g starting from a root node x∈ROO and ending at a leaf 
node y∈LEA. 

• The set of levels (“generations”) L where ∀j∈L ⇒ j⊆G, where a generation j is the 
set of all sibling node sets having the same distance from (one of) the root node(s) 
r∈ROO of a digraph g. 

• The sets of graph nodes 

! 

N j"P  from a same path j in a digraph g 
• The sets of graph nodes 

! 

N j"L  from a same level j in a digraph g 
• The set MO of modules from a graph g. A module is any subgraph sg of g, where 

the set of graph elements S’ from sg is such that S’ ⊆ S. Two modules sg1 and sg2 
are taxonomically disjoint when only ≥0 is-a arcs ai connect sg1 to sg2, and each ai 
has the same direction.  

 
Several structural measures can be defined, involving: 

a) topological properties such as depth (related to the cardinality of paths in a 
graph), breadth (related to the cardinality of paths in a graph), tangledness 
(related to multihierarchical nodes of a graph),  and fan-outness (related to the 
‘dispersion’ of graph nodes), among others; 

b) logical-adequacy properties such consistency, anonymous classes and cycle 
ratios, among others; 

c) metalogical-adequacy properties, such as e.g qualified density (i.e. presence 
of meaningful conceptual-relation ‘dense’ areas, or ‘patterns’). 

For instance, we have defined depth (a topological property) as a graph property 
related to the cardinality of paths in a graph, where the arcs considered are only is-a 
arcs. This measure only applies to digraphs (directed graphs). E.g., average depth, 
where 

! 

N j"P  is the cardinality of each path j from the set of paths P in a graph g, and 

! 

nP"g  is the cardinality of P: 

! 

m =
1

nP"g
N j#P

j

P

$  

3.3 Measuring the functional dimension 

The functional dimension is coincident with the main purpose of an ontology, i.e. 
specifying a given conceptualization, or a set of contextual assumptions about an area 
of interest. Such specifications, however, are always approximate, since the 
relationship between an ontology and a conceptualization is always dependent on a 
rational agent that conceives that conceptualization (the ‘cognitive’ semantics) and on 
the semantic space that formally encodes that conceptualization (the ‘formal’ 
semantics) (Fig. 1). Hence, an appropriate evaluation strategy should involve a 
measurement of the degree of how those dependencies are implemented. We call this 
the matching problem. 
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The matching problem requires us to find ways of measuring the extent to which an 
ontology mirrors a given expertise (cf. [20]), competency (cf. [22]), or task: 
something that is in the experience of a given community and that includes not only a 
corpus of documents, but also theories, practices and know-how that are not 
necessarily represented in their entirety in the available documents. This seems to 
imply that no automatised method will ever suffice and that intellectual judgement 
will always be needed. However, automatic and semi-automatic techniques can be 
applied that make evaluation easier, less subjective, more complete and faster [6]. 
The functional measures provided in [8] are variants of the precision, coverage, and 
accuracy measures introduced by [10], which are in turn based on an analogy with the 
precision and recall measures widely used in information retrieval (cf. [2]). They 
include competence adequacy (e.g. inter-subjective agreement, task adequacy, task 
specifity, and topic specificity); NLP adequacy (e.g. compliance with lexical 
distinctions), and functional modularity (e.g. ontology stratification, or granularity). 
Due to the matching problem, however, the adaptation of precision, recall and 
accuracy to ontology evaluation is by no means straightforward. Since expertise is by 
default in the cognitive “black-box” of rational agents, ontology engineers have to 
elicit it from agents, or they can assume a set of data as a qualified expression of 
expertise and tasks, e.g. texts, pictures, diagrams, database records, terminologies, 
metadata schemas, etc. Therefore, we distinguish between black-box and glass-box 
measurement methods. 
Black-box methods require rational agents, because they don't explicitly use 
knowledge of the internal structure of an expertise (see [8] for a more extensive 
discussion of these methods). 
Glass-box methods require a data set that ‘samples’ that knowledge, and, on this 
basis, we can treat the internal structure of those data as if it were the internal 
structure of an expertise.  
Based on these assumptions, precision, recall and accuracy of an ontology can be 
measured against: a) experts’ judgment, or b) a data set assumed as a qualified 
expression of experts’ judgment: 
 
(1) Agreement (black-box): it is measured through the proportion of agreement that 

experts have with respect to ontology elements; when a group of experts is 
considered, we may also want to measure the consensus reached by the group’s 
members. 

(2) User-satisfaction (black-box): it can be measured by means of dedicated polls, or 
by means of provenance, popularity, and trust assessment. 

(3) Task: what has to be supported by an ontology? (glass-box). It deals with 
measuring an ontology according to its fitness to some goals, preconditions, 
postconditions, constraints, options, etc. This makes the measurement very 
reliable at design-time, while it needs a reassessment at reuse-time. 

(4) Topic: what are the boundaries of the knowledge domain addressed by an 
ontology? (glass-box). It deals with measuring an ontology according to its 
fitness to an existing knowledge repository. This makes the measurement reliable 
both at design-time, and at reuse-time, but is based on the availability of data that 
can be safely assumed as related to the (supposed) topic covered by an ontology. 
Natural Language Processing (NLP)-based methods fit into this category, and are 
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currently the most reliable method for ontology evaluation, at least for 
lightweight ontologies. 

(5) Modularity: what are the building blocks for the design of an ontology? (glass-
box). It is based on the availability of data about the design of an ontology. 
Therefore, it deals with measuring an ontology according to its fitness to an 
existing repository of reusable components. This makes the measurement very 
reliable both at design-time, and at reuse-time. On the other hand, modularity 
assessment is only practicable on ontologies that have been designed with an 
appropriate methodology. 

 
As example of (glass-box) NLP-based measurements, consider a case in which the 
ontology is lexicalized (i.e., it defines, at least to some extent, what instances of 
classes and relations are called in natural language) and there exists a substantial 
amount of textual documents that contain information about the content of the 
ontology. By identifying mentions of ontological elements in a given corpus, it is 
possible to count the frequency of classes (or relations). The relative frequency of 
each class c (or relation r) is the proportion of mentions of ontology instances which 
are equal to c; i.e., P(c) = count(c)/sumi count(ci). The relative frequency measures the 
importance of each class and provides a first simple measure of the ontology quality. 
For example, in newswire texts the three typical classes of ‘person’, ‘location’ and 
‘organisation’ have somewhat similar frequencies, while if the corpus analysis reveals 
that one of the classes is much more unlikely than the others this means that there is 
something wrong with the instances of that class. This might indicate that the low 
frequency class is underrepresented in the ontology, at the lexical level. Recent work 
has focused also on discovering class attributes and arbitrary relation between classes 
through automatic or semi-automatic population of ontology objects (see [1], [5], and 
[4]). In fact, it is possible that new senses of already known instances are discovered, 
for example because the instance is polysemous/ambiguous (e.g., ‘Washington’ is 
both a person and a location).  

2.3 Measuring the usability profile of ontologies 

Usability-profiling measures focus on the ontology profile, which typically addresses 
the communication context of an ontology (i.e. its pragmatics). An ontology profile is 
a set of ontology annotations: the metadata about an ontology and its elements. 
Presence, amount, completeness, and reliability are the usability measures ranging on 
annotations, which have been singled out in our research. 
Annotations contain information about structural, functional, or user-oriented 
properties of an ontology. There are also purely lifecycle-oriented properties, e.g. 
authorship, price, versioning, organisational deployment, interfacing, etc. 
Three basic levels of usability profiling have been singled out: recognition, efficiency, 
and interfacing.  
The recognition level makes objects, actions, and options visible (cf. [13]). Users 
need an easy access to the instructions for using ontologies in an effective way, and 
an efficient process to retrieve appropriate meta-information. That is, “give your users 
the information that they need and allow them to pick what they want”. Hence 
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recognition is about having a complete documentation and to be sure to guarantee an 
effective access.  
The efficiency level includes organisational, commercial, and developmental 
annotations. Large organisations tend to be compartmentalized, with each group 
looking out for its own interests, sometimes to the detriment of the organisation as a 
whole. Information resource departments often fall into the trap of creating or 
adopting ontologies that result in increased efficiency and lowered costs for the 
information resources department, but only at the cost of lowered productivity for the 
company as a whole. This managing-operating-balance principle translates into some 
requisites (parameters) for the organisation-oriented design of ontology libraries (or 
of distributed ontologies), which provide constraints to one or more of the following 
entities: organisation architecture, (complex) application middleware, trading 
properties, cost, accessibility, development effort.  
The interfacing level concerns the process of matching an ontology to a user interface. 
As far as evaluation is concerned, we are only interested in the case when an ontology 
includes annotations to interfacing operations. For example, a contract negotiation 
ontology might contain annotations to allow an implementation of e.g. a visual 
contract modelling language. If such annotations exist, it is indeed an advantage for 
ontologies that are tightly bound to a certain (computational) service. On the other 
hand, such annotations may result unnecessary in those cases where an interface 
language exists that maps to the core elements of a core ontology e.g. for contract 
negotiation. 

4. oQual: a model of ontology validation 

We model ontology validation as a diagnostic task over ontology elements, processes, 
and attributes (Fig. 2). This task involves:  
• Quality-Oriented Ontology Descriptions (qoods), which are a type of ontology 
description (cf. Fig.1) that provide the roles and tasks of, respectively, the elements 
and processes from/on an ontology, and have elementary qoods (called principles) as 
parts. For example, a type of qood is retrieve, which formalizes the requirement to be 
able to answer a certain competency question. In Fig. 2, the retrieve type is 
instantiated as a requirement for the ontology to be able to retrieve the ‘family history 
for a condition related to blood cancer’, in an ontology project for ‘blood cancer 
information service’. 
• Value spaces (“attributes”) of ontology elements. For example, the presence of a 
relation such as: R(p,f,c,i), where Patient(p), Family(f), Condition(c), Indicator(i). 
• Principles for assessing the ontology fitness, which are modelled as elementary 
qoods, and are typically parts of a project-oriented qood. For example, ‘description of 
fitness to expertise’ is a principle. 
• Parameters (ranging over the attributes -value spaces- of ontologies or ontology 
elements), defined within a principle. For example, ‘relation fitness to competency 
question’ is a parameter for the relation R(p,f,c,i). 
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Fig. 2. The oQual design pattern applied to a clinical use case. A qood based on the fitness to 
competency questions constrains the setting of the intended use for the ontology to be designed 
in a clinical information project 

• Parameter dependencies occurring across principles because of the 
interdependencies between the value spaces of the measured ontology elements. For 
example, the ‘relation fitness to competency question’ parameter is dependent on 
either ‘first-order expressiveness’ or ‘presence of a relation reification method’ 
parameters ranging on the logical language of the ontology, because the relation 
R(p,f,c,i) has four arguments and it is not straightforwardly expressible in e.g. 
OWL(DL). 
• Preferential ordering functions that compose parameters from different principles. 
For example, in a ‘blood cancer information service’ project, the ‘relation fitness to 
competency question’ parameter may be composed with the ‘computational 
complexity’ parameter. 
• Trade-offs, which provide a conflict resolution description when combining 
principles with conflicting parameters. For example, the two abovementioned 
parameters might be conflicting when the cost of the expressiveness or of the 
reification method are too high in terms of computational efficiency. A trade-off in 
this case describes a guideline to simplify the competency question, or a strategy to 
implement the relation differently. 
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The oQual formal model is based on the the Description↔Situation pattern (cf. [7]) 
from the DOLCE ontology library ([15]), which is integrated with the 
Information↔Description pattern used for O2. 
Ontology descriptions, roles, parameters, and ordering functions are defined on the 
results of the measurement types that can be performed on an ontology graph, 
conceptualization, or profile. The results are represented as regions within value 
spaces. Quality parameters constrain those regions within a particular qood. 

5. Applying a qood to a validation case 

In order to apply oQual to an analytic case of trade-off, we need a  more detailed 
presentation of principles and of some of their typical parameters.  

5.1 Some principles and parameters 

Principles are defined here as structured descriptions of the quality of an ontology 
(qoods): they are considered elementary qoods because they usually define a limited 
set of parameters constraining ontology properties in order to support a common goal. 
Principles should also lack conflicting parameters. 
Here is a list of some qoods emerged in the practice of ontology engineering: 

• Cognitive ergonomics 
• Transparency (explicitness of organizing principles) 
• Computational integrity and efficiency 
• Meta-level integrity 
• Flexibility (context-boundedness) 
• Compliance to expertise 
• Compliance to procedures for extension, integration, adaptation, etc. 
• Generic accessibility (computational as well as commercial) 
• Organizational fitness 

The parameters defined by principles can be complex, but at the current state of 
research, they are usually simple scalars ranging on the measurement value spaces 
associated with the measures mentioned in Section 3. 
Here is a list of parameters defined by the principles introduced above. For an easier 
understanding, each parameter is presented with the name of the measure on which it 
ranges, preceded by a + or – sign to indicate the scalar region constrained within the 
value space: 
 
Cognitive ergonomics. Intuition: this principle prospects an ontology that can be 
easily understood, manipulated, and exploited by final users. Parameters: 

 
-depth -breadth 
-tangledness +class/property ratio 
+annotations (esp. lexical, glosses, topic) -anonymous classes 
+interfacing +patterns (dense areas) 
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Transparency. Intuition: this principle prospects an ontology that can be analyzed in 
detail, with a rich formalization of conceptual choices and motivations. Parameters: 

 
+modularity +axiom/class ratio 
+patterns +specific differences 
+partitioning +accuracy 
+complexity +anonymous classes 
+modularity design  

 
Computational integrity and efficiency. Intuition: this principle prospects an ontology 
that can be successfully/easily processed by a reasoner (inference engine, classifier, 
etc.). Parameters: 

 
+logical consistency +disjointness ratio 
-tangledness -restrictions 
-cycles  

 
Meta-level integrity. Intuition: this principle prospects an ontology that respects 
certain ordering criteria that are assumed as quality indicators. Parameters: 

 
+metalevel consistency -tangledness 

 
Flexibility. Intuition: this principle prospects an ontology that can be easily adapted to 
multiple views. Parameters: 

 
+modularity +partitioning 
+context-boundedness  

 
Compliance to expertise. Intuition: this principle prospects an ontology that is 
compliant to one or more users’ knowledge. Parameters: 

 
+precision +recall 
+accuracy  

 
Compliance to procedures for mapping, extension, integration, adaptation. Intuition: 
this principle prospects an ontology that can be easily understood and manipulated for 
reuse and adaptation. Parameters: 

 
+accuracy(?) +recognition annotations (esp. lexical) 
+modularity -tangledness(?) 

 
Organizational fitness. Intuition: this principle prospects an ontology that can be 
easily deployed within an organization, and that has a good coverage for that context. 
Parameters: 

 
+recall +organizational design annotations 
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+commercial/legal annotations +user satisfaction 
+organizational design annotations  

 
Generic accessibility. Intuition: this principle prospects an ontology that can be easily 
accessed for effective application. Parameters: 

 
+accuracy (based on task and use cases) +annotations (esp. policy semantics, 

application history) 
+modularity -logical complexity 

5.2 Preference and trade-offs, with an example in legal ontologies 

Due to partly mutual independence of principles, the need for a preferential ordering 
of quality parameters required by different principles often arises, e.g. because of a 
conflict, or because two parameters from different principles are unsustainable with 
existing tools or resources. OntoMetric ([14]) is an example of a tool that supports 
measurement based on a preferential ordering. 
A preferential ordering can either define the prevalence of a set of parameters from a 
principle p1 over another principle p2, or it can define a composition of the two sets of 
parameters from p1 and p2. A compositions is the result of a trade-off. Both 
prevalence and trade-off descriptions are based on meta-parameters, e.g.: available 
resources, available expertise, business relations, tools, etc. 
A simple exemplification of a trade-off for principle composition is the following. 
Transparency and compliance to expertise principles usually require content ontology 
design patterns (cf. [7]), involving hub nodes (classes with several properties, cf. 
[16]), then those principles require a high rate of dense areas parameter. But dense 
areas often need the definition of sets of (usually existential) axioms that potentially 
induce complex (in)direct cycles. Consequently, high rate of dense areas  depends on 
a high complexity parameter (cf. [3] for the complexity of description logic ports of 
UML models). 
The content design pattern for the LimitViolation pattern is an example of such a case 
(Fig.3). The LimitViolation pattern contains the following axioms (restrictions) that 
constitute a cyclical path, encoded here in OWL abstract syntax (corresponding to the 
red path in Fig.3): 

Class(LimitViolation partial restriction(defines 
someValuesFrom(ViolationParameter))) 

Class(ViolationParameter partial restriction(classifies 
someValuesFrom(ValueRegion))) 

Class(ValueRegion partial restriction(observedBy 
allValuesFrom(LegalControlSystem))) 

Class(LegalControlSystem partial restriction(classifiedBy 
someValuesFrom(LegalRole))) 
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Class(LegalRole partial restriction(d-used-by 
someValuesFrom(LimitViolation))) 

Class(LimitViolation partial restriction(defines 
someValuesFrom(ViolationParameter))) 

Class(ViolationParameter partial restriction(classifies 
someValuesFrom(ValueRegion))) 

Class(ValueRegion partial restriction(observedBy 
allValuesFrom(LegalControlSystem))) 

Class(LegalControlSystem partial restriction(classifiedBy 
allValuesFrom(LegalRole))) 

Class(LegalRole partial restriction(d-used-by 
someValuesFrom(LimitViolation))) 

If an ontology project using the limit violation axioms is based on a qood that aims at 
both a transparency principle, and a computational efficiency principle, and we 
already know (cf. [8]) that computationally efficiency requires a low rate of cycles 
parameter, then we get a conflict of parameters (Fig.4). Therefore, a trade-off may be 
needed in an ontology project that uses the limit violation axioms. The trade-off can 
be applied by following two approaches.  

 

Fig. 3 The LimitViolation pattern in UML, showing a potential indirect cycle: a description of 
limit violation defines violation parameters ranging on some value space (e.g., speed), also 
assigning (legal) roles and tasks to legally-relevant entities: control systems, vehicles, persons, 
actions, etc. A violation case conforms to the description if legally-relevant entities and values 
are classified by parameters, roles, and tasks 

The first approach defines a preference ordering over the parameters, which in the 
example leads either to accept the complexity, or to dismiss the pattern. The pattern is 
in this case essential to the ontology, then, if the low rate of cycles is also required 
because of e.g. available computational resources, we must resort to the second 
approach: relaxation of parameters. The possible methods to relax the parameters 
should act on either the reasoning algorithm, or the axioms. Since the first cannot be 
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changed easily in most ontology projects, the best practice is to modify the model 
according to some tuning practices e.g. involving generalization over restrictions, 
which in our example can be done on one of the following axioms by substituting the 
class in the restriction with its superclass: 

Class(ValueRegion partial restriction(observedBy 
allValuesFrom(ControlSystem))) 

Class(LegalControlSystem partial restriction(classifiedBy 
allValuesFrom(Role))) 

 

Fig. 4. A qood (a diagnosis of an ontology project using the limit violation pattern) that 
composes two principles requiring conflicting parameters 

6. Conclusions and future work 

O2 and oQual are ontologies that characterise an ontology as a communication object, 
and allow to make a parametric design of evaluation and validation (diagnostic) tasks. 
Ontologies are analyzed in their graph and formal elements, functional requirements, 
and annotation profile. Therefore our approach results in parametric design 
specifications that address varied measures, ranging from graph properties to logical 
consistency, precision/recall, intersubjective reliability, etc., which do not suggest 
prescriptive validation of an ontology, but suggest an interactive, distributed 
validation against well-understood tasks. 
Current work is focusing on the empirical assessment of the O2 and oQual ontologies 
and related methods, by measuring existing ontologies, comparing the quality of 
distinct ontologies that represent the same domain, creating correlations between user-
oriented and structural measures, and creating tools to assist ontology evaluation in 
large industry- and organization-scale projects (until now, the ontology and the 
method have been tested on fragments of large ontologies, and only thoroughly in the 
context of the Italian OntoDev project, featuring a mid-size lightweight ontology 
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repository). Collaboration with the Oyster, Onthology, and KnowledgeZone projects 
([26]) are being established in order to harmonize ontology metadata semantics with 
tools, and to include/extract evaluation annotation in/from current metadata vocabularies. 
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