{

‘ ontology :

2009/1/21(16:37)

2. Towards the Ontological Representation of Functional
Basis in DOLCE

Stefano Borgo', Massimiliano Carrara®, Pawel Garbacz?,

and Pieter Vermaas®*

I Laboratory for Applied Ontology, ISTC-CNR, Italy
2 Department of Philosophy, University of Padua, Italy
3 Department of Philosophy, The John Paul II Catholic University of Lublin, Poland
4 Department of Philosophy, Delft University of Technology, The Netherlands

Abstract. We present a formalisation of the notion of function as set forward by Robert
Stone and Kristin Wood in the Functional Modelling approach. This formalisation is part of
a larger project to analyse functional descriptions of technical artifacts. The current resultis a
formal system in which engineering notions of functions are expressed in terms of definitions
grounded in the foundational ontology poLce. We identify those notions that are particularly
significant from the point of view of ontology formalisation. Then we match them against
the conceptual framework defined by. Finally, we posit a number of constraints to eliminate
some unintended interpretations of our formalism.

Keywords: Function, Technical artifact, Foundational ontology, Engineering

1 Introduction

In this paper we present a formalisation of the notion of function of technical artifacts as
set forward by Robert Stone and Kristin Wood (see for example [10]). This formalisation
is part of a larger project to analyse functional descriptions of technical artifacts. In this
project we follow a bottom-up methodology. We take the engineering literature as a start-
ing point and formalize the main engineering notions of functions available in terms of
formalized definitions grounded in the foundational ontology of poLce — the Descriptive
Ontology for Linguistic and Cognitive Engineering [8]. The poLcE ontology is part of the
WonderWeb effort.> The vision of this effort is to have a library of foundational ontologies
reflecting different ontological choices. For that reason extensive attention is given to a
careful isolation of the ontological options and their formal relationships. poLce’s ontology
is the most studied module of this library. In [1] we have already formalised the notion
of function and the related notion of behaviour as defined by Chandrasekaran and Joseph-
son [4]. In this paper we continue our ontological analysis of the engineering domain by
giving a first formalisation in poLce of one of the rival notions of function, which is en-
dorsed by R. Stone and K. Wood. Our larger goal is to build a series of integrated formal
systems and to compare these with the state of the art in ontology. Indeed, other groups

3 http://wonderweb.semanticweb.org

ontology :

2009/1/21(16:37)

Borgo, Carrara, Garbacz, Vermaas

have already presented more or less comprehensive ontological frameworks for these and
similar topics, in particular Mizoguchi’s group [7,6] although the methodology is fairly
different. Unfortunately, the ontological comparison of our results to other works requires
at least an extended discussion of the different rendering of the engineering literature (let
alone the basic ontological assumptions). This task is not simple and we aim to dedicate a
future paper on this comparison.

The plan of the present paper as follows. In section 2 we introduce Stone and Wood’s
model and identify its key functional notions. In section 3 we briefly present poLce’s frame-
work and, in section 4, we give an ontological characterisation of this model. The conclud-
ing section discusses some limits of our approach, looks at other approaches and indicates
future steps.

2 Functional Basis

Briefly put, the approach of Stone and Wood [10] propounds to model overall product
functions, especially from the electromechanical and mechanical domain, as sets of con-
nected elementary sub-functions. In line with the design methodology of [9] an overall
product function is described by means of a verb-object form and graphically represented
by a black-boxed operation on flows of materials®, energies and signals. Sub-functions are
also described by verb-object forms but they correspond to well-defined basic operations
on well-defined basic flows of materials, energies and signals. Roughly, the black-boxed
operations on general flows correspond product functions and are derived from costumer
needs, the basic operations and basic flows correspond to sub-functions. All these notions
are limited in number and stored in shared libraries. These libraries cover the functional
design space. The whole system is called the Functional Basis (rg).’

Stone and Wood present their proposal as supporting the archiving, comparison and
communication of functional descriptions of existing products, as well as the engineering
designing of new products. Archiving, comparison and communication is assisted since the
sub-functions into which overall product functions are decomposed, are described in this
universal common language. Designing of new products is supported since the Functional
Basis allows designers to make critical design decisions about the architecture of artifact
by decomposing overall product functions in sub-functions in the early conceptual stage
of designing at which only functional descriptions are considered. Moreover, this approach
provides the means to find overall design solutions quickly since Stone and Wood require
the sub-functions to be small and easily solvable in designing.

In the designing of new artifacts the overall product function is given in terms of in-
put/output flows and may initially be coarse-grained. Consider the following example: the
overall product function of loosening/tightening screws, which is performed or ascribed to
a power screwdriver, is defined by several input flows: electricity, human force, on/off sig-
nals, and screw; and one output flow: looseness/tighteness of screws. But when this overall

6 The notion of material is construed here rather broadly as it comprises also such objects as

screws, air, human beings and their parts.
7 Sometimes, the overall engineering methodology related to s is called Functional Modeling.

{
|
\
|
|
J

ontology :

2009/1/21(16:37)

2. Functional Basis in DOLCE

product function is decomposed in terms of connected sub-functions with well-defined in-
put and output flows, the overall product function can be modeled in more detail. The input
flows are extended to include also relative rotation, and the output to include also heat and
noise.

In [10] Stone and Wood provide a glossary of the terms used in their account, which we
resume here for later reference. Note that the term ‘function’ indicates an operation on a
flow, which has the awkward consequence that neither product functions nor sub-functions
(as described above) are instances of functions in the FB terminology.

Product function: the general input/output relationship of a product having the purpose
of performing an overall task, typically stated in verb-object form.

Sub-function: a description of part of a product’s overall task stated in verb-object form.
and represented by an input/output flow relationship. Sub-functions are decomposed
from the product functions and represent the more elementary tasks of the product.

Function: a description of an operation to be performed by a device or artifact. It is
expressed as the active verb of the sub-function.

Flow: a change in material, energy or signal with respect to time. Expressed as the
object of the sub-function, a flow is the recipient of the function’s operation.

More in general:

— Functional model: a description of a product or process in terms of the elementary
functions that are required to achieve its overall function or purpose.

— Functional basis: a design language consisting of a set of functions and a set of flows
that are used to form a sub-function.

Earlier analysis of the advantages and drawbacks of the B approach can be found in [5,
11].

3 DOLCE

DOLCE is a foundational ontology of particulars with a clear cognitive bias. In fact, its aim
is to capture the ontological categories underlying natural language and human common-
sense. For this reason the categories introduced in poLce are thought by its developers as
“cognitive artifacts ultimately depending on human perception, cultural imprints and social
conventions” ([8], p.13). The categories are obtained by the analysis of the surface structure
of language and cognition. Consequences of this approach are that poLCE’s categories are at
the so-called mesoscopic level, the level of the middle-sized (commonsensical) objects we,
as humans, perceive. For poLc is not proposed as an ontology for the hard sciences like
physics, rather it collects descriptive notions that assist in making explicit already formed
conceptualizations by grounding them within the human cognitive perspective.

3.1 porce: a short introduction

DOLCE’s taxonomic structure is pictured in figure 1. Each node in the graph is a category

1 |
|
| ontology : 2009/1/21(16:37)

Borgo, Carrara, Garbacz, Vermaas

of the ontology. A category is a subcategory of another if the latter occurs higher in the
graph and there is an edge between the two. PARTICULAR is the top category. The class of
subcategories of a given category forms a partition except where dots are inserted.

PT
Particular

T

ED PD 0
Endurant Perdurant /QuTlity\ Abstrac!
PED NPED 48 EV PO AQ m
Physical Non-physical Arbitrary Event Statwe Temporal Physical ~ Abstract egion
ﬂ Endurant Sum /\ Quality Quality Quality %
M POB /\NPOB ACH Acc ST PRO
Amount of Fealure Physical Non-physical Achievement Accomplishment State Process Tempora| Spanal Temporal Physlcal Abslract
Matter Object Object /\ /\ /\ /\ Location Location Region Region Region
% /\ T .S
APO NAPO MOB SOB Time Space
Agentive Non-agentive Mental Object ~ Social Object Interval Region
Physical Physical
Object Object
ASO NASO
Agentive Non-agentive
Social Object Social Object
SAG Ne
Social Agent Society

Fig. 1. DOLCE taxonomy

As said in the introduction, we want to extend DOLCE to capture crucial notions in the
area of engineering design so to use this ontological framework to analyze, clarify and
possibly improve the work in this area. Here we can provide just a minimal introduction to
the whole ontology, the interested reader can find in [8] the underlying motivations and a
throughout discussion of technical aspects.

From the graph in figure 1, it is clear that the poLcE ontology concentrates on particulars
as opposed to universals. Roughly speaking, a universal is an entity that is instantiated or
concreted by other entities (like “being human” and “being an event”). A particular (an
element of class PARTICULAR) is an entity that is not instantiated by other entities (like the
Eiffel Tower in Paris). That is, your car is a particular as opposed to the model of your car,
provided that the latter is interpreted as a type being instantiated by a number of entities
among which one is your car. Particulars comprise physical or abstract objects, events, and
qualities. It seems to us that the poLck ontology provides a good framework for the needs
of engineering design: it adopts the distinction between objects like products and events
like operations; it includes a differentiation among individual qualities (e.g., the weight of
a specific material item), quality types (weight, color and the like), quality spaces (spaces
to classify weights, colors etc.), and quality positions or qualia (informally, locations in
quality spaces). These, together with measure spaces (where the quality positions get asso-
ciated to a measure system and, thus, to numbers), are important to describe and compare
devices. Indeed, among the motivations to use DOLCE, an important element was its robust-
ness and flexibility which allows to capture in a natural way the views proper of engineering
practice.

ontology :

2009/1/21(16:37) 7L,,,7

2. Functional Basis in DOLCE

The poLce ontology category (class) ENDURANT comprises objects (like a hammer) or
amounts of matter (like an amount of plastic), while the category PERDURANT comprises
events like making a hole or playing a soccer game, that is, things that happen in time.
(Formally, the category ENDURANT is represented by the constant ED and we write ED(x)
to mean that x is an endurant. Analogously, we use PD for perdurants.) The term ‘object’
is used in the ontology to capture a notion of unity as suggested by the partition of the
class pHYsICAL ENDURANT (formally, PED) into classes AMOUNT OF MATTER (M), FEATURE (F),
and pHysicaL oBJEcTs (POB) (see figure 1). Both endurants and perdurants are associated
with a bunch of individual qualities (elements of the category quaLiTy). The exact list of
qualities may depend on the entity: shape and weight are usually taken as qualities of en-
durants®, duration and direction as qualities of perdurants. An individual quality, e.g., the
weight of the car you are driving, is a quality associated with one and only one entity; it can
be understood as the particular way in which that entity instantiates the general property
“having weight”. For example, the endurant Hammer_#321 (a token) has its own individual
instantiation of property “having weight”, namely, the individual weight-quality of Ham-
mer_#321. The change of an endurant in time is explained through the change of some of
its individual qualities. For example, with the substitution of a component, Hammer_#321
may change its weight. This means that the individual weight-quality of this entity was
first associated to (or classified in) a position x and later to (in) a position y of a given
weight-quality space. Note that x and y should not be considered weight measures like, say,
Skg. They are elements of (positions in) a quality space whose primary role is to partition
individual qualities in equivalent (or similar, depending on the space) entities before com-
mitting to numeric values and measure units. Thus, the same x may be associated to 5kg
in one measure space and to 11.1/b in another. Quality spaces are elements of the REGION
category, a subcategory of ABSTRACT.

Another important relation for our analysis is the parthood relation: “x is part of y”,
written: P(x, y), with its cognates the proper part (wfitten: PP(x,y)) and overlap relations
(written: O(x,y)), which may be defined in terms of P. In poLce the parthood relation
applies to pairs of endurants (e.g., one endurant is part of another) as well as to pairs of
perdurants (to state that an event is part of another). For pairs of endurants, the relation of
parthood is temporalised (i.e. with the third argument for time objects) since an endurant
may loose and gain parts throughout its existence.

While relations like parthood, overlap and sum are inherited from classical mereology
theory and are fairly standard in formal ontology, other relations need a brief introduction.
The main relation involving both endurants and perdurants is called participation, formally
PC. This relation captures the simple fact that an endurant ‘lives’ in time by participating in
some perdurant. For example, a machine (endurant) may participate in a production process
(perdurant). A car’s life is also a perdurant to which that car participates throughout all the
duration (the time spanned from the construction of the car till its destruction). If endurant
x participates in perdurant y at each instant of period ¢, we write PC(x, y, #) which reads “x
participates in y during all of ¢ (here r may be just a part of the duration of y).

Note that participation and parthood are distinct relations. An endurant is never part
of a perdurant, only perdurants can be parts of perdurants (analogously, only endurants

8 In poLck they are called physical qualities and are denoted by means of the PQ predicate.

ontology :

2009/1/21(16:37) I

Borgo, Carrara, Garbacz, Vermaas

can be parts of endurants). Also, participation is time-indexed in order to account for the
varieties of participation in time like temporary participation, constant participation, and so
on, cf. [8]. Two important poLcE relations are gt and gl. In poLck the first relates endurants,
perdurants or qualities to their own qualities. That is, given a quality x and an endurant
(perdurant, quality) y, relation qt(x,y) holds if x is an individual quality of y. To relate
qualia (i.e. regions in a quality space) to qualities, possibly with a temporal parameter,
relation gl is used. Expression gl(x, y) stands for “x is the quale of individual quality y”” and
ql(x, y, f) for “x is the quale of individual quality y at time 7. In poLck gl is also used to
define relations between, say, an endurant and its qualia. For instance, if T is the temporal
quality space, we write gly gp(f, x) to mean that ¢ is the temporal quale of endurant x.

We also make use of a couple of relations which are not part of poLck but of an extension
proposed in [1]. The first relation, called wholly participation (PCyy), is a specialisation of
the participation relation. PCyy(x, y) stands for “endurant x wholly participates in the perdu-
rant y”, that is, x participates in y throughout all the time spanned by y.® The second relation
identifies combinations of perdurants that may co-occur according to engineering science:
two perdurants x and y are said to be coherent, written Coh(x, y), when their mereologi-

10 is a (physically) possible perdurant. This notion accounts for the fact that some

cal sum
combinations of perdurants are meaningless in engineering practice. It is possible that an
air-conditioning system cools the room, at a given time, and it is also possible that the same
system heats the room, at the same time. However, these two perdurants cannot ‘belong to

the content’ of the real world, i.e. they are not coherent in the sense of Coh.!!

4 From Functional Basis model to an ontology of engineering
functions

Our task, the development of an ontology-based formalisation of the Functional Basis
model, is carried out in a three-stage process. First, we identify the notions in the model
that are particularly significant from the point of view of ontology formalisation (subsection
4.1 below). Then we match them against the conceptual framework defined by poLce (4.2).
Finally, we posit a number of constraints to eliminate some unintended interpretations of
our formalism (4.3).

Most of engineering models are not sufficiently clear with respect to the ontological cat-
egorisations of the notions they employ. Thus, there is some degree of arbitrariness when it
comes to constructing ontological interpretations of those models. In this work we consider
the models furnished by B as models of product tokens (endurants) and characterize them
by referring to perdurants. Note that in the design literature one easily mixes the token and
the type levels of products (sometimes intertwining information about other types of enti-

9 PCyy should not be confused with the poLck relation PCr since a further condition is imposed
on y, that is, y must belong to a class of generalized perdurant relevant to engineering practice,
see [1]. This extra condition is not discussed here.

10 The mereological sum of x and y is a perdurant z such that each part of x and each part of y
are parts of z, and if any perdurant w overlaps z, then w also overlaps x or y.
" Cf. [1] for a formal definition.

ontology :

2009/1/21(16:37)

2. Functional Basis in DOLCE

ties like the blueprint) so that our choice may fail to capture some engineering views. This
general problem may be overcome by the development of complementary perspectives to
be integrated with the main ontological view we adopt. We do not discuss this issue further
in the paper.

4.1 Ontological aspects of Functional Basis
In table 4.1 we collect some central notions that are later included in the formalisation
either as primitives or as derived terms. These notions are crucial to successfully import B

in an ontology. The examples are taken from the functional model of power screwdriver
constructed in [10].

Table 1. Primitive ontological notions in FB

Term Explanation Example in r8
Req(x,y,z,v) |engineering function x, loosenftighten screws
device y, power screwdriver
and flows z and v electricity and human force

satisfy the design requirements satisty the design requirements

EngFun(x, y, z)|x is an engineering function transmit torque is an engineering function

with input flow y and output flow z|with torque as its input and output flow

23

Dev(x) x is a device power screwdriver is a device

InFlow(x,y) [xisan input flow for function y |electricity is an input flow for convert electricity to torque

OutFlow(x,y) |x is an output flow for function y |torque is an output flow for convert electricity to torque

MFlow(x) x is a flow of matter solid is a flow of matter
EFlow(x) x is a flow of energy electricity is a flow of energy
SFlow(x) x is a flow of signal on/off information is a flow of signal

The notion of design requirements needs a few comments since we use it as a catch-all
for terms like ‘requirement’, ‘customer need’ and ‘user demand’. Indeed, Stone and Wood
do not set a definite notion for the variety of requirements B needs to consider. They may
use a variety of more or less general expressions like “requirements on human flows” or
“customer needs for the product” [10]. Pahl and Beitz [9] are however of help in justi-
fying an emphasis on the notion of design requirements as collecting user demands and
other technical demands (idem, Chapter 5) and make clear how it serves the purpose of
determining the functional structure in terms of flows and operations (idem, Chapter 6).
The notion of design requirements thus seems to provide a bridge for designers between
user demands and functions, and this explains why we emphasize its role in the Functional
Modeling approach. The design requirements are supposed to model all conditions that
constrain a particular design problem. These include the physical laws, customers’ needs,
legal regulations, company’s policies, etc. These interrelated factors provide a design con-
text in which a product being designed is ascribed certain functionalities. Following the
Functional Basis’ construal of engineering functions, these functionalities are considered
in terms of operations on flows. This implies that the initial design requirements explicitly
drive the selection and configuration of operations and flows.

Secondly, although different design situations involve different design requirements,

ontology :

2009/1/21(16:37) ‘

Borgo, Carrara, Garbacz, Vermaas

for the sake of formal simplicity we assume in our formalisation that the design situation
is fixed. This is to say that the predicate Req as presented here cannot distinguish different
design contexts.!?

Thirdly, we allow complex flows as arguments of the Req relation. Complex flows
can be formalized in different ways and the specific technical solution is not important
here. The introduction of complex flows is crucial, though, since the (de)composition of
functionalities, following the FB approach in the constrained situation given by the design
requirements, involve most of the times multiple input and/or output flows of different

types.

Functional Basis definitions We take Req, Dev and several notions of flow as primitives
in our framework. Req is a complex relationship and deserves further study. Unfortunately,
as mentioned earlier, it is left largely unexplored in the 8 literature and we do not have
much information to reach a definite formalisation. On the positive side, we can say that
the whole framework does not depend on the specific choice one takes in modeling Req.
Dev is here considered a subcategory of PHYSICAL OBJECT in the poLCE ontology. It may be
understood as a specialisation of the notion of ArRTIFACT [3], a notion proposed as an exten-
sion of poLcE, but this is debatable and we do not take a position in this paper. Indeed, the
distinction between device, artifact and product in FB is not yet clear to us. These terms are
not properly defined and their use is not clear from the text. Stone and Wood use expres-
sions like “a product or device carries out [an operation]”, “an operation to be performed
by a device or artifact”, and “the creation of an artifact, product, system, or process” [10]
which hint to some distinction but are insufficient to establish if this has an ontological or
contextual nature. The B notions of flow, material (MFlow), energy (EFlow), and signal
(SFlow), are fairly well discussed in the rB approach and in the next section we propose a
clear ontological stand for them. Here we use them to define a single notion of flow that is
more general than that in e, the motivations are given below. Finally, two further notions
of flow, namely input (InFlow) and output (OutFlow) flows, are context dependent: a flow
can be an input flow for an operation and an output flow for another so these notions do
not correspond to categories. Rather, they are contextual classifications that one may prefer
to model as roles or as relational properties in the sense of [2]. Moreover, it seems that an
input flow for an operation (i.e. function) is somehow involved in the generation of one of
the output flows for this operation. This involvement may be represented by the notion of
causality, but we do not attempt to tackle this difficult problem here.

We say that an event x is an engineering function with input flow y; and output flow y,
if there is some device z which participates to the whole event x such that Req(x, z, y1, y2).
Formally,

EngFun(x, y1, y2)
£ dz[Dev(z) A InFlow(y;, x) A OutFlow(yy, x) A PCyu(z, x) A Req(x, z,y1,¥2)]. (1)

12 In the full formalisation, this can be achieved by introducing a further argument to Reg.
Although this is not particularly problematic here, this choice has important effects on the
definition of EngFun given below.

e

-
T

ontology :

2009/1/21(16:37) |

2. Functional Basis in DOLCE

We need to introduce an extra definition whose relevance will become clear shortly. An
engineering function simpliciter is an event for which there exist input and output flows
that satisfy definition (1). Formally,

EngFun(x) £ Jy;, y,EngFun(x, y1, y2). (2)

B partition flows in three disjoint types: material, energy and signal (cf. [9], p. 29-30).
Introducing predicates MFlow, EFlow, and SFlow for these types, we write

Flow(x) £ Ty, z, w(MFlow(y) A EFlow(z) A SFlow(w) A x = y® z® w).'3 3)

This classification gives ontological information since it depends on what the flow is
about. In the perspective of function description, instead, we have seen that flows of the
types listed can participate to functions as input or as output flows. In other terms, the
function at stake provides the contextual perspective to classify flows as input, output or
even irrelevant to a function. In terms of the previous definition, this amounts to say that,
for a generic flow x, there exists a function (perdurant) y such that any subflow of x of the
allowed types is either input or output for y. Formally,

Flow(x) = dy(EngFun(y) A Yz[((MFlow(z) V EFlow(z) V SFlow(z)) A P(z, x)) — 4)
(InFlow(z,y) V OutFlow(z, ¥))]).

If one uses Flowgp for a flow in the pure B terminology, that is, either material, energy
or signal, a simple flow so to speak, then it would be possible to write

Flowgg(x) = dy(EngFun(y) A InFlow(x,y) V OutFlow(x, y)). %)
4.2 Functional Basis and poLce

As anticipated in the introduction to section 4, the engineering functions listed in Fs are
here interpreted as types whose instances are perdurants of certain kinds.'* That is to say,
an rB function is taken as a class of (engineering possible) perdurants, e.g., fo distribute

13 As anticipated, the meaning of the @ operator is not given in detail. The technical aspects
related to the formal treatment of complex flows is not relevant to the rest of the formalisa-
tion although some aspects, like temporal co-occurrence, are important. Note also that the
notion of flow captured in this definition (or, in other terms, the notion of complex flow) is
more general then the notion one finds in the FB approach. This generalization is not strictly
necessary and it is adopted because we believe it clarifies the basic dependences between

functions and flows. See for instance condition (14).
14 Tt needs to be emphasised that re does not use the notion of behaviour and relates technical

functions directly to technical devices. This modelling decision does not account for the
fact that functions are ontologically dependent on agents’ intentions. As a consequence, FB
functions may conceptually collapse into simple behaviours and this possibility led to one of
the objections to B - see [6]. Since in this paper we only attempt to interpret ontologically
B, we do not elaborate on this observation.

L

ontology :

2009/1/21(16:37)

Borgo, Carrara, Garbacz, Vermaas

is a class of perdurants in which a certain flow is broken up.'> The classes of perdurants
used by FB are not arbitrary and can be characterised at least to some extent. The proposed
match between engineering functions and classes of perdurants allows us to provide a co-
herent and consistent framework for the three notions used in rs: function, sub-function,
and product function. Given our assumption that an B engineering function is the most
basic in the ontological sense and is formalized by means of a class of perdurants, an FB
sub-function is modeled as the subclass collecting all and only the perdurants that have as
participants the flows requested in the engineering description of the sub-function.

Axioms 21, 22, and 23 below specify the ontological nature of this involvement for
different types of flows. For example, the sub-function fo distribute liquid is represented
here as a (proper) subclass of the class corresponding to the to distribute function in which
a certain amount of liquid is distributed.

Note that the current axiomatisation is confined to the level of instances of B function
types; these instances correspond to perdurants in the chosen ontological framework.

Dev(x) — POB(x) (6)

EngFun(x) — PD(x) (7)

Generally speaking, we give a characterisation of the B view of a product in terms
of the (class of) perdurants to which it participates. Not all the perdurants are considered.
Just those that are engineering possible and that satisfy a series of conditions like customer
needs, standard requirements, e.g., being compliant with given standards and law restric-
tions. We have implicitly formalized these conditions via the Req relation in the previous
section. It is important to note that only part of these constraints are due to natural laws
and engineering practice. This observation shows that r8 models comprise an intentional
component that the ontological framework should clarify and make explicit.

At this point, it is natural to conclude that our general notion of function, as formalized
in (1), corresponds to the FB notion of sub-function. That is to say, a triple formed by a
perdurant and two flows identifies an instance of an rB sub-function whenever the triple
satisfies (1). Similarly, the generalized notion of function, defined in (2), corresponds to the
rB notion of function. Finally, predicate Req identifies (instances of) FB product functions
when the second argument (the argument constrained to devices) is occupied by an object
that is considered in the respective design situation to be a product. In short, if we use Prod,
SubFungg, Fungg, and ProdFungg for, respectively, products, Fe sub-functions, F8 functions,
and rB product functions, then we would have the following definitions:

SubFungg(x, y, 2) = EngFun(x, y, 2) (3

15 gB defines this function in the following way:

Distribute. To cause a material or energy to break up. The individual bits are similar to each
other and the undistributed flow. Example: An atomizer distributes (or sprays) hair-styling
liquids over the head to hold the hair in the desired style. ([10], p. 368)

ontology : 2009/1/21(16:37) ‘

2. Functional Basis in DOLCE

Fungp(x) £ EngFun(x))
and restricting x to products, i.e. if Prod(x) holds, then'®
PrOdFunFB(x> Y, 1, V) & Req(xa Y1, V) (10)

The following three conditions make clear the ontological categories of Fs flows. They
state that material flows are (a subcategory of) endurants, energy flows are (a subcategory
of) physical qualities of endurants and signal flows are (a subcategory of) perdurants.

MFlow(x) — ED(x) (11)
EFlow(x) — PQ(x) (12)
SFlow(x) — PD(x) (13)

These three conditions provide also the underpinning for the ontological basis of pred-
icate Flow, see (3). We can thus constrain ontologically the arguments of the Req relation

Rea(x, y,z,v) = PD(x) A Dev(y) A Flow(z) A Flow(v) (14)
4.3 Additional constraints

First, we want to tie the design requirement relation to the notion of engineering function.
If relation Req holds for a function x, and entity y and flows zj, 2, then we require that
EngFun holds for x, z; and z;.

Req(x, y,z1,22) — EngFun(x, z;, 22). (15)

In turn, if x is a device then there exists function and flows such that Req is satisfied.

Dev(x) — 3y, z1, 2Req(y, x, 21, 22). (16)

The possibility to combine functions is crucial for the Functional Basis approach. How-
ever, there is lack of explanations about the rules that govern function (de)composition.
A rule for function composition can be obtained via the notion of coherent perdurants:
roughly, two perdurants are coherent if their sum is a perdurant that is admissible within

16 Obviously,
Prod(x) — Dev(x)
However, the notion of product is relative to a design context, i.e. what is considered as
a product in one design situation, might be considered as a part of another product in a
different design situation. We do not fully characterise this notion here mainly because we
do not represent different design requirements by means of Req. Once these requirements
are admitted as the fifth argument of Req, we could relativise the notion of product to those
requirements so that the context-relativity of products would be captured.

11

ontology : 2009/1/21(16:37)

Borgo, Carrara, Garbacz, Vermaas
engineering science (see pg. 6).
Req(x,y, z1,22) AReq(x’, y,21,22) A Coh(x, x’) — Req(x + X', y, 21, 22). a7

The rational reconstruction of the notions used in rB leads us to the conclusion that on
the one hand one should separate input and output flows from devices performing functions
and on the other hand one should bind those flows to functions themselves. Both postulates
are based on the examples to be found in B, but due to their generality they extend its
ontological assumptions. The former postulate is based on the “black-box” conceptualisa-
tion of engineering functions, where flows are separated from devices. The latter refers to
the understanding of those functions as operations on flows, which implies some kind of
ontological link between them.

The following formulas posit some limits to the contribution of flows to functions.
These constraints are independent of the input or output status of the involved flow as
shown by the disjunctive component in the antecedents.

Separation axioms No material flow for a function of a device overlaps with the device
itself.

1 MFlow(x) A [Req(y, z, x,v) V Req(y, z, v, ¥)] A gly gp (2, X) = —OC(x, z, 7). (18)

No energy flow for a function is a quality of a device performing this function.

EFlow(x) A [Req(y, z, x, v) V Req(y, z, v, x)] = —qt(x, 2). (19)

No signal flow for a function has the device performing this function as a participant.

SFlow(x) A [Req(y, z, x,v) V Req(y, z, v, x)] = —-PC(z, x,). (20)

Binding axioms Each material flow for a function participates to the function at least in
part.

MFlow(x) A [Req(y, z, x,v) V Req(y, z, v, x)] — JtPC(x, y,). 21

Each flow of energy for a function is involved in the function via the (possibly partial)
participation of its bearer:

EFlow(x) A [Req(y, z, x,Vv) V Req(y, z, v, x)] = Iw, {[PC(w, y, 1) A qt(x, w)]. (22)

Each signal flow for a function is (a proper) part of the function.

SFlow(x) A [Req(y, z, x, v) V Rea(y, z, v, x)] = PP(x,y). (23)

ontology :

2009/1/21(16:37)

2. Functional Basis in DOLCE

5 A conclusion

Returning to our overall project and taking stock of our results, we have formalized in [1]
the engineering notion of function as defined by B. Chandrasekaran and J Josephson [4] and
in this paper the engineering notion of 8 function as set forward by Stone and Wood [10].
As such we have covered the two general approaches in engineering to capture functions: in
the first Functional Representation approach captured by Chandrasekaran and Josephson,
engineers relate functions of devices to behaviours of devices, and then relate these be-
haviours to structural-physical descriptions of the devices; in the second Functional Mod-
eling approach represented by the work of Stone and Wood, engineers model functions of
devices in terms of inputs and outputs, and then relate these functions directly to structural-
physical descriptions of devices. The first approach grants a pivotal conceptual role to
behaviour, suggesting an ontological ordering: devices have their physical structure; this
structure, in interaction with a physical environment, gives rise to the devices’ behaviours;
and these behaviours then determine the devices’ functions. The second approach seems
to side-step the notion of behaviour and relates the physical structure of devices and their
functions directly.

More specifically, Stone and Woods represent their F8 functions of devices and their
components by the operations that those items perform on flows of material, energy and
signals. These functions are then analysed in terms of basic operations on flows. In our
proposal rB functions are interpreted as function types whose instances are perdurants of
certain kinds: rB functions are taken as particular classes of perdurants. These classes of
perdurants chosen are not arbitrary: they are engineering possible perdurants that satisfy
customer needs as well as standard requirements. Here we propose a consistent framework
for the three notions used in rB: function, sub-function, and product function.

Our project is far from finished. We submit our current results as consistent formal-
isations of the two engineering notions of functions in the foundational poLce ontology.
Yet a number of further issues need to be addressed, defining the next steps of our project.
First of all, the formalisations given in [1] and in this paper should be validated as useful
in engineering. Second, having observed that there are two approaches in engineering to-
wards understanding functions, the question arises how the two are related. For our project
this question amounts to the task of relating the formalisations of the notion of function
as given in [1] and as presented here. When these two steps are accomplished, we will be
in the position to compare our results with more sophisticated bodies of work in the on-
tology of engineering. A well-developed and proven proposal on engineering functions to
date is given by the work of Riichiro Mizoguchi and Yoshinobu Kitamura.!” A comparison
of the two formal systems is foreseen. It is also needed to understand, at least in part, the
ontological alternatives that one can take in formalizing the engineering domain.

7 hitp://www.ei.sanken.osaka-u.ac.jp/english/

ontology : 2009/1/21(16:37)

Borgo, Carrara, Garbacz, Vermaas

References

1.

10.

S. Borgo, M. Carrara, P. Garbacz, and P. E. Vermaas. A Formal Ontological Perspective
on the Behaviors and Functions of Technical Artifacts. Artificial Intelligence for Engi-
neering Design, Analysis and Manufacturing, 23(1):(to appear), 2009.

. S. Borgo and C. Masolo. Foundational Choices in DOLCE. In Handbook on Ontologies

(2nd edition). Springer, (to appear).

. S. Borgo and L. Vieu. Artifacts in Formal Ontology. In A. Meijers, editor, Handbook

of the Philosophy of the Technological Sciences, volume Part 2: Artifact ontology and
artifact epistemology. Elsevier (to appear), 2009.

. B. Chandrasekaran and J. Josephson. Function in Device Representation. Engineering

with Computers, 16(3/4):162-177, 2000.

. P. Garbacz. Towards a standard taxonomy of artifact functions. Applied Ontology, 1(3-

4):221-236, 2006.

. Y. Kitamura, Y. Koji, and R. Mizoguchi. An ontological model of device function: indus-

trial deployment and lessons learned. Applied Ontology, 1(3-4):237-262, 2006.

Y. Kitamura and R. Mizoguchi. Ontology-based systematization of functional knowledge.
Journal of Engineering Desing, 15(4):327-351, 2004.

C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. Ontology Library.
WonderWeb Deliverable D18. Technical report, CNR, http://wonderweb.semanticweb.
org/deliverables/documents/D18.pdf, 2003.

G. Pahl, W. Beitz, J. Feldhusen, and K. Grote. Engineering Design. A Systematic Ap-
proach. Springer, 3rd edition, 2007.

R. Stone and K. Wood. Development of a functional basis for design. Journal of Me-
chanical Design, 122(4):359-370, 2000.

. P. E. Vermaas. The Functional Modelling Account of Stone and Wood: some critical

remarks. In 16th International Conference on Engineering Design (ICED 07), 2007.

