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Abstract. We propose a formal framework to represent types in-
tended as (intentional) complex properties characterised in terms of
() simple qualities, e.g., colors or weights; (i) structural proper-
ties, i.e., properties concerning the spatial distribution of qualities,
e.g., being polka-dotted or being uniformly dense; and (4i3) struc-
tured properties, i.e., properties concerning the topological arrange-
ment of the components of assemblies. Our framework is inspired
by work done in cognitive science, in particular by Géirdenfors’ the-
ory of conceptual spaces, as well as by the notion of image schema,
the latter being a theoretical construct to represent general patterns
and the way they apply to heterogeneous cases. Hopefully, our ap-
proach can also contribute to the understanding of the notions of im-
age schema and conceptual space.

1 Introduction

The formal representation of rypes is of fundamental relevance for
conceptual modelling and knowledge representation purposes [17].
In the context of engineering design, for example, it is common to
distinguish between artefacts as individual spatio-temporal objects,
and artefact types as complex properties that classify individual arte-
facts. Take, e.g., John’s and Mary’s Fiat500 cars, namely two distinct
objects. Classifying them as artefacts of the type Fiat500 means that
they have a certain shape, weight, height and spatial arrangement of
components that are characteristic of the Fiat500 type. Generalising
from design, the distinction between types and their corresponding
instances apply to disparate categories commonly used in knowledge
representation, e.g., events, among others.

The modelling of types is challenging. Philosophers have been dis-
cussing about the nature of properties since the early days of philo-
sophical disputes, e.g., whether they are mind-independent univer-
sals, or whether they reduce to human ways of categorising phenom-
ena.” The latter view is at the core of cognitive studies according
to which knowledge acquisition and perception are guided from (or
give rise to) some sort of conceptual structures [4, 20].

Departing from a metaphysical stance, we propose an approach
for the representation of types grounded on cognitive theories. More
specifically, we shall focus on the compound nature of types, namely,
the fact that they are characterised in terms of properties concerning
() qualitative aspects (qualities), (i1) the distribution of such qual-
ities across space and/or time (structural properties), or (iii) other
types each one classifying the component of a topologically struc-
tured assembly (structured properties).

The proposed framework is based on a modified version of
Girdenfors’ theory of conceptual spaces [4], the latter being well-

suited to represent types as multi-dimensional properties, therefore as
being composed of other properties. The framework is also inspired
by studies on image schemas (e.g., [9, 11]). Even though the latter
are challenging to be captured in detail, there is a relative consensus
in understanding them as sorts of (very general) patterns. Johnson
claims that an image schema is “a dynamic pattern that functions
somewhat like the abstract structure of an image, and thereby con-
nects up a vast range of different experiences that manifest this same
recurring structure” [9, p.2]. According to Langacker, image schemas
are “schematized patterns of activity abstracted from everyday bod-
ily experience, especially pertaining to vision, space, motion, and
force” [11, p.42]. Recent approaches devoted to formal aspects de-
scribe image schemas as “patterns abstracting from spatio-temporal
experiences” [10, p.155], or “mental patterns [that] may be combined
with each other to generate more complex structures” [7, p.21]. We
find image schemas useful theoretical constructs to represent recur-
rent configurations and the way they apply, in different contexts and
with different modalities, to heterogeneous cases. The paper is not a
contribution to clarifying or formalising conceptual spaces or image
schemas; it rather proposes a way to re-elaborate some approaches in
cognitive studies to deal with some knowledge representation issues,
as done, e.g., in [10]. Hopefully, however, we can also shed some
light on the very notions (and limitations) of conceptual space and
image schema.

The paper is structured as follows. In Sect. 2 we introduce the main
motivations behind our work. Sect. 3 presents the overall framework
for the representation of qualities. Sect. 4 introduces the machinery
to represent image schemas, which are used in Sect. 5 to represent
patterns of qualities. Sect. 6 presents how patterns may be used to
classify the structural properties of objects according to either time or
space. Finally, Sect. 7 shows how structured properties and complex
types can be represented in the proposed framework.

2 Properties: Types and qualities

In conceptual modelling and knowledge engineering, one commonly
distinguishes between individuals and properties, including a predi-
cation or classification relationship holding between them. Recalling
the example mentioned in the introduction, John’s and Mary’s cars
are two individuals of the same type Fiat500, namely, they are both
classified by the same (complex) property.

Properties bear an intensional nature, i.e., differently from sets,
they do not reduce to their members (extensions). As a consequence,
different properties can classify the same individuals, e.g., being
triangular and being trilateral.® We distinguish two main kinds of
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2 Roughly, this is the distinction between realists and nominalists concerning
the metaphysics of properties.

3 The intensional characterisation of properties is relevant for different
domain-specific scenarios. For example, in the context of design, artefact
types (properties) are not usually specified by listing their instances but by
sets of constraints on relevant characteristics.



properties, namely types and qualities. Types are compounds of sim-
pler properties. Among these properties there are the qualities that
are the simplest properties, i.e., they are not further decomposable.*
For example, the type Fiat500 is composed by qualities like colour,
shape and weight, among others, which constraint the holistic prop-
erties of Fiat500 cars.

Some types classify assemblies with a specific spatial structure.
Fiat500 cars, for instance, consist of disparate components properly
arranged, e.g., bodywork, engine and wheels. From this perspective,
types do not reduce to compounds of qualities; they are characterised
also in terms of what Armstrong calls structured properties. Simi-
larly, Fiorini and colleagues [21, 22] claim that objects recognition
and categorisation is not only based on the global (aka holistic) fea-
tures that objects manifest, but it is also achieved by identifying ob-
jects’ structures in terms of their parts and the way in which parts are
arranged. A theory of cognition has, therefore, to deal with concep-
tual structures about both holistic and structural information.

From a representational perspective, we propose to model the
type/quality distinction following the similarity space theory of con-
cepts [20] and, in particular, the theory of conceptual spaces intro-
duced by Girdenfors [4]. The latter theory provides the basic frame-
work to convey the intensional nature of properties, to characterise
the complex nature of types in opposition to qualities, as well as to
compare different types on the basis of their degree of similarity.

Girdenfors [4] represents concepts—e.g., car, apple, etc.—as re-
gions in a space obtained by composing a given number of do-
mains—e.g., colour, taste, etc. The main reason to decompose a
space into domains is the assumption that the properties in the do-
mains may be attributed to individuals independently of the proper-
ties in other domains; e.g., the weight of an individual is independent
of its temperature or colour.’ Additionally, conceptual spaces have
the peculiarity to be endowed with a distance relation representing
degrees of similarity: the closer are the properties (within a domain),
the more similar are the individuals that exhibit such properties.

The representation of structured properties has proven challenging
in conceptual spaces. In some studies, Fiorini and colleagues [21, 22]
propose a theory of part-whole relations with the purpose of ground-
ing structural relations in cognition. The authors extend Gérdenfors’
theory with structural spaces, which allow for the representation of
the arrangements of the parts within a whole according to certain
configurations.® However, the proposed framework has a mathemat-
ical and combinatorial nature, whereas the modality according to
which the general patterns apply to specific cases is missing. Further-
more, the spatial structure of objects is not only relevant to represent
how types (and the entities they classify) relate in a part-whole man-
ner. Indeed, it also plays a fundamental role in cases in which types
are characterised by distributional properties [18]. Consider, e.g., a
car-type whose bodywork-type is characterised by a colour lozenge
pattern distributed across the overall instances of the bodywork-type.
In a design perspective, there are no components of the bodywork-
type, each being coloured in a certain way. We consider these prop-
erties, called structural properties, in Sect. 6. It remains unclear how
Fiorini and colleagues would approach this case.

4 The distinction between types and qualities is reminiscent of the one, be-
tween classes and attributes assumed in the field of conceptual modelling,
as, e.g., in the UML class-diagram [17]. Furthermore, some qualities, e.g.,
colours, may be compound, too [4]; we do not consider this aspect here.

5 The domains are not totally independent, i.e., they may be correlated.

6 A point in a structural space represents also the particular configuration of
the parts of an object [21].

3  Qualities

We start by introducing two disjoint kinds of properties: QT(x)
stands for “z is a quality”, and TY(x) stands for “z is a type”. This
distinction roughly reflects the one between simple and compound
properties, i.e., in terms of conceptual spaces, the distinction between
properties (in a domain) and concepts. Qualities are partitioned into
a finite number 7 of domains D;, e.g., the domains of colour, shape
and weight. Axiom (Ax1) guarantees that all the qualities belong to at
least one domain, while (Ax2) assures that the domains are disjoint.

Ax1 Q1(z) ¢ VI, Di(x)
Ax2 Al,,_,(Di(z) = —D;(z))

For instance, Dcolour (red) states that the quality being red belongs
to the colour-domain, while Dyeight (1506kg) that the quality being
1506kg heavy belongs to the weight-domain.”

Every quality domain has a fop-quality, i.e., a quality that sub-
sumes all the qualities in the same domain (Ax3). The top-quality of
a domain is noted with the name of the domain, e.g., the top-quality
of Dyeight is noted with weight.

Ax3 A" 3dVq(Di(q) — qCd)

We include time and space among the quality domains repre-
sented, respectively, with TM and SP (rather than D¢ime and Dspace)-
This move is motivated by the fact that time and space are structured
similarly to other domains. However, we attribute them a peculiar
role in the classification relation, since they qualify the classification
(see Sect. 3.1). Recall that some philosophers advocate the ontolog-
ical primacy of time and space. In particular, spatial relations are
claimed to not be reducible to property-grounded relations [8]. We
do not however enter into this discussion; our choice is just aimed
at simplifying the formalisation. Proper qualities, noted as PQT and
simply called qualities, are the qualities that are neither times nor
spaces.

Domains contain comparable qualities. More generally, one can
think of domains as sets of intensionally interlinked qualities. We
introduce a (intensional) subsumption relation between qualities be-
longing to the same domain; see (Ax4), where « C y stands for
“the quality x is intensionally subsumed by the quality y”. D;-
qualities cannot be subsumed by Dj-qualities (with % # 7). For ex-
ample, scarlet cannot be subsumed by any quality in Dyecight; it
could be rather subsumed by red, i.e., scarlet Cred.

Ax4 zCy — \/1_, (Di(x) ADi(y))

Proper subsumption [ is defined in (Df1). Formally, C is a dis-
crete and atomic partial order: it is reflexive, antisymmetric, tran-
sitive, discrete, and atomic, i.e., every quality subsumes an atomic
quality, a quality that does not properly subsume any other quality
(Df2). Ontologically, atomic qualities represent how the world is;
epistemologically, they represent the maximal resolving power one
disposes of, e.g., the finest resolution of measurement devices.

Dfl zCy2zCyA-yCa

Df2 ATqr(z) £ QT(z) A —Jy(yC )

Quality domains may be structured according to further relations.
Images schemas often refer to topological or order structures. We

avoid to introduce a full metrics, as usually done for conceptual
spaces, by assuming all domains to be endowed with at least the con-

7 We note individual constants using the typewriter font.



nection relation >4.® Ordered domains, e.g., TM, Dyeight OF Diength,
are also (linearly) ordered by the precedence relation <. Both con-
nection and precedence hold only among qualities in the same do-
main (Ax5)-(Ax6).

AX5 <y — 7, (Di(z) A Di(y))
Ax6 = <y — \V7_ (Di(z) ADi(y))

Notice that qualities may subsume different (atomic) qualities, there-
fore, times, weights, colors, shapes, etc. are more similar to regions
rather than to points, i.e., C could be interpreted mereologically. In
this perspective, precedence (<) could be seen as the disjunction of
the relations of meet and before introduced in [1], while the RCC
calculus [23] may be considered for connection (><). The detailed
axiomatic treatment of < and < is not relevant for our purposes; we
want just to highlight the possibility to have structural relations (in
addition to subsumption) that are defined in several (or all) quality
domains. As we will see, this aspect is fundamental to characterise
image schemas and patterns.

3.1 Classification

We analyse hereby how qualities can be attributed to individuals.
Since qualities are in the domain of quantification, the standard pred-
ication mechanism of FOL cannot be adopted. It is thus necessary to
introduce a new primitive relation, named classification, and to es-
tablish under what conditions individuals are classified by qualities.
Here we focus on the classification of physical objects (noted OB),
aka continuants or endurants, that are in, and can change through,
space and time, e.g., my car, Barack Obama, the earth, etc. The
framework can be however applied, with minimal tuning, also to
events, aka occurrents, perdurants.

We start from a local notion of direct classification under qualities:
dCFqr(q, z, s, t) stands for “the (proper) quality ¢ directly classifies
the object x: as it is at space s and time t”.° Given the possibility for
objects to change through both time and space, the classification is
spatio-temporally qualified."® For instance, John can decide to paint
his red volleyball half in orange and half in blue.

Ax7 dCFqr(q,x, s,t) — PQT(q) A OB(x) A SP(s) A TM(t)

One could interpret dCFqr taking a mereological stance: when
CFqr(q, z, s, t) holds, the entity that has the quality g is not  but a
different object, namely the part of z that, at ¢, is (exactly) located
at space s. We assume a weaker position that does not equate the
resolution of space with the one of objects, i.e., atomic objects can be
located in non-atomic spaces. We come back to this point in Sect. 7.

By relying on subsumption, (Df3) defines the relation of lo-
cal indirect classification: q indirectly classifies x as it is at space
s and time ¢ when x is locally classified under a quality that
is (properly) subsumed by g. For example, if crimson [ red
and dCFqr(crimson, jball, s, t), then iCFqr(red, jball,s,t)
(jball stands for John’s volleyball).

Df3 iCFqr(q,z,s,t) = 32(dCFqT(2, z,5,t) A 2 q)

(Df3) captures a disjunctive reading of classification: it is enough

8 Some domains could have alternative topological organisations, e.g., the
colour spindle or the RGB colour wheel, see [4]. In the following we as-
sume domains to have a unique topological organisation.

9 Local classification is much more informative than holistic classification.

10 Classification could also be qualified with proper qualities. For instance,
dCFqT(10kg, ©,red,t) would be read as “z weights 10kg as it is at
colour red and time ¢”. We leave this interesting extension to future work.

to be directly classified under one of the qualities that are sub-
sumed by ¢ to be indirectly classified under g. For instance, suppose
crimson [ red and scarlet [ red. Both scarlet and crimson enti-
ties are indirectly classified under red. The difference between direct
and indirect classification is cognitively and empirically relevant. Di-
rect classification is the result of a direct observation or sensation
while indirect classification relies on an abstraction process. Objects
can be thus directly classified under non-atomic qualities, i.e., it is
possible to have partial or general information due to the resolution at
which the world is accessed. It is possible, for instance, to know that
John’s volleyball is red without knowing its exact shade. This means
that direct and indirect classification are not mutually exclusive. For
instance, in an empirical context, it is possible to have measurements
about the same object taken with devices that have different resolu-
tions. This is a departure from the Girdenfors’ theory of conceptual
spaces where an object is always represented by one single point in
a space.'' The general relation of local classification abstracts from
the direct vs. indirect distinction (Df4).

Df4 CFqr(q,x,s,t) 2 dCFqr(q, x, s,t) V iCFqr(q, T, 5, t)

To clarify what the qualification “at space s and time ¢’ means we
introduce the primitive relation of being present: PRE(z, s,t) stands
for “the object x is present at the spatio-temporal region identified
by space s and time ¢, i.e., “at t, z occupies s” (Ax8)."> As said, we
focus on spatio-temporal objects, i.e., objects that are present both
in time and space (Ax9). The local classification (at s and t) of an
object requires its presence (at s and t), see (Ax10).

Ax8 PRE(z,s,t) — OB(z) A SP(s) A TM(t)
Ax9 0B(z) — Jst(PRE(z, s,t))
Ax10 CFqr(q,z,s,t) — PRE(z, s,t)

First note that being present at s and ¢ is not equivalent to being
present at s and being present at ¢t. Second, and more importantly,
being present at s and ¢ is not a disjunctive abstraction from being
present at some atomic subregions of s and ¢.'* For PRE we have a

sort of conjunctive reading: being present at s and ¢ requires to be
present at every subregion (Ax11).!

Ax11 PRE(z,s,t) ArCs AulCt— PRE(z,r,u)

Spatial location (at t) is defined in (Df5).!% (Df6) introduces the
classification of an object as it is at its whole spatial location, i.e., it
determines the global (aka holistic) qualities of an object.

Df5 Lsp(w, s, t) 2PRE(z, s,t) A =3r(PRE(x, 7, t) A SC7)
Df6 CFqr(q,z,t) = 3s(Lsp(z,s,t) A CFqr(q, x, 5, 1))
Extensional relations between qualities can be introduced by rely-

ing on the global CFqr. By (Df7),  Cy (read as “x is (extension-
ally) included in y”) holds when every entity globally classified at

11 See [5, 14] for some criticisms about this assumption.

12 Here we assume a sort of container-like notion of space. One could substi-
tute spaces with places, spatial entities that are more abstract than spaces
and that can be defined relatively to physical objects, e.g., the top, the in-
terior, etc., see [2]. Similarly for times.

13 As for the characterisation of types (see Sect. 7), approximate localisation
in space-time can be represented by means of rough sets (see [14]).

14 One could think to introduce a conjunctive classification primitive cCF
that behaves similarly to PRE. For instance, cCF(red, z, s,t) would im-
ply a classification by all the color-qualities subsumed by red, e.g.,
cCF(scarlet,z, s,t), cCF(crimson, z, s, t), etc. In Sect. 6 we introduce
structural properties, that, in our opinion, are stronger tools to characterise
properties that require an object to have different qualities of the same kind.

15 The location is unique only when specific constraints on SP hold.



any time by the quality « is also globally classified, at the same time,
by y. For example, assume that all the red entities in the domain of
quantification also weigh 1kg, then we have red C 1kg. (Th1) can be
trivially proved. However, the vice versa does not hold. This makes
explicit the intensional nature of C. Furthermore, different qualities
may have the same extensions, that is, z Cy A y C = does not imply
x = y. Finally, note that empty-qualities, i.e., qualities that classify
no object, are included in, but not subsumed by, all the qualities.

Df7 xCy = PQT(x) A Vzt(CFqr(w, 2,t) — CFqT(y, 2,t))
Thl zCy - zCy

4 Image schemas

As outlined in [16], images schemas are very abstract spatial struc-
tures with qualitative (topological) characteristics, i.e., they are not
precisely characterised in terms of (geometric) magnitude or shape.
This makes image schemas “highly flexible preconceptual and prim-
itive patterns” [16, p.217] that can be instantiated in different con-
texts. They are ‘malleable’ enough “to fit many similar, but different,
situations that manifest a recurring underlying structure” [9, p.30].
Our idea is to capture these abstract structures by relying on the
qualitative relations of connection (<) and order (<) defined in the
quality domains, i.e., intuitively, an image schema classifies tuples of
qualities satisfying structural constraints expressible via > and <.

Technically, image schemas are represented by higher-level quali-
ties, qualities of tuples of homogeneous qualities. As we will see, this
approach generalises the one in [4] where ‘patterns’ of locations of
objects along a quality domain are represented as higher-level prop-
erties (sets of tuples in product spaces).

Tuples, represented by TU, are introduced into the domain of quan-
tification. They are disjoint from objects, as well as from qualities
and types. Tuple variables and tuple constants are noted with @, U,
etc. Tuples are formally characterised by following the strategy usu-
ally exploited to reify relationships in FOL [6]. To cope with a first-
order formalisation, tuples are assumed to have a maximal length £.
We thus introduce ¢ primitive binary relations —o;, where x —o; @
refers to the ith element = of the tuple @, see (Ax12) and (Ax13).
Axioms (Ax14) and (Ax15) assure that tuples have at least two ele-
ments, and when tuples have the ¢th element, they also have all the
previous elements. (Ax16) establishes the identity criterion for tu-
ples, i.e., two tuples are identical if they have the same elements in
the same order. It is easy to prove the unicity of the tuple @ such that
Z1...xn—oU (with n <¥), see (DfY), that is noted (z1,...,Zn). As
expected, the same element can appear in different positions of the
same tuple, e.g., (a,b), (a,b, a,a) or (a,a) are all valid and differ-
ent tuples. (Df9) establishes when two tuples have the same length,
while TU identifies the tuples with all different elements (Df10).
The subsumption relation between tuples is defined in (Df11).

— A
Df8 zi...zp,—ou =AY

1:1(451_01 @) A /\f_:nJrl—\a.Z‘(aZ —0; 1)
Df9 4 =10 2 TU(T) A /\[izl(flx(x —o; @) +» Jy(y —o; 7))

DF10 TUL (@) £ TU(@)AAL L5 Vay(z —oiT Ay —o5T — 27y)

Dfll aCrud 2 @ =1 9ANS_ Vay(z —; G Ay —0; 7 — xCy)

Ax12 /\li:1 Vau(x —o; u — TU(@))

Ax13 AY

Lo Vaytu(z —oi WAy —o0i T — z=y)

Ax14 TU(ﬂ) — vf.;ﬁj:l Elxy(x —0 i uUNY —oj ﬂ)
Ax15 TU(7) = N _,(3z(x —o3 @) — Jy(y —o;-1 7))

Ax16 =7 > TU(@) A \;_, Va(z —oi @ <> z —o; T)

For our purposes, it is important to individuate tuples of qualities
belonging to the same domain, i.e., [D;]TU-tuples (see (Df13) where
—o is defined in (Df12)), e.g., [TM]TU-, [SP]TU-, or [Dcolor | TU-tuples.
DTU abstracts from the specific quality domain (Df14). Hedblom and
colleagues [7] define paths as “collection[s] of two or more sites,
which are connected by successor relationships” [7, p.27]. DTU-
tuples can be seen as paths where sites are qualities (locations of
objects) in a domain and the successor relation is captured by the or-
der of the elements in the tuple. For this reason, we will use the terms
path and DTU-tuple interchangeably.

DfI2 z—oa2\_ z—o;a
Df13 [p;]Tu(@) 2 TU(@) A Vo (z—o @ — D;(z))
Df14 pru(a) = \/7_, [Ds]TU(R)

Image schemas, represented by IM, are disjoint from all the other
kinds of entities, QT included, i.e., QT collects only the qualities
that directly classify objects. Image schema variables (constants) are
noted with ¢, o, etc. (using small caps). We assume (tuples of) qual-
ities to be static, i.e., the direct classification dCFiv between image
schemas and tuples of qualities does not need to be spatio-temporally
qualified. In addition, we assume image schemas to classify only ho-
mogeneous qualities (Ax17).

Ax17 dCFim(o, @) — M(o) A DTU(T)

Intuitively, image schemas capture general structural constraints.
This idea can be formalised by means of constraints like (Ax18)-
(Ax20), which characterise, respectively, the image schema 3MC of
triples of mutually connected qualities, the image schema PWC of
pairwise connected qualities, and the image schema INC of increas-
ing qualities. These constraints do not refer to specific quality do-
mains, they involve only shared structural relations. Image schemas
are thus cross-domains. For example, (1kg, 2kg, 4kg) and (1m, 7m)
are both instances, with different length, of INC.

Ax18 dCFiv(3MC, @) > Jzyz(zyz o u A<y Aydz A zXx)
Ax19 dCFv (PWC, @) > N2 Vay(z—osa Ay—o; 417 — z>x1y)
AX20 dCF1v(INC, @) ¢ N\ Vay(z—osa A y—o; 117 — = <y)

Note that the form of these constraints—for instance, the fact that
they involve only the < and p< primitives—can be regulated only
at the meta-level. The structural nature of image schemas is thus
only poorly captured by our FOL framework. A second problem con-
cerns the intensional nature of image schemas. Gérdenfors builds pat-
terns in a purely mathematical manner as subsets of product spaces.
Accordingly, Gérdenfors’ patterns have a purely extensional nature.
Vice versa one could think, for instance, that the 3-long patterns
being equidistant and forming the same angles defined on triples
of (punctual) spaces are co-extensional but different. In principle,
our framework is compatible with this intensional stance. However,
the formulas that characterise the being equidistant and forming the
same angles patterns are (in Euclidean geometry) logically equiv-
alent. One should then assume the way patterns are characterised
through axioms to impact the identity of patterns. The proper char-
acterisation of the intension of image schemas is left for future work.

Our image schemas are similar to predicates that apply to tuples
of qualities. In this sense they are close to the patterns of Girdenfors
[4]. There are however some important differences that show that our
image schemas are more abstract and more flexible than patterns.
First, in [4], all the instances of a pattern are tuples of a product



space obtained from a given domain. For instance, following [4],
lighter and shorter are two different patterns. Vice versa, the
image schema INC is flexible enough to apply both to weights and
lengths. Sect. 5 shows how the relations being lighter than and be-
ing shorter than are obtainable by applying the image schema INC
to weights and lengths, respectively. Second, according to [4], all tu-
ples instantiating a pattern have the same length. We have already
shown that this does not hold for image schemas, which may be in-
deed cyclic (see, e.g., [7]) o—using the terminology of Galton [3]—
open, i.e., without a pre-established length.

5 Patterns

We introduce hereby patterns that result from the instantiation of im-
age schemas in given contexts. Intuitively, a context localises an im-
age schema in the sense that it constrains the qualities the schema can
apply to. We represent contexts by DTU-tuples and patterns (noted
with PT) by couples (o, ¢) where IM(c) and DTU(G), i.e., they are
image schemas together with contexts of application. Pattern vari-
ables and constants are noted p, g, etc. The context ¢ constrains the
schema o in the sense that it filters out all the tuples classified by
o that are not subsumed by ¢, see (Df 15).'® Furthermore, € sets the
length of the pattern, i.e., by (Df11), all the instances of (o, ¢) have
the length of ¢. Patterns have then a fixed lenght.

Df15 dCFpr((0,c), ) 2 PT((0,E) A dCFmv (0, @) A GETUE

Following Gérdenfors, our patterns can be used to classify tu-
ples of objects, i.e., to represent internal relations among ob-
jects (Df16)."7 For instance, (INC, (weight, weight)) represents be-
ing lighter than, while (INC, (lenght,lenght)) represents being
shorter than.

Df16 dCF((o,¢), %, t) £ PT((0,6) Aé=LZ AJu(dCFpr (0,E), &) A
N Vuz(u —o; @ Az —05 & — CFqr(u, x,t))

The subsumption relation between patterns is defined in (Df17).
Note that (Df17) requires the identity of image schemas, i.e., only in-
stances of the same schema are comparable. For instance, by requir-
ing tuples to have specific color-qualities, (PWC,(red,blue,red)) is
subsumed by (PWC,(color,color,color)).

Df17 (01,81)Cpr (02,8) = 01=02 A& Cruée

To sum up, a pattern (o, ¢) captures the same structure of an image
schema o but it is less abstract than o because (¢) it has a fixed-length
(set by &); and (%) it focuses on the (DTU-)tuples subsumed by ¢.

6 Structural properties

With the technical and conceptual machinery previously introduced,
we now approach the representation of structural properties of ob-
jects, i.e., properties that take into account the way a pattern of qual-
ities is exhibited by an object. Here we consider temporal and spatial
ways (aka modalities) of exhibiting patterns. Roughly, our idea is that
an object has a structural quality when it exhibits a pattern of qual-
ities temporally or spatially arranged according to a second pattern.

16 Note that dCFp (o, €), ) does not always hold.

17 An internal relation R is a relation such that the truth-value of R(a, b)
depends exclusively on similarity judgments along quality domains con-
cerning the objects a and b only. See [13] for more details. Note that, our
image schemas, through contexts and patterns, can apply to objects. This
seems to contrast with the position in [11, 7], where images schemas, in
particular the PATH schema, only apply to events or activities.

Structural properties, noted with SPR, are represented by couples of
patterns (g, a), where @ constrains the (temporal or spatial) arrange-
ment of the qualities constrained by . We assume the context of & to
have the same length of the context of § and to be (i) a [TM]TU-tuple
or (4t) a [SP]TU-tuple. Structural properties with a temporal arrange-
ment (case (2)) are called historical properties (see [15]), while the
ones with a spatial arrangement (case (i4)) are called distributional
properties (see [18]). (Df18) defines subsumption between structural
properties.

Df18 (G1,d1) Espr (G2, G2) = SPR((G1,@1)) A SPR((G2, G2)) A
G1Cprg2 N a1 Cpras

The classification of an object under an historical property is de-
fined in (Df19): at ¢, the object z is classified by (g, @) (where a is a
temporal arrangement) when, before t, following the time a-path a,
the object x holistically follows the quality -path .'8According to
(Df19), historical properties hold in virtue of the temporal distribu-
tion of the qualities the classified object had in its past history.'

Df19 tCF((g,a),z,t) = SPR((g, @) A [TM]PT(G) A
3ga(dCFpr (g, §) A dCFpr(a, @) A TUx(a) A
Ni-¥galg—: G A a—o;a — (CFqr(q, @, a) Aa<t)))

The classification of an object under a distributional property is
defined in (Df20): at ¢, the object x is classified under (g, a) (where
a is a spatial arrangement) when, following the space a-path a, the
object x locally follows the quality ¢-path q. According to (Df20),
distributional properties hold in virtue of the spatial distribution of
the qualities of the classified object.

Df20 sCF((g,a),z,t) = SPR((g, ) A [sP]PT(a) A
3ga(aCcFpr(g, ) A dCFpr(8,a) A TU=(a) A
Ni_\Vqa(g—os G N a—oia — CFor(q, =, a,1)))

Intuitively, the same object can be classified under a structural
property by following different (cognitive) procedures, i.e., by fol-
lowing different paths. For instance, consider the distributional prop-
erty ((PWC, (color, color)), (PWC, (space, space))), i.e., having
two connected colors at connected spaces. Consider (red, orange),
(orange, red), (si,s2) and (so, s1) (where these colors and these
spaces are assumed to be connected). If an object is (at t) red
at s; and orange at s, then, according to (Df20), we can follow
(red, orange) according to (s1, s2), or (orange, red) according to
(s2,s1). Thus, sCF concerns only how the object is at given spaces,
not how it is (cognitively) explored. However, assume now the ob-
ject is (at t) also yellow at space s3 (With s, < s3). This object is
classified by the above distributional property by following the paths
(red, orange) according to (s1,s2) or, alternatively, by following
the paths (orange, yellow) according to (so, s3), i.e., the object ex-
hibits the same structural property at different spaces. To avoid that,
one could assure that the spatial location of the object (or its visible
surface) is wholly covered by the spatial path. Analogous considera-
tions hold for tCF.

7 Types

Girdenfors’s concepts are compounds of properties (belonging to
different domains), i.e., they are regions in the multi-dimensional
space composed by the domains. We extend this notion of concept
(and conceptual space) by characterising our types in terms of both

18 Where [D;]PT((0, ) = [D;]TU(E).
19 Clearly these properties are relevant also to characterize events (even
though in this case the classification is not temporally qualified).



qualities (QT-instances) and structural properties (SPR-instances).
The properties in the union of QT and SPR are called features. Notice
that, even though distributional properties depend on how a given
quality pattern is spatially arranged, they are still holistic, i.e., they
apply to the whole objects. At the end of the section, we add (4) struc-
tured properties (to be distinct from structural ones), i.e., following
Armstrong, properties that hold in virtue of the way the classified
object is mereologically structured into components of given types;
and (i) relational properties, i.e., properties that hold in virtue of the
way the classified object connects with the environment.

Characterisation—CH(z, y) reads as “the type x is characterised
by the feature (quality or structural property) y”—represents the link
between types and features. Types have a multi-dimensional nature,
they are characterised in terms of at least two, but usually several,
domains (Ax21), where [D;]SPR((¢, &) £ [D;]PT(§).”
Ax21 1Y(z) — Jyz(CH(z,y) A CH(z, z) A

i=1((Di(y) V [Di]sPR(y)) A =Dy (z) A —[Di]SPR(2)))

i=1

The features of types are not ordered, types just cluster features
(belonging to different domains). Indeed, these features are not nec-
essarily atomic (see (Df2)), e.g., the Fiat500 type can be charac-
terised by the red colour even though the colour-domain could con-
tain more specific shades of red, like crimson, scarlet, etc.

Following the classical theory of types, one can assume that the
features of a type express necessary and sufficient conditions to be
classified by the type. In this classical perspective, the classification
of an object by a type reduces to its classification by all its features.
Structural qualities slightly complicate the scenario because depend-
ing on the kind of arrangement (temporal vs. spatial) one needs to
consider tCF or sCF. The definition of the classification of an object
under a type (CFrv) is given in (Df21).

Df21 CFry(z,y,t) 2 TY(2) A
Vz(CH(z, z) = ((QT(2) — CFqr(2,9,t)) V
([TM]SPR(z) — tCF(z,y,t)) V
([sP]sPR(z) — sCF(z,y,t)))

There exist several possibilities to weaken the classical view on
classification under types. For instance, one may introduce two
characterisation-like relations to grasp the distinction between nec-
essary and optional features of types, or introduce a ‘weight’ for
each feature (as done for concepts in conceptual spaces). One may
also distinguish the set of features sufficient to be classified by a type
from the set of features sufficient to nor be classified by a type.”!
Classification could also rely on the metrics of the domains (and on
the metric of the overall space), i.e., one could see our notion of type
as an extension of the one of prototype (see [24]) and capture clas-
sification (categorisation) on the basis of the distance between the
qualities of the object and the features of the type.

Types can be organised by means of subsumption Cry (Df22).
Given the definition of Cgpr (Df18), Crv is grounded in the sub-
sumption between qualities, i.e., following Gérdenfors, the way types
are organised mainly depends on the organisation of qualities. Note

20 (Ax21) excludes the possibility to characterise a type in terms of both a D;-
quality and a [D;]SPR-property. This could be criticized. For instance, one
could assume that an object with a given colour pattern could also have an
holistic colour, i.e., the (conventional) colour of the whole object emerges
from the colour pattern. This situation could be represented by providing a
link between colour distributional properties and colour qualities, i.e., the
classification under a colour quality would be inferred by the one under the
corresponding strctural property. This is another interesting point that we
do not address here.

21 This approach can be represented by means of rough sets [19].

that a type characterised by a (structural) quality can subsume only
types characterised by (structural) qualities (in the same domain). It
is trivial to prove that CFrv is closed under Crvy (Th2), i.e., indirect
classification under types is encapsulated into CFry.

Df22 zCryy £ TY(y) A
Vz(CH(y, z) — Jw(CH(z, w) A (wC 2z V wlgpr 2))
Th2 CFry(z,y,t) AxCryz — CFry (2,9y,t)

As observed by Fiorini and colleagues [21], object recognition and
categorisation are grounded not only in holistic properties but also in
the identification of parts of the objects and the way these parts are
structured. The number, the types, and the arrangement of parts are
all essential aspects to found structural similarities between objects,
an idea very close to the one of structured properties of Armstrong.

We start to sketch the formalisation of structured properties by ex-
tending the notion of pattern’s context: patterns have the form (o, ¢)
where ¢ is now a DTU-tuple or a tuple of types. Structured proper-
ties, noted with TPR, have the same form of structural properties, i.e.,
(p, ), but now p is a pattern with a type-context.”> We then con-
sider a temporary parthood relation defined on objects: PART(z, y, t)
stands for “the object x is part of the object y at time ¢” (see [12]
for a FOL axiomatisation). Notice that, by excluding the possibility
to have spatially co-localised objects, PART can be reduced to spatial
inclusion.” The local classification by the type p of the object x as
it is at space s and time ¢ is the classification under p of the part of x
that, at ¢, is exactly located at s (Df23).2*

Df23 CFrvy(p,z,s,t) =
3y(PART(ya x, t) A Lsp (y’ S, t) A CFTY(pa Y, t))

The classification of an object under a structured property is de-
fined in (Df24): at ¢, the object x is classified under (g, a) (where
a is a spatial arrangement and § a type-pattern) when, following the
space G-path a, the object x mereologically follows the fype ¢-path
g, i.e., its components selected by the spaces in a are instances of the
correspondent types in G.>

Df24 mCF((G,a), z,t) = TPR((G, ) A [SP]PT(&) A
3ga(dCFpr(q, ) A dCFpr(a,a) A TUx(@) A
Ni_Vqa(g—o; g A a—osa — CFry(q,,a,t)))

Our approach differs from the one of Fiorini and colleagues
[21, 22] for two main reasons. First, in [21, 22] objects are always
though as completely specified, i.e., as already noticed, an object
is represented by a point in a conceptual space. By extending con-
ceptual spaces with structural spaces an object comes already with
all its parts (of given types) and the position of these parts with re-
spect to the whole. Vice versa our framework can represent partial
information, including mereological one, about objects. Second, and
more importantly, [21, 22] focus on the representation of structural
information in the framework of conceptual spaces where the similar-

22 Whether and how < or > can be defined on types is not taken into account
in this paper. The only image schema that applies to tuples of types is the
one that allows to built the paths.

23 E.g., PART(z,y,t) 2 Isr(Lgp(z, s,t) ALsp(y,r,t) AsCr).

24 CFry (p, x, s, t) may also be introduced without reference to parts. The
case of types characterised only in terms of qualities is a straightfoward
generalisation of (Df20). The case of types characterised in terms of struc-
tural (and structured) properties requires to change (Df20) to assure the
spaces considered in the tuple @ to be included in s.

25 Similarly to what noticed about (Df20) at the end of Sect. 6, (Df24) does
not guarantee = to be an assembly of only the components selected by
a, i.e., ¢ may have components not considered by the structured property
(G, ).



ity relation is central. The construction mechanism behind structural
spaces is purely mathematical, i.e., structural spaces are the mathe-
matical product of the spaces that represent the parts and the ones that
represent the whole-centered position of the parts. Our approach is
more explicative, since it makes explicit the dependence of structural
and structured properties from the instantiation of images schemas,
namely, it offers a basis to explain structural similarities in terms of
image schemas.

A relational property of an object & can be seen as a structured
property of an object (a system) y that has  among its components,
i.e., it represents the way x is linked to the other components of y.
The relational classification of objects under structured properties is
defined in (Df25).%

Df25 rCF((G,a),x,t) = TPR(4, &) A [SP]PT(a) A
Jyrqa(dCFpr(G,3) A dCFpr(a,a) A TU(a) A
Lsp(z,r,t) APART(z,y,t) Ar—0a A
NS_Vga(q—o: G Aa—o;a — CFry(q,y,a,t)))

(Df21) and (Df22) can then be extended to include structured
and relational properties among the features that characterise types.
These properties are fundamental to model assembled artefacts.

8 Conclusions

We presented a formal approach for the representation of compound
types by modifying and extending Gérdenfors’ theory of conceptual
spaces. This is done by considering the notion of image schema and
by generalising Gérdenfors’ approach to patterns. In our framework,
image schemas represent abstract (topological) structures, whereas
patterns apply image schemas to specific quality-domains. Patterns
are then used to specify either the historical properties of objects,
namely constraints over their evolution in time, or objects’ distribu-
tional or structured properties.
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