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ABSTRACT 
Modern production systems are increasingly using 
artificial agents (e.g., robots) of different kinds. Ideally, 
these agents should be able to recognize the state of the 
world, to act optimizing their work towards the 
achievement of a set of goals, to change the plan of 
action when problems arise, and to collaborate with 
other artificial and human agents. The development of 
such an ideal agent presents several challenges. We 
concentrate on two of them: the construction of a single 
and coherent knowledge base which includes different 
types of knowledge with which to understand and 
reason on the state of the world in a human-like way; 
and the isolation of types of contexts that the agent can 
exploit to make sense of the actual situation from a 
perspective and to interact accordingly with humans. 
We show how to build such a knowledge base (KB) and 
how it can be updated as time passes. The KB we 
propose is based on a foundational ontology, is 
cognitively inspired and includes a notion of context to 
discriminate information. The KB has been partially 
implemented to test the use and suitability of the 
knowledge representation for the agent’s control model 
via a temporal planning and execution system. Some 
experimental results showing the feasibility of our 
approach are reported. 
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1. INTRODUCTION 
The research community in Robotics and Artificial 
Intelligence has been building sophisticated robots for 
decades applying many available technologies.  Still a 
limited understanding exist on what are the essential 
features of a generic artificial robotic agent. 
Furthermore, today robots are successfully applied in a 
large spectrum of applications (i.e., from simple 

washing machines to swarm robots and even 
humanoids), but it is still unclear how to best integrate 
different parts and modules into a single entity that can 
smoothly operate in an environment, understanding the 
actual situations and acting in order to achieve some 
given goals. These problems also hold in the more 
restricted area of industrial robots, which are built to 
enhance the productivity at the shop floor, and which 
operate in controlled, or at least constrained, 
environments.  

In the manufacturing context, an open problem for 
researchers is the construction of systems that can 
quickly adapt (and possibly anticipate) changes in the 
production requirements [33]. Moreover, the concept of 
Industry 4.0 [45] is pushing manufacturing systems to 
evolve towards customer-oriented and personalized 
production, while trying to guarantee the advantages of 
mass production systems in terms of both productivity 
and costs [43]. Such systems are being conceptualized 
counting on the employment of highly flexible and 
reconfigurable machines [44]. Traditional approaches 
rely on centralized hierarchical control structures, not 
easily adaptable to different production settings without 
strongly affecting the productivity of the shop-floor. 
Indeed, they usually require major overhauls of their 
control code each time that any sort of system 
adaptation and/or reconfiguration is required. This is 
especially true in dynamic working environments like 
Reconfigurable Manufacturing Systems (RMSs) [23] 
where the actual capabilities of an agent and even the 
production processes of the factory may change very 
quickly. Different configurations of the shop-floor (e.g., 
increasing the number of available working machines) 
or the introduction of new production capabilities (e.g., 
considering new type of work-pieces or tool) may affect 
the type of tasks agents carry out as well as the related 
production procedures. Artificial Intelligence (AI) 
techniques like, e.g., plan-based control, usually rely on 
a once-defined, static model of the world which could 
become obsolete very soon in dynamic contexts. The 
model requires a great design effort to capture all the 
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possible configurations and it needs a continuous 
maintenance which may negatively affect productivity 
of the plant.  

The research goal of this work is to enhance the 
flexibility of "classical" plan-based control 
architectures by integrating knowledge representation 
and reasoning mechanisms into the control loop (i.e., 
the closed-loop control of high-level activities, goals 
and states). The pursued approach is that semantic 
technologies can provide the representation and 
reasoning functionalities that robotic agents need to 
dynamically recognize particular production settings 
and adapt control models accordingly. The paper 
considers a concrete case study to provide an example 
of how knowledge representation techniques can 
significantly improve flexibility and adaptability of AI 
plan-based architectures by dynamically regenerating 
the control model according to the specific state of the 
working environment. 

More specifically, this paper presents parts of a new 
cognitive architecture, suitable for artificial agents such 
as, e.g., robots, which leverages an ontological 
approach for knowledge classification and management 
in order to smooth the information flow from the 
knowledge about the environment and robot’s goals 
(desired states) to the planning and execution module. 
More precisely, the proposed contribution relates to i) 
the structure of a Knowledge Base (KB) of the robot, ii) 
a knowledge manager that stores the model of the world 
and infer new information to recognize operational 
situations, and how the KB can be exploited to gather 
the information needed by the agent’s control module 
where planning and execution take place. Admittedly, 
this approach takes care of just one of the local 
properties, the KB module, and one of the global 
properties, the connection between the KB and the 
control module. Yet, this connection is today critical: it 
involves the manipulation of symbolic information at 
different levels of generality and its translation into state 
variables for controlling each component of the robot 
and, consequently, its interaction with the environment. 

Structure of the paper: Section 2 presents the state of 
the art on the use of ontologies in robotics. Section 3 
presents the structure of the considered KB. Section 4 
introduces the DOLCE ontology and then presents 
specific extensions to cover engineering high-level 
notions. In the same section, a contextual classification 
of information is presented. Section 5 describes how the 
KB is exploited for extracting the information needed 
by the control module . The general plan-based control 
loop is presented in Section 6 and some tests for the 

validation of the approach are presented and discussed 
in Section 7. Section 8 concludes the paper. 

2. THE STATE OF THE ART 
In robotics and more generally in manufacturing, 
ontologies have been recognized as true enablers of 
adaptable and flexible systems compared to classic 
approaches [28,34] and, consequently, have been 
exploited in the attempt to design more autonomous, 
flexible, adaptive and proactive artificial agents. Since 
researchers have applied ontologies to solve or at least 
mitigate a variety of problems, applications differ in 
their assumptions and goals. 

In [31], a Robot knowledge framework (OMRKF) is 
exploited. OMRKF includes a series of articulated 
ontologies layers, including a robot-centered and a 
human-centered ontology. Beside a perception layer, 
enabling sensory data, the system includes an object 
layer (model), a context layer and an activity layer. The 
lack of the foundational approach can be seen in the 
object classification, e.g., “living room” is classified as 
a space region and not as the role of the region (the 
problem becomes clear by observing that a region of 
space is fixed while the living room can be located in 
different parts of the building at different times, and can 
even disappear from the building), as well as in the lack 
of activity vs. functionality distinction, e.g., “avoid 
obstacle” is not a behavior but a function which can be 
implemented by different behaviors like, e.g., moving 
away or turning around.  

Relatively to the connection between the KB and the 
planning module, [19] exploits a model filtering 
approach based on a Hierarchical Task Network (HTN). 
The agent’s knowledge of the environment is stored in 
a fixed ontology and some filters on this knowledge are 
set up. Given a planning task, the system selects one of 
the filters to isolate a suitable subset of the system’s 
knowledge and uses this subset to constrain the plan by 
deleting non-reachable constants. While this technique 
can be efficient in terms of plan adaptation, the 
knowledge is only filtered, thus cannot be augmented 
nor modified, not even contextualized to the problem 
showing a lack in flexibility. It is important to generate 
planning models tailored to the actual status of the agent 
and its environment: changes on these can easily make 
the starting plan obsolete as it happens, for instance, 
when the capabilities of the agent are affected by a 
sudden lack of resources or a (perhaps partial) failure of 
a component.  

[3] also treats tasks within the HTN approach and uses 
an ontology for the domain knowledge which encodes 
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task information. The goal is to combine procedural 
knowledge and ontological knowledge. The planning 
knowledge is modeled by adding task concepts to the 
ontology and also predefined decomposition methods 
that are applied in order to decompose task concepts 
into executable tasks. New methods can be inferred by 
reasoning on combinations of executable tasks. The 
paper focuses on the correspondence between 
subsumptions among task concepts in the ontology and 
corresponding decompositions in the planning domain. 
The starting ontology is assumed to be given and is 
clearly limited by the expressivity of the chosen 
language (Description Logic). This makes reasoning 
feasible at the cost of information quality: even basic 
ordering information among the tasks must be stored 
outside the ontology. Other research projects, like 
KnowRob [32] and ORO [25] focus on learning and 
symbol grounding and use ontologies for obtaining an 
action-based knowledge representation able to support 
cognitive functionalities. At the ontological level, these 
knowledge systems show problems similar to those 
discussed earlier (e.g., functionality is confused with 
activity so that it is not possible to “discover” new ways 
of performing functions). A further issue is the lack of 
stability in the ontology since some parts are developed 
on demand or depend on the interaction with other 
agents, that is, the ontology itself is data dependent. This 
approach can potentially introduce consistency 
problems that, unfortunately, are hard to detect in a 
dynamic knowledge base. 

Ontologies have been applied to increase flexibility in 
modeling and planning of, e.g., mechatronic devices 
[2], resources in collaborative environments and the 
whole enterprise [30], collaborative robots [21] and 
navigation robots [12]. [2] uses a fixed ontology to 
collects static and dynamic information relative to a 
robot. The basic actions of the robot are hard-coded but 
the ontological system, which includes a PDDL 
ontology where knowledge about actions is stored, adds 
some flexibility like the possibility to learn articulated 
actions and to act with partial information, e.g., 
information about the location of the object to move. In 
this application, beside the lack of functionality/activity 
distinction, the robot has very limited knowledge of the 
environment. [30] describes an ontological model 
aimed to represent the resource capabilities for the 
development of products and processes. The model is 
part of a larger ontology for collaborative and integrated 
development of products, processes and resources.  

This approach is based on the foundational ontology 
DOLCE, which we introduce in the next section, and 
takes a general perspective. While this work goes in the 

right direction, it is not aimed to furnish a knowledge 
system targeting single artificial agents; the goal is to be 
able to integrate all the relevant perspectives in the 
enterprise including the modeling of both engineering 
and management activities. The approach does not 
include contextual knowledge. [21] focuses on the 
scenario of robot guides offering a tour of a building, 
and develop a system for heterogeneous robot 
collaboration (e.g., receptionists and companions). The 
idea is to use ontologies for contextual information: 
there is an ontology for the user, one for the robot and 
one for the topic. For instance, the user ontology 
contains the user’s profile, topics of interests, and prior 
knowledge. This information is updated during the tour. 
Since the work concentrates on the collaborative 
interaction among robots, there is no particular effort 
towards flexible knowledge modeling. The ontologies 
are fixed: the topics are preselected and so is the content 
associated to the levels of detail or the user profiles. In 
[12] a robotic platform based on contextual knowledge 
design has been proposed to enhance performance for 
behavior specialization, perception, navigation, 
exploration, localization and mapping tasks. The idea is 
to use contexts as classes of problem solving situations 
and to use behavior knowledge to select a suitable plan.  

The underlying view is to see high-level information as 
environment contextual knowledge. Similarly, goal 
information and agent’s information are distinguished 
as mission and introspective contexts, respectively. This 
approach lacks the framework of an ontology and 
indeed the environment contexts are either left to the 
designer or built on top of the sensors’ data that the 
robot itself generates. An ontological approach would 
help to structure the classification of entities (after all a 
physical object may be a landmark in a certain context 
but does not ceases to be a physical object because of 
this) and to clarify how and when different contexts 
overlap.  

Finally, an ontology-based reconfiguration agent is 
presented in [1] where an ontology is used to formalize 
knowledge of the manufacturing environment. The 
proposal is close to the view we present below but has 
important differences. First, it uses an ontology 
developed ad hoc for the given scenario. Second, it does 
not introduce contexts. Third, it is unclear how it can 
deal with device’s failures. We improve on the system 
by adopting a foundational ontology with which it is 
possible to reason at the functional level and to integrate 
the system with contextual information. 
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3. FLEXIBLE CONTROL ARCHITECTURE 
Despite the variety of uses of ontology in robotic 
applications, the on-line management of information 
needed for dynamic planning remains an open issue. 
This is the main considered challenge to deal with to 
develop adaptive autonomous robots. We propose a 
radical approach relying on two elements: (i) a 
foundational ontology to organize the information, and 
(ii) a knowledge-based control loop for updating the 
data and managing the flow of information to the 
planning system. The aim is to realize a system that can 
be actually deployed. Indeed, we consider an industrial 
case study as a first validation scenario [5]. 

3.1.  A Case Study  
A real pilot plant is considered for validation consisting 
of a reconfigurable manufacturing system (RMS) for 
recycling Printed Circuit Boards (PCB). The plant is 
composed of different automatic and manual machines 
devoted to perform loading/unloading, testing, repairing 
and shredding of PCBs and a reconfigurable 
transportation system connecting them. The 
transportation system is composed by 15 reconfigurable 
mechatronic components, called Transportation 
Modules (TM). Figure 1 shows an example of the TM 
used in the pilot plant. The figure shows also the schema 
of a TM together with the supported transfer service. 
The set of supported services depends on the 
configuration of a TM. 

In general, all the TMs composing the reconfigurable 
transportation system of the case study can support two 
main (straight) transfer services. They are the Front 
transfer service and the Back transfer service, 
respectively tagged with F and B in Figure 1. Then, each 
TM can support a number of cross-transfer services that 
range from a minimum of zero to a maximum of three. 
A cross transfer service enables Left (LCx) and Right 
(RCx) transfers between adjacent TMs. The schema in 
Figure 1 shows the configuration of a TM equipped with 
two cross-transfer services that allow respectively 
LC1/RC1 and LC2/RC2 transportation directions. 

 

 

The destination of a pallet carrying a PCB is computed 
at runtime while the production process is carried out 
(e.g., also depending on the results at the testing station, 
the repairing station or the loading/unloading cell). 
Thus, the final destination of a pallet is available only at 
execution time requiring the transportation system to 
keep adapting to the newly generated destination. The 
TMs of the transportation system cooperate in order to 
define and optimize the paths the pallets have to follow 
to reach their destinations [5,13] overcoming problems 
due to failures and unresponsive agents. 

3.2. Putting Knowledge and Control in a 
Loop  

The foundational ontology, needed to ensure the 
coverage of the domain and a coherent global 
management of knowledge, and the context framework 
for factual knowledge that will be introduced in Section 
4, form the structure of the knowledge management of 
the artificial agent. We now need to show how to make 
an operational use of the knowledge management, that 
is, we need to articulate the relationship between 
knowing the world and acting on the world. In 
particular, we are interested in using the agent 
knowledge for autonomous behavior to enhance the 
capability of an artificial agent. To this purpose we 
integrate distinct cognitive functions as shown in Figure 
2. The figure shows the overall cognitive architecture 
resulting from the integration of a Knowledge Manager 
(top left), which contains the built-in know-how of the 
agent on its structure and the environment, and a 
Deliberative Controller, which constitutes a "classical" 
a plan-based control architecture like those described, 
e.g., in [24]. 

Figure 1 An example of a Transportation Module and 
the schema of a possible configuration 
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Plan-based control architectures realize closed-loop 
controllers that allow an artificial agent to 
autonomously take decisions and execute actions 
needed to achieve some objectives. Such architectures 
are usually organized in three layers: (i) a deliberative 
layer which provides the agent with the capability of 
synthesizing the actions needed to achieve a goal (i.e., 
the Planning Framework in Figure 2); (ii) an executive 
layer which executes actions of a plan and continuously 
monitor their actual outcome with respect to the 
expected status of the system and the environment (i.e., 
the Monitor and the Executor in Figure 2); (iii) the the 
mechatronic system (and its functional processes) 
which represents the system and the environment to be 
controlled (i.e., the Mechatronic Module in Figure 2 and 
the related transportation system). 

Starting from the bottom, the mechatronic system and 
the environment determine the capabilities of the agent 
and the internal/external dynamics that must be taken 
into account in order to properly perform actions. Given 
the considered case study, the mechatronic system 
consists of a particular TM of the plant that must be 
controlled, the configuration of the overall 
transportation system (global topology) and the internal 
configuration of the TM as well as its connections with 
other TMs of the plant (local topology) are supposed to 
be known. The Monitor and the Executor are 
responsible of "physically" interacting with the TM by 
sending commands and receiving signals about their 
execution (i.e., feedbacks). Specifically, the Executor 
sends commands to the TM according to the actions that 
compose the plan to be executed. The Monitor receives 
signals about the (either positive or negative) outcome 
of the execution of such commands from the TM and 
checks whether the actual status of the mechatronic 

system complies with the plan or not. The Planning 
Framework synthesizes a set of "primitive" 
transportation activities (i.e. actions) that the TM must 
perform in order to carry out a set of desired (complex) 
transportation tasks. The Planning Framework relies on 
a planning model modeling the actual capabilities of the 
considered TM and the associated local topology. The 
deliberative layer synthesizes plans according to this 
general model. In case the plan execution leads to a 
failure (i.e., the actual status of the physical system does 
not comply with the plan) then, a "replanning process" 
is trigger for the Planning Framework in order to 
(re)generate a new plan according to the actual status of 
the mechatronic system. 

The Deliberative Controller in Figure 2 relies on a static 
planning model which completely characterizes the 
capabilities of a TM and the associated working 
environment. However, such a model is not capable of 
dynamically capturing changes in the configuration of 
the transportation system like e.g., changes concerning 
the local topology of a TM or changes concerning the 
internal configuration of a TM and therefore affecting 
the associated capabilities. The Knowledge Manager 
enhances the flexibility of the Deliberative Controller 
by dynamically generating planning models. In Section 
3.3 will be shown how the Knowledge Manager 
leverages an ontological approach to process low-level 
signals from a TM and dynamically infer its internal 
configuration, the local topology and active capabilities 
(i.e., the set of transportation tasks a TM can actually 
perform). This information is represented and managed 
through a Knowledge Base (KB) which is continuously 
updated according to the signals/events received from 
the Mechatronic Module in Figure 2. Then, a model 
generation process dynamically creates a new planning 
model every time a change in the KB occurs. 
Specifically, a new planning model is needed every time 
a change due by, e.g., a physical reconfiguration, in the 
actual capabilities of a TM is detected. 

3.3. The Knowledge-based Control Loop 
Architecture 

The goal is to have a coherent and optimized flow of 
information from the Knowledge Manager to the 
Deliberative Controller and to extend the capabilities of 
the overall system by leveraging  knowledge processing 
capabilities. The Deliberative Controller is a complex 
component: it realizes a sense-plan-act cycle by means 
of a Planning Framework (Figure 2, top right) and an 
Executor system (bottom right). In our implementation 
both modules use timeline-based technology [14]. The 
Planning Framework generates a planning model to 

Figure 2 The proposed integration between knowledge 
management and deliberative control in an agent 
architecture 



  

 6 

synthesize the set of commands and signals for the 
continuous planning and execution actions of the 
artificial agent. 

The Mechatronic Module (Figure 2, bottom) is the 
composition of a Control Software and a Mechatronic 
Component (not shown in the figure) that are typical in 
industrial components like, e.g., transportation 
modules, robots or working machines. This control 
software is usually based on standard reference models 
(e.g., IEC61499) and each mechatronic component is 
represented by dedicated hardware/software resources 
encapsulating the module control logic. The planning 
model contains an abstraction of the device to be 
controlled, the environment’s parameters in which the 
device operates, and a number of relevant constraints 
that guarantee physical consistency during execution. 
Note that the planning model is a static representation 
of the domain: it keeps track of just a subset of possible 
changes of the agent configuration and of the 
environment that are directly caused by the plan 
execution.  

We call Knowledge-based Control Loop (KBCL) the 
interaction across these modules that enables the agent 
to dynamically represent its capabilities, its internal 
status and its environmental situation, and to 
automatically infer the set of available functionalities to 
generate a coherent planning model. Besides a classical 
sense-plan-act loop , the KBCL continuously monitors 
the environment collecting information from the agent’s 
components (via sensors, actuators and interactions 
with other agents) and updates the state of the 
environment in the Knowledge Base. 

3.4. The KBCL at Runtime 
The KBCL supports a Setup phase (Point 1 in Figure 2), 
when the mechatronic device is activated, generating 
the initial KB of the agent. More specifically, the 
Monitor (Figure 2, bottom left) collects the raw data 
from the Mechatronic Module with which a knowledge 
processing mechanism (i) initializes the KB by adding 
the instances that represent the actual state of the device 
(Point 1 of Figure 2) and (ii) dynamically generates the 
control model providing a first planning specification 
(Point 2). Then the planning system generates a 
production plan (Point 3) and the plan execution is 
performed through the executive system (Point 4). 
When the Monitor detects a change in the structure of 
the agent and/or its collaborators (due, for example, to a 
total or partial failure of a sensor/actuator or of a 
neighbor), the KBCL process starts a Reconfiguration 
phase (Point 5) entailing the update of the KB, e.g., 

adding/removing instances, and starting a new iteration 
of the overall loop.  

The KB is updated only when the detected changes 
prevent or possibly deteriorate (depending on the plan 
rules) the execution of the plan. It is worth underscoring 
that the Reconfiguration phase is activated in case of 
failures or when new capabilities are added. For 
instance, when a collaborating agent enters a 
maintenance period, its presence and capabilities are 
first deleted when entering the maintenance and re-
inserted in the KB when operative again. 

4. MODELING KNOWLEDGE WITH 
ONTOLOGY AND CONTEXTS 

We have seen different applications of ontology and 
context highlighting some drawbacks crucial to our 
goal, namely, to provide a framework suitable to 
dynamically manage and control generic artificial 
agents. The aimed generality pushes us to look for a 
structure that is neither tailored to a specific type of 
agent nor to a specific type of situations, it is not based 
on an information model at the enterprise or shop floor 
level nor developed for some specific type of action.  

To put it positively, we aim to build knowledge 
frameworks that should be evaluated in terms of 
flexibility. By flexibility we mean that the same 
framework can be used for different kinds of robots 
applied in different industrial scenarios and for different 
goals provided these scenarios and goals fall within the 
usual human common-sense perspective (this, e.g., 
excludes robots operating within a quantum perspective 
as needed in specialized domains). That is, one should 
be able to upload the same knowledge framework in 
different types of agent without compromising the 
quality of their functionalities, behaviors and reliability 
relatively to the available hardware. It follows that such 
knowledge framework must be independent from 
specific sensors and actuators, and can have only 
generic information on what could be in the 
environment. The advantage, if we succeed, is the 
design of robots with a new level of autonomy and 
adaptability compared to today’s standards. Before 
building the knowledge structure, the ontological 
approach helps us to analyze the types of information 
that an industrial robot could face.  

The first result of this analysis is the separation of two 
layers of information: organizational knowledge and 
factual knowledge. Organizational knowledge is the 
foundational knowledge, i.e., knowledge about the 
basic assumptions in the domain like the notion of 
object, agent, production etc. including their 
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relationships. This knowledge fixes what kind of 
entities, events and interactions there can be in general. 
Factual knowledge, instead, identifies how the actual 
scenario is out of all the possible configurations: which 
objects are present and where, which actions are 
executed and by which agent, which changes occur and 
to which object. Factual knowledge can be extended 
(without changing the foundational knowledge) as 
needed, e.g., to include knowledge about new devices 
(tools, machines) or changes in the shop floor layout. 
Changes in these two parts of the knowledge framework 
follow different principles and have different 
consequences. By keeping them apart, we can make 
them interoperate covering all the knowledge needed in 
production systems [35]. 

For the organizational knowledge, we start with the 
foundational ontology DOLCE, the Descriptive 
Ontology for Linguistic and Cognitive Engineering 
[26]. This is a domain-independent top-level ontology 
that has been exploited at different levels in the 
engineering and industrial domains, e.g., [9, 30, 29, 6]. 
DOLCE furnishes the basic structure of our knowledge 
system which we will enrich with domain knowledge, 
for instance adding the notions of artificial agent and of 
engineering function. The knowledge framework that 
we make available to an agent will be an extension of 
this ontological system. Since DOLCE is based on a 
first-order language with formal semantics, the 
ontology and the resulting knowledge base can be 
exploited via automatic reasoning. 

4.1. DOLCE  
The DOLCE ontology is a formal system built 
according to an explicit set of philosophical principles 
that guide its use and extension [26]. Our first interest is 
to introduce in DOLCE engineering notions which are 
central to our application concerns. Since DOLCE is a 
large and complex system, we cannot introduce it in 
detail but describe the minimal elements relevant to our 
work. We refer the interested reader to [26, 10] for 
motivations and technical aspects. DOLCE (Figure 3) 
focuses on particulars, as opposed to universals. 
Roughly speaking, a universal is an entity that is 
instantiated or concreted by other entities (like the 
property “being a tool” or “being a production 
process”). A particular, an element of the category 
PARTICULAR, is an entity that is not instantiated by 
other entities (like the Eiffel Tower in Paris or Donald 
Trump). PARTICULAR includes physical entities, 
abstract entities, events and even qualities as we will see 
below. 

The DOLCE ontology formalizes the distinction 
between things like a car and an organization (this 
category is called ENDURANT), and events like 
transporting by means of a car and resting (category 
PERDURANT), see again Figure 3. The term ‘object’ 
is used in the ontology to capture a notion of unity as 
suggested by the partition of the category PHYSICAL 
ENDURANT (a subcategory of ENDURANT) into 
categories AMOUNT OF MATTER, like the plastic 
with which my water bottle is made, PHYSICAL 
OBJECT, like my car, and FEATURE. Features are 
entities that existentially depend on other objects, e.g., 
a bump on a road or the workspace for a robotic arm. 
We will also exploit two subcategories of PHYSICAL 
OBJECT, namely, AGENTIVE PHYSICAL OBJECT, 
e.g., a person, and NON-AGENTIVE PHYSICAL 
OBJECT, e.g., a drill. 

DOLCE also provides a structure for individual 
qualities (elements of the category QUALITY like the 
weight of a given car), quality types (weight, color, and 
the like), quality spaces (spaces to classify weights, 
colors, etc.), and quality positions or qualia (informally, 
locations in quality spaces). These, together with 
measure spaces (where the quality positions get 
associated to a measure system and to numbers), are 
important to describe and compare devices and 
processes. The exact list of qualities may depend on the 
entity: shape and weight are usually taken as qualities 
of physical endurants, duration and direction as 
qualities of perdurants. An individual quality, e.g., the 
weight of my hammer, is associated with one and only 
one entity; it can be understood as the particular way in 
which that hammer instantiates the general property 
“having weight”. That individual weight quality is what 
we measure when we put the hammer on a scale (if we 
put another hammer, no matter how similar, we would 
measure another individual quality, i.e., that of the 
second hammer even if the scale indicates exactly the 
same value). The change of an endurant in time is 
explained in DOLCE through the change of some of its 
individual qualities. For example, with the substitution 
or damaging of a component, the value of the weight 
quality of my car may change. DOLCE’s taxonomic 
structure is pictured in Figure 3. Each node in the graph 
is a category of the ontology. A category is a 
subcategory of another if the latter occurs higher in the 
graph and there is an edge between the two. 
PARTICULAR is the top category. The direct 
subcategories of a given category form a partition. In 
the graph, dots indicate that not all the subcategories of 
that category are listed. 
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Some relations are particularly relevant for our work, 
e.g., the parthood relation: “x is part of y” (written: P(x, 
y)), with its cognates the proper part (written: PP(x, y)) 
and overlap relations (written: O(x, y)). These apply to 
pairs of endurants (e.g., the joint is part of the robotic 
arm) as well as to pairs of perdurants (e.g., riveting is 
part of the assembling process). On endurants, parthood 
has an additional temporal argument since an endurant 
may lose or gain parts throughout its existence (e.g., 
after substituting a switch in a radio, the old switch is 
not part of the radio). Another important relation is 
constitution, indicated by K: K(x, y, t) stands for “entity 
x constitutes y at time t”, e.g., the amount of iron x 
constitutes the robot y at time t (this relation allows to 
say that part or all the iron x may be substituted over 
time without changing the identity of robot y like when 
substituting a worn out component). 

4.2. An Ontological View of Artificial 
Agents and their Environment 

Recently there has been increasing interest in the 
ontological modeling of artificial agents, and robots in 
particular [29], which led to an IEEE standard [17]. 
Today’s approaches to robot modeling are the result of 
long reflections on the difference between types of 
agency but further work is needed. For instance, we find 
problematic the proposal to model a robot mixing the 
notions of object and of role taken in [17]. According to 
the standard, a robot is "an agentive device [...] in a 
broad sense" while a fully autonomous robot is "[a] role 
for a robot performing a given task in which the robot 

solves the task without human intervention [...]." The 
intention of the standard is to discriminate between the 
different ways the robot can act: autonomous, 
automated, tele-operated etc. In this view, the notion of 
robot that emerges is that of an agentive entity whose 
actual actions are limited by the role it plays. However, 
being in the "automated role" does not prevent an agent 
from acting autonomously like playing the "teacher 
role" does not prevent a person from making non 
educational acts. Most likely, the intention of the 
standard was to model the ontological notion of phase: 
being in an automated phase does prevent an agent from 
acting autonomously because the phase determines 
what the agent can do. The notion of phase is used in 
ontology to distinguish important changes in entities 
like the caterpillar and the butterfly. If we take the DNA 
perspective, these are the very same entity but the 
possible actions of the caterpillar are very different from 
those of the butterfly: which actions are possible is 
determined by the phase in which the entity is. 
Similarly, a robot in an autonomous phase has different 
possibilities than a tele-operated robot, for instance the 
latter does not make plans. The notion of role is not 
suitable to model this kind of change and we favour a 
revision of the standard in this sense. 

Leaving aside these modeling choices, there are doubts 
whether robots should qualify as agentive entities in the 
strong sense since they lack intentional states. For most 
of today so-called robots even the qualification of robot 
in the weak sense seems unjustified since often they 
have only a conventional stimulus-response behavior. 
On the other side, we tend to distinguish a robotic arm 
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from a can opener: they are both artifacts [8] but we 
have a strong intuition that the second is a tool and the 
first a robot. Up to today, any attempt to draw the line 
between tools and robots has met important criticisms. 

In this part of the paper, we propose an extension of the 
DOLCE ontology to include robots, robotic parts and 
tools. The goal of this extension is to start from the 
notions of artifact and of agent, as introduced in 
foundational ontologies, and to propose a way to 
discriminate among types of artifacts as needed to 
model industrial scenarios. Although we would like to 
achieve a wide characterization, in this paper our 
analysis is heavily influenced by the focus on robots 
used in industrial settings. Ontologically speaking, 
following the analysis in [11], a robot is an artifact: it is 
intentionally selected (via construction) and has 
attributed technical capacities. Technical capacities can 
vary considerably depending on the robots: they can be 
quite limited, like in ant robots, or flexible and 
multipurpose like in industrial or humanoids robots. 
Since we focus on industrial settings, thus on robotic 
arms, transportation modules and the like, the robots we 
aim to model are actually technological artifacts [8]: 
they are manufactured by following precise production 
plans and selected via dedicated quality tests. Thus, 
from the formal viewpoint we classify industrial robots 
as (technological) artifacts, i.e., elements of the 
ARTIFACT subcategory of NON-AGENTIVE 
PHYSICAL OBJECT [11]. 

The typical robots in the production scenarios are 
rational, reactive and may present some degree of 
autonomy. Today they are rarely adaptive and 
embedded although these are desirable features. They 
can also be proactive: they have goals, typically 
provided by the production system to which they 
belong, and can sometimes choose, or at least 
reschedule, plans to optimize their achievements. In 
short, these robots are artifacts whose behaviors 
resemble agents’ behavior for the same goal(s). Since 
this behavior is expected from them, we propose to see 
a robot as an artifact whose attributed quality is to 
behave agent-like. Note that this modeling choice keeps 
agents and robots apart: a member of the latter group 
just mimics agents. The behavior can range from basic 
stimulus-response actions to activities controlled by 
sophisticated planning and goal adaptations, depending 
on what kind of agentivity the robot can behaviorally 
simulate. This is definitely acceptable for today’s robots 

 
1 The existence of quality a is enforced by formula 
(1) and the theory in [11]. The characterization of the space 
of behaviors is still under investigation. 

and it does not exclude that future generations of robots 
might be considered as full-fledge agents. Note that we 
will continue to talk informally about robots as agents 
in the rest of the paper. 

Let us use ROBOT for the predicate ‘being a robot’ and 
BehSp for the generic space of behaviors. Using the 
language of DOLCE from [26,10,11], we can formally 
model the ontological status of robots as follows: 

 

ROBOT(r) → ARTIFACT(r)        (1) 

ROBOT(r) � AttribCap(a) �  

qt(a,r) � ql(v,a,t) →   Loc(v,BehSp)        (2) 

The first formula says that a robot is an artifact. The 
second states what distinguishes a robot from other 
artifacts: the capacity attributed to the robot 
(AttribCap(a) � qt(a, r)) has values (ql(v, a, t)) that 
belong to the space of behaviors (Loc(v, BehSp)).1 

Robot’s parts are themselves artifacts, thus elements of 
the ARTIFACT category. These are typically not 
robots, so their attributed qualities are of different types. 
The main distinction here is between the parts that are 
components, i.e., that constitute the robot like the 
engines that move the robotic arm structure and the 
structural pieces that are moved by the engines; and the 
parts that are tools used by the robot like the different 
types of gripper that can be substituted depending on the 
task to execute. These types of parts are isolated for 
their functional or structural contribution. Following 
DOLCE, we use part (of an artifact) as a generic term to 
indicate any arbitrary portion of the artifact. We call 
component any part of the artifact which is itself an 
artifact and whose behavior contributes to the behavior 
of the larger artifact. These parts, following [46], are 
also called functional parts. We also assume that 
components are persistent parts, i.e., they are always 
present in the artifact exceptions being typically limited 
to maintenance time. One could further distinguish 
structural vs operational components. In the first class 
there are elements like shafts, in the second devices like 
electric engines and sensors, that is, elements that can 
take some type of input and transform it into a different 
type of output (see the ontology of function in the next 
section). Note that these are not disjoint classes since an 
operational component can also be a structural 
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component. However, there are structural components 
which are not operational like a shaft used to transfer 
torque. Finally, a tool is an artifact which can be a 
functional part of another artifact but is however not a 
necessary part for that artifact. In other words, a tool is 
an optional functional part of an artifact. Thus, the 
categories of tool and component are disjoint. For 
practical purposes, we require that a tool has been at 
least for some time part of an artifact. There are, of 
course, also arbitrary parts like the upper half of the 
skeletal frame, which do not have special properties or 
functionalities and thus are not relevant in terms of 
knowledge and planning. Components (tools) can be in 
an active/inactive (available/non-available, 
respectively) state for the robot. Sensors are listed 
among the components but note that we do not 
distinguish between sensors and actuators since these 
are seen as roles of the agent’s components (a drill can 
play both of them at the same or at different times). 
Finally, an object that is a component is such until 
substituted (or dismantled) while a tool may remain 
such even if substituted. A richer classification of 
functional parts in genuine, replaceable, persistent and 
constituent is presented in [48]. 

By environment one usually understands an area (a 
location) and the elements in it. In the case of agents, 
this is the area of interest in which the agent could act. 
For artificial agents, the environment might also include 
the requirements and specifications about the software 
components and their development. Since we will deal 
with languages and software constraints in terms of 
contexts (see Section 3.4), the notion of environment 
that we use focuses on the notion of location. Given our 
aims, we start from a general understanding of the term. 
The choice has essentially two motivations: the notion 
of environment should be sufficiently broad to include 
at least the usual scenarios and possibly more, and it 
should be sufficiently flexible to make it reusable via 
specializations. Thus, at each point in time, we take the 
robot’s environment to be the location where the robot 
is (it’s area of movement) including the elements it 
contains plus the entities that, even though not in the 
location, can interact (positively or negatively) with the 
robot’s activities and goals within a relevant temporal 
span.  

This view is fairly general and assumes that the 
environment depends on the robot’s features as well as 
on the features of other entities, possibly not in the 

 
2 The location is fixed for robots like robotic arms, it 
is parametric (in particular, it may depend on the task) for 
mobile robots. 

vicinity of the robot. It is crucial to us to understand that 
the environment can change whenever the robot or its 
location or the entities there change. While our notion 
suffices for robots interacting wirelessly with other 
robots, we leave aside the characterization of 
environment in robots connected to internet since their 
environment is potentially much richer. In the case of 
production scenarios, the robot’s environment can be 
identified with the collection of physical entities that are 
within a certain range from the robot (where the range 
may be bounded by physical barriers like floor, walls, 
ceiling, fences, etc.). As said, the environment is not 
necessarily limited to a precise region of space; it 
includes also entities with which the robot can interact 
via, say, radio communication and signaling in general. 
In ontological terms, the environment is a physical 
object obtained by the mereological sum of all the 
physical objects that are within the interaction range 
(workspace) of the robot. The location of the 
environment corresponds to the location of the objects 
in the environment plus the locations reachable by the 
robot itself.2 

4.3. Ontology and Engineering of 
Functions 

The classifications of the robots, the physical entities 
that may interact with them and their environments take 
care of the “static” part of our modeling problem. Since 
a robot is supposed to act to reach its goals, it must also 
have the conceptual machinery to know what it can do 
and how, thus to plan its actions. For this, reasoning on 
(engineering) functions is unavoidable. The 
formalization of functions in robotics is unfortunately 
rarely addressed and is too often confused with the 
notion of action, i.e., the performance of a function. 

To overcome this problem, we extend the DOLCE 
ontology with an ontology of high-level functions. This 
function ontology is integrated, via DOLCE, with the 
ontology of the robot and robot’s parts making possible 
to model what a robot can do and how. We adopt a 
notion of function-as-effect (Figure 4) which we adapt 
borrowing from well-known functional approaches in 
engineering design like the FOCUS/TX [22] (for the 
distinction “what to” vs. “how to” and the notion of 
behavior), the Functional Basis [27, 20] (for the idea of 
a function list), and the Function Representation [16] 
(for the distinction between environment-centric and 
device-centric function). The guiding idea is to make 
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possible the identification of the high-level function (or 
sequence of functions) that needs to be executed to 
reach a given goal. For this, one explores the difference 
between the actual state and the desired state, and 
isolates the changes to be made. From this information, 
the robot can travel the taxonomy to identify the effects 
of the high-level functions and find a suitable 
combination. 

 

Figure 4 shows our top-level ontology of functions 
organized in 5 branches: functions to collect 
information, functions to change the operand(s) 
integrity, functions to change the operand's qualities, 
functions to change the quality relationships, and 
functions to share information. For instance, 
“reclassify” stands for the function to change the 
classification of an operand, e.g. when, after a test, a 
workpiece is classified as malfunctioning; “change-
over” applies when, e.g., a robot acts on itself to 
activate/deactivate some component; “channel” stands 
for the moving of an operand (change of its location); 
“stabilize” for maintaining relational parameters like 
when tuning electronic components to regulate the 
input-output relationship; “sense” for the operand 
testing function, i.e., to acquire information without 
altering the status or the qualities of the operand; finally, 
“send” stands for the function to output information like 
a signal that a workpiece is going to be transferred or 
that a failure occurred. 

Of course, this information is not enough since it would 
model just the ideal capacities of the robot. Aiming to 
have a robot adapting its plan at run-time, we have to 
model the actual capacities of the robot, which implies 
to take into account malfunctioning and/or missing parts 
or even deteriorated behaviors. This information 
depends on the capacities of self-inspection built-in in 
the robot as well as on the possibility to compare the 

“ideal actions” descriptions and the actual 
performances. 

4.4. The Use of Contexts in Industry 
As said, an ontology is a conceptual tool used to 
structure information. Ontologies deal mainly with 
necessary information like the properties that an object 
must manifest (shape, weight, mass etc.) or the types of 
event (states, actions, processes and so on). Factual 
information, being information that depends on 
contingent data (like spatio-temporal location, agent’s 
setting, goals etc.), is generally characterized at the level 
of knowledge-bases. While this distinction might not be 
fully justified (and not even sharp), it remains important 
not to structure the ontology relying on factual 
knowledge. Unfortunately, this principle is rarely 
recognized in applications and in particular in the 
development of ontologies for industrial application.  

Note that we insist on the distinction between necessary 
and contingent information only relatively to the 
development of the ontology structure: it is important 
that factual information finds its place in the factory 
information system. Our solution to this problem is to 
include factual information in the KB (built on top of 
the ontology) via contexts. This allows the system to 
classify and reason on factual information, for example, 
to understand the actual scenario and possible 
evolutions, to evaluate optimal production plans out of 
those that are actually possible, and even to establish the 
status of the resources or maintenance schedule. To act 
in real and evolving scenarios, factual information is 
thus essential. Contextualization allows us to manage it 
with an ontologically sound approach. 
Contextualization gives also an advantage at the 
reasoning level: it allows to differentiate types of 
information depending on their usefulness in reasoning 
on a situation or task. 

After an ontological analysis based on [4,10,18], we 
identified three contextual models dedicated to factual 
knowledge, and use them on a par with the ontological 
framework. In particular, these contexts provide the 
time-dependent information needed to select how to 
execute high-level functions in the actual scenario. 
However, we do not exclude to expand the number of 
contextual models in the future since the use of factual 
classification is only partially explored at this stage of 
the work. Finally, note that our setting of the context 
framework makes possible to distinguish relevant 
consequences of the available knowledge depending on 
the type of the agent. The three context types are called 
global, local and internal, respectively. The global 
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context collects information the agent cannot control 
nor modify like the shared language of the system, the 
agents present in the system, the system’s performance 
parameters. The local context collects information on 
the relationship between the agent and its neighbor 
elements (typically the human and artificial agents 
directly interacting with it), thus providing a local view 
of the topological setting. Finally, the internal context 
collects the information the agent has about itself as 
well as its capabilities toward itself (change-over) and 
toward the environment (communication and 
manipulation) [7]. 

We have so far described the KB we use for our 
artificial agents. We started from a foundational 
ontology which was already constructed from a 
cognitive stand and showed how we extended it to cover 
other kinds of knowledge, from artificial agents to 
functions. We also indicated how knowledge can be 
contextualized, thus allowing the KB to use a 
classification feature largely exploited by humans.  

4.5. Applying Ontology and Contexts to 
the Manufacturing Case Study 

Given a particular application like the manufacturing 
scenario of the case study [5], it is necessary to define 
the relevant knowledge for a KBCL process in order to 
dynamically infer the specific capabilities of an agent 
and adapt the control model accordingly. Thus, we have 
extended the DOLCE ontology including the type of 
needed information by applying the context-based 
analysis and the functional characterization described in 
the previous sections.  

The extended ontology aims at characterizing the 
knowledge concerning the general structure of a TM 
part of the plant, the related working environment and 
the general functional capabilities of TMs. This 
information represents the general knowledge (i.e. the 
TBox) that a KBCL process instantiates according to the 
specific features of the TM to be controlled, in order to 
generate the specific KB  of a particular TM (i.e. the 
ABox). Figure 5 shows the extension of the DOLCE 
taxonomy of particulars with respect to the NON-
AGENTIVE PHYSICAL OBJECT category. 

 

According to our extension of the DOLCE ontology, 
robots and their parts are modeled as subcategories of 
TECHNICAL-ARTIFACT. As described in section 
4.2, both robots and their components are artifacts but 
they differ in terms of the types of attributed qualities. 
Parts can be further distinguished into components, and 
parts that are only used by the robot to perform its tasks 
without constituting its structure i.e., tools. Thus, the set 
of elements belonging to the ROBOTPART category 
can be partitioned into elements belonging to the 
COMPONENT category and elements belonging to the 
ROBOTOOL category. Components have a spatial 
location within the robot structure (this would not be 
enforced for tools since they can be external to the 
robot), have an active state and functional capabilities. 
Let COMPONENT(x, y, t) mean that x is a 
component of y at time t and ROBOTOOL(x) mean 
that x is a tool, then we have: 

 
COMPONENT(x, y, t) →  

ROBOTPART(x, y, t) � Artifact(x) ��ROBOT(y)         (3) 

COMPONENT(x, r, t) → COMPONENT(x)        (4) 

ROBOTOOL(x) → Artifact(x)         (5) 

ROBOTOOL(x) →	 

� y,t (ROBOT(y) � ROBOTPART(x, y, t))       (6) 

Thus, the general class axiom characterizing the 
COMPONENT category can be formally defined as 
follow: 

 

Figure 5 Extension of DOLCE ontology 
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ROBOT(r) � ROBOTPART(p, r, t) ��hasLoc(p, lp, t) � 

hasCapacity(p, f) � hasOpStat(p, active, t) 

→ COMPONENT(p, r, t)               (7) 

where ROBOTPART(p, r, t) is a predicate asserting that p 
is a part of a robot r and the formula states that when a 
part of a robot has a functional capacity (f) and is in 
active state, then the part must be a component of r. 

In our case study, considering the internal structure of a 
TM, it is possible to define three different types of 
component: (i) the conveyor component; (ii) the port 
component; (iii) the cross-transfer component. Thus, 
we have extended the COMPONENT category by 
introducing the PORT category, the CONVEYOR 
category and the CROSS-TRANSFER category. The 
main distinction among the elements of these categories 
is the type of function the associated component can 
perform. Conveyors are the engines composing the 
structure of a TM that enable movements of pallets. 
These elements has channel capabilities that allow a 
TM to actually move pallets between two adjacent 
spatial locations connected through conveyors. The 
formula below formally characterizes the CONVEYOR 
category: 

 
ROBOT(r) � ROBOTPART(p, r) ��hasLoc(p,lp,t) � 

hasCapacity(p, f) � hasOpStat(p, active, t) 

CHANNEL(f) →   CONVEYOR(p)        (8) 

where elements of the CHANNEL category represent 
functions whose effect changes the spatial location 
quality of an operand (i.e. a pallet). The execution of a 
channel changes the location of the pallet from the start 
location to the end location. Cross-transfers are another 
type of engines that allow a TM to change its physical 
configuration. These elements have change-over 
capabilities that change the internal connections of a 
TM. Different configurations (i.e., internal connections) 
enable different directions of movements of pallets 
within a TM (i.e., different paths). The CROSS-
TRANSFER category can be formally defined as 
follows:  

 

 
 
3 In general, it suffices that the components have 
connected working areas. E.g. in a robot with a robotic arm 
and a container, the locations of the arm and the container 

ROBOT(r) � ROBOTPART(p, r, t) ��hasLoc(p, lp, t) � 

hasCapacity(p, f) � hasOpStat(p, active, t) �� 

CHANGE-OVER(f) →   CROSS-TRANSFER(p)      (9) 

Finally, ports are structural elements that allow a TM to 
be connected with other TMs. These elements have 
communication capacities that allow a TM to send and 
receive pallets to and from other TMs of the plant. The 
PORT category can be formally defined as follow: 

 
ROBOT(r) � ROBOTPART(p, r, t) ��hasLoc(p, lp, t) � 

hasCapacity(p, f) � hasOpStat(p, active, t) �� 

COMMMUNICATION(f) →   PORT(p)     (10) 

Channel functions can be combined together in order to 
realize complex channels. Components that collaborate 
to perform channel functions must be spatially 
connected. Thus, the internal structure for this kind of 
functionality is determined by the connections of the 
components’ locations.3 The choice of modeling the 
elements of a TM with different categories rather than 
using the general COMPONENT category relies on the 
different properties that these elements bring to 
implement functional capabilities. Their contribution to 
infer the functional capabilities of the TM will be 
discussed in Section 5. 

The ROBOT category has been extended by introducing 
the TRANSPORTATION-MODULE category in a 
similar way to the ROBOTPART category. It 
characterizes TMs from a functional point of view. TMs 
are modeled as a particular type of robot capable of 
performing channel functions by collaborating with 
other agents (i.e., other TMs or working machines) of 
the plant. The collaborators of a TM constitute the 
(working) environment of a TM and therefore they are 
part of the local context of a TM. The general class 
axiom characterizing the elements that belong to the 
TRANSPORTATION-MODULE category can be 
formally defined as follows:  

 

 

 

 

are disconnected but the arm must be able to reach objects in 
the container to implement a Channel function, so the 
working areas must be connected. 
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ROBOT(r) � ROBOT(c) ��hasCollab(r, c, t) � 

CHANNEL(f) � hasCapacity(r, f) 

→   TRANSPORTATION-MODULE(r)         (11) 

It is important to point out that, in this context, a 
collaborator is a relative concept which depends on the 
particular configuration of the considered TM. It 
represents a relationship between a TM and other 
directly connected agents that could be either other TMs 
or working machines in the shop floor. Thus, the 
concept of COLLABORATOR is modeled as a role that 
an agent may play according to local connections (i.e. 
local context) of a TM. 

5. CONNECTING KNOWLEDGE AND 
CONTROL 

The Knowledge Manager module (KM) in Figure 2 is 
responsible for managing the lifecycle of the 
Knowledge Base (KB) within the KBCL process. In the 
specific context of the manufacturing case study, each 
KB models a particular TM of the transportation plant 
by specifying the associated internal structure, the 
connections with other TMs and the resulting functional 
capabilities. The management of such a KB relies on a 
knowledge processing mechanism implemented by 
means of a Rule-based Inference Engine which 
leverages a set of inference rules to generated and 
updated a KB of an agent. 

The knowledge processing mechanism dynamically 
builds the KB by elaborating raw data received from the 
Diagnosis Module and infers knowledge concerning the 
structure, the working environment and the functional 
capabilities of the agent. This mechanism involves two 
reasoning steps, depicted in Figure 6, that are (i) the 
low-level reasoning step and (ii) the high-level 
reasoning step. Specifically, these two reasoning steps 
refine the knowledge about the agent by combining a set 
of dedicated inference rules with the general 
information of contexts and functions of the ontology 
described in the previous section. 

 

The first reasoning step, called the low-level reasoning, 
aims at characterizing a TM in terms of the components 
that actually compose its structure like e.g., ports, 
conveyors, etc., and the associated collaborators. It 
relies on the internal and local contexts of the ontology 
and a set of classification rules. The resulting KB, 
named kb0 in Figure 6, characterizes the structure of the 
TM and the related local working environment. This 
initial KB describes the agent in terms of its internal and 
local contexts.  

The second reasoning step, called high-level reasoning, 
starts from the KB elicited after the previous step (i.e., 
the kb0) and further refines it by inferring knowledge 
about the functional capabilities of the TM. 
Specifically, the high-level reasoning step relies on the 
taxonomy of functions and the capability inference rules 
to complete the knowledge processing mechanism. The 
KB on which the high-level reasoning works encodes 
the particular internal and local context of the agent. 
Thus, the inference mechanism can determine the set of 
functions that the agent can actually perform by 
analyzing its structure and the associated working 
environment. The outcome of this second reasoning step 
(and the overall knowledge processing mechanism) is 
the final KB encoding a complete interpretation of the 
structure of the agent, the working environment (from 
the agent perspective) and the functional capabilities 
the agent can actually perform. Such knowledge is then 
exploited to generate the plan-based control model of 
the deliberative controller. The next two subsections 
provide a more detailed discussion of the two reasoning 
steps constituting the knowledge processing 
mechanism. 
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Figure 6 The knowledge processing mechanism 
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5.1. The low-level Reasoning 
The low-level reasoning process is responsible for 
inferring information concerning the internal and local 
contexts of the TM. Namely, the result of this inference 
step is an initial KB describing the operating devices 
that compose the TM (i.e. the components) and the 
available collaborators. Namely, it builds an initial 
version of the KB by classifying data received from the 
Diagnosis Module on the basis of contexts 
categorization. The input data represents a set of 
individuals concerning the parts that compose the TM, 
their connections and their capabilities. Figure 7 
provides a (partial) graphical representation of a 
possible set of individuals and predicates the knowledge 
processing mechanism receives as input from the 
Diagnosis Module. In particular, the figure shows the 
different contexts the individuals belong to, the 
reasoning step exploits to provide these data with 
additional semantics. 

 

Given this set of data, the first rule applied by the low-
level reasoning aims at identifying the set of active parts 
the TM can actually use to perform functions. These set 
of active parts are represented as TM’s components. 
According to axiom (7), an element of the 
COMPONENT category is a structural part of a robot, 
it has an operative state and some functional 
capabilities. The inference process exploits this 
functional characterization of components to interpret 
input data and identify the components of the TM. 
According to the axiom (7), being p a structural part of 
a robot r, with the capability of performing some 
function f, it is possible to infer that p is an element of 
the COMPONENT category. Therefore, due to axioms (4), 
the predicate COMPONENT(p) is true. 

The applied ontological approach models the different 
types of components that may compose a TM (see 
Figure 5) according to the different types of functional 

capabilities. Leveraging this interpretation, the low-
level reasoning process applies axioms (8), (9) and (10) 
to classify inferred components and identify the 
different types of component that actually constitute the 
TM. As soon as the components are classified, the low-
level reasoning process ends by inferring the set of 
available collaborators of the TM. Collaborators are 
TMs of the plant that are in operative state and are 
directly connected to the TM. Namely, collaborators are 
TMs of the plant that can actually receive/send pallets 
from/to TM. This, collaborators are inferred by applying 
the following rule:  

 
ROBOT(r) � PORT(p) ��hasLoc(p, lp, t) �� 
ROBOTPART(p, r, t) � hasOpStat(p, active, t) �  

ROBOT(c) � hasLoc(c, lc, t) ��connection(lp, lc, t)  

→ hasCollab(r, c, t)       (12)�

where connection(lp, lc, t) is a predicate asserting that the 
location of the TM’s port p is connected with the robot 
c. Figure 8 provides a (simplified) graphical 
representation of a possible KB resulting from the 
applications of rule (12) (the dotted arrows represent the 
inferred properties concerning collaborations). 

 

5.2. The high-level Reasoning 
The high-level reasoning step extends the KB elicited 
from the previous step inferring the capabilities the TM 
is actually able to use on the basis of its current status 
and current production environment.  
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Given the information about the components and 
collaborators of a TM, the first rule applied by the high-
level reasoning aims at inferring the primitive channels 
the TM can perform according to its internal structure. 
Indeed, active components can be used by a robot to 
perform functions. For instance, a conveyor allows a 
TM to perform channel functions. According to this 
interpretation it is possible to define a rule to infer the 
set of primitive channels a TM can perform as follows: 

 
ROBOT(r) � CONVEYOR(c1) �  

hasOpStat(c1, active, t) ��COMPONENT(c2) �  

COMPONENT (c3) � hasLoc(c1, l1, t) �  

hasLoc(c2, l2, t) � hasLoc(c3, l3, t) �  

connection(l2, l1, t) � connection(l1, l3, t) �  

→ hasCapacity(r, f) � CHANNEL(f) �  

cStart(f, l2) � cEnd(f, l3) � cConnect(l2, l3)    (13) 

where (CONVEYOR(c1) � hasOpStat(c1, active, t)) 
asserts that c1 is a conveyor component of the TM 
whose operative state is active at time t. Namely, the 
conveyor c1 is an active component of the TM and 
therefore, can be actually used to perform functions. 
Figure 9 shows a (simplified) graphical representation 
of the KB resulting from the application of rule (13). In 
particular, the figure represents predicates (i.e. the 
dotted arrows) and the individual (the channel-1 node) 
inferred and added to the KB. 

 
 

Figure 9 Inferring primitive channels of a TM 

The rationale of rule (13) relies on the functional 
interpretation of the CONVEYOR category as the set 
of components that can perform channel functions. 
Thus, if a conveyor component connects two 
components of the TM through its spatial location, see 
the clause (connection(l2, l1, t) � connection(l1, l3, t)) in 
(13), then the conveyor can perform a primitive channel 
function between the components’ locations. Moreover, 

the cConnect(l2, l3) is a transitive predicate which allows 
to connect different channel functions. Indeed, if two 
spatial locations are connected through the cConnect 
predicate then there exists a composition of primitive 
channel functions that “connect” them. 

A primitive channel involves components of one TM. 
However, the knowledge process mechanism aims to 
infer the channel capabilities that involve the 
collaborators of a TM. Namely, channel functions that 
allow a TM to exchange pallets with other TMs of the 
plant. We call such functions complex channel and they 
are inferred by applying the following rule: 

 
ROBOT(r) � ROBOT(rc1) � ROBOT(rc2) � 
hasCollab(r, rc1, t) � hasLoc(rc1, rl1, t) �� 

hasCollab(r, rc2, t) � hasLoc(rc2, rl2, t) � 
PORT(c1) ��hasOpState(c1, active, t) �  

hasLoc(c1, l1, t) � PORT(c2) �  

hasOpState(c2, active, t) � hasLoc(c2, l2, t) �  
connection(l1, rl1, t) � connection(l2, rl2, t) �� 

cConnect(l1, l2)  →	hasCapacity(r, f) �	 

CHANNEL(f) � cStart(f, rl1) ��cEnd(f, rl2)     (14) 

A key point of the rule (14) is that a complex channel 
function is interpreted as the composition of some 
primitive channels a TM can internally perform. This is 
a quite flexible and general interpretation of a channel 
function. If one or more parts of a TM stop working (i.e., 
their operational state passes to inactive), then a TM will 
no longer be able to perform the associated primitive 
channels and the high-level reasoning step will not be 
able to infer the associated complex channel functions 
that depend from these parts. Similarly, if new 
components are added to the TM, the high-level 
reasoning step will be able to infer additional complex 
channel functions according to the resulting structure. 
Finally, note that we do not add the converse formulas 
of (13) and (14) since these would prevent the discovery 
of alternative ways to perform the functions. 
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5.3. Implementation notes 
Although the ontology is provided in first order logic, at 
this stage only preprocessing (primarily to ensure 
conceptual consistency) is done in that language. Most 
of the inferences at runtime are done in the Web 
Ontology Language (OWL) version of the KB where we 
exploit primarily the contextual classification and 
relationships. The ontology editor Protégé4 has been 
used for KB design and testing. For runtime reasoning 
in the Knowledge Manager, we have used the Ontology 
and RDF APIs and Inference API provided by the 
Apache Jena Software Library5. Finally, the 
Deliberative Controller has been realized by means of 
the GOAC architecture [14] whose deliberative features 
are implemented by means of APSI-TRF [15]. A more 
detailed description of how the KBCL has been 
implemented goes beyond the scope of this paper. 

6. PLAN-BASED CONTROL LOOP 
The Planning Framework element in Figure 2 endows 
the KBCL process with deliberative capabilities by 
exploiting a timeline-based planner [36]. The planner 
relies on a timeline-based planning model automatically 
generated from KB’s information. Before describing the 
details of the process which generates the planning 
domain, this section provides a brief description of 
timeline-based planning and the pursued modeling 
approach. 

6.1. Planning with Timelines 
The timeline-based approach to planning has been 
introduced in early 90s [37] and takes inspiration from 
the classical control theory. It models a complex system 
by identifying a set of relevant features that must be 
controlled over time. This approach has been 

 
4 http://protege.stanford.edu 

successfully applied to real world contexts (especially 
in space applications) and several planning frameworks 
have been developed for the synthesis of timeline-based 
P&S applications, e.g. EUROPA [38], ASPEN [39], 
APSI-TRF [40]. 

Broadly speaking, timeline-based planning applications 
aim at controlling a complex system by synthesizing 
temporal behaviors of its features in shape of timelines. 
A timeline consists of a sequence of states/actions the 
related domain feature (e.g., a component of the device 
to control) may assume/perform over time. Every value 
on a timeline is temporally allocated and represents the 
value/action the feature assumes/performs during the 
related temporal interval. Temporal flexibility allows to 
allocate values to flexible temporal intervals, i.e., 
intervals with flexible start time and end time. The 
resulting timeline represents an envelope of possible 
temporal evolutions of the related feature. Thus, a 
timeline-based plan, which consists of the union of all 
the timelines of the domain, represents the sets of all the 
possible temporal evolutions of the domain features. It 
is important to point out that the temporal flexibility in 
such a plan can be exploited at execution time by an 
executive system to gain robustness [41]. 

6.1.1. Modeling approach  
State Variables model the features of a system that must 
be controlled over time. A state variable describes the 
temporal behaviors of a specific feature by means of 
causal and temporal constraints. More specifically, it 
describes the values the feature can assume over time, 
their duration constraints and the allowed transitions. In 
this regard, starting from the ontological analysis of the 
functional capabilities and the structure of agents 
described above, we define a modeling methodology of 
timeline-based planning domains.  

The key idea is that the planning domain is to describe 
the functional capabilities of the system we want to 
control, the features of the elements that compose the 
system and the features of the working environment that 
must be taken into account in order to successfully carry 
out the desired functionalities. From the control 
perspective, it is possible to identify three different 
classes of state variables: (i) functional state variables; 
(ii) primitive state variables; (iii) external state 
variables. Functional state variables model a physical 
system as a whole in terms of the high-level functions it 
can perform (notwithstanding its internal structure). 
Primitive state variables model the physical and/or 

5  http://jena.apache.org 
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logical elements that compose a physical system. In 
particular, these state variables model the elements we 
must actually control to execute high-level functions. 
External state variables model elements of the domain 
whose behavior is not directly under the control of the 
system. For example, these variables model conditions 
that must hold in order to successfully perform 
operations.. 

The behavior of state variables must be further 
constrained by specifying inter-component causal and 
temporal requirements, called synchronization rules. 
These rules specify additional constraints that allow to 
coordinate the behaviors of the domain features in order 
to perform high-level functions (i.e., planning goals). 
Following a hierarchical approach, synchronization 
rules map the values of functional state variables into a 
set of constraints among the values of primitive and/or 
external state variables that guarantee the proper 
functioning of the overall system and its elements. 
Namely, synchronization rules specify how high-level 
functions are implemented by an agent. These rules 
describe dependencies between the different variables 
of a planning domain and therefore may determine a 
hierarchy among them. A comprehensive formalization 
of timeline-based planning is provided in [47]. 

6.2. The model generation process 
Key role for the dialogue between the Knowledge 
Manager and the Deliberative Controller is the Model 
Generation process (Step 2 of Figure 2). The KB 
generated by the Knowledge Manager provides an 
abstract representation of the capabilities, the structure 
and production environment of an agent. The Model 
Generation process analyzes such a KB in order to 
dynamically generate a timeline-based planning domain 
for the Deliberative Controller. 

The process encodes the hierarchical modeling 
methodology described in the previous section and 
builds the model by leveraging the context-based 
characterization of the KB. The information concerning 
the global context and the taxonomy of function allow to 
define the functional state variables that provide a 
functional view of the agent as a whole. These state 
variables indeed describe the high-level tasks the agent 
can perform over time.  

The internal context contains structural information 
about the agent and therefore it is suited to generate the 
primitive state variables of the domain. These variables 
describe the physical/logical features that compose the 
agent. Usually, the values of this type of variables 

directly correspond to states or actions that may 
assumed/performed over time by the related feature.  

The local context manages information concerning the 
working environment of the agent and therefore it is 
suited to build the set of external state variables of the 
model. These variables model the collaborating agents 
(e.g., the directly connected TMs of the plant in the case 
study) whose behavior may affect the capabilities of the 
agent, even if not directly controllable. 

 
 

Figure 11 The model generation procedure 

The Algorithm in Figure 11 describes the general 
procedure of the model generation process. The 
procedure consists of four specific sub-procedures that 
analyze different areas of the knowledge about the agent 
in order to generate different parts of the control model. 
The procedure starts by extracting information related 
to the agent and initializing the P&S model (rows 3-4). 
According to the hierarchical approach described 
above, a set of functional, primitive and external state 
variables is generated (rows 6-8). Finally, the 
hierarchical decomposition of functional values (i.e., 
the values of the functional state variables) is described 
by means of a suitable set of generated synchronization 
rules (row 10). The resulting timeline-based model is 
then composed and returned as the outcome of the 
procedure. (rows 12-13).  

Then, the buildControlModel procedure allows the 
model generation process to automatically build the 
timeline-based specification by leveraging the 
knowledge about the agent. As described in [42], every 
time a change occurs in the KB, a new instance of the 
model generation process is triggered in order to 
generate an updated control model of the agent. The 
next subsections provide some details about the sub-
procedures of the process as well as an example of a 
possible timeline-based control model that can be 
generated for a TM in the case study plant. 
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6.2.1. Building State Variables from 
Contexts 

The functional state variable generation procedure 
creates a set of state variables concerning the functional 
capabilities of the agent. The procedure relies on the set 
of capabilities the knowledge processing mechanism 
has inferred through application of rules (13) and (14). 
The procedure generates a state variable for each 
function of the taxonomy (see Figure 4) the agent can 
perform. Namely, given a particular function f of the 
taxonomy, if the KB contains at least one individual for 
that function f (i.e., if the knowledge processing 
mechanism has inferred at least one way for the agent to 
perform f), then a state variable sv for f is created. The 
individuals of f in the KB represent all the possible 
implementations of f that the agent can perform (i.e., all 
the capabilities of the agent with respect to f). Thus, for 
each inferred individual of f the procedure adds a value 
to the related (functional) state variable sv. 

 
 

Figure 12 The functional variable generation procedure 

The Algorithm in Figure 12 shows the pseudo-code of 
the buildFunctionalComponents procedure. The 
procedure first initializes the set of functional state 
variables of the domain (row 3). Then, the procedure 
reads the taxonomy of function from the KB and, for 
each function, checks the available capabilities of the 
agent (rows 6-20). Given a function, if the KB contains 
at least one capability for that function, then the 
procedure creates a functional state variable (rows 9-
11). Each capability found in the KB is modeled as a 
value of the state created variable (rows 12-15). The 
procedure ends by returning the set of obtained 
variables.  

The primitive state variable generation procedure 
creates a set of state variables concerning the structural 
components of the agent. The procedure relies on a 

functional interpretation of components as elements 
that allow the agent to perform functions. The procedure 
creates a primitive state variable to the model for each 
component found in the KB. According to the rules (8), 
(9) and (10) the components of the agent are modeled in 
terms of their capabilities. Thus, the values of these 
state variables represent the primitive functions of the 
agent.  

 
 

Figure 13 The primitive variable generation procedure 

The Algorithm in Figure 13 shows the pseudo-code of 
the buildPrimitiveComponents procedure. The 
procedure first initializes the set of primitive state 
variables of the domain (row 2). Then, the procedure 
reads the set of inferred components from the KB (row 
4). Given a component, if the KB contains at least one 
primitive function the agent can perform through that 
component, then a primitive variable is created (rows 5-
10). The values added to the variable model the 
capabilities of the related component. Namely, the 
values model all the primitive functions the agent can 
perform by means of the considered component (rows 
11-16). The procedure ends by returning the set of 
generated state variables. The external state variable 
generation procedure creates the set of external 
variables composing the timeline-based model. The 
procedure generates the set of state variables 
representing the collaborators of the agent. 
Specifically, a state variable is created for each 
individual found in the KB that, according to the 
inference rule (12), has been classified as collaborator. 
The values of these state variables represent the 
operative states the collaborators may assume over 
time. 
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Figure 14 The external variable generation procedure 

The Algorithm in Figure 14 shows the pseudo-code of 
the buildExternalComponents procedure in Figure 11. 
The procedure first initializes the set of external 
variables of the domain (row 2). Then, the procedure 
reads the set of inferred collaborators from the KB (row 
4). For each collaborator found, a state variable is 
created (rows 5-7) and for each operative state the 
collaborator may assume over time, a value is added to 
the created variable (rows 9-14). The procedure ends by 
returning the set of generated variables. 

6.2.2. Building Decomposition Rules 
from Inference Trace 

When all the state variables and their values have been 
generated, it is necessary to build the synchronization 
rules of the domain in order to coordinate the behaviors 
of the different components of the agent and achieve the 
desired goals. Thus, given the general procedure in 
Figure 11, the buildSynchronizationRules procedure 
generates the decomposition rules by leveraging the 
inference trace of the KB.  

The inference trace represents internal knowledge 
generated by the application of the inference rules. Such 
knowledge manages intermediate information which is 
necessary to complete the knowledge processing 
mechanism and therefore build the KB. For instance, 
besides primitive channels, the inference rule (13) 
generates cConnect properties. These properties do not 
represent specific information about the agent but are 
necessary to generate the set of complex channels, as 
shown in rule (14). These properties encode functional 
dependencies among the components of a TM. In 
particular, they encode these dependencies in terms of 
primitive channels needed to implement complex 
channels.  

The inferred cConnect properties can be analyzed in 
order to build a particular data structure, called 
functional graph, that correlates functional 
dependencies among components, primitive and 

complex channels. The graph is built according to the 
inferred cConnect properties. Thus, the possible 
implementations of complex channels can be found by 
traversing the functional graph. This set of information 
is necessary to build the set of synchronization rules 
specifying how the agent must execute complex 
channels. Indeed, synchronization rules are generated 
by analyzing the paths on the functional graph that 
connect the start with the end locations of complex 
channels. These paths can be easily expressed in terms 
of precedence constraints between primitive channels 
of the involved components. 

 
 

Figure 15 The Synchronization rule generation procedure 

The Algorithm in Figure 15 shows the pseudo-code of 
the buildSynchronizationRules procedure. The 
procedure first initializes the set of rules (row 2) and 
then analyzes the KB to build the functional graph 
concerning channel functions (row 4). For each 
complex channel the procedure extracts the available 
implementations from the functional graph (rows 6-9). 
Each implementation encodes a set of temporal 
constraints between the primitive channels of the agent. 
Thus, given a possible implementation of a complex 
channel, a new synchronization rule is created (rows 10-
14). The procedure ends by returning the set of 
generated synchronizations. 

6.2.3. The Resulting Timeline-based 
Control Model 

The described procedures encode a model generation 
process which relies on a context-based characterization 
of the KB. According to this structure, the process 
generates a hierarchical domain description modeling 
the complex functions of the agent in terms of primitive 
functions internal components can directly handle. 
Figure 16 shows a partial timeline-based model 
generated for a TM which is endowed with a single 
cross-transfer unit. The model provides a functional 
characterization of the TM according to the functional, 
primitive and external hierarchical levels.  
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The primitive state variables (the green ones in Figure 
16) model the active parts of the TM that can actually 
perform some (primitive) functions. These state 
variables model the functional capabilities of the 
elements that compose the TM. For example, the 
component Conveyor1 can perform the primitive 
channel ChannelF-Down to move a pallet between the 
location of component PortF and the location Down of 
component Cross1. Similarly, the component Cross1 
can perform the primitive channel ChannelDown-Up to 
move a pallet from the location Down to the location Up 
of the same component Cross1. 

The external state variables (the grey ones in Figure 16) 
model the inferred collaborators that can directly 
interact with the considered TM. The values of these 
variables represent the operative states that 
collaborators may assume over time. Figure 16 shows 
the external state variables concerning two of four 
collaborators available. Specifically, the state variables 
model the temporal behaviors of CollaboratorF and 
CollaboratorR i.e., the collaborators connected to the 
TM through the components PortF and PortR 
respectively. 

The functional state variables (the blue ones in Figure 
16) model the inferred channel functions the TM can 
perform by combining the internal (i.e., the primitive) 
channel functions. For example, according to this 
interpretation, ChannelF-R can be seen as the 
composition of the following primitive channels: 
ChannelF-Down, ChannelDown-Up, ChannelUp-R. 
Such a composition represents a particular 
implementation of the complex channel function 

 
6 All the experiments have been performed on a 
workstation endowed with an Intel Core2 Duo 2.26GHz and 
8GB RAM. 

ChannelF-R. Implementations are modeled by means of 
synchronization rules that specify a suited set of 
temporal constraints (see red arrows in Figure 16). 
These temporal constraints encode also the functional 
dependencies between the TM and its collaborators. 
Indeed, CollaboratorF and CollaboratorR must be 
available (i.e., operative) during the execution of the 
complex channel function ChannelF-R.  

The generated timeline-based planning model provides 
a functional characterization of TMs of the plant where 
planning goals represent high-level functions a TM can 
perform. These functions are described in terms of the 
atomic operations (i.e., primitive functions) a TM is 
able of performing by means of its components and the 
available collaborators. 

7. EXPERIMENTAL EVALUATION 
In order to validate the architecture and the Knowledge-
based Control Loop described above, the whole system 
has been deployed in the manufacturing case study. 

A set of tests has been run for the KBCL with different 
TM configurations. Specifically, all the different 
physical configurations of a TM have been considered, 
i.e., from zero to three cross-transfer modules, referring 
to them as simple, single, double and full configuration, 
respectively. A different configuration also entails a 
different number of connected TM neighbors. Clearly, 
the more complex scenario is the one with the highest 
number of both cross-transfers (the full configuration) 
and neighbors. Moreover, reconfiguration scenarios 
have been addressed considering different external 
events, i.e., an increasing number of TM neighbors 
momentarily unable to exchange pallets, or internal 
failures, i.e., a cross-transfer engine failure or a local 
failure for a specific port.  

The experiments were carried out to evaluate the 
performance of the following aspects of a single TM 
agent: (i) the knowledge processing mechanism; (ii) the 
planning model generation; (iii) the synthesis of plans 
to manage a set of pallet requests. The final aim is to 
show that the latency of the KBCL is compatible with 
execution latencies of the RMS. Figure 17 shows the 
timings6 in the Setup phase for the KBCL module 
operation, i.e., to build the KB exploiting the 
classification and capability inference process, and to 
generate the timeline-based planning specification for 
the TM. On the one hand, the results show that an 
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increase in the complexity of the TM configurations 
does not entail a performance degeneration of the 
knowledge processing mechanism: the inference costs 
are almost constant (around 1.3 secs). This behavior was 
expected since the number of instances/relationships in 
the KB is rather low independently of the physical 
configuration of the TM; thus, the performance of the 
inference engine deployed here is not particularly 
affected by this aspect. On the other hand, the model 
generation is linearly affected by the increasing 
complexity, spanning from 0.8 secs in the simple 
configuration, up to a maximum of 2.2 seconds in the 
full configuration.  

 

The model generation process entails a combinatorial 
effect on the number of instances/relationships needed 
to generate components and synchronizations leading to 
larger planning models and, thus, to higher process 
costs. When a reconfiguration scenario occurs, the 
knowledge processing costs are negligible. Among all 
the considered reconfiguration cases, the time spent by 
the knowledge processing mechanism to (re)infer the 
enabled functionalities is just a few milliseconds. In 
fact, both the classification and capability inference 
steps are applied to a KB only slightly changed after the 
reconfiguration. The small changes in terms of 
functionalities can be quickly inferred in the system and 
represented in the current KB. As for the planning 
model generation cost, the considered reconfiguration 
scenarios (either external or internal) lead to a reduction 
of functionalities and the related costs are relatively 
small. For instance, in the case of the full TM 
configuration, the cost for the model generation is 
always below 0.8 seconds. 

Finally, we evaluate the planning costs when facing 
both setup and reconfiguration scenarios with an 
increasing number of pallet requests (randomly 
generated in the specific case), i.e., planning goals, to 

be fulfilled. Planning costs span from few seconds up to 
nearly 30 seconds when planning for 10 pallet requests 
within a 15 minutes’ time horizon. In general, the more 
complex the planning model, the harder the plan 
synthesis problem. Thus, the planning costs follow the 
complexity of the configurations of the specific TM 
agent. 

7.1. Discussion 
The experimental results show the practical feasibility 
of the KBCL approach in increasingly complex 
instances of a real-world manufacturing case study. The 
collected data for the initialization (or the update) of a 
generic agent’s KB (considering both knowledge 
processing and model generation) and the cost for 
planning synthesis have a rather low impact on its 
performance during operation. In fact, in order to face 
production periods of 15 minutes –and the management 
of 10 pallet requests– no more than 5 seconds are 
required by the Knowledge Manager while less than 30 
seconds are required by the Planner to generate a 
suitable plan. These performances are compatible with 
the system usual latency in this type of manufacturing 
applications [13]. It is worth reminding how the role of 
the KBCL is to avoid major overhauls of the control 
policies (e.g., control code revisions deployed too often 
in concrete cases) to cope with adaptation to variations 
or plant reconfigurations. 

8. CONCLUSIONS 
In most architectures for artificial agents the knowledge 
of the world is distributed across different parts of the 
system. This may lead to information redundancy 
(jeopardizing consistency), planning-knowledge 
misalignment, inconsistent knowledge update, etc. We 
have proposed to use a single foundational ontology to 
coherently organize knowledge on the entities and 
relationships in the agent’s world (objects, 
functionalities, states including the agent and its 
components) augmented with context modules that 
store the factual knowledge of the agent on these 
entities. We then have described how the knowledge 
manager extracts information for the planning and 
execution module of the agent. With this setting, the 
agent can reason on its own capabilities and adapt its 
plans in case of failures or sudden changes in the world. 
To validate the approach, we provided an 
implementation of the knowledge control loop and 
showed that it has performances compatible with the 
settings of a realistic industrial scenario. The validation 
is promising but admittedly limited: a full 
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implementation in a large industrial scenario is needed 
to compare our work with other approaches. 

Several issues remain to be explored. First, it is 
important to have a fairly amount of common 
knowledge on the environment to take advantage of the 
knowledge in the ontology and the context modules. It 
is also unclear how to optimize reasoning by taking 
advantage of the expressivity of the available languages 
(first-order logic and OWL), since reasoning in 
languages like OWL leads to ignore basic information 
about, e.g., activity ordering and functionality 
constraints. Second, we have to expand the connection 
between the ontology of functions and the constraints 
on the agents’ state variables: these constraints are 
crucial to execute the functions and control the changes 
in the environment. Finally, our verification scenario is 
still quite limited.  
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