

 1

KNOWLEDGE-BASED ADAPTIVE AGENTS FOR MANUFACTURING DOMAINS

Stefano Borgo
Amedeo Cesta

Andrea Orlandini
Alessandro Umbrico

ISTC – Institute of Cognitive Science and Technology
CNR – National Research Council of Italy

{stefano.borgo,amedeo.cesta,andrea.orlandini,alessandro.umbrico}@istc.cnr.it

ABSTRACT
Modern production systems are increasingly using
artificial agents (e.g., robots) of different kinds. Ideally,
these agents should be able to recognize the state of the
world, to act optimizing their work towards the
achievement of a set of goals, to change the plan of
action when problems arise, and to collaborate with
other artificial and human agents. The development of
such an ideal agent presents several challenges. We
concentrate on two of them: the construction of a single
and coherent knowledge base which includes different
types of knowledge with which to understand and
reason on the state of the world in a human-like way;
and the isolation of types of contexts that the agent can
exploit to make sense of the actual situation from a
perspective and to interact accordingly with humans.
We show how to build such a knowledge base (KB) and
how it can be updated as time passes. The KB we
propose is based on a foundational ontology, is
cognitively inspired and includes a notion of context to
discriminate information. The KB has been partially
implemented to test the use and suitability of the
knowledge representation for the agent’s control model
via a temporal planning and execution system. Some
experimental results showing the feasibility of our
approach are reported.

KEYWORDS
Autonomous agent, Adaptive agent, Knowledge-based
modeling, Ontology, Context, Production system,
Planning

1. INTRODUCTION
The research community in Robotics and Artificial
Intelligence has been building sophisticated robots for
decades applying many available technologies. Still a
limited understanding exist on what are the essential
features of a generic artificial robotic agent.
Furthermore, today robots are successfully applied in a
large spectrum of applications (i.e., from simple

washing machines to swarm robots and even
humanoids), but it is still unclear how to best integrate
different parts and modules into a single entity that can
smoothly operate in an environment, understanding the
actual situations and acting in order to achieve some
given goals. These problems also hold in the more
restricted area of industrial robots, which are built to
enhance the productivity at the shop floor, and which
operate in controlled, or at least constrained,
environments.

In the manufacturing context, an open problem for
researchers is the construction of systems that can
quickly adapt (and possibly anticipate) changes in the
production requirements [33]. Moreover, the concept of
Industry 4.0 [45] is pushing manufacturing systems to
evolve towards customer-oriented and personalized
production, while trying to guarantee the advantages of
mass production systems in terms of both productivity
and costs [43]. Such systems are being conceptualized
counting on the employment of highly flexible and
reconfigurable machines [44]. Traditional approaches
rely on centralized hierarchical control structures, not
easily adaptable to different production settings without
strongly affecting the productivity of the shop-floor.
Indeed, they usually require major overhauls of their
control code each time that any sort of system
adaptation and/or reconfiguration is required. This is
especially true in dynamic working environments like
Reconfigurable Manufacturing Systems (RMSs) [23]
where the actual capabilities of an agent and even the
production processes of the factory may change very
quickly. Different configurations of the shop-floor (e.g.,
increasing the number of available working machines)
or the introduction of new production capabilities (e.g.,
considering new type of work-pieces or tool) may affect
the type of tasks agents carry out as well as the related
production procedures. Artificial Intelligence (AI)
techniques like, e.g., plan-based control, usually rely on
a once-defined, static model of the world which could
become obsolete very soon in dynamic contexts. The
model requires a great design effort to capture all the

 2

possible configurations and it needs a continuous
maintenance which may negatively affect productivity
of the plant.

The research goal of this work is to enhance the
flexibility of "classical" plan-based control
architectures by integrating knowledge representation
and reasoning mechanisms into the control loop (i.e.,
the closed-loop control of high-level activities, goals
and states). The pursued approach is that semantic
technologies can provide the representation and
reasoning functionalities that robotic agents need to
dynamically recognize particular production settings
and adapt control models accordingly. The paper
considers a concrete case study to provide an example
of how knowledge representation techniques can
significantly improve flexibility and adaptability of AI
plan-based architectures by dynamically regenerating
the control model according to the specific state of the
working environment.

More specifically, this paper presents parts of a new
cognitive architecture, suitable for artificial agents such
as, e.g., robots, which leverages an ontological
approach for knowledge classification and management
in order to smooth the information flow from the
knowledge about the environment and robot’s goals
(desired states) to the planning and execution module.
More precisely, the proposed contribution relates to i)
the structure of a Knowledge Base (KB) of the robot, ii)
a knowledge manager that stores the model of the world
and infer new information to recognize operational
situations, and how the KB can be exploited to gather
the information needed by the agent’s control module
where planning and execution take place. Admittedly,
this approach takes care of just one of the local
properties, the KB module, and one of the global
properties, the connection between the KB and the
control module. Yet, this connection is today critical: it
involves the manipulation of symbolic information at
different levels of generality and its translation into state
variables for controlling each component of the robot
and, consequently, its interaction with the environment.

Structure of the paper: Section 2 presents the state of
the art on the use of ontologies in robotics. Section 3
presents the structure of the considered KB. Section 4
introduces the DOLCE ontology and then presents
specific extensions to cover engineering high-level
notions. In the same section, a contextual classification
of information is presented. Section 5 describes how the
KB is exploited for extracting the information needed
by the control module . The general plan-based control
loop is presented in Section 6 and some tests for the

validation of the approach are presented and discussed
in Section 7. Section 8 concludes the paper.

2. THE STATE OF THE ART
In robotics and more generally in manufacturing,
ontologies have been recognized as true enablers of
adaptable and flexible systems compared to classic
approaches [28,34] and, consequently, have been
exploited in the attempt to design more autonomous,
flexible, adaptive and proactive artificial agents. Since
researchers have applied ontologies to solve or at least
mitigate a variety of problems, applications differ in
their assumptions and goals.

In [31], a Robot knowledge framework (OMRKF) is
exploited. OMRKF includes a series of articulated
ontologies layers, including a robot-centered and a
human-centered ontology. Beside a perception layer,
enabling sensory data, the system includes an object
layer (model), a context layer and an activity layer. The
lack of the foundational approach can be seen in the
object classification, e.g., “living room” is classified as
a space region and not as the role of the region (the
problem becomes clear by observing that a region of
space is fixed while the living room can be located in
different parts of the building at different times, and can
even disappear from the building), as well as in the lack
of activity vs. functionality distinction, e.g., “avoid
obstacle” is not a behavior but a function which can be
implemented by different behaviors like, e.g., moving
away or turning around.

Relatively to the connection between the KB and the
planning module, [19] exploits a model filtering
approach based on a Hierarchical Task Network (HTN).
The agent’s knowledge of the environment is stored in
a fixed ontology and some filters on this knowledge are
set up. Given a planning task, the system selects one of
the filters to isolate a suitable subset of the system’s
knowledge and uses this subset to constrain the plan by
deleting non-reachable constants. While this technique
can be efficient in terms of plan adaptation, the
knowledge is only filtered, thus cannot be augmented
nor modified, not even contextualized to the problem
showing a lack in flexibility. It is important to generate
planning models tailored to the actual status of the agent
and its environment: changes on these can easily make
the starting plan obsolete as it happens, for instance,
when the capabilities of the agent are affected by a
sudden lack of resources or a (perhaps partial) failure of
a component.

[3] also treats tasks within the HTN approach and uses
an ontology for the domain knowledge which encodes

 3

task information. The goal is to combine procedural
knowledge and ontological knowledge. The planning
knowledge is modeled by adding task concepts to the
ontology and also predefined decomposition methods
that are applied in order to decompose task concepts
into executable tasks. New methods can be inferred by
reasoning on combinations of executable tasks. The
paper focuses on the correspondence between
subsumptions among task concepts in the ontology and
corresponding decompositions in the planning domain.
The starting ontology is assumed to be given and is
clearly limited by the expressivity of the chosen
language (Description Logic). This makes reasoning
feasible at the cost of information quality: even basic
ordering information among the tasks must be stored
outside the ontology. Other research projects, like
KnowRob [32] and ORO [25] focus on learning and
symbol grounding and use ontologies for obtaining an
action-based knowledge representation able to support
cognitive functionalities. At the ontological level, these
knowledge systems show problems similar to those
discussed earlier (e.g., functionality is confused with
activity so that it is not possible to “discover” new ways
of performing functions). A further issue is the lack of
stability in the ontology since some parts are developed
on demand or depend on the interaction with other
agents, that is, the ontology itself is data dependent. This
approach can potentially introduce consistency
problems that, unfortunately, are hard to detect in a
dynamic knowledge base.

Ontologies have been applied to increase flexibility in
modeling and planning of, e.g., mechatronic devices
[2], resources in collaborative environments and the
whole enterprise [30], collaborative robots [21] and
navigation robots [12]. [2] uses a fixed ontology to
collects static and dynamic information relative to a
robot. The basic actions of the robot are hard-coded but
the ontological system, which includes a PDDL
ontology where knowledge about actions is stored, adds
some flexibility like the possibility to learn articulated
actions and to act with partial information, e.g.,
information about the location of the object to move. In
this application, beside the lack of functionality/activity
distinction, the robot has very limited knowledge of the
environment. [30] describes an ontological model
aimed to represent the resource capabilities for the
development of products and processes. The model is
part of a larger ontology for collaborative and integrated
development of products, processes and resources.

This approach is based on the foundational ontology
DOLCE, which we introduce in the next section, and
takes a general perspective. While this work goes in the

right direction, it is not aimed to furnish a knowledge
system targeting single artificial agents; the goal is to be
able to integrate all the relevant perspectives in the
enterprise including the modeling of both engineering
and management activities. The approach does not
include contextual knowledge. [21] focuses on the
scenario of robot guides offering a tour of a building,
and develop a system for heterogeneous robot
collaboration (e.g., receptionists and companions). The
idea is to use ontologies for contextual information:
there is an ontology for the user, one for the robot and
one for the topic. For instance, the user ontology
contains the user’s profile, topics of interests, and prior
knowledge. This information is updated during the tour.
Since the work concentrates on the collaborative
interaction among robots, there is no particular effort
towards flexible knowledge modeling. The ontologies
are fixed: the topics are preselected and so is the content
associated to the levels of detail or the user profiles. In
[12] a robotic platform based on contextual knowledge
design has been proposed to enhance performance for
behavior specialization, perception, navigation,
exploration, localization and mapping tasks. The idea is
to use contexts as classes of problem solving situations
and to use behavior knowledge to select a suitable plan.

The underlying view is to see high-level information as
environment contextual knowledge. Similarly, goal
information and agent’s information are distinguished
as mission and introspective contexts, respectively. This
approach lacks the framework of an ontology and
indeed the environment contexts are either left to the
designer or built on top of the sensors’ data that the
robot itself generates. An ontological approach would
help to structure the classification of entities (after all a
physical object may be a landmark in a certain context
but does not ceases to be a physical object because of
this) and to clarify how and when different contexts
overlap.

Finally, an ontology-based reconfiguration agent is
presented in [1] where an ontology is used to formalize
knowledge of the manufacturing environment. The
proposal is close to the view we present below but has
important differences. First, it uses an ontology
developed ad hoc for the given scenario. Second, it does
not introduce contexts. Third, it is unclear how it can
deal with device’s failures. We improve on the system
by adopting a foundational ontology with which it is
possible to reason at the functional level and to integrate
the system with contextual information.

 4

3. FLEXIBLE CONTROL ARCHITECTURE
Despite the variety of uses of ontology in robotic
applications, the on-line management of information
needed for dynamic planning remains an open issue.
This is the main considered challenge to deal with to
develop adaptive autonomous robots. We propose a
radical approach relying on two elements: (i) a
foundational ontology to organize the information, and
(ii) a knowledge-based control loop for updating the
data and managing the flow of information to the
planning system. The aim is to realize a system that can
be actually deployed. Indeed, we consider an industrial
case study as a first validation scenario [5].

3.1. A Case Study
A real pilot plant is considered for validation consisting
of a reconfigurable manufacturing system (RMS) for
recycling Printed Circuit Boards (PCB). The plant is
composed of different automatic and manual machines
devoted to perform loading/unloading, testing, repairing
and shredding of PCBs and a reconfigurable
transportation system connecting them. The
transportation system is composed by 15 reconfigurable
mechatronic components, called Transportation
Modules (TM). Figure 1 shows an example of the TM
used in the pilot plant. The figure shows also the schema
of a TM together with the supported transfer service.
The set of supported services depends on the
configuration of a TM.

In general, all the TMs composing the reconfigurable
transportation system of the case study can support two
main (straight) transfer services. They are the Front
transfer service and the Back transfer service,
respectively tagged with F and B in Figure 1. Then, each
TM can support a number of cross-transfer services that
range from a minimum of zero to a maximum of three.
A cross transfer service enables Left (LCx) and Right
(RCx) transfers between adjacent TMs. The schema in
Figure 1 shows the configuration of a TM equipped with
two cross-transfer services that allow respectively
LC1/RC1 and LC2/RC2 transportation directions.

The destination of a pallet carrying a PCB is computed
at runtime while the production process is carried out
(e.g., also depending on the results at the testing station,
the repairing station or the loading/unloading cell).
Thus, the final destination of a pallet is available only at
execution time requiring the transportation system to
keep adapting to the newly generated destination. The
TMs of the transportation system cooperate in order to
define and optimize the paths the pallets have to follow
to reach their destinations [5,13] overcoming problems
due to failures and unresponsive agents.

3.2. Putting Knowledge and Control in a
Loop

The foundational ontology, needed to ensure the
coverage of the domain and a coherent global
management of knowledge, and the context framework
for factual knowledge that will be introduced in Section
4, form the structure of the knowledge management of
the artificial agent. We now need to show how to make
an operational use of the knowledge management, that
is, we need to articulate the relationship between
knowing the world and acting on the world. In
particular, we are interested in using the agent
knowledge for autonomous behavior to enhance the
capability of an artificial agent. To this purpose we
integrate distinct cognitive functions as shown in Figure
2. The figure shows the overall cognitive architecture
resulting from the integration of a Knowledge Manager
(top left), which contains the built-in know-how of the
agent on its structure and the environment, and a
Deliberative Controller, which constitutes a "classical"
a plan-based control architecture like those described,
e.g., in [24].

Figure 1 An example of a Transportation Module and
the schema of a possible configuration

 5

Plan-based control architectures realize closed-loop
controllers that allow an artificial agent to
autonomously take decisions and execute actions
needed to achieve some objectives. Such architectures
are usually organized in three layers: (i) a deliberative
layer which provides the agent with the capability of
synthesizing the actions needed to achieve a goal (i.e.,
the Planning Framework in Figure 2); (ii) an executive
layer which executes actions of a plan and continuously
monitor their actual outcome with respect to the
expected status of the system and the environment (i.e.,
the Monitor and the Executor in Figure 2); (iii) the the
mechatronic system (and its functional processes)
which represents the system and the environment to be
controlled (i.e., the Mechatronic Module in Figure 2 and
the related transportation system).

Starting from the bottom, the mechatronic system and
the environment determine the capabilities of the agent
and the internal/external dynamics that must be taken
into account in order to properly perform actions. Given
the considered case study, the mechatronic system
consists of a particular TM of the plant that must be
controlled, the configuration of the overall
transportation system (global topology) and the internal
configuration of the TM as well as its connections with
other TMs of the plant (local topology) are supposed to
be known. The Monitor and the Executor are
responsible of "physically" interacting with the TM by
sending commands and receiving signals about their
execution (i.e., feedbacks). Specifically, the Executor
sends commands to the TM according to the actions that
compose the plan to be executed. The Monitor receives
signals about the (either positive or negative) outcome
of the execution of such commands from the TM and
checks whether the actual status of the mechatronic

system complies with the plan or not. The Planning
Framework synthesizes a set of "primitive"
transportation activities (i.e. actions) that the TM must
perform in order to carry out a set of desired (complex)
transportation tasks. The Planning Framework relies on
a planning model modeling the actual capabilities of the
considered TM and the associated local topology. The
deliberative layer synthesizes plans according to this
general model. In case the plan execution leads to a
failure (i.e., the actual status of the physical system does
not comply with the plan) then, a "replanning process"
is trigger for the Planning Framework in order to
(re)generate a new plan according to the actual status of
the mechatronic system.

The Deliberative Controller in Figure 2 relies on a static
planning model which completely characterizes the
capabilities of a TM and the associated working
environment. However, such a model is not capable of
dynamically capturing changes in the configuration of
the transportation system like e.g., changes concerning
the local topology of a TM or changes concerning the
internal configuration of a TM and therefore affecting
the associated capabilities. The Knowledge Manager
enhances the flexibility of the Deliberative Controller
by dynamically generating planning models. In Section
3.3 will be shown how the Knowledge Manager
leverages an ontological approach to process low-level
signals from a TM and dynamically infer its internal
configuration, the local topology and active capabilities
(i.e., the set of transportation tasks a TM can actually
perform). This information is represented and managed
through a Knowledge Base (KB) which is continuously
updated according to the signals/events received from
the Mechatronic Module in Figure 2. Then, a model
generation process dynamically creates a new planning
model every time a change in the KB occurs.
Specifically, a new planning model is needed every time
a change due by, e.g., a physical reconfiguration, in the
actual capabilities of a TM is detected.

3.3. The Knowledge-based Control Loop
Architecture

The goal is to have a coherent and optimized flow of
information from the Knowledge Manager to the
Deliberative Controller and to extend the capabilities of
the overall system by leveraging knowledge processing
capabilities. The Deliberative Controller is a complex
component: it realizes a sense-plan-act cycle by means
of a Planning Framework (Figure 2, top right) and an
Executor system (bottom right). In our implementation
both modules use timeline-based technology [14]. The
Planning Framework generates a planning model to

Figure 2 The proposed integration between knowledge
management and deliberative control in an agent
architecture

 6

synthesize the set of commands and signals for the
continuous planning and execution actions of the
artificial agent.

The Mechatronic Module (Figure 2, bottom) is the
composition of a Control Software and a Mechatronic
Component (not shown in the figure) that are typical in
industrial components like, e.g., transportation
modules, robots or working machines. This control
software is usually based on standard reference models
(e.g., IEC61499) and each mechatronic component is
represented by dedicated hardware/software resources
encapsulating the module control logic. The planning
model contains an abstraction of the device to be
controlled, the environment’s parameters in which the
device operates, and a number of relevant constraints
that guarantee physical consistency during execution.
Note that the planning model is a static representation
of the domain: it keeps track of just a subset of possible
changes of the agent configuration and of the
environment that are directly caused by the plan
execution.

We call Knowledge-based Control Loop (KBCL) the
interaction across these modules that enables the agent
to dynamically represent its capabilities, its internal
status and its environmental situation, and to
automatically infer the set of available functionalities to
generate a coherent planning model. Besides a classical
sense-plan-act loop , the KBCL continuously monitors
the environment collecting information from the agent’s
components (via sensors, actuators and interactions
with other agents) and updates the state of the
environment in the Knowledge Base.

3.4. The KBCL at Runtime
The KBCL supports a Setup phase (Point 1 in Figure 2),
when the mechatronic device is activated, generating
the initial KB of the agent. More specifically, the
Monitor (Figure 2, bottom left) collects the raw data
from the Mechatronic Module with which a knowledge
processing mechanism (i) initializes the KB by adding
the instances that represent the actual state of the device
(Point 1 of Figure 2) and (ii) dynamically generates the
control model providing a first planning specification
(Point 2). Then the planning system generates a
production plan (Point 3) and the plan execution is
performed through the executive system (Point 4).
When the Monitor detects a change in the structure of
the agent and/or its collaborators (due, for example, to a
total or partial failure of a sensor/actuator or of a
neighbor), the KBCL process starts a Reconfiguration
phase (Point 5) entailing the update of the KB, e.g.,

adding/removing instances, and starting a new iteration
of the overall loop.

The KB is updated only when the detected changes
prevent or possibly deteriorate (depending on the plan
rules) the execution of the plan. It is worth underscoring
that the Reconfiguration phase is activated in case of
failures or when new capabilities are added. For
instance, when a collaborating agent enters a
maintenance period, its presence and capabilities are
first deleted when entering the maintenance and re-
inserted in the KB when operative again.

4. MODELING KNOWLEDGE WITH
ONTOLOGY AND CONTEXTS

We have seen different applications of ontology and
context highlighting some drawbacks crucial to our
goal, namely, to provide a framework suitable to
dynamically manage and control generic artificial
agents. The aimed generality pushes us to look for a
structure that is neither tailored to a specific type of
agent nor to a specific type of situations, it is not based
on an information model at the enterprise or shop floor
level nor developed for some specific type of action.

To put it positively, we aim to build knowledge
frameworks that should be evaluated in terms of
flexibility. By flexibility we mean that the same
framework can be used for different kinds of robots
applied in different industrial scenarios and for different
goals provided these scenarios and goals fall within the
usual human common-sense perspective (this, e.g.,
excludes robots operating within a quantum perspective
as needed in specialized domains). That is, one should
be able to upload the same knowledge framework in
different types of agent without compromising the
quality of their functionalities, behaviors and reliability
relatively to the available hardware. It follows that such
knowledge framework must be independent from
specific sensors and actuators, and can have only
generic information on what could be in the
environment. The advantage, if we succeed, is the
design of robots with a new level of autonomy and
adaptability compared to today’s standards. Before
building the knowledge structure, the ontological
approach helps us to analyze the types of information
that an industrial robot could face.

The first result of this analysis is the separation of two
layers of information: organizational knowledge and
factual knowledge. Organizational knowledge is the
foundational knowledge, i.e., knowledge about the
basic assumptions in the domain like the notion of
object, agent, production etc. including their

 7

relationships. This knowledge fixes what kind of
entities, events and interactions there can be in general.
Factual knowledge, instead, identifies how the actual
scenario is out of all the possible configurations: which
objects are present and where, which actions are
executed and by which agent, which changes occur and
to which object. Factual knowledge can be extended
(without changing the foundational knowledge) as
needed, e.g., to include knowledge about new devices
(tools, machines) or changes in the shop floor layout.
Changes in these two parts of the knowledge framework
follow different principles and have different
consequences. By keeping them apart, we can make
them interoperate covering all the knowledge needed in
production systems [35].

For the organizational knowledge, we start with the
foundational ontology DOLCE, the Descriptive
Ontology for Linguistic and Cognitive Engineering
[26]. This is a domain-independent top-level ontology
that has been exploited at different levels in the
engineering and industrial domains, e.g., [9, 30, 29, 6].
DOLCE furnishes the basic structure of our knowledge
system which we will enrich with domain knowledge,
for instance adding the notions of artificial agent and of
engineering function. The knowledge framework that
we make available to an agent will be an extension of
this ontological system. Since DOLCE is based on a
first-order language with formal semantics, the
ontology and the resulting knowledge base can be
exploited via automatic reasoning.

4.1. DOLCE
The DOLCE ontology is a formal system built
according to an explicit set of philosophical principles
that guide its use and extension [26]. Our first interest is
to introduce in DOLCE engineering notions which are
central to our application concerns. Since DOLCE is a
large and complex system, we cannot introduce it in
detail but describe the minimal elements relevant to our
work. We refer the interested reader to [26, 10] for
motivations and technical aspects. DOLCE (Figure 3)
focuses on particulars, as opposed to universals.
Roughly speaking, a universal is an entity that is
instantiated or concreted by other entities (like the
property “being a tool” or “being a production
process”). A particular, an element of the category
PARTICULAR, is an entity that is not instantiated by
other entities (like the Eiffel Tower in Paris or Donald
Trump). PARTICULAR includes physical entities,
abstract entities, events and even qualities as we will see
below.

The DOLCE ontology formalizes the distinction
between things like a car and an organization (this
category is called ENDURANT), and events like
transporting by means of a car and resting (category
PERDURANT), see again Figure 3. The term ‘object’
is used in the ontology to capture a notion of unity as
suggested by the partition of the category PHYSICAL
ENDURANT (a subcategory of ENDURANT) into
categories AMOUNT OF MATTER, like the plastic
with which my water bottle is made, PHYSICAL
OBJECT, like my car, and FEATURE. Features are
entities that existentially depend on other objects, e.g.,
a bump on a road or the workspace for a robotic arm.
We will also exploit two subcategories of PHYSICAL
OBJECT, namely, AGENTIVE PHYSICAL OBJECT,
e.g., a person, and NON-AGENTIVE PHYSICAL
OBJECT, e.g., a drill.

DOLCE also provides a structure for individual
qualities (elements of the category QUALITY like the
weight of a given car), quality types (weight, color, and
the like), quality spaces (spaces to classify weights,
colors, etc.), and quality positions or qualia (informally,
locations in quality spaces). These, together with
measure spaces (where the quality positions get
associated to a measure system and to numbers), are
important to describe and compare devices and
processes. The exact list of qualities may depend on the
entity: shape and weight are usually taken as qualities
of physical endurants, duration and direction as
qualities of perdurants. An individual quality, e.g., the
weight of my hammer, is associated with one and only
one entity; it can be understood as the particular way in
which that hammer instantiates the general property
“having weight”. That individual weight quality is what
we measure when we put the hammer on a scale (if we
put another hammer, no matter how similar, we would
measure another individual quality, i.e., that of the
second hammer even if the scale indicates exactly the
same value). The change of an endurant in time is
explained in DOLCE through the change of some of its
individual qualities. For example, with the substitution
or damaging of a component, the value of the weight
quality of my car may change. DOLCE’s taxonomic
structure is pictured in Figure 3. Each node in the graph
is a category of the ontology. A category is a
subcategory of another if the latter occurs higher in the
graph and there is an edge between the two.
PARTICULAR is the top category. The direct
subcategories of a given category form a partition. In
the graph, dots indicate that not all the subcategories of
that category are listed.

 8

Some relations are particularly relevant for our work,
e.g., the parthood relation: “x is part of y” (written: P(x,
y)), with its cognates the proper part (written: PP(x, y))
and overlap relations (written: O(x, y)). These apply to
pairs of endurants (e.g., the joint is part of the robotic
arm) as well as to pairs of perdurants (e.g., riveting is
part of the assembling process). On endurants, parthood
has an additional temporal argument since an endurant
may lose or gain parts throughout its existence (e.g.,
after substituting a switch in a radio, the old switch is
not part of the radio). Another important relation is
constitution, indicated by K: K(x, y, t) stands for “entity
x constitutes y at time t”, e.g., the amount of iron x
constitutes the robot y at time t (this relation allows to
say that part or all the iron x may be substituted over
time without changing the identity of robot y like when
substituting a worn out component).

4.2. An Ontological View of Artificial
Agents and their Environment

Recently there has been increasing interest in the
ontological modeling of artificial agents, and robots in
particular [29], which led to an IEEE standard [17].
Today’s approaches to robot modeling are the result of
long reflections on the difference between types of
agency but further work is needed. For instance, we find
problematic the proposal to model a robot mixing the
notions of object and of role taken in [17]. According to
the standard, a robot is "an agentive device [...] in a
broad sense" while a fully autonomous robot is "[a] role
for a robot performing a given task in which the robot

solves the task without human intervention [...]." The
intention of the standard is to discriminate between the
different ways the robot can act: autonomous,
automated, tele-operated etc. In this view, the notion of
robot that emerges is that of an agentive entity whose
actual actions are limited by the role it plays. However,
being in the "automated role" does not prevent an agent
from acting autonomously like playing the "teacher
role" does not prevent a person from making non
educational acts. Most likely, the intention of the
standard was to model the ontological notion of phase:
being in an automated phase does prevent an agent from
acting autonomously because the phase determines
what the agent can do. The notion of phase is used in
ontology to distinguish important changes in entities
like the caterpillar and the butterfly. If we take the DNA
perspective, these are the very same entity but the
possible actions of the caterpillar are very different from
those of the butterfly: which actions are possible is
determined by the phase in which the entity is.
Similarly, a robot in an autonomous phase has different
possibilities than a tele-operated robot, for instance the
latter does not make plans. The notion of role is not
suitable to model this kind of change and we favour a
revision of the standard in this sense.

Leaving aside these modeling choices, there are doubts
whether robots should qualify as agentive entities in the
strong sense since they lack intentional states. For most
of today so-called robots even the qualification of robot
in the weak sense seems unjustified since often they
have only a conventional stimulus-response behavior.
On the other side, we tend to distinguish a robotic arm

Q
Quality

PQ
Physical
Quality

AQ
Abstract
Quality

TQ
Temporal
Quality

PD
Perdurant

EV
Event

STV
Stative

ACH
Achievement

ACC
Accomplishment

ST
State

PRO
Process

PT
Particular

R
Region

PR
Physical
Region

AR
Abstract
Region

TR
Temporal
Region

T
Time

Interval

S
Space
Region

AB
Abstract

SetFact…

… … …

TL
Temporal
Location

SL
Spatial

Location

… … …

ASO
Agentive

Social Object

NASO
Non-agentive
Social Object

SC
Society

MOB
Mental Object

SOB
Social Object

F
Feature

POB
Physical
Object

NPOB
Non-physical

Object

PED
Physical
Endurant

NPED
Non-physical

Endurant

ED
Endurant

SAG
Social Agent

APO
Agentive
Physical
Object

NAPO
Non-agentive

Physical
Object

…

AS
Arbitrary

Sum

M
Amount of

Matter

… … … …

Figure 3 The DOLCE taxonomy of particulars

 9

from a can opener: they are both artifacts [8] but we
have a strong intuition that the second is a tool and the
first a robot. Up to today, any attempt to draw the line
between tools and robots has met important criticisms.

In this part of the paper, we propose an extension of the
DOLCE ontology to include robots, robotic parts and
tools. The goal of this extension is to start from the
notions of artifact and of agent, as introduced in
foundational ontologies, and to propose a way to
discriminate among types of artifacts as needed to
model industrial scenarios. Although we would like to
achieve a wide characterization, in this paper our
analysis is heavily influenced by the focus on robots
used in industrial settings. Ontologically speaking,
following the analysis in [11], a robot is an artifact: it is
intentionally selected (via construction) and has
attributed technical capacities. Technical capacities can
vary considerably depending on the robots: they can be
quite limited, like in ant robots, or flexible and
multipurpose like in industrial or humanoids robots.
Since we focus on industrial settings, thus on robotic
arms, transportation modules and the like, the robots we
aim to model are actually technological artifacts [8]:
they are manufactured by following precise production
plans and selected via dedicated quality tests. Thus,
from the formal viewpoint we classify industrial robots
as (technological) artifacts, i.e., elements of the
ARTIFACT subcategory of NON-AGENTIVE
PHYSICAL OBJECT [11].

The typical robots in the production scenarios are
rational, reactive and may present some degree of
autonomy. Today they are rarely adaptive and
embedded although these are desirable features. They
can also be proactive: they have goals, typically
provided by the production system to which they
belong, and can sometimes choose, or at least
reschedule, plans to optimize their achievements. In
short, these robots are artifacts whose behaviors
resemble agents’ behavior for the same goal(s). Since
this behavior is expected from them, we propose to see
a robot as an artifact whose attributed quality is to
behave agent-like. Note that this modeling choice keeps
agents and robots apart: a member of the latter group
just mimics agents. The behavior can range from basic
stimulus-response actions to activities controlled by
sophisticated planning and goal adaptations, depending
on what kind of agentivity the robot can behaviorally
simulate. This is definitely acceptable for today’s robots

1 The existence of quality a is enforced by formula
(1) and the theory in [11]. The characterization of the space
of behaviors is still under investigation.

and it does not exclude that future generations of robots
might be considered as full-fledge agents. Note that we
will continue to talk informally about robots as agents
in the rest of the paper.

Let us use ROBOT for the predicate ‘being a robot’ and
BehSp for the generic space of behaviors. Using the
language of DOLCE from [26,10,11], we can formally
model the ontological status of robots as follows:

ROBOT(r) → ARTIFACT(r) (1)

ROBOT(r) � AttribCap(a) �

qt(a,r) � ql(v,a,t) → Loc(v,BehSp) (2)

The first formula says that a robot is an artifact. The
second states what distinguishes a robot from other
artifacts: the capacity attributed to the robot
(AttribCap(a) � qt(a, r)) has values (ql(v, a, t)) that
belong to the space of behaviors (Loc(v, BehSp)).1

Robot’s parts are themselves artifacts, thus elements of
the ARTIFACT category. These are typically not
robots, so their attributed qualities are of different types.
The main distinction here is between the parts that are
components, i.e., that constitute the robot like the
engines that move the robotic arm structure and the
structural pieces that are moved by the engines; and the
parts that are tools used by the robot like the different
types of gripper that can be substituted depending on the
task to execute. These types of parts are isolated for
their functional or structural contribution. Following
DOLCE, we use part (of an artifact) as a generic term to
indicate any arbitrary portion of the artifact. We call
component any part of the artifact which is itself an
artifact and whose behavior contributes to the behavior
of the larger artifact. These parts, following [46], are
also called functional parts. We also assume that
components are persistent parts, i.e., they are always
present in the artifact exceptions being typically limited
to maintenance time. One could further distinguish
structural vs operational components. In the first class
there are elements like shafts, in the second devices like
electric engines and sensors, that is, elements that can
take some type of input and transform it into a different
type of output (see the ontology of function in the next
section). Note that these are not disjoint classes since an
operational component can also be a structural

 10

component. However, there are structural components
which are not operational like a shaft used to transfer
torque. Finally, a tool is an artifact which can be a
functional part of another artifact but is however not a
necessary part for that artifact. In other words, a tool is
an optional functional part of an artifact. Thus, the
categories of tool and component are disjoint. For
practical purposes, we require that a tool has been at
least for some time part of an artifact. There are, of
course, also arbitrary parts like the upper half of the
skeletal frame, which do not have special properties or
functionalities and thus are not relevant in terms of
knowledge and planning. Components (tools) can be in
an active/inactive (available/non-available,
respectively) state for the robot. Sensors are listed
among the components but note that we do not
distinguish between sensors and actuators since these
are seen as roles of the agent’s components (a drill can
play both of them at the same or at different times).
Finally, an object that is a component is such until
substituted (or dismantled) while a tool may remain
such even if substituted. A richer classification of
functional parts in genuine, replaceable, persistent and
constituent is presented in [48].

By environment one usually understands an area (a
location) and the elements in it. In the case of agents,
this is the area of interest in which the agent could act.
For artificial agents, the environment might also include
the requirements and specifications about the software
components and their development. Since we will deal
with languages and software constraints in terms of
contexts (see Section 3.4), the notion of environment
that we use focuses on the notion of location. Given our
aims, we start from a general understanding of the term.
The choice has essentially two motivations: the notion
of environment should be sufficiently broad to include
at least the usual scenarios and possibly more, and it
should be sufficiently flexible to make it reusable via
specializations. Thus, at each point in time, we take the
robot’s environment to be the location where the robot
is (it’s area of movement) including the elements it
contains plus the entities that, even though not in the
location, can interact (positively or negatively) with the
robot’s activities and goals within a relevant temporal
span.

This view is fairly general and assumes that the
environment depends on the robot’s features as well as
on the features of other entities, possibly not in the

2 The location is fixed for robots like robotic arms, it
is parametric (in particular, it may depend on the task) for
mobile robots.

vicinity of the robot. It is crucial to us to understand that
the environment can change whenever the robot or its
location or the entities there change. While our notion
suffices for robots interacting wirelessly with other
robots, we leave aside the characterization of
environment in robots connected to internet since their
environment is potentially much richer. In the case of
production scenarios, the robot’s environment can be
identified with the collection of physical entities that are
within a certain range from the robot (where the range
may be bounded by physical barriers like floor, walls,
ceiling, fences, etc.). As said, the environment is not
necessarily limited to a precise region of space; it
includes also entities with which the robot can interact
via, say, radio communication and signaling in general.
In ontological terms, the environment is a physical
object obtained by the mereological sum of all the
physical objects that are within the interaction range
(workspace) of the robot. The location of the
environment corresponds to the location of the objects
in the environment plus the locations reachable by the
robot itself.2

4.3. Ontology and Engineering of
Functions

The classifications of the robots, the physical entities
that may interact with them and their environments take
care of the “static” part of our modeling problem. Since
a robot is supposed to act to reach its goals, it must also
have the conceptual machinery to know what it can do
and how, thus to plan its actions. For this, reasoning on
(engineering) functions is unavoidable. The
formalization of functions in robotics is unfortunately
rarely addressed and is too often confused with the
notion of action, i.e., the performance of a function.

To overcome this problem, we extend the DOLCE
ontology with an ontology of high-level functions. This
function ontology is integrated, via DOLCE, with the
ontology of the robot and robot’s parts making possible
to model what a robot can do and how. We adopt a
notion of function-as-effect (Figure 4) which we adapt
borrowing from well-known functional approaches in
engineering design like the FOCUS/TX [22] (for the
distinction “what to” vs. “how to” and the notion of
behavior), the Functional Basis [27, 20] (for the idea of
a function list), and the Function Representation [16]
(for the distinction between environment-centric and
device-centric function). The guiding idea is to make

 11

possible the identification of the high-level function (or
sequence of functions) that needs to be executed to
reach a given goal. For this, one explores the difference
between the actual state and the desired state, and
isolates the changes to be made. From this information,
the robot can travel the taxonomy to identify the effects
of the high-level functions and find a suitable
combination.

Figure 4 shows our top-level ontology of functions
organized in 5 branches: functions to collect
information, functions to change the operand(s)
integrity, functions to change the operand's qualities,
functions to change the quality relationships, and
functions to share information. For instance,
“reclassify” stands for the function to change the
classification of an operand, e.g. when, after a test, a
workpiece is classified as malfunctioning; “change-
over” applies when, e.g., a robot acts on itself to
activate/deactivate some component; “channel” stands
for the moving of an operand (change of its location);
“stabilize” for maintaining relational parameters like
when tuning electronic components to regulate the
input-output relationship; “sense” for the operand
testing function, i.e., to acquire information without
altering the status or the qualities of the operand; finally,
“send” stands for the function to output information like
a signal that a workpiece is going to be transferred or
that a failure occurred.

Of course, this information is not enough since it would
model just the ideal capacities of the robot. Aiming to
have a robot adapting its plan at run-time, we have to
model the actual capacities of the robot, which implies
to take into account malfunctioning and/or missing parts
or even deteriorated behaviors. This information
depends on the capacities of self-inspection built-in in
the robot as well as on the possibility to compare the

“ideal actions” descriptions and the actual
performances.

4.4. The Use of Contexts in Industry
As said, an ontology is a conceptual tool used to
structure information. Ontologies deal mainly with
necessary information like the properties that an object
must manifest (shape, weight, mass etc.) or the types of
event (states, actions, processes and so on). Factual
information, being information that depends on
contingent data (like spatio-temporal location, agent’s
setting, goals etc.), is generally characterized at the level
of knowledge-bases. While this distinction might not be
fully justified (and not even sharp), it remains important
not to structure the ontology relying on factual
knowledge. Unfortunately, this principle is rarely
recognized in applications and in particular in the
development of ontologies for industrial application.

Note that we insist on the distinction between necessary
and contingent information only relatively to the
development of the ontology structure: it is important
that factual information finds its place in the factory
information system. Our solution to this problem is to
include factual information in the KB (built on top of
the ontology) via contexts. This allows the system to
classify and reason on factual information, for example,
to understand the actual scenario and possible
evolutions, to evaluate optimal production plans out of
those that are actually possible, and even to establish the
status of the resources or maintenance schedule. To act
in real and evolving scenarios, factual information is
thus essential. Contextualization allows us to manage it
with an ontologically sound approach.
Contextualization gives also an advantage at the
reasoning level: it allows to differentiate types of
information depending on their usefulness in reasoning
on a situation or task.

After an ontological analysis based on [4,10,18], we
identified three contextual models dedicated to factual
knowledge, and use them on a par with the ontological
framework. In particular, these contexts provide the
time-dependent information needed to select how to
execute high-level functions in the actual scenario.
However, we do not exclude to expand the number of
contextual models in the future since the use of factual
classification is only partially explored at this stage of
the work. Finally, note that our setting of the context
framework makes possible to distinguish relevant
consequences of the available knowledge depending on
the type of the agent. The three context types are called
global, local and internal, respectively. The global

FUNCTION
(as effect)

ACTIONTEST

SENSE

change of
operand(s)

change on
qualities

change on
relations

information
collection

information
sharing

COMMUNICATION

SEND

RECEIVE

CONVERT

BRANCH

JOIN

CHANGE
OVER

RECLASSIFY

CHANNEL

CHANGE
MAGNITUDE

STORE

COLLECT

RELEASE

STABILIZE

INCREASE

DECREASE

Figure 4 A (partial) ontological taxonomy of functions
and its rationale

 12

context collects information the agent cannot control
nor modify like the shared language of the system, the
agents present in the system, the system’s performance
parameters. The local context collects information on
the relationship between the agent and its neighbor
elements (typically the human and artificial agents
directly interacting with it), thus providing a local view
of the topological setting. Finally, the internal context
collects the information the agent has about itself as
well as its capabilities toward itself (change-over) and
toward the environment (communication and
manipulation) [7].

We have so far described the KB we use for our
artificial agents. We started from a foundational
ontology which was already constructed from a
cognitive stand and showed how we extended it to cover
other kinds of knowledge, from artificial agents to
functions. We also indicated how knowledge can be
contextualized, thus allowing the KB to use a
classification feature largely exploited by humans.

4.5. Applying Ontology and Contexts to
the Manufacturing Case Study

Given a particular application like the manufacturing
scenario of the case study [5], it is necessary to define
the relevant knowledge for a KBCL process in order to
dynamically infer the specific capabilities of an agent
and adapt the control model accordingly. Thus, we have
extended the DOLCE ontology including the type of
needed information by applying the context-based
analysis and the functional characterization described in
the previous sections.

The extended ontology aims at characterizing the
knowledge concerning the general structure of a TM
part of the plant, the related working environment and
the general functional capabilities of TMs. This
information represents the general knowledge (i.e. the
TBox) that a KBCL process instantiates according to the
specific features of the TM to be controlled, in order to
generate the specific KB of a particular TM (i.e. the
ABox). Figure 5 shows the extension of the DOLCE
taxonomy of particulars with respect to the NON-
AGENTIVE PHYSICAL OBJECT category.

According to our extension of the DOLCE ontology,
robots and their parts are modeled as subcategories of
TECHNICAL-ARTIFACT. As described in section
4.2, both robots and their components are artifacts but
they differ in terms of the types of attributed qualities.
Parts can be further distinguished into components, and
parts that are only used by the robot to perform its tasks
without constituting its structure i.e., tools. Thus, the set
of elements belonging to the ROBOTPART category
can be partitioned into elements belonging to the
COMPONENT category and elements belonging to the
ROBOTOOL category. Components have a spatial
location within the robot structure (this would not be
enforced for tools since they can be external to the
robot), have an active state and functional capabilities.
Let COMPONENT(x, y, t) mean that x is a
component of y at time t and ROBOTOOL(x) mean
that x is a tool, then we have:

COMPONENT(x, y, t) →

ROBOTPART(x, y, t) � Artifact(x) ��ROBOT(y) (3)

COMPONENT(x, r, t) → COMPONENT(x) (4)

ROBOTOOL(x) → Artifact(x) (5)

ROBOTOOL(x) →	

� y,t (ROBOT(y) � ROBOTPART(x, y, t)) (6)

Thus, the general class axiom characterizing the
COMPONENT category can be formally defined as
follow:

Figure 5 Extension of DOLCE ontology

 13

ROBOT(r) � ROBOTPART(p, r, t) ��hasLoc(p, lp, t) �

hasCapacity(p, f) � hasOpStat(p, active, t)

→ COMPONENT(p, r, t) (7)

where ROBOTPART(p, r, t) is a predicate asserting that p
is a part of a robot r and the formula states that when a
part of a robot has a functional capacity (f) and is in
active state, then the part must be a component of r.

In our case study, considering the internal structure of a
TM, it is possible to define three different types of
component: (i) the conveyor component; (ii) the port
component; (iii) the cross-transfer component. Thus,
we have extended the COMPONENT category by
introducing the PORT category, the CONVEYOR
category and the CROSS-TRANSFER category. The
main distinction among the elements of these categories
is the type of function the associated component can
perform. Conveyors are the engines composing the
structure of a TM that enable movements of pallets.
These elements has channel capabilities that allow a
TM to actually move pallets between two adjacent
spatial locations connected through conveyors. The
formula below formally characterizes the CONVEYOR
category:

ROBOT(r) � ROBOTPART(p, r) ��hasLoc(p,lp,t) �

hasCapacity(p, f) � hasOpStat(p, active, t)

CHANNEL(f) → CONVEYOR(p) (8)

where elements of the CHANNEL category represent
functions whose effect changes the spatial location
quality of an operand (i.e. a pallet). The execution of a
channel changes the location of the pallet from the start
location to the end location. Cross-transfers are another
type of engines that allow a TM to change its physical
configuration. These elements have change-over
capabilities that change the internal connections of a
TM. Different configurations (i.e., internal connections)
enable different directions of movements of pallets
within a TM (i.e., different paths). The CROSS-
TRANSFER category can be formally defined as
follows:

3 In general, it suffices that the components have
connected working areas. E.g. in a robot with a robotic arm
and a container, the locations of the arm and the container

ROBOT(r) � ROBOTPART(p, r, t) ��hasLoc(p, lp, t) �

hasCapacity(p, f) � hasOpStat(p, active, t) ��

CHANGE-OVER(f) → CROSS-TRANSFER(p) (9)

Finally, ports are structural elements that allow a TM to
be connected with other TMs. These elements have
communication capacities that allow a TM to send and
receive pallets to and from other TMs of the plant. The
PORT category can be formally defined as follow:

ROBOT(r) � ROBOTPART(p, r, t) ��hasLoc(p, lp, t) �

hasCapacity(p, f) � hasOpStat(p, active, t) ��

COMMMUNICATION(f) → PORT(p) (10)

Channel functions can be combined together in order to
realize complex channels. Components that collaborate
to perform channel functions must be spatially
connected. Thus, the internal structure for this kind of
functionality is determined by the connections of the
components’ locations.3 The choice of modeling the
elements of a TM with different categories rather than
using the general COMPONENT category relies on the
different properties that these elements bring to
implement functional capabilities. Their contribution to
infer the functional capabilities of the TM will be
discussed in Section 5.

The ROBOT category has been extended by introducing
the TRANSPORTATION-MODULE category in a
similar way to the ROBOTPART category. It
characterizes TMs from a functional point of view. TMs
are modeled as a particular type of robot capable of
performing channel functions by collaborating with
other agents (i.e., other TMs or working machines) of
the plant. The collaborators of a TM constitute the
(working) environment of a TM and therefore they are
part of the local context of a TM. The general class
axiom characterizing the elements that belong to the
TRANSPORTATION-MODULE category can be
formally defined as follows:

are disconnected but the arm must be able to reach objects in
the container to implement a Channel function, so the
working areas must be connected.

 14

ROBOT(r) � ROBOT(c) ��hasCollab(r, c, t) �

CHANNEL(f) � hasCapacity(r, f)

→ TRANSPORTATION-MODULE(r) (11)

It is important to point out that, in this context, a
collaborator is a relative concept which depends on the
particular configuration of the considered TM. It
represents a relationship between a TM and other
directly connected agents that could be either other TMs
or working machines in the shop floor. Thus, the
concept of COLLABORATOR is modeled as a role that
an agent may play according to local connections (i.e.
local context) of a TM.

5. CONNECTING KNOWLEDGE AND
CONTROL

The Knowledge Manager module (KM) in Figure 2 is
responsible for managing the lifecycle of the
Knowledge Base (KB) within the KBCL process. In the
specific context of the manufacturing case study, each
KB models a particular TM of the transportation plant
by specifying the associated internal structure, the
connections with other TMs and the resulting functional
capabilities. The management of such a KB relies on a
knowledge processing mechanism implemented by
means of a Rule-based Inference Engine which
leverages a set of inference rules to generated and
updated a KB of an agent.

The knowledge processing mechanism dynamically
builds the KB by elaborating raw data received from the
Diagnosis Module and infers knowledge concerning the
structure, the working environment and the functional
capabilities of the agent. This mechanism involves two
reasoning steps, depicted in Figure 6, that are (i) the
low-level reasoning step and (ii) the high-level
reasoning step. Specifically, these two reasoning steps
refine the knowledge about the agent by combining a set
of dedicated inference rules with the general
information of contexts and functions of the ontology
described in the previous section.

The first reasoning step, called the low-level reasoning,
aims at characterizing a TM in terms of the components
that actually compose its structure like e.g., ports,
conveyors, etc., and the associated collaborators. It
relies on the internal and local contexts of the ontology
and a set of classification rules. The resulting KB,
named kb0 in Figure 6, characterizes the structure of the
TM and the related local working environment. This
initial KB describes the agent in terms of its internal and
local contexts.

The second reasoning step, called high-level reasoning,
starts from the KB elicited after the previous step (i.e.,
the kb0) and further refines it by inferring knowledge
about the functional capabilities of the TM.
Specifically, the high-level reasoning step relies on the
taxonomy of functions and the capability inference rules
to complete the knowledge processing mechanism. The
KB on which the high-level reasoning works encodes
the particular internal and local context of the agent.
Thus, the inference mechanism can determine the set of
functions that the agent can actually perform by
analyzing its structure and the associated working
environment. The outcome of this second reasoning step
(and the overall knowledge processing mechanism) is
the final KB encoding a complete interpretation of the
structure of the agent, the working environment (from
the agent perspective) and the functional capabilities
the agent can actually perform. Such knowledge is then
exploited to generate the plan-based control model of
the deliberative controller. The next two subsections
provide a more detailed discussion of the two reasoning
steps constituting the knowledge processing
mechanism.

Knowledge)Processing)Mechanism)

kb0

Mechatronic)
Module/Controller)

Diagnosis)Module)d: sensor
data

kb: agent's
knowledge

Low9level)Reasoning)

Contexts(

Classifica.on(Rules(

High9level)Reasoning)

Taxonomy((
of(Func.ons(

Capability((
Inference(Rules(

Figure 6 The knowledge processing mechanism

 15

5.1. The low-level Reasoning
The low-level reasoning process is responsible for
inferring information concerning the internal and local
contexts of the TM. Namely, the result of this inference
step is an initial KB describing the operating devices
that compose the TM (i.e. the components) and the
available collaborators. Namely, it builds an initial
version of the KB by classifying data received from the
Diagnosis Module on the basis of contexts
categorization. The input data represents a set of
individuals concerning the parts that compose the TM,
their connections and their capabilities. Figure 7
provides a (partial) graphical representation of a
possible set of individuals and predicates the knowledge
processing mechanism receives as input from the
Diagnosis Module. In particular, the figure shows the
different contexts the individuals belong to, the
reasoning step exploits to provide these data with
additional semantics.

Given this set of data, the first rule applied by the low-
level reasoning aims at identifying the set of active parts
the TM can actually use to perform functions. These set
of active parts are represented as TM’s components.
According to axiom (7), an element of the
COMPONENT category is a structural part of a robot,
it has an operative state and some functional
capabilities. The inference process exploits this
functional characterization of components to interpret
input data and identify the components of the TM.
According to the axiom (7), being p a structural part of
a robot r, with the capability of performing some
function f, it is possible to infer that p is an element of
the COMPONENT category. Therefore, due to axioms (4),
the predicate COMPONENT(p) is true.

The applied ontological approach models the different
types of components that may compose a TM (see
Figure 5) according to the different types of functional

capabilities. Leveraging this interpretation, the low-
level reasoning process applies axioms (8), (9) and (10)
to classify inferred components and identify the
different types of component that actually constitute the
TM. As soon as the components are classified, the low-
level reasoning process ends by inferring the set of
available collaborators of the TM. Collaborators are
TMs of the plant that are in operative state and are
directly connected to the TM. Namely, collaborators are
TMs of the plant that can actually receive/send pallets
from/to TM. This, collaborators are inferred by applying
the following rule:

ROBOT(r) � PORT(p) ��hasLoc(p, lp, t) ��
ROBOTPART(p, r, t) � hasOpStat(p, active, t) �

ROBOT(c) � hasLoc(c, lc, t) ��connection(lp, lc, t)

→ hasCollab(r, c, t) (12)�

where connection(lp, lc, t) is a predicate asserting that the
location of the TM’s port p is connected with the robot
c. Figure 8 provides a (simplified) graphical
representation of a possible KB resulting from the
applications of rule (12) (the dotted arrows represent the
inferred properties concerning collaborations).

5.2. The high-level Reasoning
The high-level reasoning step extends the KB elicited
from the previous step inferring the capabilities the TM
is actually able to use on the basis of its current status
and current production environment.

INTERNAL	CONTEXT

LOCAL	CONTEXT

GLOBAL	CONTEXT
module-t3

port-f

port-b

conveyor

module-t1

hasLoc hasLoc

hasLochasPart
hasPart

hasPart

connection

connection

connection connection

connection

hasLoc

module-t2
hasLoc

module-t7

hasLoc

module-t4

connection

connection

port-f port-b

module-t1

hasLoc

hasOpStat

hasOpStat

hasComp

connection

hasComp

robot-1

active
robot-3

connection

hasOpStat

hasLoc

hasLoc

hasLoc

connection

robot-2

hasLoc

hasCollab
hasCollab

Figure 8 Inferring collaborators of a TM

Figure 7 Raw data received from the Diagnosis Module

 16

Given the information about the components and
collaborators of a TM, the first rule applied by the high-
level reasoning aims at inferring the primitive channels
the TM can perform according to its internal structure.
Indeed, active components can be used by a robot to
perform functions. For instance, a conveyor allows a
TM to perform channel functions. According to this
interpretation it is possible to define a rule to infer the
set of primitive channels a TM can perform as follows:

ROBOT(r) � CONVEYOR(c1) �

hasOpStat(c1, active, t) ��COMPONENT(c2) �

COMPONENT (c3) � hasLoc(c1, l1, t) �

hasLoc(c2, l2, t) � hasLoc(c3, l3, t) �

connection(l2, l1, t) � connection(l1, l3, t) �

→ hasCapacity(r, f) � CHANNEL(f) �

cStart(f, l2) � cEnd(f, l3) � cConnect(l2, l3) (13)

where (CONVEYOR(c1) � hasOpStat(c1, active, t))
asserts that c1 is a conveyor component of the TM
whose operative state is active at time t. Namely, the
conveyor c1 is an active component of the TM and
therefore, can be actually used to perform functions.
Figure 9 shows a (simplified) graphical representation
of the KB resulting from the application of rule (13). In
particular, the figure represents predicates (i.e. the
dotted arrows) and the individual (the channel-1 node)
inferred and added to the KB.

Figure 9 Inferring primitive channels of a TM

The rationale of rule (13) relies on the functional
interpretation of the CONVEYOR category as the set
of components that can perform channel functions.
Thus, if a conveyor component connects two
components of the TM through its spatial location, see
the clause (connection(l2, l1, t) � connection(l1, l3, t)) in
(13), then the conveyor can perform a primitive channel
function between the components’ locations. Moreover,

the cConnect(l2, l3) is a transitive predicate which allows
to connect different channel functions. Indeed, if two
spatial locations are connected through the cConnect
predicate then there exists a composition of primitive
channel functions that “connect” them.

A primitive channel involves components of one TM.
However, the knowledge process mechanism aims to
infer the channel capabilities that involve the
collaborators of a TM. Namely, channel functions that
allow a TM to exchange pallets with other TMs of the
plant. We call such functions complex channel and they
are inferred by applying the following rule:

ROBOT(r) � ROBOT(rc1) � ROBOT(rc2) �
hasCollab(r, rc1, t) � hasLoc(rc1, rl1, t) ��

hasCollab(r, rc2, t) � hasLoc(rc2, rl2, t) �
PORT(c1) ��hasOpState(c1, active, t) �

hasLoc(c1, l1, t) � PORT(c2) �

hasOpState(c2, active, t) � hasLoc(c2, l2, t) �
connection(l1, rl1, t) � connection(l2, rl2, t) ��

cConnect(l1, l2) →	hasCapacity(r, f) �	

CHANNEL(f) � cStart(f, rl1) ��cEnd(f, rl2) (14)

A key point of the rule (14) is that a complex channel
function is interpreted as the composition of some
primitive channels a TM can internally perform. This is
a quite flexible and general interpretation of a channel
function. If one or more parts of a TM stop working (i.e.,
their operational state passes to inactive), then a TM will
no longer be able to perform the associated primitive
channels and the high-level reasoning step will not be
able to infer the associated complex channel functions
that depend from these parts. Similarly, if new
components are added to the TM, the high-level
reasoning step will be able to infer additional complex
channel functions according to the resulting structure.
Finally, note that we do not add the converse formulas
of (13) and (14) since these would prevent the discovery
of alternative ways to perform the functions.

port-f

port-b

conveyor

module-t1

hasLoc

hasLoc

hasLochasComp hasComp

hasComp

connection

connection

channel-1

cStart

cEnd

cConnect

hasCapacity

 17

5.3. Implementation notes
Although the ontology is provided in first order logic, at
this stage only preprocessing (primarily to ensure
conceptual consistency) is done in that language. Most
of the inferences at runtime are done in the Web
Ontology Language (OWL) version of the KB where we
exploit primarily the contextual classification and
relationships. The ontology editor Protégé4 has been
used for KB design and testing. For runtime reasoning
in the Knowledge Manager, we have used the Ontology
and RDF APIs and Inference API provided by the
Apache Jena Software Library5. Finally, the
Deliberative Controller has been realized by means of
the GOAC architecture [14] whose deliberative features
are implemented by means of APSI-TRF [15]. A more
detailed description of how the KBCL has been
implemented goes beyond the scope of this paper.

6. PLAN-BASED CONTROL LOOP
The Planning Framework element in Figure 2 endows
the KBCL process with deliberative capabilities by
exploiting a timeline-based planner [36]. The planner
relies on a timeline-based planning model automatically
generated from KB’s information. Before describing the
details of the process which generates the planning
domain, this section provides a brief description of
timeline-based planning and the pursued modeling
approach.

6.1. Planning with Timelines
The timeline-based approach to planning has been
introduced in early 90s [37] and takes inspiration from
the classical control theory. It models a complex system
by identifying a set of relevant features that must be
controlled over time. This approach has been

4 http://protege.stanford.edu

successfully applied to real world contexts (especially
in space applications) and several planning frameworks
have been developed for the synthesis of timeline-based
P&S applications, e.g. EUROPA [38], ASPEN [39],
APSI-TRF [40].

Broadly speaking, timeline-based planning applications
aim at controlling a complex system by synthesizing
temporal behaviors of its features in shape of timelines.
A timeline consists of a sequence of states/actions the
related domain feature (e.g., a component of the device
to control) may assume/perform over time. Every value
on a timeline is temporally allocated and represents the
value/action the feature assumes/performs during the
related temporal interval. Temporal flexibility allows to
allocate values to flexible temporal intervals, i.e.,
intervals with flexible start time and end time. The
resulting timeline represents an envelope of possible
temporal evolutions of the related feature. Thus, a
timeline-based plan, which consists of the union of all
the timelines of the domain, represents the sets of all the
possible temporal evolutions of the domain features. It
is important to point out that the temporal flexibility in
such a plan can be exploited at execution time by an
executive system to gain robustness [41].

6.1.1. Modeling approach
State Variables model the features of a system that must
be controlled over time. A state variable describes the
temporal behaviors of a specific feature by means of
causal and temporal constraints. More specifically, it
describes the values the feature can assume over time,
their duration constraints and the allowed transitions. In
this regard, starting from the ontological analysis of the
functional capabilities and the structure of agents
described above, we define a modeling methodology of
timeline-based planning domains.

The key idea is that the planning domain is to describe
the functional capabilities of the system we want to
control, the features of the elements that compose the
system and the features of the working environment that
must be taken into account in order to successfully carry
out the desired functionalities. From the control
perspective, it is possible to identify three different
classes of state variables: (i) functional state variables;
(ii) primitive state variables; (iii) external state
variables. Functional state variables model a physical
system as a whole in terms of the high-level functions it
can perform (notwithstanding its internal structure).
Primitive state variables model the physical and/or

5 http://jena.apache.org

robot-1

hasLoc
port-f

hasLoc

hasComp

connection

port-b

module-t1

hasComp

cConnect

hasCollab

cStart

cEndchannel-f-b

hasLoc

hasCapacity
hasCollab

connection

hasLoc

robot-2

Figure 10 Inferring complex channels of a TM

 18

logical elements that compose a physical system. In
particular, these state variables model the elements we
must actually control to execute high-level functions.
External state variables model elements of the domain
whose behavior is not directly under the control of the
system. For example, these variables model conditions
that must hold in order to successfully perform
operations..

The behavior of state variables must be further
constrained by specifying inter-component causal and
temporal requirements, called synchronization rules.
These rules specify additional constraints that allow to
coordinate the behaviors of the domain features in order
to perform high-level functions (i.e., planning goals).
Following a hierarchical approach, synchronization
rules map the values of functional state variables into a
set of constraints among the values of primitive and/or
external state variables that guarantee the proper
functioning of the overall system and its elements.
Namely, synchronization rules specify how high-level
functions are implemented by an agent. These rules
describe dependencies between the different variables
of a planning domain and therefore may determine a
hierarchy among them. A comprehensive formalization
of timeline-based planning is provided in [47].

6.2. The model generation process
Key role for the dialogue between the Knowledge
Manager and the Deliberative Controller is the Model
Generation process (Step 2 of Figure 2). The KB
generated by the Knowledge Manager provides an
abstract representation of the capabilities, the structure
and production environment of an agent. The Model
Generation process analyzes such a KB in order to
dynamically generate a timeline-based planning domain
for the Deliberative Controller.

The process encodes the hierarchical modeling
methodology described in the previous section and
builds the model by leveraging the context-based
characterization of the KB. The information concerning
the global context and the taxonomy of function allow to
define the functional state variables that provide a
functional view of the agent as a whole. These state
variables indeed describe the high-level tasks the agent
can perform over time.

The internal context contains structural information
about the agent and therefore it is suited to generate the
primitive state variables of the domain. These variables
describe the physical/logical features that compose the
agent. Usually, the values of this type of variables

directly correspond to states or actions that may
assumed/performed over time by the related feature.

The local context manages information concerning the
working environment of the agent and therefore it is
suited to build the set of external state variables of the
model. These variables model the collaborating agents
(e.g., the directly connected TMs of the plant in the case
study) whose behavior may affect the capabilities of the
agent, even if not directly controllable.

Figure 11 The model generation procedure

The Algorithm in Figure 11 describes the general
procedure of the model generation process. The
procedure consists of four specific sub-procedures that
analyze different areas of the knowledge about the agent
in order to generate different parts of the control model.
The procedure starts by extracting information related
to the agent and initializing the P&S model (rows 3-4).
According to the hierarchical approach described
above, a set of functional, primitive and external state
variables is generated (rows 6-8). Finally, the
hierarchical decomposition of functional values (i.e.,
the values of the functional state variables) is described
by means of a suitable set of generated synchronization
rules (row 10). The resulting timeline-based model is
then composed and returned as the outcome of the
procedure. (rows 12-13).

Then, the buildControlModel procedure allows the
model generation process to automatically build the
timeline-based specification by leveraging the
knowledge about the agent. As described in [42], every
time a change occurs in the KB, a new instance of the
model generation process is triggered in order to
generate an updated control model of the agent. The
next subsections provide some details about the sub-
procedures of the process as well as an example of a
possible timeline-based control model that can be
generated for a TM in the case study plant.

 19

6.2.1. Building State Variables from
Contexts

The functional state variable generation procedure
creates a set of state variables concerning the functional
capabilities of the agent. The procedure relies on the set
of capabilities the knowledge processing mechanism
has inferred through application of rules (13) and (14).
The procedure generates a state variable for each
function of the taxonomy (see Figure 4) the agent can
perform. Namely, given a particular function f of the
taxonomy, if the KB contains at least one individual for
that function f (i.e., if the knowledge processing
mechanism has inferred at least one way for the agent to
perform f), then a state variable sv for f is created. The
individuals of f in the KB represent all the possible
implementations of f that the agent can perform (i.e., all
the capabilities of the agent with respect to f). Thus, for
each inferred individual of f the procedure adds a value
to the related (functional) state variable sv.

Figure 12 The functional variable generation procedure

The Algorithm in Figure 12 shows the pseudo-code of
the buildFunctionalComponents procedure. The
procedure first initializes the set of functional state
variables of the domain (row 3). Then, the procedure
reads the taxonomy of function from the KB and, for
each function, checks the available capabilities of the
agent (rows 6-20). Given a function, if the KB contains
at least one capability for that function, then the
procedure creates a functional state variable (rows 9-
11). Each capability found in the KB is modeled as a
value of the state created variable (rows 12-15). The
procedure ends by returning the set of obtained
variables.

The primitive state variable generation procedure
creates a set of state variables concerning the structural
components of the agent. The procedure relies on a

functional interpretation of components as elements
that allow the agent to perform functions. The procedure
creates a primitive state variable to the model for each
component found in the KB. According to the rules (8),
(9) and (10) the components of the agent are modeled in
terms of their capabilities. Thus, the values of these
state variables represent the primitive functions of the
agent.

Figure 13 The primitive variable generation procedure

The Algorithm in Figure 13 shows the pseudo-code of
the buildPrimitiveComponents procedure. The
procedure first initializes the set of primitive state
variables of the domain (row 2). Then, the procedure
reads the set of inferred components from the KB (row
4). Given a component, if the KB contains at least one
primitive function the agent can perform through that
component, then a primitive variable is created (rows 5-
10). The values added to the variable model the
capabilities of the related component. Namely, the
values model all the primitive functions the agent can
perform by means of the considered component (rows
11-16). The procedure ends by returning the set of
generated state variables. The external state variable
generation procedure creates the set of external
variables composing the timeline-based model. The
procedure generates the set of state variables
representing the collaborators of the agent.
Specifically, a state variable is created for each
individual found in the KB that, according to the
inference rule (12), has been classified as collaborator.
The values of these state variables represent the
operative states the collaborators may assume over
time.

 20

Figure 14 The external variable generation procedure

The Algorithm in Figure 14 shows the pseudo-code of
the buildExternalComponents procedure in Figure 11.
The procedure first initializes the set of external
variables of the domain (row 2). Then, the procedure
reads the set of inferred collaborators from the KB (row
4). For each collaborator found, a state variable is
created (rows 5-7) and for each operative state the
collaborator may assume over time, a value is added to
the created variable (rows 9-14). The procedure ends by
returning the set of generated variables.

6.2.2. Building Decomposition Rules
from Inference Trace

When all the state variables and their values have been
generated, it is necessary to build the synchronization
rules of the domain in order to coordinate the behaviors
of the different components of the agent and achieve the
desired goals. Thus, given the general procedure in
Figure 11, the buildSynchronizationRules procedure
generates the decomposition rules by leveraging the
inference trace of the KB.

The inference trace represents internal knowledge
generated by the application of the inference rules. Such
knowledge manages intermediate information which is
necessary to complete the knowledge processing
mechanism and therefore build the KB. For instance,
besides primitive channels, the inference rule (13)
generates cConnect properties. These properties do not
represent specific information about the agent but are
necessary to generate the set of complex channels, as
shown in rule (14). These properties encode functional
dependencies among the components of a TM. In
particular, they encode these dependencies in terms of
primitive channels needed to implement complex
channels.

The inferred cConnect properties can be analyzed in
order to build a particular data structure, called
functional graph, that correlates functional
dependencies among components, primitive and

complex channels. The graph is built according to the
inferred cConnect properties. Thus, the possible
implementations of complex channels can be found by
traversing the functional graph. This set of information
is necessary to build the set of synchronization rules
specifying how the agent must execute complex
channels. Indeed, synchronization rules are generated
by analyzing the paths on the functional graph that
connect the start with the end locations of complex
channels. These paths can be easily expressed in terms
of precedence constraints between primitive channels
of the involved components.

Figure 15 The Synchronization rule generation procedure

The Algorithm in Figure 15 shows the pseudo-code of
the buildSynchronizationRules procedure. The
procedure first initializes the set of rules (row 2) and
then analyzes the KB to build the functional graph
concerning channel functions (row 4). For each
complex channel the procedure extracts the available
implementations from the functional graph (rows 6-9).
Each implementation encodes a set of temporal
constraints between the primitive channels of the agent.
Thus, given a possible implementation of a complex
channel, a new synchronization rule is created (rows 10-
14). The procedure ends by returning the set of
generated synchronizations.

6.2.3. The Resulting Timeline-based
Control Model

The described procedures encode a model generation
process which relies on a context-based characterization
of the KB. According to this structure, the process
generates a hierarchical domain description modeling
the complex functions of the agent in terms of primitive
functions internal components can directly handle.
Figure 16 shows a partial timeline-based model
generated for a TM which is endowed with a single
cross-transfer unit. The model provides a functional
characterization of the TM according to the functional,
primitive and external hierarchical levels.

 21

The primitive state variables (the green ones in Figure
16) model the active parts of the TM that can actually
perform some (primitive) functions. These state
variables model the functional capabilities of the
elements that compose the TM. For example, the
component Conveyor1 can perform the primitive
channel ChannelF-Down to move a pallet between the
location of component PortF and the location Down of
component Cross1. Similarly, the component Cross1
can perform the primitive channel ChannelDown-Up to
move a pallet from the location Down to the location Up
of the same component Cross1.

The external state variables (the grey ones in Figure 16)
model the inferred collaborators that can directly
interact with the considered TM. The values of these
variables represent the operative states that
collaborators may assume over time. Figure 16 shows
the external state variables concerning two of four
collaborators available. Specifically, the state variables
model the temporal behaviors of CollaboratorF and
CollaboratorR i.e., the collaborators connected to the
TM through the components PortF and PortR
respectively.

The functional state variables (the blue ones in Figure
16) model the inferred channel functions the TM can
perform by combining the internal (i.e., the primitive)
channel functions. For example, according to this
interpretation, ChannelF-R can be seen as the
composition of the following primitive channels:
ChannelF-Down, ChannelDown-Up, ChannelUp-R.
Such a composition represents a particular
implementation of the complex channel function

6 All the experiments have been performed on a
workstation endowed with an Intel Core2 Duo 2.26GHz and
8GB RAM.

ChannelF-R. Implementations are modeled by means of
synchronization rules that specify a suited set of
temporal constraints (see red arrows in Figure 16).
These temporal constraints encode also the functional
dependencies between the TM and its collaborators.
Indeed, CollaboratorF and CollaboratorR must be
available (i.e., operative) during the execution of the
complex channel function ChannelF-R.

The generated timeline-based planning model provides
a functional characterization of TMs of the plant where
planning goals represent high-level functions a TM can
perform. These functions are described in terms of the
atomic operations (i.e., primitive functions) a TM is
able of performing by means of its components and the
available collaborators.

7. EXPERIMENTAL EVALUATION
In order to validate the architecture and the Knowledge-
based Control Loop described above, the whole system
has been deployed in the manufacturing case study.

A set of tests has been run for the KBCL with different
TM configurations. Specifically, all the different
physical configurations of a TM have been considered,
i.e., from zero to three cross-transfer modules, referring
to them as simple, single, double and full configuration,
respectively. A different configuration also entails a
different number of connected TM neighbors. Clearly,
the more complex scenario is the one with the highest
number of both cross-transfers (the full configuration)
and neighbors. Moreover, reconfiguration scenarios
have been addressed considering different external
events, i.e., an increasing number of TM neighbors
momentarily unable to exchange pallets, or internal
failures, i.e., a cross-transfer engine failure or a local
failure for a specific port.

The experiments were carried out to evaluate the
performance of the following aspects of a single TM
agent: (i) the knowledge processing mechanism; (ii) the
planning model generation; (iii) the synthesis of plans
to manage a set of pallet requests. The final aim is to
show that the latency of the KBCL is compatible with
execution latencies of the RMS. Figure 17 shows the
timings6 in the Setup phase for the KBCL module
operation, i.e., to build the KB exploiting the
classification and capability inference process, and to
generate the timeline-based planning specification for
the TM. On the one hand, the results show that an

TM
<<functional>>

Channel
F-B

Channel
B-F

Channel
F-R

Idle

…

Conveyor1
<<primitive>>

Channel
F-Down

Channel
Down-B

Idle

…

Cross1
<<primitive>>

Channel
Up-Down

Channel
Down-Up

Idle Conveyor2
<<primitive>>

Channel
Up-R

Idle

…

CollaboratorR
<<external>>

Available

Not
Available

CollaboratorF
<<external>> Available

Not
Available

during
during

before
before

contains
contains

contains

Channel
Up-L

Figure 16 A (partial) timeline-based model generated for
a TM equipped with one cross-transfer unit

 22

increase in the complexity of the TM configurations
does not entail a performance degeneration of the
knowledge processing mechanism: the inference costs
are almost constant (around 1.3 secs). This behavior was
expected since the number of instances/relationships in
the KB is rather low independently of the physical
configuration of the TM; thus, the performance of the
inference engine deployed here is not particularly
affected by this aspect. On the other hand, the model
generation is linearly affected by the increasing
complexity, spanning from 0.8 secs in the simple
configuration, up to a maximum of 2.2 seconds in the
full configuration.

The model generation process entails a combinatorial
effect on the number of instances/relationships needed
to generate components and synchronizations leading to
larger planning models and, thus, to higher process
costs. When a reconfiguration scenario occurs, the
knowledge processing costs are negligible. Among all
the considered reconfiguration cases, the time spent by
the knowledge processing mechanism to (re)infer the
enabled functionalities is just a few milliseconds. In
fact, both the classification and capability inference
steps are applied to a KB only slightly changed after the
reconfiguration. The small changes in terms of
functionalities can be quickly inferred in the system and
represented in the current KB. As for the planning
model generation cost, the considered reconfiguration
scenarios (either external or internal) lead to a reduction
of functionalities and the related costs are relatively
small. For instance, in the case of the full TM
configuration, the cost for the model generation is
always below 0.8 seconds.

Finally, we evaluate the planning costs when facing
both setup and reconfiguration scenarios with an
increasing number of pallet requests (randomly
generated in the specific case), i.e., planning goals, to

be fulfilled. Planning costs span from few seconds up to
nearly 30 seconds when planning for 10 pallet requests
within a 15 minutes’ time horizon. In general, the more
complex the planning model, the harder the plan
synthesis problem. Thus, the planning costs follow the
complexity of the configurations of the specific TM
agent.

7.1. Discussion
The experimental results show the practical feasibility
of the KBCL approach in increasingly complex
instances of a real-world manufacturing case study. The
collected data for the initialization (or the update) of a
generic agent’s KB (considering both knowledge
processing and model generation) and the cost for
planning synthesis have a rather low impact on its
performance during operation. In fact, in order to face
production periods of 15 minutes –and the management
of 10 pallet requests– no more than 5 seconds are
required by the Knowledge Manager while less than 30
seconds are required by the Planner to generate a
suitable plan. These performances are compatible with
the system usual latency in this type of manufacturing
applications [13]. It is worth reminding how the role of
the KBCL is to avoid major overhauls of the control
policies (e.g., control code revisions deployed too often
in concrete cases) to cope with adaptation to variations
or plant reconfigurations.

8. CONCLUSIONS
In most architectures for artificial agents the knowledge
of the world is distributed across different parts of the
system. This may lead to information redundancy
(jeopardizing consistency), planning-knowledge
misalignment, inconsistent knowledge update, etc. We
have proposed to use a single foundational ontology to
coherently organize knowledge on the entities and
relationships in the agent’s world (objects,
functionalities, states including the agent and its
components) augmented with context modules that
store the factual knowledge of the agent on these
entities. We then have described how the knowledge
manager extracts information for the planning and
execution module of the agent. With this setting, the
agent can reason on its own capabilities and adapt its
plans in case of failures or sudden changes in the world.
To validate the approach, we provided an
implementation of the knowledge control loop and
showed that it has performances compatible with the
settings of a realistic industrial scenario. The validation
is promising but admittedly limited: a full

0"

0.5"

1"

1.5"

2"

2.5"

inference" model"gen."

Setup"

Pr
oc
es
s'(

m
e'
(in

'se
co
nd

s)
'

simple" single" double" full"

Figure 17 KB inference and planning domain generation
times

 23

implementation in a large industrial scenario is needed
to compare our work with other approaches.

Several issues remain to be explored. First, it is
important to have a fairly amount of common
knowledge on the environment to take advantage of the
knowledge in the ontology and the context modules. It
is also unclear how to optimize reasoning by taking
advantage of the expressivity of the available languages
(first-order logic and OWL), since reasoning in
languages like OWL leads to ignore basic information
about, e.g., activity ordering and functionality
constraints. Second, we have to expand the connection
between the ontology of functions and the constraints
on the agents’ state variables: these constraints are
crucial to execute the functions and control the changes
in the environment. Finally, our verification scenario is
still quite limited.

ACKNOWLEDGMENTS
CNR authors are supported by MIUR/CNR within the
GECKO Project - Progetto Bandiera “La Fabbrica del
Futuro”.

REFERENCES
[1] Yazen Al-Safi and Valeriy Vyatkin (2007). An

ontology-based reconfiguration agent for intelligent
mechatronic systems. In Vladimr Malik, Valeriy
Vyatkin, and ArmandoW. Colombo, editors, Holonic
and Multi-Agent Systems for Manufacturing, volume
4659 of Lecture Notes in Computer Science, pages 114–
126. Springer Berlin Heidelberg.

[2] Stephen Balakirsky (2015). Ontology based action
planning and verification for agile manufacturing.
Robotics and Computer-Integrated Manufacturing,
33(0):21–28. Special Issue on Knowledge Driven
Robotics and Manufacturing.

[3] Gregor Behnke, Denis Ponomaryov, Marvin Schiller,
Pascal Bercher, Florian Nothdurft, Birte Glimm, and
Susanne Biundo (2015). Coherence across components
in cognitive systems – one ontology to rule them all. In
Proc. of the 25th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2015). AAAI Press.

[4] S. Borgo. How Formal Ontology can help Civil
Engineers. In J. Teller, J. Lee, and C. Roussey, editors,
Ontologies for Urban Development, pages 37–45.
Springer, Berlin, 2007.

[5] Borgo S., Cesta A., Orlandini A., Rasconi R., Suriano
M., Umbrico A. (2014) Towards a cooperative
knowledge-based control architecture for a
reconfigurable manufacturing plant. In 19th IEEE
International Conference on Emerging Technologies
and Factory Automation (ETFA 2014). IEEE, 2014.

[6] Stefano Borgo. An ontological approach for reliable
data integration in the industrial domain. Computers in
Industry, 65(9):1242–1252, 2014.

[7] Borgo S., Cesta A., Orlandini A., and Umbrico A.
(2015) An ontology-based domain representation for
plan-based controllers in a reconfigurable
manufacturing system. In Proc. of the Twenty-Eighth
International Florida Artificial Intelligence Research
Society Conference, pages 354–359. AAAI Press.

[8] Stefano Borgo, Maarten Franssen, Pawel Garbacz,
Yoshinobu Kitamura, Riichiro Mizoguchi, and Pieter E.
Vermaas. Technical artifacts: An integrated perspective.
Applied Ontology Journal, 9(3-4):217–235, 2014.

[9] Stefano Borgo and Paulo Leitao. The role of
foundational ontologies in manufacturing domain
applications. In R. et al. Meersman, editor,
Infrastructures for Virtual Enterprises - Networking
Industrial Enterprises, volume LNCS 3290, pages 670–
688. Springer, 2004.

[10] Stefano Borgo and Claudio Masolo. Foundational
Choices in DOLCE. In S. Staab and R. Studer, editors,
Handbook on Ontologies, pages 361– 381. Springer
Verlag, 2nd edition, 2009.

[11] Stefano Borgo and Laure Vieu. Artifacts in Formal
Ontology. In Anthonie Meijers, editor, Handbook of the
Philosophy of the Technological Sciences. Technology
and Engineering Sciences, volume 9, pages 273–307.
Elsevier, 2009.

[12] Daniele Calisi, Luca Iocchi, Daniele Nardi, Carlo
Matteo Scalzo, and Vittorio Amos Ziparo. Context-
based design of robotic systems. Robotics and
Autonomous Systems, 56(11):992–1003, 2008.
Semantic Knowledge in Robotics.

[13] Carpanzano E., Cesta A., Orlandini A., Rasconi R.,
Suriano M., Umbrico A., Valente A. (2016) Design and
implementation of a distributed part routing algorithm
for reconfigurable transportation systems. International
Journal of Computer Integrated Manufacturing.

[14] A. Ceballos, S. Bensalem, A. Cesta, L. de Silva, S.
Fratini, F. Ingrand, J. Ocon, A. Orlandini, F. Py, K.
Rajan, R. Rasconi, and M. van Winnendael. A Goal-
Oriented Autonomous Controller for space exploration.
In Proceedings of the ASTRA 2011, 11th Symposium
on Advanced Space Technologies in Robotics and
Automation, 2011.

[15] Cesta A. and Fratini S. (2008) The Timeline
Representation Framework as a Planning and
Scheduling Software Development Environment. In
Proc. of the 27th Workshop of the UK Planning and
Scheduling Special Interest Group, Edinburgh, UK.
PlanSIG-08.

 24

[16] B. Chandrasekaran and J.R. Josephson. Function in
Device Representation. Engineering with Computers,
16(3/4):162–177, 2000.

[17] Ontologies for Robotics and Automation (ORA)
Working Group. Ieee standard ontologies for robotics
and automation. Technical report, IEEE Std 1872-2015,
2015.

[18] N. Guarino and C. Welty. An overview on Ontoclean.
In S. Staab and R. Studer, editors, Handbook on
Ontologies. Springer, 2009.

[19] Ronny Hartanto and Joachim Hertzberg. Fusing DL
Reasoning with HTN Planning. In AndreasR. Dengel,
Karsten Berns, ThomasM. Breuel, Frank Bomarius, and
ThomasR. Roth-Berghofer, editors, KI 2008: Advances
in Artificial Intelligence, volume 5243 of Lecture Notes
in Computer Science, pages 62–69. Springer Berlin
Heidelberg, 2008.

[20] J. Hirtz, R. B. Stone, D. A. McAdams, S. Szykman, and
K. L. Wood. A functional basis for engineering design:
Reconciling and evolving previous efforts. Research in
Engineering Design, 13(2):65–82, 2001.

[21] Anna Hristoskova, E. Carlos Aguero, Manuela Veloso,
and Filip De Turck. Heterogeneous Context-Aware
Robots Providing a Personalized Building Tour. Int. J.
of Advanced Robotic Systems, 2013.

[22] Yoshinobu Kitamura, Sho Segawa, Munehiko Sasajima,
and Riichiro Mizoguchi. An Ontology of Classification
Criteria for Functional Taxonomies. In IDETC/CIE.
ASME, 2011.

[23] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G.
Pritschow, G. Ulsoy, and H. Van Brussel.
Reconfigurable manufacturing systems. CIRP Annals -
Manufacturing Technology, 48(2), 1999.

[24] S. Lemai and F. Ingrand. Interleaving Temporal
Planning and Execution in Robotics Domains. In AAAI-
04, pages 617–622, 2004.

[25] S. Lemaignan, R. Ros, L. Mosenlechner, R. Alami, and
M. Beetz. ORO, a knowledge management platform for
cognitive architectures in robotics. In Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International
Conference on, pages 3548–3553, Oct 2010.

[26] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A.
Oltramari, and L. Schneider. Wonderweb deliverable
d17: The wonderweb library of foundational ontologies.
Technical report, Laboratory for Applied Ontology,
2002. Technical report.

[27] G. Pahl, W. Beitz, J. Feldhusen, and K.H. Grote.
Engineering Design. A Systematic Approach. Springer,
London, UK, 3rd edition, 2007.

[28] P.K.Turaga, R. Chellappa, V. S. Subrahmanian, and O.
Udrea. Machine Recognition of Human Activities: A

Survey. IEEE Trans. Circuits Syst. Video Techn.,
18(11):1473–1488, 2008.

[29] Edson Prestes, Joel Luis Carbonera, Sandro Rama
Fiorini, Vitor A. M. Jorge, Mara Abel, Raj Madhavan,
Angela Locoro, Paulo Goncalves, Marcos E. Barreto,
Maki Habib, Abdelghani Chibani, Sébastien Ge ́rard,
Yacine Amirat, and Craig Schlenoff. Towards a core
ontology for robotics and automation. Robotics and
Autonomous Systems, 61(11):1193 – 1204, 2013.
Ubiquitous Robotics.

[30] Lorenzo Solano, Pedro Rosado, and Fernando Romero.
Knowledge representation for product and processes
development planning in collaborative environments.
International Journal of Computer Integrated
Manufacturing, 27(8):787– 801, 2013.

[31] Il Hong Suh, Gi Hyun Lim, Wonil Hwang, Hyowon
Suh, Jung-Hwa Choi, and Young-Tack Park. Ontology-
based multi-layered robot knowledge framework
(OMRKF) for robot intelligence. In Intelligent Robots
and Systems, 2007. IROS 2007. IEEE/RSJ International
Conference on, pages 429–436, Oct 2007.

[32] Moritz Tenorth and Michael Beetz. Representations for
robot knowledge in the KnowRob framework. Artificial
Intelligence, pages –, 2015.

[33] H-P Wiendahl, Hoda A ElMaraghy, Peter Nyhuis,
Michael F Zah, H-H Wiendahl, Niel Duffie, and
Michael Brieke. Changeable manufacturing-
classification, design and operation. CIRP Annals-
Manufacturing Technology, 56(2):783– 809, 2007.

[34] Ramos, Luis. Semantic Web for manufacturing, trends
and open issues: Toward a state of the art. Computers &
Industrial Engineering. 90:444-460. 2015.

[35] Chandrasegaran, Senthil K, Ramani, Karthik, Sriram,
Ram D, Horváth, Imré, Bernard, Alain, Harik, Ramy F,
Gao, Wei. The evolution, challenges, and future of
knowledge representation in product design systems.
Computer-aided design. 45(2): 204:228, 2013.

[36] Umbrico A., Cesta A., Cialdea Mayer M., Orlandini A.
(2017) PLATINUm: A New Framework for Planning
and Acting. In: Esposito F., Basili R., Ferilli S., Lisi F.
(eds) AI*IA 2017 Advances in Artificial Intelligence.
AI*IA 2017. Lecture Notes in Computer Science, vol
10640. Springer, Cham.

[37] Muscettola N. (1994) HSTS: Integrating planning and
scheduling. In: Zweben, M. and Fox, M.S., ed.,
Intelligent Scheduing. Morgan Kauffmann.

[38] J. Barreiro, M. Boyce, M. Do, J. Frank, M. Iatauro, T.
Kichkaylo, P. Morris, J. Ong, E. Remolina, T. Smith, D.
Smith. EUROPA: A Platform for AI Planning,
Scheduling, Constraint Programming and Optimization.
2012. In ICKEPS 2012: the 4th International
Competition on Knowledge Engineering for Planning
and Scheduling

 25

[39] S. Chien, D. Tran, G. Rabideau, S. Schaffer, D. Mandl,
S. Frye. Timeline-based Space Operations Scheduling
with External Constraints. 2010. In Proc. of the 20th
International Conference on Automated Planning and
Scheduling.

[40] Cesta A., Cortellessa G., Fratini S., Oddi A. (2009)
Developing an end-to-end planning application from a
timeline-representation framework. In Proc. of the 21st
Innovative Application of Artificial Intelligence
Conference. IAAI-09.

[41] F. Py, K. Rajan, C. McGann. A systematic agent
framework for situated autonomous systems. 2010. In
AAMAS-10. Proc. of the 9th International Conference
on Autonomous Agents and Multiagent Systems.

[42] Borgo S., Cesta A., Orlandini A., Umbrico A. (2016) A
planning-based architecture for a reconfigurable
manufacturing system. In Proc. of the 26th International
Conference on Automated Planning and Scheduling.
ICAPS 2016.

[43] Monostori L, Kádár B, Bauernhansl T, Kondoh S,
Kumara S, Reinhart G, Sauer O, Schuh G, Sihn W,
Ueda K. Cyber-physical systems in manufacturing.
2016. CIRP Annals - Manufacturing Technology,
65(2):621-641.

[44] Tolio, T. Design of Flexible Production Systems. 2009.
Milano, Italy: Springer.

[45] Flatscher M, Riel A. Stakeholder integration for the
successful product–process co-design for next-
generation manufacturing technologies. 2016. CIRP
Annals - Manufacturing Technology, 65(1):181-184.

[46] Riichiro Mizoguchi, Yoshinobu Kitamura, and Stefano
Borgo. A unifying definition for artifact and biological
functions. Applied Ontology. 2016. 11(2):129–154. doi:
10.3233/AO-160165.

[47] Cialdea Mayer M., Orlandini A., Umbrico A. (2016)
Planning and execution with flexible timelines: a formal
account. Acta Informatica. 53(6-8). pp. 649-680.

[48] Riichiro Mizoguchi and Stefano Borgo. A Preliminary
Study of Functional Parts as Roles. 2017. In Proc. of
the 2nd Workshop on Foundational Ontology
(FOUSTII), co-located with the 3rd Joint Ontology
Workshop (JOWO2017), Bozen-Bolzano, Italy.

