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Abstract. Automatic detection approaches depend essentially on the
use of classifiers, that in turn are based on the learning of a given training
set. The choice of the training data is crucial: even if this aspect is often
neglected, the visual information contained in the training samples can
make the difference in a detection/classification scenario. A good training
set has to be sufficiently informative to capture the nature of the object
under analysis, but at the same time has to be generic enough to avoid
overfitting and to cope with new instances of the object of interest. In this
paper we follow those approaches that pursue automatic learning from
Internet data. We try to show how such training set can be made more
appropriate by leveraging on semantic technologies, like lexical resources
and ontologies, in the task of retrieving images from the Web through
the use of a search engine. Experiments on several object classes of the
CalTech101 dataset promote our idea, showing an average increment on
the detection accuracy of about 8%.

Keywords: object detection, one-class SVM, machine learning, ontol-
ogy, semantic search

1 Introduction

In these last years, intriguing applications of robotics, computer vision and pat-
tern recognition have emerged, essentially aimed at providing robots with the
visual intelligence of recognizing previously unseen objects.

Humans interact with their world each day largely based on visual under-
standing. The human visual system is a highly capable modeling and inference
device. It quickly learns the appearances for new objects that are encountered,
combines weak sources of information from multiple views, attends only to the
most useful regions, and integrates numerous priors.

In particular, the human visual system works in tight connection with the
cognitive system. In cases of unclear perception, the visual system can be guided
by memories of previous experiences that can be recalled by associative mech-
anisms (you don’t see the shepherd very well, but you see a familiar shape
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close to a flock of sheep), while in cases of uncertain classification of perceived
objects/scenes, useful inferences can be made on the basis of contextual infor-
mation (you don’t know exactly what that object is, but it moves on the surface
of the sea, it should be some kind of watercraft).

Such capabilities can be hardly embedded in an autonomous agent; in fact,
automatic recognition approaches depend essentially on the use of classifiers, that
in turn are based on the learning of a given training set. The choice of the training
data is crucial: even if this aspect is often neglected, the visual information
contained in the training samples can make the difference in a detection scenario.
A good training set has to be sufficiently informative to capture the nature of
the object under analysis, but at the same time has to be generic enough to
avoid overfitting and to cope with new instances of the object of interest.

In most of the object detection challenges, training sets are given together
with the testing set, under the form of standard benchmarks. This actually hides
the interesting problem of understanding which are the most informative training
samples to be collected, for ensuring a fruitful learning step.

Recently, this problem has been taken into account in a cross-disciplinary
competition, the Semantic Robot Vision Challenge [4]. In this competition, fully
autonomous robots receive a text list of objects that they have to find. In a
training phase, each robot is required to train visual classifiers for each of the
objects, based on images downloaded from the Internet. This is followed by an
environment exploration phase, where robots must search a realistic environment
created by the organizers in order to locate instances of the object categories
listed during training.

This workflow opens up to an intriguing perspective, that is, automatically
learning from Internet data. If we metaphorically see the training set as playing
the role of the previous visual experiences stored in the memory of a human,
we easily see that we miss a part of the story: human memories are connected
in various ways through associative and inferential mechanisms used to retrieve
relevant and useful information. So, if the robot uses textual inputs to search the
Internet, we can think of mimicking human cognitive mechanisms by providing
other relevant inputs in textual format, i.e. by adding words connected to the
one identifying the object that is being searched5.

In this paper, we follow the trend of learning from Internet; we think that
automatic sampling of Web images for learning is feasible with the massive
growth of user-tagged images on social media websites and this can be extremely
fruitful if assisted by the knowledge that lexical resources (such as WordNet [3])
and ontologies (such as dolce [6]) can offer, in order to automatically associate

5 An alternative way to address such issue would be that of mimicking the associative
mechanism by searching through images already structured in a network, like that
of the dataset that is being built within the ImageNet initiative (http://www.image-
net.org/), where images are grouped based on their tags, organized according to the
WordNet structure. Nonetheless, our aim in the paper is that of retrieving a good
training set of images from the Internet, not from a well-organized dataset. For this
reason, we won’t enter in a discussion of the results of ImageNet.
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related concepts to the search. For this reason, we propose a method based
on WordNet and an ontological analysis working together to generate a set of
words connected to the object we are interested to detect. These new words,
together with the original ones, are used as keywords for Google search in order to
create an enriched training set. SIFT descriptors and bag-of-words classification
framework are then used to train a single class SVM classifier.

On one side, the Google image search engine allows to specify heterogeneous
expressions in natural language, providing highly relevant images as output.
On the other hand, lexical resources and ontologies allow to exploit semantic
relations between concepts expressed by target words in the search of visual
information.

Our approach exploits standard local object descriptors, such as SIFT, col-
lected and quantized as bags of words. Almost all the works on this topic exploit
the same kind of features. Given a class of objects of interest and the words
used to denote them, lexical resources tell us which are the words semantically
connected to them and ontologies tell us why they are connected, by referring
to the relations holding between the objects denoted by such words (the con-
nection between the words/concepts is used to explain how the denoted objects
are related). Thus, what we can expect by the employment of lexical resources
is a broader coverage (more relevant results can be obtained by adding con-
nected words to the search), while the employment of ontologies should enhance
precision, as words that are connected in a way that is not interesting for the
task should be automatically pruned away by the constraints that are formally
expressed in the ontology.

The Caltech101 object recognition dataset has been used for the tests, con-
sistently giving improvements of performances in terms of detection accuracy on
all the classes where our approach can be applied (44), for an average of about
8%. We decided to keep the classifier as simple as possible, for this reason we
are confident that the improvements in performances have to be attributed to
our image selection strategy.

The rest of the paper is organized as follows: Sec. 2 presents the state of
the art and related works; Sec. 3 sketches the main intuitions and motivations
behind the introduction of lexical resources and ontologies in the loop; Sec. 4
illustrates the method adopted in the present study, while Sec. 5 displays the
results of the experiments and, finally, Sec. 6 concludes the paper and draws the
lines for future directions of research.

2 State of the art

Few and recent are the approaches that can be related to our methodology,
mostly based on incremental learning. In [16], an incremental version of Support
Vector Machines is used to acquire visual categories. In the context of human-
robot interaction, some recent approaches also explore the combination of in-
cremental learning and interaction with teachers to ground vocabulary about
physical objects [10, 5, 13].
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More similar to our scheme, one common and straightforward way is to di-
rectly use the top-ranked images from Web search for classifier learning [12, 14].
On the other hand, [8] uses lexical sources to help an image retrieval system.

Curious George [7] is a robot developed for the Semantic Robot Vision Chal-
lenge (SRVC) competition. Its object recognition component uses images re-
trieved from Computer Vision databases in the Web to build several classifiers
based on SIFT features, shape and deformable parts models, which are subse-
quently combined for object recognition.

In [15] the authors propose an unsupervised learning algorithm for visual
categories using potential images obtained from the Web and being inspired
by [1]. The idea is to produce several images by translating the category name
into different languages and crawling the Web for images using those translated
terms. The negative class is collected from random images obtained from different
categories.

A multi-modal approach using text, metadata and visual features is used in
[11]. Candidate images are obtained by a text-based Web search querying on the
object identifier. The task is then to prune irrelevant images away and re-rank
the remainder. Re-ranking happens by using a Bayes posterior estimator trained
on the text surrounding the image and meta data features; after that, the top-
ranked images are improved by eliminating drawings and symbolic images using
an SVM classifier previously trained with a hand-labeled dataset.

3 Prospective Exploitation of Lexical Resources and
Ontologies

With the aim of improving (both in terms of coverage and precision) a text based
search of tagged images in the Internet, in this section we will try to show why
an approach that integrates lexical resources and ontologies is needed.

Lexical resources, like WordNet, are built as networks, whose nodes are con-
nected by lexical and semantic relations; each node in WordNet is a synset (set
of synonymous words, expressing the same concept), and some of the relations
connecting synsets are hyponymy (linking a more generic concept to more spe-
cific ones) and its opposite relation, hyperonymy (linking a more specific concept
to more general ones), meronymy (linking concepts denoting parts with concepts
denoting the corresponding whole), and so on. Intuitively, given a word, a search
engine could point to it, retrieve all other words in the synset and include them
in the search and then expand the search by associating to the original word its
neighbors in the network. Even though often presented as an ontology, WordNet
was not originally meant to be used as such, so it disregards some distinctions
that are ontologically relevant. Take for instance the “part of” relation: Word-
Net meronymy includes the proper part of relation (like in “a finger is part of a
hand)”, the constitution relation (like in “milk is part of cappuccino”), and the
membership relation (like in “a sheep is part of a flock”) and does not distinguish
between them. Nonetheless, such distinction may be relevant (probably adding
“milk” to “cappuccino” will produce more false positives) and most of all, it
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becomes relevant when the robot has to search real objects in the environment,
as for instance, simplifying a lot, it will look for an object located within the
boundaries of another object when instructed with the “proper part of” informa-
tion and an object among other similar objects if instructed with the “member
of” information. Such distinctions are, on the other hand, deeply analyzed and
expressed with formal axioms by top-level ontologies, like dolce [6].

To sum up, we could say that lexical resources and ontologies tackle two
different “semantic layers” and could be used in an integrated way to exploit
their complementary strengths, as already pointed out in [9], that also mentions
a distinction that is particularly meaningful to our purposes:

Lexical resources are conceptually very dense but they do not have a dense
network of constraints. On the other hand, ontologies, specially top-level
ones, are not densely populated but offer a dense network of constraints
for their concepts. [9, 187]

Being densely populated, WordNet promises to enhance coverage results,
while ontologies, thanks to their being densely constrained, should make results
more precise.

For the sake of this paper, we won’t go into details concerning the choice
of the ontology to be used, as it would imply entering a lively debate in the
ontology community. In the case of an automatic agent that has to learn (for
example, a robot), we could imagine that a fairly small and simple ontology
would suffice. Our mentioning dolce is due to the fact that, methodologically,
and in view of applying in the future such method on open world scenarios, even
these micro domain-relative ontologies should be built following the principles
and as specifications of foundational or top-level ontologies, so that they are as
much well-founded and as much interoperable as possible with other ontologies.

Thus, our idea is, once we have a description of the environment in which
the automatic agent should move, we build a small ontology of it based on
dolce, trying to express as many relations between the fundamental entities
of the domain, so to have a possibly scarcely populated, but rather densely
constrained, ontology.

4 Proposed method

In this work we propose a unique framework meant to automatically generate a
training set for object detection. Given the object we want to detect in an images’
testing set, the simplest way to use the Internet to generate the training set is to
use the Google image search engine by searching the name of the object [12, 14].
This strategy has two main drawbacks: first, several keywords are ambiguous.
Words can have different meanings and refer to different objects, depending on
the context (e.g. mouse can refer both to the animal and to the computer device);
in this case, Google answers with images of both subjects, without any distinction
(see Fig. 1). Thus, the training set will be formed by images of two different (and
semantically mixed) classes. On the other hand, when an object can have very
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mouse

mouse+
animal

Fig. 1: Example of the first 8 images retrieved by Google image search engine for the
keywords “mouse” and “mouse+animal”.

different characteristics, the top-ranked images are usually referring to the most
common configuration, creating a training set only representative of a specific
subset of the testing set (e.g. face can be a frontal face or a face profile, but
almost all images given by Google are relative to frontal faces). Moreover, in some
cases the name of a class is also the name of a very famous person or character
(e.g. bush is both a small tree and a very popular surname). Second, in order
to obtain a good enough number of training images, you need to use also low-
ranked images, increasing the probability to take into account not representative
(or wrong) images.

The strategy we are proposing in this paper is based on a prior knowledge
of the environment, formally given by an ontology (used to represent knowledge
of the primitive entities belonging to the environment and their properties and
relations) and an electronic lexical database of English terms, organized as a
thesaurus – WordNet (used to represent terminological and lexical knowledge).
Since both the entities can be uploaded in an autonomous agent, we exploit this
hypothesis, and given a set of images for testing and the name of the class to
detect, we design the following learning scheme:

1. ask WordNet for a set of words connected to the class name (synonym,
hyperonym, hyponym and meronym);

2. use ontological analysis to select a subset of connected words that are related
to visual specifications of the original word; i.e. ignore the words that do not
provide any difference in the appearance of the object (e.g. the material of
which an object is built is not relevant to detect its appearance).

3. search with Google Image the first N images with each of the selected key-
words (together with the class name)

4. train a bag-of-words model by using these images as training set; in partic-
ular:
– for each image in the training set, extract dense SIFT descriptors, dis-

cretize them referring to a universal codebook and build the normalized
histogram of words;

– train a Single Class Support Vector Machine classifier;
– for each image in the testing set, extract dense SIFT descriptors, dis-

cretize them referring to the universal codebook and build the normal-
ized histogram of words;

– apply the previously trained SVM classifier onto these image descriptors.
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We have performed some experiments to validate our idea, and in the follow-
ing section we will show some results.

5 Experiments

We present here some preliminary results obtained by using the proposed algo-
rithm on the Caltech101 dataset [2]. For these preliminary experiments we took
into account only the hyponymy relation, thus only those words with at least
one hyponym can be processed, meaning 44 classes over 101. For each class, we
manually selected the additional words related to visual specifications.6 Then,
we employed these additional words to provide keywords for the Google image
search, together with the class name (e.g. for the class helicopter the following
keywords have been used: ‘helicopter’, ‘helicopter+cargo’, ‘helicopter+shuttle’,
‘helicopter+skyhook’). Table 1 shows all the classes we processed and the addi-
tional words used in the experiments.

After that, we performed a set of experiments in order to evaluate the contri-
bution of this enriched set of words. For each class, the testing set is composed
by the full set of test images in Caltech101 dataset. As universal codebook we
used the one provided by the ImageNet Large Scale Visual Recognition Chal-
lenge 2011 (ILSVRC2011) development kit, which allows a discretization of SIFT
features computed over millions of images into 1000 visual words.

Each training set is formed by 100 images automatically taken from the
Internet. We performed experiments by changing the composition of the training
set by means of a parameter R, varying this number from 0 to 1 with step 0.1;
in practice, R represents the ratio of images taken by using also the additional
words as keyword, equally split within all words. Thus, R = 0 means that only
the class name is used for the search, while R = 1 only the enriched combinations
<class name + additional words> are used.

A One-class SVM classifier has been trained on each training set’s composi-
tion and then it has been applied to the testing set.

As performance measure we use the detection accuracy, defined as the per-
centage of correctly detected images over all the testing set.

Figure 2 shows the average detection accuracy over 44 classes, and the his-
togram of the best performing composition of the training set for all the classes.

We mostly improve the performances of the detection process, both in terms
of average accuracy (about 8%) and in terms of the best performing training set:
23 object classes over 44 are best performing with the enriched words (R = 1),
and 37 are best performing with R ≥ 0.7. One single class (‘pizza’) is best
performing with R = 0, this is probably due to the extremely low number of

6 In order to automatize this task, an ontology discriminating visible and non visible
objects, properties and relations should be built. Moreover, in the mentioned contest,
the task consisted in finding objects of some class, but we could also be interested
in finding objects with some specific property, or objects involved in some particular
event. The more the task is complicated, the more the ontology could be of help in
finding the most appropriate terms to associate in the search.
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Table 1: Object classes and additional words used in the experiments.

Class name Additional words best R

airplane airliner, amphibian, amphibian aircraft, attack aircraft, biplane, fighter, bomber,
fighter aircraft, hanger queen, hydroplane, monoplane, multiengine airplane,
multiengine plane, propeller plan, reconnaissance plane, seaplane, tanker plan

1

anchor granel, mooring, mushroom, sheet, waist 0.5
ant army, bulldog carpenter, driver, fire, Formica rufa, legionary, little black,

Monomorium minimum, slave, wood
0.8

barrel beer, beer keg butt, hogshead, keg, pickle, shook, tun, wine, wine cask 1
bass basso continuo, continuo, figured, ground, thorough 1
beaver Castor canadensis, Castor fiber, New World, Old World 1
bonsai ming tree 0.8
brain ego, noddle, subconscious, subconscious mind, tabula rasa, unconscious, uncon-

scious mind
1

butterfly danaid, lycaenid, pierid, ringlet, sulfur, sulphur 1
camera box, box Kodak, candid, digital, flash, Polaroid, Polaroid land, portrait, reflex 1
cannon basilisk, culverin, harpoon gun 1
chair amrchair, barber, chaise, chaise longue, dabed, Eames, feeding, fighting, folding,

garden, highchair, lawn, rocker, rocking, side, straight, swivel, throne, wheelchair
1

crab Alaska, Alaska king, Alaskan king, Cancer irroratus, Cancer magister, Dun-
geness, fiddler, Jonah, king, Menippe mercenaria, Paralithodes camtschatic, pea,
rock, spider, stone, swimming

0.9

crayfish American, ecrevisse, Old World 0.4
crocodile African, Asian, Crocodylus niloticus, Crocodylus porosus, Nile 1
cup beaker, chalice, coffee, clylix, Dixie, drinking, globlet, grace, kylix, measuring,

moustache, mustaches, paper, syphus, teacup
0.9

dolphin Corphaena, equisetis, Corphaena Hippurus 0.6
elphant African, Elephas maximus, gomphothere, Indian, Loxodonta african, mammoth,

rogue
0.9

face counenance, physiognomy, phiz, smiler, visage, mug 1
gramophone victrola 1
headphone receiver, telephone receiver 1
hedgehog Old world porcupine, New World procupine 0.4
helicopter Cargo, shuttle, skyhook 1
ibis Wood, wood stroke, Ibis, sacred, Threskiornis aethiopica 0.9
kangaroo Gaint, brush, wallaby, hyspiprymnodon moschatus, great grey, kangaroo rat,

Macropus giganteus, musk, rat
1

lamp Calcium light,candle, discharge, electric, flash, flash bulb, gas, hurricane, kero-
sine, lantern, neon, oil, neon inductionn, neon tube, photoflash, rear, rear light,
spirit, spot, spotlight, storm, storm lantern, street, streetlight, tail, taillight,
taper, tornado lantern, wax light

1

leopard leopardess, panther 0.9
llama Domestic, alpaca, gaunaco, lama guanicoe, lama pacos, lama peruana 1
lobster American, European, Langoustine, lobster tail, Maine, Northern, Norwegian,

scampo
1

motorbikes moped 1
pigeon Columba livia, Columba palumbus, cushat, domestic, dove, Ectopistes migrato-

rius, passenger, pouter, ringdove, rock, rock dove, squab, wood
0.8

pizza anchovy, cheese, pepperoni, sausage, Sicilian 0
revolver colt 0.9
rhino Certotherium simum, diceros simus, Indian ceros, Indian rhinoceros, indi-

anceros, Rhinocero antiquitatis, Rhinoceros unicornis, white rhinoceros, woolly
rhinoceros

1

schooner sharpshooter 1
scissors slipper, shears, snuffers 0.9
seahorse Atlantic walrus, Odobenus divergens, odobenus rosmarus, pacific walrus 0.2
strawberry beach, chilean, cultivated, Fragaria ananassa, Fragaria chiloensis, Fragaria vesca,

Fragaria virginiana, garden, scarlet, virginia, wild, wood
0.7

sunflower common, giant, girasol, Helianthis angustifolius, helianthus annuus, helianthus
guganteus, helianthus laetiflorus, Indian potato, Jerusalem artichoke, mirasol,
prairie, showy, swamp, tall

1

tick ticktock, tictac, tocktact 0.9
watch Analog, digital, hunter, hunting, pocket, pendulum, wrist, wristwatch 0.7
wheelchair bath chair, motorized 1
wildcat Cougar, European wildcat, eyra, felis bengalensis, flis chaus, flis concolor, fe-

lis ocreata, flis pardalis, felis serval, felis silvestris, felis tigrina, felis wiedi,felis
yagouaroundi, jaguarondi, jaguarondi, jaguarondi cat, jungle+cat, kaffir cat, kaf-
fircat, leopard cat, cat+margay, margay cat, margay, ocelot, painter, panther,
panther cat, puma, sand cat, serval, tiger cat

0.7

wrench sprain 0.4
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Fig. 2: Summary of results over 44 classes of the Caltech101 dataset. Left, the average
detection accuracy over all the classes. Right, for each class the highest accuracy value
(and the related value of R) has been detected and the histogram of best performing
ratio R is shown.

hyponyms for this class (only 4) and the very good performances with the original
keyword (accuracy about 98%).

6 Conclusions and Future Directions

In this paper we have tried to address the problem of automatic learning from
Internet, in which autonomous agents have to learn the visual aspect of an object,
starting simply from a single text identifier. For simplicity, we employ Google as
Internet crawler.

The solution we have proposed in order to collect a more relevant training
set of images is that of refining the Internet search by associating, to the name
of the searched object, other words that are semantically related to it. In our
experiments we have firstly collected images only by typing the name of the
object, and we have evaluated the results in a detection scenario. Then, we
have performed the same experiment by adding words that are related to the
name of the object through WordNet, with an ontological check, at the moment
performed manually, but that could possibly be automatized with the addition
of an axiomatic ontology, obtaining definitely better results.

Obviously, the level of increase in precision strongly depends on the ontology
to be built: a richly axiomatized ontology allows to express a lot more constraints,
but can be more difficult to use for automatic reasoning tasks, as it may incur
in computability problems.

Another thing to be taken seriously into consideration is to include, among
the ontology properties, those strongly related to the visual appearance of ob-
jects, like their qualities, or their geometrical properties. Even for this reason,
having ontologies that are well-founded (in this case on mereogeometries and
mereotopologies, as well as on theories of qualities) can be of great help. A for-
mal ontology that relies on a serious mereogeometrical analysis, should be able
to express, for instance, the fact that a certain object is symmetrical if seen on
the front, but asymmetrical if seen on the side, and so on.



10 Setti et al.

This last remark is interesting not only with respect to the training phase,
for the selection of images in the training set, but also to the exploration phase,
in which the robot may make inferences on what it is actually seeing.
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