

Ontologies & Business Process modeling languages: two proposals for a fruitful pairing

Chiara Ghidini Process & Data Intelligence, FBK-irst, Trento, Italy

Extensive credits to Marco Montali and Marco Rospocher

Outline

- Context and Motivations
- Two approaches (at least):
 - 1. ontologies to describe model diagrams
 - The BPMN ontology
 - and its applications
 - 2. ontological analysis to refine the semantics of model diagrams
 - (preliminary) ongoing work

Outline

- Context and Motivations
- Two approaches (at least):
 - 1. ontologies to describe model diagrams
 - The BPMN ontology
 - and its applications
 - 2. ontological an model diagram

model diagrar
(preliminar
I'm only a computer scientist :)
nowadays working mainly on
BPM

[Process Mining Manifesto]

Processes everywhere

more than ever

[Process Mining Manifesto]

Processes everywhere

more than ever

[Process Mining Manifesto]

Models everywhere

even in a mining manifesto!

Why (conceptual) Models?

The activity of **formally describing some** aspects of the **physical** and **social** world around us for the purposes of **understanding** and **communication**.

(John Mylopoulos, 1992)

Understanding and communication

Understanding and communication

Models everywhere!

2. Activity- vs Data- centric

2. Activity- vs Data- centric

3. Formal semantics vs informal notations

3. Formal semantics vs informal notations

Declare templates

3. Formal semantics vs informal notations

Good job!

- Being able to choose is good
- but.....

• What is a process?

	en	L		.U	し	j :					D P	urcha	ingExar	mple.csv						
2		Б		ò	5	4	ì	Ê.	S	3		1.	Σ -	20	A.		Ē	100% -		
New	Open	Sav	e Prir	nt In	port	Co	py F	Paste F	orma	t Ur	ndo Re	do A	utoSum	Sort A-Z So	ort Z-A	Galler	y Too	lbox Zoom		ι.
							_	She	ets	-	Charts	_	SmartAr	t Graphics	-	VordAr	t		Int	ound E
0	Α				В					С				D				E		487
1 (Case II) St	art Tir	nesta	amp			Comple	te Tir	mestar	mp	Activi	у				Resou	rce	_	
2		1 20	11/01	/01	00:00	0:00.	000	2011/0	1/01	00:37	:00.000	Creat	Purchase	e Requisition	n		Kim Pa	assa		
3		2 20	11/01	/01	00:10	5:00.	000	2011/0	1/01	00:29	:00.000	Creat	Purchase	e Requisition	n		Imma	nuel Karagianni		
4		3 20	11/01	/01	02:2	3:00.	000	2011/0	1/01	03:03	:00.000	Creat	Purchase	e Requisition	n		Kim Pa	assa		
5		1 20	11/01	/01	05:3	7:00.	000	2011/0	1/01	05:45	:00.000	Creat	Request	for Quotation	on		Kim Pa	assa		
6		1 20	11/01	/01	06:4	1:00.	000	2011/0	1/01	06:55	:00.000	Analy	te Reques	t for Quotat	tion		Karel (de Groot		
7														for Quotation			Albert	o Duport		
8														e Requisition			Fjodor	Kowalski		
9		2 20	11/01	/01	09:34	4:00.	000	2011/0	1/01	09:38	:00.000	Analy	e Reques	t for Quotat	tion		Karel (de Groot		
10		5 20	11/01	/01	09:49	9:00.	000	2011/0	1/01	10:35	:00.000	Creat	Purchase	e Requisition	n		Esmar	a Liubiata		
11		2 20	11/01	/01	10:10	5:00.	000	2011/0	1/01	10:21	:00.000	Amen	d Request	for Quotati	on		Christi	an Francois		
12		2 20	11/01	/01	11:1	5:00.	000	2011/0	1/01	11:48	:00.000	Analy	te Reques	t for Quotat	tion		Magda	lena Predutta		
13		6 20	11/01	/01	11:20	0:00.	000	2011/0	1/01	11:37	:00.000	Creat	Purchase	e Requisition	n		Christi	an Francois		
14		1 20	11/01	/01	11:4	3:00.	000	2011/0	1/01	12:09	:00.000	Send	Request fo	or Quotation	n to Supp	lier	Karel (de Groot		
15		1 20	11/01	/01	12:3	2:00.	000	2011/0	1/01	16:03	:00.000	Creat	Quotatio	n comparise	on Map		Magda	ilena Predutta		
16		2 20	11/01	/01	12:3	3:00.	000	2011/0	1/01	12:39	:00.000	Amen	d Request	for Quotati	on		Esman	a Liubiata		
17		2 20	11/01	/01	13:20	8:00.	000	2011/0	1/01	13:38	:00.000	Analy	te Reques	t for Quotat	tion		Karel (de Groot		
18		7 20	11/01	/01	14:0	5:00.	000	2011/0	1/01	15:00	:00.000	Creat	Purchase	e Requisition	n		Esman	na Liubiata		
19		8 20	11/01	/01	14:2	7:00.	000	2011/0	1/01	15:17	:00.000	Creat	Purchase	e Requisition	n		Fjodor	Kowalski		
20		2 20	11/01	/01	15:10	8:00.	000	2011/0	1/01	15:40	:00.000	Send	Request for	or Quotation	n to Supp	lier	Franco	ois de Perrier	Purchasing) Age
21		2 20	11/01	/01	15:5	5:00.	000	2011/0	1/01	16:43	:00.000	Creat	Quotatio	n comparise	on Map		Karel (de Groot	Purchasing	Age
22	1	9 20	11/01	/01	16:1	7:00.	000	2011/0	1/01	16:34	:00.000	Creat	Purchase	e Requisition	n		Tesca	Lobes	Requester	
23		6 20	11/01	/01	17:3	2:00.	000	2011/0	1/01	17:45	:00.000	Creat	Request	for Quotation	on		Albert	o Duport	Requester	
24	1	8 20	11/01	/01	18:0	0:00.	000	2011/0	1/01	18:07	:00.000	Creat	Request	for Quotation	on		Tesca	Lobes	Requester	
25		6 20	11/01	/01	18:3	9:00.	000	2011/0	1/01	18:55	:00.000	Analy	e Reques	t for Quotat	tion		Magda	ilena Predutta	Purchasing	Age
26		4 20	11/01	/01	18:4	5:00.	000	2011/0	1/01	18:51	:00.000	Analy	e Purchas	se Requisitio	on		Maris	Freeman	Requester	Mana
27														for Quotation			Heinz	Gutschmidt	Requester	Mana
28														t for Quotat				ois de Perrier	Purchasing	Age:
29									_					for Quotati			Penn (Osterwalder	Requester	
30														t for Quotat				is de Perrier	Purchasing	Age
31														for Quotati				Lobes	Requester	
32														t for Quotat			Franco	ois de Perrier	Purchasing	Ager
33														for Quotati			Nico O	jenbeer	Requester	
34														t for Quotat				ilena Predutta	Purchasing	
35														t for Quotat				ois de Perrier	Purchasing	
36			11/01					ample.c		22-28	-00.000	Amen	1 Request	for Ountati	00		Anna	Olwada	Permeter	

• What is a process?

	ent Lo	<u> </u>			🗋 Pu	rchasingExam	ple.csv		
2		5	à (1 💰	S • @	· <u>Σ</u> ·	20 40	100%	
New	Open Save Print I	mport C	opy Pas	ste Format	Undo Red	AutoSum So	ort A-Z Sort Z-A	Gallery Toolbox Zoom	
			_	Sheets	Charts	SmartArt	Graphics	WordArt	Inbound E
0	A	В		C			D	E	487
-	Case ID Start Times	tamp	C	omplete Time	estamp	Activity		Resource	
2						Create Purchase	Requisition	Kim Passa	1
3						Create Purchase		Immanuel Karagiann	i i
4	3 2011/01/01					Create Purchase		Kim Passa	1
5						Create Request fo		Kim Passa	1
6						Analyze Request		Karel de Groot	
7						Create Request fo		Alberto Duport	
8	4 2011/01/01	08:39:00	.000 20	011/01/01 0	9:00:00.000	Create Purchase	Requisition	Fjodor Kowalski	
9	2 2011/01/01	09:34:00	.000 20	011/01/01 09	9:38:00.000	Analyze Request	for Quotation	Karel de Groot	
10						Create Purchase		Esmana Liubiata	
11						Amend Request f		Christian Francois	
12						Analyze Request		Magdalena Predutta	
13						Create Purchase		Christian Francois	
14							Quotation to Supp		
15							comparison Map	Magdalena Predutta	
16						Amend Request f		Esmana Liubiata	
17						Analyze Request		Karel de Groot	
18						Create Purchase		Esmana Liubiata	
19						Create Purchase		Fjodor Kowalski	
20							Quotation to Supp		Purchasing Ager
21							comparison Map	Karel de Groot	Purchasing Age
22						Create Purchase		Tesca Lobes	Requester
23						Create Request for Create Request for		Alberto Duport Tesca Lobes	Requester
25						Analyze Request		Magdalena Predutta	Purchasing Ager
26						Analyze Request Analyze Purchase		Magdalena Predutta Maris Freeman	Requester Mana
27						Create Request for		Heinz Gutschmidt	Requester Mana Requester Mana
28						Analyze Request		Francois de Perrier	Purchasir
29						Amend Request f		Penn Osterwalder	Requeste
30						Analyze Request		Francois de Perrier	Purchasi
31						Amend Request f		Tesca Lobes	Requeste
32						Analyze Request		Francois de Perrier	Purchasi
33						Amend Request f		Nico Ojenbeer	Requeste
34						Analyze Request		Magdalena Predutta	Purchasir
35						Analyze Request		Francois de Perrier	Purchasir
36						Amond Request f		Anno Olwada	Ponuecte

Example: non compliant process execution

Are these representing the `same' process?

Formal semantics of what?

$$(\diamond A \to \diamond B) \land \neg(\diamond B \to \diamond A)$$
 A \blacksquare B

Т

The execution of the control flow

• What is the meaning of the different constructs?

[See https://camunda.org/bpmn/reference]

• What is the meaning of the different constructs?

• What is the meaning of the different constructs?

Can you deliver before baking?

Can you get paid before delivering?

[See https://camunda.org/bpmn/reference]

 How to provide a semantics behind the control flow execution?

Exploiting ontologies

- How to provide a semantics behind the control flow!
- Idea 1: build an ontology providing a semantics to business process diagrams.

An ontology for the Business Process Modelling Notation

Joint work with Marco Rospocher, Luciano Serafini Chiara Di Francescomarino, Mauro Dragoni

• State of the art graphical language for the specification of business processes

• State of the art graphical language for the specification of business processes

Business Process Modelling Notation (BPMN)

Annotations!

Why going beyond the control flow?

- Example of queries that encompass the mere process execution:
 - What are the **activities** performed by a certain **role** (e.g. PC Chair)?
 - Where are documents (e.g. reviews, notifications) produced?
 - What are the activities where something is published? What are the activities where something is sent out?
 - What are the **activities** an **author** perform **right before** submitting something?

- Examples of application that requires querying for both ontological and process knowledge: cross-cutting concerns, critical patterns
 - Where does the user make **selections**?
 - Before confirming an order the user must choose a shipment method

Semantically Annotated Business Processes

 Semantically annotated business processes are encoded into a logical knowledge base implemented in OWL

 Note: Business Process Diagrams (BPDs) are specified using the Business Process Modelling Notation (BPMN).

The BPMN ontology

Business Process Modelling Notation (BPMN)

for representing something that happens (event), work to be performed (activity), and control flow elements (gateway);

for showing the order in which activities are performed (sequence flow), ...

for describing participants in a process (pool), and to organize and categorize activities (lane);

for representing data processed/produced by activities (data object), informal grouping of activities (group), ...

Business Process Modelling Notation (BPMN)

Extended Element Set (e.g. Event types)

	"Catching"		"Thro	wing"
Message		0		
Timer	٢	3		
Error	\bigotimes	\bigotimes		\otimes
Cancel		\otimes		\otimes
Compensation	(4)			\odot
Conditional				
Link	\bigcirc	\bigcirc		ErrorCode attribute for Error Event
Attributes Descr		ription		
ErrorCode : String For an		n End I	Event: If the Result is an Error, then the ErrorCode MUST be supplied.	
		This "throws" the error. []		

Our Contribution: An ontology for BPMN

- An OWL-DL formalization of the BPMN specification
- It accurately encodes:
 - the classification of all the elements of the BPMN language
 - the formal representation of the attributes and conditions describing how the elements can be combined to obtain a "valid" BPMN business process
- The proposed formalization:
 - provides a terminological description of the language;
 - enables representing any actual BPMN diagram as a DL A-Box
 - enables several reasoning-based services
- It covers BPMN v1.1 and part of BPMN 2.02

Disclaimer

- The BPMN Ontology...
 - ...is not intended to model the dynamic behaviour (behavioural semantics) of a BPMN process
 - better look at YAWL, PetriNets, ...
 - ...it provides an ontological formalization of BPMN as a graphical language, and not an ontological analysis in a foundational fashion
 - better look at works analysing BPMN wrt to
 - ABDESO/UFO (Guizzardi and Wagner)
 - Dolce (Sanfilippo, Borgo, and Masolo -FOMI 2014)

Modelling Process Scope and Boundaries: Ontology Intended Uses

- Checking the compliance of a process diagram against the BPMN specification
 - e.g., the process diagram has at least one starting event and one end event, constructs are combined in the correct way
- Checking additional application-specific design guidelines
 - guidelines to guarantee process diagram readability (e.g., diagram should not contain more than ten subprocesses, every gate should have at most three out-going flows)
- Semantic description and retrieval of process diagrams (or process diagram elements)
 - e.g., to state that a certain sub-process is of type "privacy critical", and to be able to retrieve all process diagrams that contains privacy critical sub-processes, or all privacy critical activities within a diagram
- Easy integration with organizational / domain related ontologies for enhanced semantic description and retrieval
 - e.g., check that all activities of type T performed by organization A are followed by activities of type B performed by organisation B

Modelling Process Scope and Boundaries: Competency Questions (excerpt)

- How many flow elements does process X contain?
- What is the error code associated to error event W?

. . . .

- What type of BPMN elements does sub-process Y in process X contains?
- What is the BPMN element connected by a sequence flow to activity Z?
- Is there a path of sequence flows connecting activity Z_1 to activity Z_2 ?
- Is process XYZ a valid process according to the BPMN specification?

Modelling Process Our Trusted Friend: BPMN Specification Document

For each element, it provides:

- an introductory description of the element, with some general properties and conditions
- a compact tabular description of each element's attribute
 - name, value type, multiplicity details, conditions for instantiation
- conditions holding for connecting the current element with other elements of the language
- additional details on execution level aspects of the element

Free text document, with some structure

Modelling Process Step 1 of 3: Signature Identification

- An attribute is formalized either as datatype property or as an object property
- Three situations considered:
 - 1. the value type of the attribute is another BPMN element
 - 2. the value type of the attribute is a datatype, but only an enumerated set of options is allowed and some conditions may apply to these options
 - 3. the value type of the attribute is a datatype with no restriction

- Case I: The value type of the attribute is another BPMN element
- Example:
 - Target attribute of Intermediate Event [p47]

Target (0-1) : Activity	A Target MAY be included for the Intermediate Event. The Target MUST be an
	activity (Sub-Process or Task). This means that the Intermediate Event is attached
	to the boundary of the activity and is used to signify an exception or
	compensation for that activity.

- Formalization: as object property
 - domain: the class having the attribute
 - range: the class of the element mentioned as value type of the attribute

 $\exists has Intermediate EventTarget. \top \sqsubseteq Intermediate Event$

 $\top \sqsubseteq \forall has Intermediate EventTarget. Activity$

- Case II: The value type of the attribute is a datatype, but only an enumerated set of options is allowed and some conditions may apply to these options
- Example:
 - AdHocOrdering attribute of Embedded SubProcess [p47]

[AdHoc = True only]	If the Embedded Sub-Process is Ad Hoc (the AdHoc attribute is True), then the		
AdHocOrdering (0-1)	AdHocOrdering attribute MUST be included. This attribute defines if the		
(Sequential Parallel) Parallel :	activities within the Process can be performed in Parallel or must be performed		
String	sequentially. The default setting is Parallel and the setting of Sequential is a		
	restriction on the performance that may be required due to shared resources.		

- Formalization: as object property
 - domain: the class having the attribute
 - range: a new class enumerating all possible values of the attribute

 $\exists has ESPAdHocOrdering. \top \sqsubseteq EmbeddedSubProcess \\ \top \sqsubseteq \forall has ESPAdHocOrdering. AdHocOrderingType$

- Case III: The value type of the attribute is a datatype with no restriction
- Example:
 - Text attribute of Text Annotation [p95]

Text : String	Text is an attribute which is text that the modeler wishes to communicate to the	
	reader of the Diagram.	

- Formalization: as datatype property
 - domain: the class having the attribute
 - range: a datatype compatible with the value type of the attribute

 $\exists has TextAnnotationText. \top \sqsubseteq TextAnnotation \\ \top \sqsubseteq \forall has TextAnnotationText. DT \{ string \}$

- For each attribute, we formalized its multiplicity details as an OWL cardinality restriction on the class having the attribute
 - (0..1) multiplicity is encoded as "at most one" OWL cardinality restriction
 - (1) multiplicity is encoded as "exactly one" OWL cardinality restriction
 - (1..n) multiplicity is encoded as "at least one" OWL cardinality restriction
 - (0..n) multiplicity is not encoded at all
- Example:
 - State attribute of Data Object [p94]

State (0-1) : String	State is an optional attribute that indicates the impact the Process has had on the
	Data Object. Multiple Data Objects with the same name MAY share the same
	state within one Process.

$DataObject \sqsubseteq (\leq 1) hasState$

- For each attribute, we also encode additional conditions ruling the usage of the attribute
- Example:
 - ErrorCode attribute of Error, in case the Error is a result of an End Event [p.94]

ErrorCode : String	For an End Event:	
	If the Result is an Error, then the ErrorCode MUST be supplied. This "throws"	
	the error.	

Formalization: case by case

 $EndEvent \sqsubseteq \neg \exists hasResult.Error \sqcup$

 $\exists hasResult.(Error \sqcap \exists hasErrorCode)$

Modelling Process Step 3 of 3: Structural Constraints Formalization

- Formalization of the conditions concerning the usage of the elements of the language to compose a BPMN diagram
- Example: [p48]
 - A Start Event MUST be a source for Sequence Flow.

 $StartEvent \sqsubseteq \exists hasConnectingObjectSource^{-1}.SequenceFlow$

• Formalization: case by case

The BPMN Ontology Limitations

- A few documented properties and conditions are not encoded in the BPMN Ontology:
 - Execution level properties (behavioural)
 - Attribute default values
 - "Undecidable" conditions

The BPMN Ontology Ontology Metrics

Feature	Value
DL Expressivity	$\mathcal{SHOIN}(\mathcal{D})$
Classes	117
Object Properties	123
Datatype Properties	48
Individuals	104
Class Axioms	463
Object Property Axioms	236
Datatype Property Axioms	96
Individual Axioms	250
Annotation	504

The domain Ontology

The domain ontology

- Represents the (specific) business domain:
 - Organizational hierarchy
 - Data objects
 - Documents classification
- Used to annotate the elements of the BPD; Can be composed of:
 - Top level ontologies, such as DOLCE;
 - Domain-specific ontologies.

The domain ontology

Transform a BPMN diagram

into OWL

Tool support: "Compose" the diagram structure in the A-box via **MoKi**

Tool support: "Compose" the diagram structure in the A-box via **MoKi**

Tool support: "Compose" the diagram structure in the A-box via **MoKi**

Instantiating the BPMN Ontology Reasoning over an instantiated BPMN Ontology

• Query answering on BPMN diagrams (via SPARQL)

- "Which are the activities which follows gateways and produce a data object?"
- "Are there sub-processes which do not contain start/end events?"
- Compliance checking of a BPMN diagram against the BPMN Specification
 - · e.g.: $Gateway \sqsubseteq (\geq 2)hasSequenceFlowTarget^{-1} \sqcup$ $((\leq 1)hasSequenceFlowTarget^{-1} \sqcap$ $(\geq 2)hasGatewayGate)$

• doable, but in **closed-world** assumption!

A recent extension: the execution dimension

A recent extension: the execution dimension

Process Performance Indicators

- PPI.1 the average time per process execution spent by the municipality of Trento;
- PPI.2 the total number of Registration Request documents filled from January, 1st, 2014;
- PPI.3 the percentage of times in which the flow followed is the one which passes first through the APSS pool and then through the Municipality one;
- PPI.4 the number of cases and the average time spent by each public office involved in the birth management procedure for executing optional activities (i.e., activities which, taken a path on the model, can be either executed or not);

Exploiting ontologies

- To to compare and clarify BPM languages
- Idea 2: compare different process notations and identify challenges/problems

Joint work with Greta Adamo, Stefano Borgo, Chiara Di Francescomarino, Nicola Guarino, Emilio Sanfilippo

Exploiting ontologies: long term challenges

Exploiting ontologies: medium term challenges

• What is the meaning of the different constructs?

[See https://camunda.org/bpmn/reference]

Exploiting ontologies: medium term challenges

• What is the meaning of the different constructs?

Shall my algorithm of process repair swap bake and deliver?

[See https://camunda.org/bpmn/reference]

Work done so far

- **Aim:** starting an ontological analysis of various kinds of kinds of *process elements* and their *properties*:
 - Relation between activities (arrows)
 - Representation of the world's states (explicit or implicit)
 - Types of participants (objects, roles, data...)

Work done so far

Five popular languages in B2C:

3 imperative (BPMN, UML-AD, EPC) 2 declarative (CMMN and DECLARE)

Simple scenario:

A customer buying a flight ticket from a travel agency

BPMN 2.0

UML-AD

EPC

CMMN

DECLARE

Comparison between language elements

The three basic categories of process modelling languages:

- Behavioural (BEV): Functional, Event, Flow and State
- Data (DT)
- Organizational (ORG)

		BPMN	UML-AD	EPC	CMMN	DECLARE	
	Func	Task	Action node	Function	Task	Task	
	Fu	Subprocess	Activity	Process path	Stage	lask	
	ıt	Start/End	Start/End node		Timer		
	Event	Intermediate	Accept event action	-	User Event Listener	_	
BEV	щ	Send/receive	Send signal action		User Event Listener		
BI	~	Gateway	Control node	Logical operators	Connector	Connector	
	Flow	Sequence Flow	Control Flow	Control Flow			
	-	Message Flow	Object Flow	Info Flow	Sentry	Pattern	
	State	Guard an actauray	Guard on control node	Event	Sentry		
	Sta	Guard on gateway	Pre- Post-condition on activity	Start/End event	Milestone	_	
		Data input					
DT		data output	Object node	(I/O) data object	Case file item	_	
		data store					
ORG		Pool Lana	Activity Partition	Organization			
İÖ		Pool, Lane	Activity Partition	Activity Owner	-		

		BPMN	UML-AD	EPC	CMMN	DECLARE
	Func	Task	Action node	Function	Task	Task
	Fu	Subprocess	Activity	Process path	Stage	
	ıt	Start/End	Start/End node		Timer	
	Event	Intermediate	Accept event action	_	User Event Listener	_
BEV	щ	Send/receive	Send signal action		User Event Listener	
BI	Flow	Gateway	Control node	Logical operators	Connector	Connector
		Sequence Flow	Control Flow	Control Flow		Pattern
	-	Message Flow	Object Flow	Info Flow	Sentry	Fattern
	State	Guard an astauray	Guard on control node	Event	Sentry	
	Sta	Guard on gateway	Pre- Post-condition on activity	Start/End even	Milestone	_
		Data input				
DT		data output	Object node	(I/O) data object	Case file item	_
		data store				
ORG		Pool Lana	Activity Partition	Organization		
10		Pool, Lane	Activity Partition	Activity Owner	_	

(Explicit) start / end

		BPMN	UML-AD	EPC	CMMN	DECLARE	
	Func	Task	Action node	Function	Task	Task	
	Fu	Subprocess	Activity	Process path	Stage		
	ıt	Start/End	Start/End node		Timer		
	Event	Intermediate	Accept event action	-	User Event Listener	_	
BEV	щ	Send/receive	Send signal action		User Event Listener		
BE	Flow	Gateway	Control node	Logical operators	Connector	Connector	
		Sequence Flow	Control Flow	Control Flow			
	н	Message Flow	Object Flow	Info Flow	Sentry	Pattern	
	State	Guard an astauray	Guard on control node	Event	Sentry		
	Sta	Guard on gateway	Pre- Post-condition on activity	Start/End even	Milestone	_	
		Data input					
DT		data output	Object node	(I/O) data object	Case file item	_	
		data store					
ORG		Pool Lanc	A stight Partition	Organization			
Ó		Pool, Lane	Activity Partition	Activity Owner	_		

Atomic Activities

(Explicit) start / end

- Atomic Activities
- Complex Activities

(Explicit) start / end

Atomic Activities

(Explicit) start / end

Atomic Activities

Complex Activities

Connectors

(Explicit) start / end

Atomic Activities

Complex Activities

Atomic Activities

Complex Activities

Connectors

State

		BPMN	UML-AD	EPC	CMMN	DECLARE	
	Func	Task	Action node	Function	Task	Task	
	Fu	Subprocess	Activity	Process path	Stage		
	It	Start/End	Start/End node		Timer		
	Event	Intermediate	Accept event action	_		_	
BEV	щ	Send/receive	Send signal action		User Event Listener		
BE	_	Gateway	Control node Logical operators		Connector	Connector	
	Flow	Sequence Flow	Control Flow	Control Flow		Pattern	
	Н	Message Flow	Object Flow	Info Flow	Sentry		
	State	Court on antenna	Guard on control node	Event	Sentry		
	Sta	Guard on gateway	Pre- Post-condition on activity	Start/End event	Milestone	_	
		Data input					
DT		data output	Object node	(I/O) data object	Case file item	_	
		data store					
ORG		Pool, Lane	Activity Partition	Organization			
Ō		rooi, Laite	Activity Faturon	Activity Owner	_		

(imperative) Languages are rich in symbols!

and so....

- are these symbols what is needed to describe a process?
- is their intended semantics clear?

What does the ontological analysis tell us of them?

What is a business process?

a structured, measured set of **activities** designed to produce a specific **output** for a particular customer or market. [...] A process is thus a **specific ordering** of work **activities** across time and space, with a **beginning** and an **end**, and clearly defined **inputs** and **outputs**

T. Davenport. Process Innovation: Reengineering work through information technology. 1993.

a collection of **activities** that takes one or more kinds of **input** and creates an **output** that is of **value** to the customer

M. Hammer and J. Champy. Reengineering the Corporation: A Manifesto for Business Revolution. 1993.

a set of linked **activities** that take an **input** and transform it to create an **output**. Ideally, the transformation that occurs in the process should add **value** to the input

> H. J. Johansson, P. McHugh, A. J. Pendlebury, and W. A. Wheeler. Business Process Reengineering: Breakpoint Strategies for Market Dominance. 1993.

a set of **activities** that are performed in coordination in an **organizational** and technical environment. These activities jointly realize a **business goal**. Each business process is enacted by a single **organization**, but it may interact with business processes performed by other **organizations**

M. Weske. Business Process Management. Concepts, Languages, Architectures. 2012.

What is a business process

a set of **activities** that are performed in coordination in an **organizational** and technical environment. These activities jointly realize a **business goal**. Each business process is enacted by a single **organization**, but it may interact with business processes performed by other **organizations**

M. Weske. Business Process Management. Concepts, Languages, Architectures. 2012.

What does the ontological analysis tell us of them?

Activities

- In BPM activities are (atomic or compound) actions, consisting of intentional transformations from some initial state (the input) to some other state (the output). The participants to such actions are the entities that take part in these transformations.
- In ontological analysis actions are (specific kinds of) events, while their participants are objects.

Activities - challenges

- relations between activities
 - temporal, causal, constraints, ... ?
 Can the ontological analysis help us distinguish?

Activities - challenges

- State of the world
 - is the (implicit or explicit) representation of the state of the world necessary to fully characterise a process (model)?

Participants

- 1. **Physical** participants: located in the physical space (e.g. *person*, *computer*)
- 2. Non-physical participants: lack physical locations (e.g. *information object*)
- 3. **Agentive**: (e.g., the *customer* paying for the flight)
 - Acting behaviour
 - Intentions, Beliefs Desires
- 4. **Non-agentive**: Patient of the action (e.g. the *offer* whose status changed from created to rejected)
- 5. **Roles** of participants: properties that objects only **contingently** satisfy within certain contexts, (e.g. to be *customer* of Amazon, to be a *resource* during the booking of a flight)

Participants - roles

1. **Roles** of participants: properties that objects only **contingently** satisfy within certain contexts

What do our languages actually represent?

	CHARACTERISTIC	BPMN	UML-AD	EPC	CMMN	DECLARE
S	Set of activities	Yes	Yes	Yes	Yes	Yes
PROCESS	Clear Input/Output	Yes	Yes	Yes	Somehow	Somehow
ğ	Goal/Value	No	No	Somehow	Somehow	No
IJ	Organizational boundaries	Yes	Yes	Yes	No	No
ACTIV.	Different types of relations between activities	No	No	No	No	Somehow
AC	State of the word	Somehow	Somehow	Yes	Somehow	No
	Agentive vs non agentive	Somehow	No	Somehow	No	No
PART.	Information vs carrier	No	No	No	No	No
Р	Object vs role	Somehow	Somehow	Somehow	No	No

Conclusions....

- · To represent diagrams is definitely "simpler"
- To inject characterisations from the ontological analysis into BPM languages is necessary also at the time of data.

• • •						🗋 Pu	irchas	ingExample.cs	v				
2		5	0	Ô	\$	5.0	1 -	∑ · 2 ⊕	×.	-	6	100% *	0
lew Oper	n Save Print	Import	Сору	Paste Fo	ormat	Undo Red	do A	utoSum Sort A-Z	Sort Z-A	Gallery To	olbox	Zoom	Help
			_	Shee	ts	Charts	-	SmartArt Graphie	cs	WordArt	-		
> A		В			C			D			E		F
1 Case	ID Start Time	estamp		Comple	te Time	estamp	Activit	γ		Res	ource		Role
2	1 2011/01/	01 00:00	:00.000	2011/0	1/01 00	0:37:00.000	Create	Purchase Requisit	tion	Kim	Passa		Requester
3	2 2011/01/	01 00:16	:00.000	2011/0	1/01 00	0:29:00.000	Create	Purchase Requisit	tion	Imr	nanuel K	aragianni	Requester
4	3 2011/01/	01 02:23	:00.000	2011/0	1/01 03	3:03:00.000	Create	Purchase Requisit	tion	Kim	Passa		Requester
S	1 2011/01/	01 05:37	:00.000	2011/0	/01 0	5:45:00.000	Create	Request for Quot	ation	Kim	Passa		Requester
6	1 2011/01/	01 06:41	:00.000	2011/0	1/01 00	5:55:00.000	Analyz	e Request for Quo	tation	Kan	el de Gro	ot	Purchasing Ag
7	2 2011/01/	01 08:16	:00.000	2011/0	/01 08	8:26:00.000	Create	Request for Quot	ation	Albe	rto Dup	ort	Requester
8	4 2011/01/	01 08:39						Purchase Regulat			or Kowa		Requester
9								e Request for Quo			el de Gro		Purchasing Ag
0								Purchase Requisit		Esm	ana Liub	piata	Requester
1								Request for Quot		Chr	stian Fra	ancois	Requester
2								e Request for Quo		Mac	dalena P	Predutta	Purchasing Ag
3								Purchase Requisit			stian Fra		Requester
4	1 2011/01/							Request for Quotat			el de Gro		Purchasing Ag
15	1 2011/01/							Quotation compa			dalena P		Purchasing Ag
16	2 2011/01/										ana Liub		Requester
7								e Request for Quo			el de Gro		Purchasing Ag
8								Purchase Requisit			ana Liub		Requester
9								Purchase Requisit			or Kowa		Requester
20								Request for Quotat			cois de l		Purchasing Ao
1								Quotation compa			el de Gro		Purchasing Ag
2								Purchase Requisit			a Lobes		Requester
3								Request for Ouot			rto Dup		Requester
4								Request for Quot			a Lobes		Requester
5								e Request for Quo			dalena P		Purchasing Ag
6								e Purchase Requis			s Freem		Requester Mar
7								Request for Quot			is Freem iz Gutsch		Requester Mar
8								e Request for Quot			cois de l		Purchasing Ag
9								Request for Quot			n Osterw		Requester
0								e Request for Quot			cois de l		Purchasing Ag
1								Request for Quot			a Lobes		Requester
2								e Request for Quot			a Lobes Icois de l		Purchasing Ag
3													
4								Request for Quot			Ojenbe		Requester
34								e Request for Quo			dalena P		Purchasing Ag
16								e Request for Quo Request for Quot			cois de l		Purchasing Ag

