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Abstract. Socio-technical systems constitute a challenge for multiagent systems
as they are complex scenarios in which human and artificial agents share informa-
tion, interact and make decisions. For example, the design of an airport requires
to interface information coming from automatic apparatuses as security cameras,
conceptual information coming from agents, and normative information which
agents’ behavior must comply with. Thus, in order to design systems that are
capable of assisting human agents in organizing and managing socio-technical
systems, we need fine grained tools to handle several types of information. The
aim of this paper is to discuss a general framework to describe socio-technical
systems as cases of complex multiagent systems. In particular, we use a founda-
tional ontology to address the problems of interoperability and conceptual analy-
sis, we discuss how to interface conceptual information with low level informa-
tion obtained by computer vision or perception, and we discuss how to integrate
information coming from heterogeneous agents.

1 Introduction

This work concentrates on the mutual influence of vision, cognition and social inter-
action in socio-technical systems, i.e. technologically dense contexts, such as, for in-
stance, airports, hospitals, schools, public offices [7]. The process of seeing a scene,
forming a belief or an expectation and engaging in interaction with other agents are
essential features of agents’ (both human and artificial) behavior in such systems. The
entanglement of several layers of information (e.g. individual vs collective, visual vs
inferential, human vs artificial) poses a challenge to the modeling of such complex en-
vironments. The overall aim of the work initiated with this paper is to build a rich model
of agents’ interaction that is capable of providing assistance to real socio-technical sys-
tems. We believe that the multiagent systems paradigm is a valuable framework to set
up the construction of such complex models, as what is at stake is not only how au-
tonomous agents form beliefs and expectations, communicate and act within a norm-
governed system, but also their interaction with decisions that must be taken at systemic
level. Our claim is that all these layers that are required in order to describe agents’ in-
formation in socio-technical systems can be represented and reasoned about by using
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a rich ontological model, that is capable of specifying our conceptual hierarchy in a
way that is general enough to describe a complex categorization including physical
and social objects, events, roles and organisations. In order to be effectively connected
with the visual systems of artificial agents, such ontological models must contain in-
formation about the external context, both in its physical and institutional aspects, and
information about the agents that inhabit it, in their physical, perceptual, cognitive and
social aspects. In this paper we try to address three research challenges:1) providing
a rich and structured description of the domain in all its aspects that is usable and in-
teroperable among agents, both human and artificial; 2) integrating visual information
with knowledge representation and reasoning and 3) describing systemic information
as information coming form heterogeneous agents.

The ontological model we propose to use is DOLCE [16], and such choice is moti-
vated by a series of reasons. First, the ontological perspective allows us to specify the
properties of the concepts that we deploy and the relations holding among them. Such
properties and relations are obtained through a foundational analysis and are expressed
as formal axioms [16]. Second, one of DOLCE’s basic assumptions is its “cognitive
bias”, in the sense that it is meant to express the perspective of a cognitive agent on
a given domain, rather than “how things really are in the world”. Finally, given that
it comprises a social [17, 3] and a cognitive module [9], it is capable of dealing with
several layers of information.

Regarding the visual information, we rely on a probabilistic methodology based
on graphical models such as Bayesian Networks (BN) [14]; essentially, they allow to
process low-level information, such as video sequences, audio streams and multisen-
sorial input through graph-based inferential mechanisms in a robust and formal way.
In our framework, BNs capture the finer grained knowledge under the form of action
detection (run, sit, drink) and social signals recognition (visual focus of attention, fa-
cial expressions) [8], all expressed under the form of posterior distributions; this way,
the uncertainty associated to the noise of the sensors and the accuracy of the modeling
can be delegated to the ontological engine. Even though information is processed with
probabilistic means in BNs, we assume that these will give as output, via a mechanism
based on thresholds, a discrete proposition, that will then be available to be reasoned
upon with logical and ontological tools.

The relationship between individual and systemic information will be approached
by means of techniques developed in multiagent systems, in particular in social choice
theory, judgment aggregation, and belief merging [15, 4].

Ontologies for multiagent systems have been developed in particular in order to pro-
vide agents’ communication languages, [12, 10]. Moreover, models of socio-technical
systems based on goal models have been recently introduced in [5]. The original con-
tribution of this paper is to provide a general multiagent model based on DOLCE to
represent the entanglement of several layers of information in socio-technical systems.

The guiding examples of this paper are taken from the organization of an airport.
Such socio-technical system involves several types of agents, surveillance cameras, se-
curity officers, customers, who interact and share information of different types, for
example information coming from cameras, procedural information concerning rules,
information that can only be indirectly inferred.



The remainder of this paper is organized as follows. In Section 2, we discuss the
connection between low-level information coming from vision and high-level informa-
tion contained in agents’ knowledge bases. Section 3 presents our ontological modeling
of socio-technical systems. In Section 4 we deal with the issue of how to integrate the
information coming from different agents and we propose procedures that define sys-
temic information.

2 Linking computer vision and propositional information

The connection between propositional information and visual information is a diffi-
cult task to approach. In computer vision, a label denoting a scene (e.g. “the plane has
landed”) is associated to a process that models the interaction of several features usually
expressed by a graphical model [14]. More specifically, Bayesian Networks (BN) have
been widely adopted in vision systems as they are applicable to all levels of processing,
from the extraction of low-level actions (e.g., running, walking) to more complex high-
level reasoning (e.g., Mark runs and then walks); essentially, they embed a mapping
into a graph structure so that the nodes represent concepts or parameters of interest and
dependencies are given by links. Their diffused use is due to fast numerical updating
in singly connected trees and to the availability of techniques to decompose complex
models into simpler ones, adopting heterogeneous learning techniques [19]. Bayesian
networks can be learned and model dependencies for either static (BBN) or dynamic
(DBN) domains. A simple DBN with single causal dependencies over time, the Hidden
Markov Model, is often used for speech analysis [21] and has been extensively adapted
for heterogeneous applications in the Computer Vision realm [18]. Bayesian Networks
are the workhorses for the automated surveillance community: in most cases, different
activities correspond to different BNs; they are trained in advance, and employed after-
wards in classification tasks, aimed at discovering usual or abnormal activities. One of
the main limitations of this philosophy, i.e., describing high-level activities employing
BN, is their limited expressivity: the usual architecture of a surveillance system builds
upon a low-level layer in which simple actions are recognized (run, walk, sit); these out-
puts, expressed in the form of posterior probabilities, are fed into a mid-level layer of
the network which connects them considering spatio-temporal relations: an individual
can walk for a minute, and in the meantime he/she can talk with another guy, or he/she
can make a phone call. In practice, this layer gives as output a set of BNs, one for each
activity; in turn, each BN generates a posterior probability, depending on how well the
structural knowledge embedded in the network fits the visual data. The high-level layer
of the surveillance system performs the final classification, recognizing as ongoing ac-
tivity the one which corresponds to the BN with the highest posterior probability. As
a matter of fact, the kind of understanding provided by this architecture is limited: in
one sense, it is fixed, enclosed in a graphical model which describes conditional depen-
dencies among random variables, whose structure is decided a priori, drawn by hand
from the researcher. In another sense, it is limited, since it amounts to a set of available
activities that have to be recognized.

In order to interface visual and propositional information, we want to associate the
set of BN that describes the activity of a camera with a knowledge base consisting of a



set of formulas that are defined by means of the predicates specified in our ontology. The
knowledge base contains a set of low-level propositions that are directly connected with
the BN as well as higher level propositions that can be inferred by means of the onto-
logical definitions. For example, “there is a queue at gate 8” is a perceptual proposition
that is triggered by the BN, whereas “the boarding at gate 8 has started” is a proposition
that can be inferred on the basis of visual information. One of the challenges of this
work is to understand how the information coming from a BN, which is probabilistic,
entails the assumption that a certain proposition holds in the knowledge base. In partic-
ular, a BN provides a degree of probability that the proposition that describes a scene
is true or false (e.g. “an aircraft is landing on runway 4 with a probability of 75%).
Our approach is the following. As we are interested in providing human agents with a
tool that assists their activity in monitoring the system, propositional information that
becomes available to human agents should be as simple as possible. Thus, we associate
probabilistic BNs with discrete information (true or false) concerning propositions, by
defining a threshold of the degree of reliability provided by the BN that is sufficient
to accept the proposition. The thresholding mechanism is also well founded under a
Bayesian point of view, since it corresponds to the cost associated to a particular classi-
fication output [6]. Moreover, the reliability of the information coming from vision shall
be discussed at systemic level as a problem of aggregating possibly divergent sources
of information.

3 Ontological analysis: DOLCE

In order to describe agents’ information in socio-technical systems, we need to integrate
visual, conceptual, factual and procedural information. We propose to use the DOLCE
ontology as integrating framework. The methodology employed in the construction of
the DOLCE ontology is the following. Firstly, we define basic properties and relations,
that are generic enough so to be common to all specific domains, like being an en-
durant (more simply, an object), being a perdurant (an event), being a quality or being
an abstract (entity), one entity being part of another, an object participating to an event
or having a certain quality...Then, we specify different modules, like the mental or
the social module, that are composed by entities that share some characterizing fea-
tures. For example, mental entities are characterized by being ascribable to intentional
agents and social entities are characterized by the dependence on collectives of agents.
These conceptual relations specify the definitions of the basic entities in our ontology,
e.g. roles are properties of a certain kind that are ascribable to objects. Finally, we in-
troduce domain specific concepts that specify more general concepts belonging to all
these modules (like “an aircraft is a physical object”).

We begin by presenting the general ground ontology; this is meant to be not context
sensitive and to provide a shared language to talk about some fundamental properties
of concepts and entities. In this sense, the ontology provides a general language to ex-
change heterogeneous information’. We are here interested in presenting the descriptive
features of DOLCE rather than in complexity or implementability issues. Notice that in

3 Ideally, this is not the case, as in multiagent systems agents can be heterogeneous under many
respects, including the adoption of different languages and also of different ontologies. The



[16] an appendix may be found with more implementable but less expressive versions
of DOLCE, that are called DOLCE-Lite.

3.1 Foundational ontology

We present some features of DOLCE-CORE, the ground ontology, in order to show that
they allow for keeping track of the rich structure of information in a socio-technical
system. For an introduction to DOLCE-CORE, we refer to [2], here we simply point at
the relevant features.

The ontology partitions the objects of discourse, labelled particulars PT into the
following six basic categories: objects O, events E, individual qualities Q, regions R,
concepts C, and arbitrary sums AS. The six categories are to be considered rigid, i.e. a
particular cannot change category through time. For example, an object cannot become
an event. In particular, we shall focus on the following categories.

Objects represent particulars that are mainly located in space, e.g. the aircraft 777,
the gate 6, the queue at gate 6. On the other hand, events have properties that are mainly
related to time, e.g. landing, the boarding of flight 717, the delay of flight 717. The rela-
tion that links objects and events is the participation relation: “an object x participates
in event y at time ¢” PC(x, y, t).

Since individual qualities play an important role in modeling information coming
from perception, or from different agents of the system, we shall take a closer look at
them in the next paragraphs. An individual quality is an entity that we can perceive
and measure that inheres to a particular (e.g. the length of runway A2 of Malpensa
airport, the weight of Mark’s luggage, the temperature inside waiting room 3...). The
relationship between the individual quality and its (unique) bearer is the inherence:
I(z,y) “the individual quality x inheres to the entity y”. The category Q is partitioned
into several quality kinds Q;, for example, color, weight, temperature, the number of
which may depend on the domain of application. Each individual quality is associated
to (one or more) quality spaces S; ; that provides a measure for the given quality. We say
that individual qualities are located at a certain point of a space S at time ¢: L(x, y, t):
“x 1is the location of quality y at time t”. Spaces allow for evaluating relationships
between objects from the point of view of a given quality. For example, “the temperature
inside room 3 (q) is higher than the temperature inside room 4 (q')” is represented
in the ontology by assuming spaces of values with order relations and by saying that
the location of the individual property g is lower than the location of ¢’. Spaces may
be more structured objects and they may be specified along several dimensions*. The
axioms that define the relationships between individual qualities, locations, and spaces
state for example that every individual quality must be located in some of its associated
spaces and that the location in a particular space must be unique, cf. [2]. E.g. the color
of an object may be associated to color quality kinds with their relevant spaces such as
hue, saturation, brightness.

strong requirement should be that their ontologies are well founded, so that their underlying
assumptions are explicit enough as to enable communication and exchange of information via
“connecting axioms”. In the current paper, for the sake of simplicity, we will assume that all
agents in the system share the same ontology, DOLCE.

4 Quality spaces are related to the famous treatment of concepts in [11].



The category of regions R includes subcategories for spatial locations and a single
region for time, denoted T: T(x) means “z is a time location” (e.g. October 10, 2012,
12:31 PM). The relation PRE(x,t), where ¢ is a time location, allows to specify that
“x is present at time ¢”. Note that in DOLCE-CORE we have that all entities exist in time:
PT(z) — Jt(PRE(x,t)).

The category of concepts shall be used in particular to model social objects. Con-
cepts are reified properties that allow for viewing them as entities and to specify their
attributes. In particular, concepts are used when the intensional aspects of a property are
salient for the modeling purposes. The relationship between a concept and the object
that instantiates it is called classification CF(x,y,t) “z is classified by y at time ¢”.

If we represent the DOLCE taxonomy as a tree, more specific categories, such as
physical objects, mental objects and so on, can be plugged into the tree as children of
the relevant categories. Summing up, there are three ways of understanding properties
in DOLCE-CORE and therefore there are three ways to deal with different levels of infor-
mation [2]. We can understand properties as extensional classes, as individual qualities,
or as concepts. We shall apply this distinction to our modeling task: extensional predi-
cates are used to model robust information (e.g. “waiting room 3 is located at gate 3”),
individual qualities are used to model information coming from vision and perception,
and concepts and roles are used to model information about norms, social objects and
organizational properties.

3.2 Individual qualities and visual information

In order to integrate the information coming from computer vision or from perception
of observers in systems with other types of information, we proceed as follows. We as-
sume that agents, both human agents and artificial agents such as surveillance cameras,
provide observation points on the system. For example, take a surveillance camera that
is trained in the sense of Section 2 for a specific task. We represent the features that
the surveillance camera is supposed to detect by means of individual qualities of the
object/action/event that it is focusing on. As the information coming from visual detec-
tion may be revisable and depends on the perception of the observer, we represent it as
specific subtype of “mental object” (M OB), namely, by means of a specific category
VIS that represents visual objects’. Visual objects are representations of physical ob-
jects from the point of view of a given observer. The recognition of an object, the point
of view of the specific observer, and the object itself are connected by means of the
following relation: V (i, z, v, t) that means “the camera 7 sees the physical object x as v
at time ¢, where in particular v is in V' I.S and provides the visual representation of .
For example V (i, x, Vgirplanes t) means that a particular camera ¢ sees x as Vairplanes
namely as the image of an airplane. From this piece of information, we do not want to

5 The cognitive module of DOLCE has been discussed in [9].

® This treatment presupposes the existence of the object that provides the focus of a given cam-
era. Moreover, we are assuming that the individual qualities that trigger the recognition of an
object as a visual representation are qualities of the object itself and not of the image (e.g.
video sequence). This is motivated by the fact that the existence of the physical object is as-
sumed to be the “same” focus of possibly divergent observers.



derive immediately the fact that there is an airplane at a specific time. The inference to
factual information shall be done by means of “bridge rules” that link the recognition of
an object as a certain entity and the endorsement in our knowledge base that the entity
is actually located in a given place. The bridge rules are supposed to provide a thresh-
olding for turning probabilistic information into factual propositional information and
they may vary according to different scenarios or to the relevance of the particular piece
of information.

The conditions that trigger propositions like V' (¢, x, v, t) are represented by formu-
las that specify locations in a number of quality spaces. We assume that each observer
1 is associated with a set of individual qualities g;.1, - - - , ¢izm Of an object x that rep-
resent the features that a specific observer is looking for, in order to detect that object.
For example, such individual qualities represent pieces of information such as “the di-
mension of the object = from the point of view of camera ¢”. By locating such qualities
in specific regions of quality spaces, we can specify a set of preconditions that trigger
the recognition of  as v from the point of view of 4.

loc(qiz, S1,t1) A -+ ANloc(qnay Snytn) = V (i, 2,0,1)

For example, such conditions state that, according to camera ¢, if the dimension has
a certain value, and the shape is of a certain type, and the color is such and such, then
camera ¢ recognizes x as an airplane. Of course the information required in order to
model the locations of the individual qualities and the relevant spaces shall be provided
by integrating the ontological analysis with the properties of the algorithm used in com-
puter vision. Moreover, at least in principle, in case of human agents, we can represent
the relevant cognitive aspects of vision by means of suitable qualities of objects and
quality spaces.

The motivation for our treatment is that it allows for handling information coming
from different observation points, or from a same observation point at different times,
by spelling out the preconditions that trigger such information. An assumption we shall
stick to is that the same camera cannot see an object in two ways at the same time:

V(i,x,0, ) AV (i,z,0', 1) 5 v =1

This amounts to assuming that the algorithm for visual detection is well-defined.
However, at different times, the same camera can change the visual object that it pro-
vides, or it can even fail to recognize the object, thus we do not force more demanding
constraints on V. Moreover, we do not presuppose that different observers of the same
objects in the same location and at the same time have to agree on the same recogni-
tion. Thus, for example, a camera can see an object as a person whereas another fails to
recognize it or classifies it as something else. We believe that this forms of mismatches
of information have to be made explicit in our modeling and represented accordingly,
as they are an important aspect of the interaction in socio-technical systems. We shall
discuss how to handle possible mismatches of information in the next section.



3.3 Social objects and norms

One predicate that is particularly important for modeling socio-technical systems is the
classification predicate: C'F'(z,y, t) meaning that “x is classified as y at time ¢7. By
using C'F’, we can define a special type of social object, namely the notion of role. Roles
are supposed to be contextual properties, that are characterised by anti-rigidity (AR) and
foundation (FD): roles are concepts that classify entities at a certain point in time, but
not necessarily classify them in each moment or each possible world in which they are
present (AR) and that require a level of definitional dependence on another property
(FD). For instance, someone who is a student at a certain point, not necessarily will be
a student all throughout his/her life and there are possible worlds in which he/she is not
a student; in order for someone to be classified as an employee, we need someone else
who is classified as an employer.

AR(z) =Vy,t(CF(y,x,t) — ' (PRE(y,t') N —=CF(y,x,t"))

FD(x) = 3y,dDF(z,d) NUS(y,d) AVz,t(CF(z,z,t) —
(CF(Z,y,t) A—P(z,2', 1) A\=P(2, 2,1)))

Given these characteristics, roles are essential to model organizations, as they allow
to talk about properties that one acquires in virtue of the fact that one is member of
an organization or has some rights/duties connected with the role he/she is playing in
that very moment. Take for instance a security officer, who is allowed to carry a gun
inside the airport terminal, but just when he/she is playing (or is classified by) the role of
security officer; if the same person enters the airport while playing the role of passenger
he/she is no more allowed to carry a gun. The same role can be played by many entities
within the same domain (even entities of very different nature, like a human being and
a software), the same entity can play more than one role, even simultaneously (like in
airports with self-check-in stations, where the same person simultaneously plays the
role of passenger and that of check-in operator).

Further developments of ontological analysis treat also norms and plans by means of
DOLCE, cf. [1]. Here we just sketch some possible application. Our role-based analysis
provides a way to connect low-level information (e.g. coming from cameras) with high-
level information (e.g. coming from security protocols). For example, the concept of
role allows for making explicit the conceptual dependence of a signal of alarm triggered
by a particular scene that has been detected by cameras with the properties that are
sufficient to trigger that signal. For example, a “suspect”, according to our approach,
can be modeled as a role. We can impose a constraint that specifies that only entities
that are agentive physical objects can be classified as suspects in our scenario (according
to the (FD) condition). Moreover, we can specify the description that defines “suspect”
by spelling out a set of properties, like the participation to some kinds of events, e.g.
“carrying a gun”, “entering in an unauthorized area”. Thus, if a person (an agentive
physical object) is recognized (possibly by a computer vision system that locates a

7 For an axiomatic definition of the predicates that we introduce, we refer to [17].



set of individual qualities in the relevant places) as possessing one or more of these
properties, he/she is classified as a suspect and this triggers an alarm. In order to specify
such a security protocol, the system should be capable of taking into account the various
layers of information involved. Consider the following example:

3 (FiV (i, 2, Vpersons t) A F73FYV (4, Y, Vgun, t) A next(x,y) A ~CF(x, officer, t)

— Suspect(z, t))

The formula above means that if a camera detects a person and another detects a gun
that is next to the person (i.e. next(z, y)), and that person has not the role of a security
officer at that moment, then the person is a suspect.

Depending on the type of agent that is provided with this system, the reaction to
the alarm could be of various kinds: either send a message to some other agent that has
to follow the suspect, or activate another camera with a tracking system, for example.
That depends on the security protocol that is implemented in the system. By extending
the ontological treatment so to include norms, prescriptions and so on, the security
protocols can be represented as formulas in our system. Obviously, a person can cease
to be classified as suspect if further properties are discovered (for instance, a new video
sequence may show that what at first appeared as a gun is in fact an umbrella, or it may
show a police sign on the back of the person who eventually turns his/her back to the
camera, and after that the same person who had been previously classified as “suspect”
is subsequently classified as police officer). In particular, roles allow for linking a higher
level property used by human agents involved in the system to low level properties that
can be checked by means of perception (either direct, performed by human agents, or
indirect, obtained by a camera).

4 A multiagent setting

We have described how to represent in an abstract way the pieces of information that
are required in order to provide an analysis of socio-technical systems. In this section,
we apply a multiagent perspective in order to deal with information at systemic level.
We view agents as observation points in the system that are endowed with the reason-
ing capabilities provided by the ontology definitions in DOLCE. For example, cameras
endowed with axioms that connect visual information with high-level organization con-
cepts, or security officers that communicate pieces of information are viewed as agents
in our system. The problem that we are going to tackle is how to integrate the in-
formation coming from possibly divergent agents into a collective information that is
supposed to be made available at systemic level.

4.1 Modeling socio-technical systems

In order to describe a concrete scenario for applying our ontological analysis, we enrich
the language of DOLCE by introducing a specific language to talk about the scenario at



issue. The language contains a set of constants for particular individuals Cg. For exam-
ple, in the case of an airport, individual constants may refer to “the gate 10”, “the flight
7997, “ the landing of flight 7477, “the security officer at gate 10”. According to our pre-
vious analysis of visual information, we need also constants for locations of individual
qualities in their respective spaces. Moreover, the language contains a set of contextual
predicates Pg that describe the pieces of information that agents may communicate in
the intended situations. In case of an airport, we need for example to include predicates

CEINT

such as “being an aircraft”, “being a queue”, “being a gate”, “being a delay”, “being
a landing”, “being a security protocol” and so on. The set of predicates Pg and the
set of individuals Cg are partitioned according to the basic categories, concepts, and
individual qualities, etc. This is done by assuming a number of axioms that specify for
each predicate the right category. We are taking here the suggestion to view DOLCE as
a shared terminology, or Tbox, and let agents have possibly divergent knowledge bases,

namely Aboxes.

4.2 Modeling agents’ information

For the sake of simplicity, agents in our systems are modeled just as sets of (closed) for-
mulas built by means of predicates that are either in DOLCE or in the specific language
that we have sketched. This set may include information coming from vision, propo-
sitions concerning social objects, norms, plans, etc. We denote L the language of the
agents in the system: it is defined as the set of atomic formulas or negations of atomic
formulas defined on the alphabet given by Ps, Cs and DOLCE. We denote an agent’s set
of propositions by A; C Lg. For example, in case A; is a surveillance camera, it may
contain a set of visual propositions V' (i, z, v, t) that are triggered by the detection of the
relevant individual qualities®. The only general requirement that we put on the A;s is
that each A; is consistent wrt the ontology, namely they are consistent with the defini-
tions provided in the ontological analysis. For example, A; cannot contain a proposition
such as “a security officer is a mental object”, and so on’. Note that the amount of infor-
mation that each agent shall submit at a given moment depends on the security protocol
that is implemented in the system and on the situation at issue. For example, not all the
visual information that is provided by all the cameras shall be continuously made avail-
able to the whole system. Moreover, we shall make the assumption that the propositions
provided by the agents of our system can be synchronized by means of the temporal pa-
rameters that are attached to them. Thus, we assume that it is possible to talk about the
state of the system at a particular moment or during a particular interval of time'?. In
this section, we shall abstract from those important issues and we simply assume that

8 Note that we do not want the knowledge base to be closed under negative information, namely
we have to endorse an open world assumption on each A;. This is because the fact that a
camera does not detect a man carrying a gun does not mean that we can claim that he is not
carrying a gun.

® We are aware that the consistency assumption may be a highly demanding condition in case we
model cognitive agents. We assume it here just for the sake of simplicity, in order to directly
apply the model of the next section.

19 We are aware that this is a demanding assumption. For example, synchronizing surveillance
cameras and human agents’ communications may require interfacing two different time seg-



at a given moment in time, we can take the sets of propositions provided by the agents
of the system.

4.3 Modeling systemic information

We present now our modeling of systemic information. We want to be able to check
the status of the system with respect to a number of parameters. As the sources of
information are heterogeneous, namely each agent of the system provides his/her set of
propositions, the problem of evaluating the state of the system as a whole can be viewed
as a problem of integrating heterogeneous information. We shall model this issue by
means of techniques developed in social choice theory [4], belief merging [13], and
judgment aggregation [20, 15]. The reason is that, as we shall see, those techniques
provide versatile tools to model aggregation of heterogenous types of information and
they allow for spelling out the properties of each type of aggregation procedure.

In a complex system like the one we are depicting, there may be several sources of
disagreement between agents. For example, a possible disagreement may be at the level
of perceptual information. Imagine three cameras that are pointing at the same scene,
and such that two of them recognize an object as a gun, whereas the third does not.
Furthermore, agents’ knowledge bases can contain conflicting high-level information
on the roles involved, and it is not clear where to place the source of disagreement.

The ontological analysis allows us to classify the types of information, thus the
question is how to define suitable procedures to solve the different types of disagree-
ment, e.g. normative, prescriptive, or visual. We briefly sketch our model. Suppose the
system consists of n agents. Denote A(Lg) the set of all possible sets of atomic formu-
las in our language L that are consistent with the ontology. A profile of agents knowl-
edge bases is given by a vector (Ay, ..., A,), we denote it A. An aggregation procedure
is a function F' : A(Lg)™ — P(Lg) that takes a profile of agents’ knowledge bases
and returns a single set of propositions. The set of propositions F'(A) represents then
the systemic information according to the procedure F'.

The ontological analysis allows us to partition the set of propositions in Lg into
their respective types. For each predicate P in our language, we can easily check by
means of DOLCE whether P is a social concept, a visual concept, a basic concept and
so on. Since every proposition in the A; is an atomic formula or a negation of an atomic
formula, we can easily extend the classification of predicates in order to partition the
agents’ propositions into visual, conceptual and factual propositions.

Given a set of formulas A;, we denote Aly s Aic, AZF , the visual, conceptual and
factual propositions (respectively) that are contained in A;. Accordingly, we partition
profiles wrt their type of information; we denote them AV, AC, A We shall discuss
aggregators that take profiles restricted to one of the types of propositions: FV : AV —
AV, FC A% s A% and FV 1 AT s AT,

We introduce and discuss a number of properties of aggregators that have been
widely studied in judgment aggregation and social choice theory. In particular, the ap-
plication of social choice theory and judgment aggregation to ontology merging has

mentations of events. We abstract from this issue in order to present our analysis of systemic
information.



been developed in [20]. In what follows, we present some arguments to evaluate to
what extent those properties are relevant for our modeling tasks.

Unanimity. An aggregator F' is called unanimous if Ay N---N A4,, C F(A) for every
profile A € A(Lg)™.

Anonymity. An aggregator F is called anonymous if for any profile A € A(Lg)"
and any permutation o : N — N of the agents, we have that F/(A;,...,A,) =
F(Ag(l), cen 7Aa(n))'

Independence. An aggregator F' is called independent if for any formula ¢ € Lg and
any two profiles A, A" € A(Lg)", we have that ¢ € A; & ¢ € A’ for all agents
i € N implies ¢ € F(A) & ¢ € F(A").

Neutrality. An aggregator F' is called neutral if for any two formulas ¢, ¢ € Lg and
any profile A € A(Lg)", we have that ¢ € A; & ¢ € A, for all agents i € N
implies ¢ € F(A) < ¢ € F(A).

Monotonicity. An aggregator F' is called monotonic if for any agent ¢ € N, formula
¢ € Lg, and profiles A, A" € A(Lg)™ such that A; = A’ for all j # 4, we have
that ¢ € AL\ A; and ¢ € F(A) imply ¢ € F(A").

Unanimity implies that if the agents of the system agree on a proposition ¢, then ¢ is
accepted at systemic level. We claim that unanimity is a desirable property of any aggre-
gator, regardless the specific type of propositions. As agents are the observation points
of the system, and our knowledge of the system is provided by means of agents’ infor-
mation, a violation of unanimity would amount to discharging information for no appar-
ent reason (i.e. no agent against). Anonymity implies that all agents are treated equally,
namely, that we have no reason to weight the information coming from an agent more
than from another. This requirement is desirable when we cannot (or we do not want to)
distinguish the reliability of agents. For example, we may not want to distinguish the
information provided by two security officers that are communicating on the ground of
the higher reliability of the first wrt the second. In case of visual information, anonymity
may not be desirable. For example, we want to weight the information coming from a
trained security officer more than the information coming from a surveillance camera.
Whenever appropriate, this is intended to model the fact that human agents may dou-
ble check outcomes coming from artificial agents and human agents are assumed to be
more reliable than artificial ones. The condition of independence means that the accep-
tance of a formula at systemic level only depends on the pattern of acceptance in the
individuals’ sets (e.g. the number of agents who accept ¢). That is, the reason for ac-
cepting ¢ should be the same in any profile. Independence is a more demanding axiom
than the previous two; whether or not it should be imposed is debatable. A domain of
application for which it is desirable is to merge normative information, see [15]. For ex-
ample, suppose that the security protocol of the airport prescribes to fire an officer if and
only if conditions c¢; and c5 hold. Suppose such conditions have to be checked by the
relevant committee of agents. In that case, we do not want the outcome of the decision
to depend on a particular scenario (i.e. profile), rather a form of impartiality should be
respected. On the other hand, there are cases in which the number of agents supporting
¢ is not a good criterion for any profiles, we shall present an example below. Neutrality
requires that all the propositions in the system have to be treated symmetrically. We



believe that this is not desirable for our purpose in general, as we want to treat visual,
factual and conceptual information according to different criteria. Moreover, there are
reasons to weight certain propositions more than others even in case they belong to the
same class. For example, the proposition that states that an object has been seen as a
gun by a surveillance camera should be considered as highly sensible and therefore it
should be taken into account at systemic level. Monotonicity implies that agents’ ad-
ditional support for a proposition that is accepted at systemic level will never lead to
it being rejected. This property is desirable in most of the cases, provided the relevant
agents are involved. A further requirement that is usually viewed as a desirable property
is the consistency of the systemic information.

Consistency An aggregator F is consistent if for every profile A € A(Lg)™, the set
F(A) is consistent with the ontology.

It is well-known that not every aggregator that satisfies the properties that we have
seen guarantees consistency. In particular, an aggregator that satisfies anonymity, in-
dependence, and neutrality may return inconsistent outcomes, cf. [15]. For example,
merging information by means of the majority rule may lead to inconsistent sets of
propositions'!. For the sake of example, we introduce a class of aggregators to model
systemic information that is adapted from [20]. We leave an exhaustive discussion of
types of aggregators for future work.

Given a set of propositions X C Lg, we define a priority order on formulas in X
as a strict linear order on X. Several priority orders can be defined on X, for example a
support order > g ranks the propositions according to the number of agents supporting
them: ¢ >g ¥ iff the number of agents supporting ¢ is greater than the number of
agents supporting ¥ (provided a tie-breaking rule for propositions with equal support).
Moreover, we can define a priority order on propositions that depends on the reliability
of the agents that support them. Given the set of agents IV, we define the expert agents
as a subset &/ C N. Thus, the reliability priority may be defined as ¢ >p v iff the
number of experts supporting ¢ is greater than the number of experts supporting 1. We
may also introduce more stringent conditions by imposing that ¢ has higher priority
than ¢ if the very experts that support ¢ also support 2.

Definition 1 (Priority-based procedures). Given a priority order > x, the procedure
based on > x is the aggregator mapping any profile A to F(A) := S for the unique set
S C Lg for which (i) ¢ € S, where ¢ is the top proposition according to > x; (ii) if
SU{ws}, 1 € S, 11 >x 1o and is consistent, then 1o € S.

Thus, a priority-based procedure tries to provide a consistent outcome by check-
ing the relevant information according to the priority. That is, the procedure tries to
discharge conflicting information with a lower priority. For priority based procedures,
neutrality or anonymity may be violated by the priority order. Independence is also

' These results depend on the structure of the language that the agents use. It is enough to
include some minimal logical connection to generate inconsistent outcomes, cf. [15]. Even if
the propositions in the agents’ sets are atomic, we are evaluating consistency wrt the ontology,
that contains complex propositions.



violated (because ¢ may cease to be accepted if a formula it is contradicting receives
additional support). Moreover, such procedures are consistent by construction. The pri-
ority order is supposed to represent the importance of the property for the system. For
example, the proposition that states the recognition of an object as a gun should receive
high priority in our ordering. Moreover, priority based procedures allow for weighting
the information according to the reliability of different sources. For example, we can
weight the information coming from security officers, that are viewed as experts, more
than information coming from surveillance cameras. Thus, priority based procedures
may be used to define aggregators that provide collective information on visual propo-
sitions: FV : AV +— AV Moreover, a priority order based on the reliability of agents
can be used to merge factual information FV : A" — AF, provided we single out the
right class of experts in our system. Note that it may be hard to compute the systemic in-
formation, given the required consistency check. The complexity depends of course on
the language that we use to implement our ontology. Moreover, it is interesting to point
at an application of non-consistent aggregators, namely aggregators that return incon-
sistent sets of propositions. By using the analysis of aggregators provided by judgment
aggregation, it is possible to pinpoint the places where the inconsistencies in the system
are generated. In particular, aggregators that may return inconsistent information are
useful to pinpoint causes of normative or conceptual disagreement, namely to analyse
incompatibility of norms or concepts defined in the system with the collective informa-
tion gathered by the agents.

5 Conclusion

We have depicted and discussed a number of important elements in order to model
a complex scenario such as a socio-technical system. We have seen that in order to
provide a faithful representation of knowledge, we need to model agents endowed with
visual, cognitive and social capabilities as well as systemic procedures that handle com-
plex interactions. We have argued that the ontological analysis allows for specifying the
types of information involved in the system and we have proposed the application of
techniques from social choice theory and belief merging in order to define and analyze
several concepts of systemic information. Future work shall focus on two directions.
Firstly, we will try to extend the ontological analysis to model agents that are endowed
with a set of actions that depend on the information state. For example, agents can send
an alarm signal in case they can infer that a person is a suspect, they can communicate
pieces of information to other agents, they can ask questions to other agents, they can
ask other agents to perform tasks, they can prescribe actions to be taken (e.g. “close
the gate 12”), etc. For instance, an observation point ¢ can see that a person is getting
close to a security area and it sends this information to agent 7 who can check if such
information holds also on the basis of his/her visual input. Moreover, ¢ can ask the other
agents to track the path of the person who has been recognized as a suspect. Secondly,
we plan to extend our treatment of systemic information by discussing more general
classes of functions that aggregate agents’ information and by introducing procedural
aspects of agents’ interaction, e.g. negotiation, dialogues, deliberation.
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