Delegation and mental states

Nicolas Troquard (IRIT/LOA) joint work with Cristiano Castelfranchi, Emiliano Lorini (ISTC-CNR) and Andreas Herzig (IRIT-CNRS)

ILIKS - Trento - December, 1st

ISTC (Roma, Trento), IRIT (Toulouse) ()

Delegation and mental states

ILIKS – Trento – December, 1st 1 / 15

A > + > + > + >

Cohen & Levesque's formalization of Bratman's theory

•
$$AGoal_i^{CL}\phi \stackrel{\text{def}}{=} Pref_iF\phi \wedge Bel_i\neg\phi$$

• $PGoal_i^{CL}\phi \stackrel{\text{def}}{=} AGoal_i^{CL}\phi \land (Bel_i\phi \lor Bel_iG\phi)Before \neg Pref_iF\phi$

•
$$Int_i^{CL}\phi \stackrel{\text{def}}{=} PGoal_i\phi \wedge Pref_iF\exists i:\alpha\langle i:\alpha\rangle\phi$$

Problems:

- too strong definition: e.g. in cooperative contexts, intentions cannot entail to build plans triggering other agents' actions
- too weak definition: e.g. intention of trivialities

A (10) A (10) A (10) A

- theories of agency: causal connection between action and goal
 - Kanger, Pörn and col.
 - Belnap, Horty, Chellas et col.: seeing to it that (STIT)
- objective: combine C&L approach with STIT operator, for a logical theory of *intention* and its application to *delegation*

 $\textit{M} = \langle \textit{Mom}, <, \textit{ATM}, \textit{AGT}, \textit{Choice}, \textit{Belief}, \textit{Preference}, \textit{v} \rangle$

• $\langle Mom, < \rangle$ = branching-time, discrete structure

- history = maximal <-ordered subset of Mom</p>
- Hist = set of all histories
- H_w = set of histories passing through w

•
$$Ctxt \stackrel{\text{def}}{=} \{m/h \mid w \in Mom, h \in H_w\} = \text{set of contexts}$$

 $\textit{M} = \langle \textit{Mom}, <, \textit{ATM}, \textit{AGT}, \textit{Choice}, \textit{Belief}, \textit{Preference}, \textit{v} \rangle$

• $\langle Mom, < \rangle$ = branching-time, discrete structure

- history = maximal <-ordered subset of Mom</p>
- Hist = set of all histories
- H_w = set of histories passing through w
- $Ctxt \stackrel{\text{def}}{=} \{m/h \mid w \in Mom, h \in H_w\}$ = set of contexts
- Choice : $2^{AGT} \times Mom \longrightarrow 2^{2^{Hist}}$
 - Choice^w_a(h) = a's particular at moment w choice containing history h

 $\textit{M} = \langle \textit{Mom}, <, \textit{ATM}, \textit{AGT}, \textit{Choice}, \textit{Belief}, \textit{Preference}, \textit{v} \rangle$

• $\langle Mom, < \rangle$ = branching-time, discrete structure

- history = maximal <-ordered subset of Mom</p>
- Hist = set of all histories
- H_w = set of histories passing through w
- $Ctxt \stackrel{\text{def}}{=} \{m/h \mid w \in Mom, h \in H_w\}$ = set of contexts
- Choice : $2^{AGT} \times Mom \longrightarrow 2^{2^{Hist}}$
 - Choice^w_a(h) = a's particular at moment w choice containing history h

• $Belief_i \subseteq Ctxt \times Ctxt$

 $\textit{M} = \langle \textit{Mom}, <, \textit{ATM}, \textit{AGT}, \textit{Choice}, \textit{Belief}, \textit{Preference}, \textit{v} \rangle$

• $\langle Mom, < \rangle$ = branching-time, discrete structure

- history = maximal <-ordered subset of Mom</p>
- Hist = set of all histories
- H_w = set of histories passing through w
- $Ctxt \stackrel{\text{def}}{=} \{m/h \mid w \in Mom, h \in H_w\}$ = set of contexts
- Choice : $2^{AGT} \times Mom \longrightarrow 2^{2^{Hist}}$
 - Choice^w_a(h) = a's particular at moment w choice containing history h
- $Belief_i \subseteq Ctxt \times Ctxt$
- $Preference_i \subseteq Ctxt \times Ctxt$

- agents' choices are always compatible
 - at least one common history to each possible combination of agent's choices
 - ▶ for groups: $Choice_J^w(h) = \bigcap_{i \in J} Choice_i^w(h) \neq \emptyset$
- Belief_i and Preference_i
 - serial, transitive and euclidean
 - *Preference*_i \subseteq *Belief*_i (**realism**)
 - ▶ if wBelief_iw' then Preference_i(w) = Preference_i(w') (introspection)

Semantics of operators

- $M, w/h \models \Box \phi$ iff $M, w/h' \models \phi$ for all $h' \in H_w$
- $M, w/h \models \text{Stit}_J \phi$ iff $M, w/h' \models \phi$ for every $h' \in \text{Choice}_J^w(h)$

< 日 > < 同 > < 回 > < 回 > < 回 > <

Semantics of operators

- $M, w/h \models \Box \phi$ iff $M, w/h' \models \phi$ for all $h' \in H_w$
- $M, w/h \models Stit_J \phi$ iff $M, w/h' \models \phi$ for every $h' \in Choice_J^w(h)$
- $M, w/h \models Bel_i \phi$ iff $M, w'/h' \models \phi$ for every $w'/h' \in Belief_i(w/h)$
- *M*, w/h ⊨ Pref_iφ iff *M*, w'/h' ⊨ φ for every w'/h' ∈ Preference_i(w/h)

Semantics of operators

- $M, w/h \models \Box \phi$ iff $M, w/h' \models \phi$ for all $h' \in H_w$
- $M, w/h \models Stit_J \phi$ iff $M, w/h' \models \phi$ for every $h' \in Choice_J^w(h)$
- $M, w/h \models Bel_i \phi$ iff $M, w'/h' \models \phi$ for every $w'/h' \in Belief_i(w/h)$
- $M, w/h \models Pref_i \phi$ iff $M, w'/h' \models \phi$ for every $w'/h' \in Preference_i(w/h)$
- *M*, *m*/*h* ⊨ *X* φ iff *M*, *w*'/*h* ⊨ φ, *w*' immediate successor of *w* in history *h*
 - $G\phi$ = "from now on, ϕ always true on this history"
 - $F\phi \stackrel{\text{def}}{=} \neg G \neg \phi = "\phi$ is true at some future point *on this history*"

(Stit) (Box) (BoxStit) (Monotony) (LTL) (Bel/Pref) (Inclusion) (Pos. introspection) (Neg. introspection) S5 axioms for $Stit_1$ S5 axioms for \Box $\Box \phi \rightarrow \mathsf{Stit}_i \phi$ $Stit_I\phi \rightarrow Stit_I\phi$, for $I \subset J$ axioms of LTL KD45 axioms for Bel_i and $Pref_i$ $Bel_i\phi \rightarrow Pref_i\phi$ $Pref_{i}\phi \rightarrow Bel_{i}Pref_{i}\phi$ $\neg Pref_i \phi \rightarrow Bel_i \neg Pref_i \phi$

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Future directed intention to be

•
$$AGoal_i \phi \stackrel{\text{def}}{=} Pref_i F \phi \land \neg Bel_i \phi$$

• C&L's negative condition was $Bel_i \neg \phi$

Definition

$$Int_i\phi \stackrel{\text{def}}{=} AGoal_i\phi \land Bel_i\neg Stit_{AGT \setminus \{i\}}F\phi$$

- *i* has the achievement goal that ϕ
- *i* believes that ϕ will not be achieved without *i*'s intervention
 - dependence clause

< 回 > < 三 > < 三 >

Properties of intention

- $Int_i\phi \wedge Int_i\neg\phi$ is satisfiable
 - future-directed intentions: indeterminate moment in the future

• Indep
$$(\phi, i) \stackrel{\text{def}}{=} \phi \rightarrow \text{Stit}_{AGT \setminus \{i\}} \phi$$

• $\models \text{Bel}_i \text{Indep}(F\phi, i) \land \text{Int}_i \phi \rightarrow \bot$

•
$$Veto(i, j, \phi) \stackrel{\text{def}}{=} \neg \Diamond Stit_{AGT \setminus \{i\}} F\phi \land AGoal_j \phi$$

• $\models Bel_i Veto(i, i, \phi) \rightarrow Int_i \phi$

- intentions to believe persist (under *no forgetting* for Pref)
 - $\models Int_i Bel_i \phi \rightarrow X(Bel_i \phi \lor Int_i Bel_i \phi \lor \neg Bel_i \neg Stit_{AGT \setminus \{i\}} FBel_i \phi)$

ISTC (Roma, Trento), IRIT (Toulouse) ()

(日)

- we take inspiration from goal-based theory of Falcone & Castelfranchi (1998)
 - logical modeling purpose: some slight differences
 - weak delegation
 - mild delegation
 - strict delegation (contracts, explicit agreement)
- we focus on two notions of delegation
 - passive: Gabriela expects her flatmate the task of cleaning the bathroom
 - active: Gabriela forces her flatmate to clean the bathroom

PassiveDel(i, j, ϕ) $\stackrel{\text{def}}{=}$

 $\neg Bel_i \phi \land Pref_i FStit_j \phi \land \neg Bel_i \neg Stit_{AGT \setminus \{i\}} FStit_j \phi$

• *i* does not believe ϕ is already achieved

- *i* prefers to achieve ϕ by exploiting *j*
- according to *i*'s beliefs, it is possible that there will be a moment where *j* will ensure φ, independently of what *i* does now

PassiveDel(i, j, ϕ) $\stackrel{\text{def}}{=}$

 $\neg Bel_i \phi \land Pref_i FStit_j \phi \land \neg Bel_i \neg Stit_{AGT \setminus \{i\}} FStit_j \phi$

- *i* does not believe ϕ is already achieved
- *i* prefers to achieve \u03c6 by exploiting j
- according to *i*'s beliefs, it is possible that there will be a moment where *j* will ensure φ, independently of what *i* does now

PassiveDel(i, j, ϕ) $\stackrel{\text{def}}{=}$

 $\neg Bel_i \phi \land Pref_i FStit_j \phi \land \neg Bel_i \neg Stit_{AGT \setminus \{i\}} FStit_j \phi$

- *i* does not believe ϕ is already achieved
- *i* prefers to achieve ϕ by exploiting *j*
- according to *i*'s beliefs, it is possible that there will be a moment where *j* will ensure φ, independently of what *i* does now

- |= PassiveDel(i, j, ϕ) \land Int_i $\phi \rightarrow \bot$
 - passive delegation and intention are incompatible
- |= PassiveDel(i, j, ϕ) \land Int_iStit_j $\phi \rightarrow \bot$

(日)

 $\begin{array}{l} \mathsf{ActiveDel}(i, j, \phi) \stackrel{\text{def}}{=} \\ \neg \mathsf{Bel}_i \phi \wedge \mathsf{Pref}_i \mathsf{FStit}_j \phi \wedge \mathsf{Bel}_i \neg \mathsf{Stit}_{\mathsf{AGT} \setminus \{i\}} \mathsf{FStit}_j \phi \wedge \neg \mathsf{Bel}_i \mathsf{FStit}_{\mathsf{AGT} \setminus \{i\}} \phi \end{array}$

• *i* does not believe that ϕ is already achieved

- *i* prefers to achieve to achieve \u00f6 by exploiting *j*
- *i* believes that *j* will not achieve φ independently of *i*'s intervention
- *i* does not believe that the future achievement of φ will be independent of *j*'s future choices

 $\begin{array}{l} \mathsf{ActiveDel}(i, j, \phi) \stackrel{\text{def}}{=} \\ \neg \mathsf{Bel}_i \phi \wedge \mathsf{Pref}_i \mathsf{FStit}_j \phi \wedge \mathsf{Bel}_i \neg \mathsf{Stit}_{\mathsf{AGT} \setminus \{i\}} \mathsf{FStit}_j \phi \wedge \neg \mathsf{Bel}_i \mathsf{FStit}_{\mathsf{AGT} \setminus \{j\}} \phi \end{array}$

- *i* does not believe that ϕ is already achieved
- *i* prefers to achieve to achieve \u00d6 by exploiting j
- *i* believes that *j* will not achieve φ independently of *i*'s intervention
- *i* does not believe that the future achievement of φ will be independent of *j*'s future choices

 $\begin{aligned} &\mathsf{ActiveDel}(i, j, \phi) \stackrel{\text{def}}{=} \\ &\neg \mathsf{Bel}_i \phi \wedge \mathsf{Pref}_i \mathsf{FStit}_j \phi \wedge \mathsf{Bel}_i \neg \mathsf{Stit}_{\mathsf{AGT} \setminus \{i\}} \mathsf{FStit}_j \phi \wedge \neg \mathsf{Bel}_i \mathsf{FStit}_{\mathsf{AGT} \setminus \{j\}} \phi \end{aligned}$

- *i* does not believe that ϕ is already achieved
- *i* prefers to achieve to achieve \u00f6 by exploiting *j*
- *i* believes that *j* will not achieve φ independently of *i*'s intervention
- *i* does not believe that the future achievement of φ will be independent of *j*'s future choices

 $\begin{array}{l} \mathsf{ActiveDel}(i, j, \phi) \stackrel{\text{def}}{=} \\ \neg \mathsf{Bel}_i \phi \wedge \mathsf{Pref}_i \mathsf{FStit}_j \phi \wedge \mathsf{Bel}_i \neg \mathsf{Stit}_{\mathsf{AGT} \setminus \{i\}} \mathsf{FStit}_j \phi \wedge \neg \mathsf{Bel}_i \mathsf{FStit}_{\mathsf{AGT} \setminus \{j\}} \phi \end{array}$

- *i* does not believe that ϕ is already achieved
- *i* prefers to achieve to achieve \u00f6 by exploiting *j*
- *i* believes that *j* will not achieve φ independently of *i*'s intervention
- *i* does not believe that the future achievement of φ will be independent of *j*'s future choices

Properties of Active Delegation

- |= ActiveDel(i, j, ϕ) \rightarrow Int_iStit_j ϕ
 - *i* actively delegates the achievement of φ to *j* only if *i* has the intention that *j* achieves φ

•
$$\models$$
 Bel_iStit_{AGT \{i\}}FStit_k $\phi \rightarrow \neg$ ActiveDel (i, j, ϕ) $k \neq j$

 i cannot actively delegate the achievement of his goal that φ to agent j when he believes that agent k will see to it that φ independently from what agent i actually does

< 回 > < 三 > < 三 >

- Just a general specification
- Towards collective intentionality

A b