Delegation and mental states

Nicolas Troquard (IRIT/LOA)
joint work with Cristiano Castelfranchi, Emiliano Lorini (ISTC-CNR)
and Andreas Herzig (IRIT-CNRS)

ILIKS – Trento – December, 1st
Present account of Intention

Cohen & Levesque’s formalization of Bratman’s theory

\[AGoal_i^{CL} \phi \overset{\text{def}}{=} \text{Pref}_i F \phi \land \text{Bel}_i \neg \phi \]

\[PGoal_i^{CL} \phi \overset{\text{def}}{=} AGoal_i^{CL} \phi \land (\text{Bel}_i \phi \lor \text{Bel}_i \text{G}\phi) \text{Before} \neg \text{Pref}_i F \phi \]

\[Int_i^{CL} \phi \overset{\text{def}}{=} PGoal_i \phi \land \text{Pref}_i F \exists i: \alpha (i: \alpha) \phi \]

Problems:

- too strong definition: e.g. in cooperative contexts, intentions cannot entail to build plans triggering other agents’ actions
- too weak definition: e.g. intention of trivialities
What can logic of agency do for us?

- theories of agency: causal connection between action and goal
 - Kanger, Pörn and col.
 - Belnap, Horyt, Chellas et col.: seeing to it that (STIT)

- objective: combine C&L approach with STIT operator, for a logical theory of *intention* and its application to *delegation*
A logic of agency, belief and preference (semantics)

\[M = \langle \text{Mom}, <, \text{ATM}, \text{AGT}, \text{Choice}, \text{Belief}, \text{Preference}, \nu \rangle \]

- \(\langle \text{Mom}, < \rangle = \text{branching-time, discrete structure} \)
 - history = maximal \(<\)-ordered subset of \text{Mom}
 - \(\text{Hist} = \text{set of all histories}\)
 - \(H_w = \text{set of histories passing through } w\)
 - \(\text{Ctxt} \overset{\text{def}}{=} \{m/h \mid w \in \text{Mom}, h \in H_w\} = \text{set of contexts}\)
A logic of agency, belief and preference (semantics)

\(M = \langle \text{Mom}, <, \text{ATM}, \text{AGT}, \text{Choice}, \text{Belief}, \text{Preference}, v \rangle \)

- \(\langle \text{Mom}, < \rangle = \text{branching-time, discrete structure} \)
 - history = maximal \(<\)-ordered subset of \(\text{Mom} \)
 - \(\text{Hist} \) = set of all histories
 - \(H_w \) = set of histories passing through \(w \)
 - \(\text{Ctx} \overset{\text{def}}{=} \{ m/h \mid w \in \text{Mom}, h \in H_w \} = \text{set of contexts} \)

- \(\text{Choice} : 2^{\text{AGT}} \times \text{Mom} \rightarrow 2^{2^{\text{Hist}}} \)
 - \(\text{Choice}_w^a(h) = a's \text{ particular at moment } w \text{ choice containing history } h \)
A logic of agency, belief and preference (semantics)

\[M = \langle \text{Mom}, <, \text{ATM}, \text{AGT}, \text{Choice}, \text{Belief}, \text{Preference}, v \rangle \]

- \(\langle \text{Mom}, < \rangle = \text{branching-time, discrete structure} \)
 - history = maximal \(<\)-ordered subset of \text{Mom}
 - Hist = set of all histories
 - \(H_w \) = set of histories passing through \(w \)
 - \(Ctxt \overset{\text{def}}{=} \{ m/h \mid w \in \text{Mom}, h \in H_w \} \) = set of contexts

- \text{Choice} : \(2^{\text{AGT}} \times \text{Mom} \rightarrow 2^{2^{\text{Hist}}} \)
 - \(\text{Choice}^w_a(h) = a's \text{ particular at moment } w \text{ choice containing history } h \)

- \text{Belief}_i \subseteq Ctxt \times Ctxt
A logic of agency, belief and preference (semantics)

\[M = \langle \text{Mom}, <, \text{ATM}, \text{AGT}, \text{Choice}, \text{Belief}, \text{Preference}, v \rangle \]

- \(\langle \text{Mom}, < \rangle = \text{branching-time, discrete structure} \)
 - history = maximal \(<\)-ordered subset of \text{Mom}
 - \(\text{Hist} = \text{set of all histories} \)
 - \(H_w = \text{set of histories passing through } w \)
 - \(\text{Ctx} \overset{\text{def}}{=} \{ m/h \mid w \in \text{Mom}, h \in H_w \} = \text{set of contexts} \)

- \text{Choice} : 2^{\text{AGT}} \times \text{Mom} \rightarrow 2^{2^{\text{Hist}}}
 - \(\text{Choice}_a^w(h) = a's \text{ particular at moment } w \text{ choice containing history } h \)

- \(\text{Belief}_i \subseteq \text{Ctx} \times \text{Ctx} \)
- \(\text{Preference}_i \subseteq \text{Ctx} \times \text{Ctx} \)
agents’ choices are always compatible
 ▶ at least one common history to each possible combination of agent’s choices
 ▶ for groups: $\text{Choice}_j^w(h) = \bigcap_{i \in J} \text{Choice}_i^w(h) \neq \emptyset$

Belief$_i$ and Preference$_i$
 ▶ serial, transitive and euclidean
 ▶ $\text{Preference}_i \subseteq \text{Belief}_i$ (realism)
 ▶ if $w \text{Belief}_i w'$ then $\text{Preference}_i(w) = \text{Preference}_i(w')$ (introspection)
Semantics of operators

- $M, w/h \models □\phi$ iff $M, w/h' \models \phi$ for all $h' \in H_w$
- $M, w/h \models Stit_j\phi$ iff $M, w/h' \models \phi$ for every $h' \in Choice^w_j(h)$
Semantics of operators

- $M, w/h \models \square \phi$ iff $M, w/h' \models \phi$ for all $h' \in H_w$
- $M, w/h \models \text{Stit}_J \phi$ iff $M, w/h' \models \phi$ for every $h' \in \text{Choice}_J^w(h)$
- $M, w/h \models \text{Bel}_i \phi$ iff $M, w'/h' \models \phi$ for every $w'/h' \in \text{Belief}_i(w/h)$
- $M, w/h \models \text{Pref}_i \phi$ iff $M, w'/h' \models \phi$ for every $w'/h' \in \text{Preference}_i(w/h)$
Semantics of operators

- \(M, w/h \models \Box \phi \) iff \(M, w/h' \models \phi \) for all \(h' \in H_w \)
- \(M, w/h \models \text{Stit}_j \phi \) iff \(M, w/h' \models \phi \) for every \(h' \in \text{Choice}^w_j(h) \)
- \(M, w/h \models \text{Bel}_i \phi \) iff \(M, w'/h' \models \phi \) for every \(w'/h' \in \text{Belief}_i(w/h) \)
- \(M, w/h \models \text{Pref}_i \phi \) iff \(M, w'/h' \models \phi \) for every \(w'/h' \in \text{Preference}_i(w/h) \)
- \(M, m/h \models X \phi \) iff \(M, w'/h \models \phi \), \(w' \) immediate successor of \(w \) in history \(h \)

 - \(G \phi \) = "from now on, \(\phi \) always true on this history"
 - \(F \phi \overset{\text{def}}{=} \neg G \neg \phi \) = "\(\phi \) is true at some future point on this history"
Some validities

(Stit) \quad \text{S5 axioms for } Stit_J

(Box) \quad \text{S5 axioms for } □

(BoxStit) \quad □φ \to Stit_iφ

(Monotony) \quad Stit_Iφ \to Stit_Jφ, \text{ for } I \subseteq J

(LTL) \quad \text{axioms of LTL}

(Bel/Pref) \quad \text{KD45 axioms for } Bel_i \text{ and } Pref_i

(Inclusion) \quad Bel_iφ \to Pref_iφ

(Pos. introspection) \quad Pref_iφ \to Bel_iPref_iφ

(Neg. introspection) \quad \neg Pref_iφ \to Bel_i\neg Pref_iφ
Future directed intention to be

- \(AGoal_i \phi \overset{\text{def}}{=} Pref_i F \phi \land \neg Bel_i \phi \)
 - C&L’s negative condition was \(Bel_i \neg \phi \)

Definition

\[
Int_i \phi \overset{\text{def}}{=} AGoal_i \phi \land Bel_i \neg Stit_{AGT \setminus \{i\}} F \phi
\]

- \(i \) has the achievement goal that \(\phi \)
- \(i \) believes that \(\phi \) will not be achieved without \(i \)'s intervention
 - *dependence clause*
Properties of intention

- $\text{Int}_i \phi \land \text{Int}_i \neg \phi$ is satisfiable
 - future-directed intentions: *indeterminate* moment in the future

- $\text{Indep}(\phi, i) \overset{\text{def}}{=} \phi \rightarrow \text{Stit}_{\text{AGT}} \{i\} \phi$
 - $\models \text{Bel}_i \text{Indep}(F \phi, i) \land \text{Int}_i \phi \rightarrow \bot$

- $\text{Veto}(i, j, \phi) \overset{\text{def}}{=} \neg \diamond \text{Stit}_{\text{AGT}} \{i\} F \phi \land \text{AGoal}_j \phi$
 - $\models \text{Bel}_i \text{Veto}(i, i, \phi) \rightarrow \text{Int}_i \phi$

- intentions to believe persist (under *no forgetting* for Pref)
 - $\models \text{Int}_i \text{Bel}_i \phi \rightarrow X (\text{Bel}_i \phi \lor \text{Int}_i \text{Bel}_i \phi \lor \neg \text{Bel}_i \neg \text{Stit}_{\text{AGT}} \{i\} F \text{Bel}_i \phi)$
we take inspiration from goal-based theory of Falcone & Castelfranchi (1998)
- logical modeling purpose: some slight differences
- weak delegation
- mild delegation
- strict delegation (contracts, explicit agreement)

we focus on two notions of delegation
- **passive**: Gabriela expects her flatmate the task of cleaning the bathroom
- **active**: Gabriela forces her flatmate to clean the bathroom
Passive delegation

Definition

\[
\text{PassiveDel}(i, j, \phi) \overset{\text{def}}{=} \neg \text{Bel}_i \phi \land \text{Pref}_i F \text{Stit}_j \phi \land \neg \text{Bel}_i \neg \text{Stit}_{\text{AGT}\{i\}} F \text{Stit}_j \phi
\]

- \(i\) does not believe \(\phi\) is already achieved
- \(i\) prefers to achieve \(\phi\) by exploiting \(j\)
- according to \(i\)’s beliefs, it is possible that there will be a moment where \(j\) will ensure \(\phi\), independently of what \(i\) does now
Passive delegation

Definition

\[
\text{PassiveDel}(i, j, \phi) \overset{\text{def}}{=} \\
\neg \text{Bel}_i \phi \land \text{Pref}_i F \text{Stit}_j \phi \land \neg \text{Bel}_i \neg \text{Stit}_{AGT \setminus \{i\}} F \text{Stit}_j \phi
\]

- \(i\) does not believe \(\phi\) is already achieved
- \(i\) prefers to achieve \(\phi\) by exploiting \(j\)
- according to \(i\)'s beliefs, it is possible that there will be a moment where \(j\) will ensure \(\phi\), independently of what \(i\) does now
Passive delegation

Definition

\[
\text{PassiveDel}(i, j, \phi) \overset{\text{def}}{=} \\
\neg \text{Bel}_i \phi \land \text{Pref}_i F \text{Stit}_j \phi \land \neg \text{Bel}_i \neg \text{Stit}_{\text{AGT} \setminus \{i\}} F \text{Stit}_j \phi
\]

- \(i\) does not believe \(\phi\) is already achieved
- \(i\) prefers to achieve \(\phi\) by exploiting \(j\)
- according to \(i\)'s beliefs, it is possible that there will be a moment where \(j\) will ensure \(\phi\), independently of what \(i\) does now
Properties of Passive Delegation

- \(\vdash \text{PassiveDel}(i, j, \phi) \land \text{Int}_{i}\phi \rightarrow \bot \)
 - passive delegation and intention are incompatible

- \(\vdash \text{PassiveDel}(i, j, \phi) \land \text{Int}_i\text{Stit}_j\phi \rightarrow \bot \)
Active delegation

Definition

\[ActiveDel(i, j, \phi) \overset{\text{def}}{=} \neg Bel_i \phi \land Pref_i F Stit_j \phi \land Bel_i \neg Stit_{AGT\{i\}} F Stit_j \phi \land \neg Bel_i F Stit_{AGT\{j\}} \phi \]

- \(i \) does not believe that \(\phi \) is already achieved
- \(i \) prefers to achieve to achieve \(\phi \) by exploiting \(j \)
- \(i \) believes that \(j \) will not achieve \(\phi \) independently of \(i \)'s intervention
- \(i \) does not believe that the future achievement of \(\phi \) will be independent of \(j \)'s future choices
Active delegation

Definition

\[
\text{ActiveDel}(i, j, \phi) \overset{\text{def}}{=} \neg \text{Bel}_i \phi \land \text{Pref}_i \text{F Stit}_j \phi \land \text{Bel}_i \neg \text{Stit}_{AGT \setminus \{i\}} \text{F Stit}_j \phi \land \neg \text{Bel}_i \text{F Stit}_{AGT \setminus \{j\}} \phi
\]

- \(i\) does not believe that \(\phi\) is already achieved
- \(i\) prefers to achieve to achieve \(\phi\) by exploiting \(j\)
- \(i\) believes that \(j\) will not achieve \(\phi\) independently of \(i\)’s intervention
- \(i\) does not believe that the future achievement of \(\phi\) will be independent of \(j\)’s future choices
Active delegation

Definition

\[\text{ActiveDel}(i, j, \phi) \overset{\text{def}}{=} \neg \text{Bel}_i \phi \land \text{Pref}_i F \text{Stit}_j \phi \land \text{Bel}_i \neg \text{Stit}_{\text{AGT}\setminus \{i\}} F \text{Stit}_j \phi \land \neg \text{Bel}_i F \text{Stit}_{\text{AGT}\setminus \{j\}} \phi \]

- \(i \) does not believe that \(\phi \) is already achieved
- \(i \) prefers to achieve to achieve \(\phi \) by exploiting \(j \)
- \(i \) believes that \(j \) will not achieve \(\phi \) independently of \(i \)’s intervention
- \(i \) does not believe that the future achievement of \(\phi \) will be independent of \(j \)’s future choices
Active delegation

Definition

\[
\text{ActiveDel}(i, j, \phi) \overset{\text{def}}{=} \neg \text{Bel}_i \phi \land \text{Pref}_i F \text{Stit}_j \phi \land \text{Bel}_i \neg \text{Stit}_{\text{AGT}\{i\}} F \text{Stit}_j \phi \land \neg \text{Bel}_i F \text{Stit}_{\text{AGT}\{j\}} \phi
\]

- **i** does not believe that \(\phi \) is already achieved
- **i** prefers to achieve to achieve \(\phi \) by exploiting \(j \)
- **i** believes that \(j \) will not achieve \(\phi \) independently of \(i \)’s intervention
- **i** does not believe that the future achievement of \(\phi \) will be independent of \(j \)’s future choices
Properties of Active Delegation

- $\vdash ActiveDel(i, j, \phi) \rightarrow Int_i Stit_j \phi$
 - i actively delegates the achievement of ϕ to j only if i has the intention that j achieves ϕ

- $\vdash Bel_i Stit_{AGT \setminus \{i\}} F Stit_k \phi \rightarrow \neg ActiveDel(i, j, \phi) \quad k \neq j$
 - i cannot actively delegate the achievement of his goal that ϕ to agent j when he believes that agent k will see to it that ϕ independently from what agent i actually does
Conclusion and perspectives

- Just a general specification
- Towards collective intentionality