Area #5 : Lexicon, ontologies, semantic interoperability and information extraction

Chair : Nathalie Aussenac-Gilles (IRIT) aussenac@irit.fr
Area #5: Lexicon, ontologies, semantic interoperability and information extraction

- Concern
 - To improve interaction and mutual understanding
 - To explicitly represent the contents of the information exchanged, mainly in its linguistic form.

- Means
 - What is meaning? Investigate semantics and lexical categories
 - How to represent meaning? Representations, lexicon and ontology
 - How to identify meaning in texts? Text analysis, information extraction
 - How to use representations to represent text contents? Semantic annotation for information retrieval
 - How to human negotiate, stabilize or modify meaning? How to detect, anticipate or represent this?

- Involved disciplines:
 - Formal semantics, knowledge engineering, linguistics, natural language processing, information extraction and retrieval, sociology, philosophy.
Participants to Area #5

- **IRIT – LILAC**
 - Nicholas Asher
 - Philippe Muller
 - Laure Vieu
- **IRIT – CSC**
 - Nathalie Aussenac-Gilles
 - Axel Reymonet
 - Mouna Kamel
 - Bernard Rothenburger
 - Nacim Chikhi
- **IRIT – SIG**
 - Josiane Mothe
 - Mohand Boughanem
 - Florence Sedes
- **UNITN - DIT**
 - Paolo Bouquet
 - Massimo Poesio
 - Fausto Giunchiglia
- **UNITN - DISCOF**
 - Marco Cruciani
 - Vincenzo D'Andrea
 - Alexander Lazovik
- **ISTC - LOA**
 - Nicola Guarino
 - Alessandro Oltramari
 - Laure Vieu
 - Aldo Gangemi
 - Eduard Barbu
 - Carola Catenacci
 - Olga Capirici
 - Cristina Caselli
 - Elena Pizzuto
 - Geri Steve
- **IRST**
 - Luciano Serafini
 - Stafano Zanobini
Session overview

• Activities during 2006
 – Lectures in Verona by N. Asher
 – sample joint work: *Bootstrapping semantics on the Web: meaning elicitation from schemas*, P. Bouquet (with L. Serafini and S. Zanobini)

• Work done
 esda Theoretical investigations about semantics and lexical categories
 esda Techniques and tools to go from language to representations
 esda Meaning negotiation and evolution

• Future directions
 – Knowledge dynamics
 – Position talk by A. Oltramari, *LexiPass methodology: a conceptual path from frames to senses and back*
 – Position talk by N. Guarino, *The "Senso Comune" initiative*
1 - Foundational investigations

N. Asher's lectures on Ontology and Language,
Verona (June 20-21-22 + July 3-5-6, 2006)

• Ground work of a theory of lexical meaning and predication requires: lexical semantics, compositional semantics and discourse semantics
• Technical apparatus of this theory of predication and lexical meaning:
 • a type driven theory of predication
 • typed lambda calculus
 • some previous theories of lexical meaning like the Generative Lexicon of Pustejovsky
 • the notion of complex types with underspecification.
• Link to discourse semantics
1 - Foundational investigations

- Well-founded lexica and ontologies
 - Contribution of formal semantics, lexical and discourse semantics
 - Formal grounding for ontology engineering (ISTC-LOA)
 - Speech act and language analysis (IRIT-LILaC)
 - Articulation between lexica and ontologies
 - Conceptual Analysis of Lexical Taxonomies (ISTC-LOA, OntoWordnet project)
 - Interfacing Ontologies and Lexical Resources (ISTC-LOA, IRIT-CSC)
 - Ontology enrichment with lexical resources (UNITN, ISTC-LOA)
 - Clarifying the distinction between lexica and ontologies (UNITN, ISTC-LOA)
Discourse semantics for analyzing speech acts
(IRIT-LILac with ISTC-LOA)

• applications of discourse semantics in a variety of areas
 – lexical semantics, the semantics of modals, questions, evidentials and quantification, and the theory of speech acts.

• Definition of complex types
 – uses in the lexicon (for analyzing copredication, relative predication and depictive clauses)
 – uses at the discourse level (analysis of complex speech acts)

• A dynamic semantics together with a theory of discourse interpretation can give a much more satisfactory analysis of speech acts
1 - Foundational investigations

Lexical semantics based on ontologically well-founded representation theories (IRIT – LILAC and LOA)

- Semantics of space, time and motion, semantics of parthood

- Functional dependence for parthood relations
 - explains the behavior of functional parthood with respect to transitivity.
 - accounts for a variety of phenomena.

- Committed to the existence of some sort of universals.
 - Linguistic universals were used
 - socially-dependant categories could have been used as well.
 - what exactly are the categories involved? Need for an ontological point of view

- Semantics of time: Formally differences between categories of concrete objects
 - mass terms and singular nouns, singular and collective entities,
 - objects and events, with respect to their spatio-temporal properties.
2 – Tools and methods

Relation identification from texts

• Identification of temporal relations (IRIT-LILaC)
• Automated processing of temporal information in written texts
 – the extraction of temporal adjuncts,
 – the computation of their reference,
 – the extraction of events descriptions and computation of their respective relations.
• Extraction of lexical relations from dictionaries (IRIT-LILaC)
 – using a semantic distance to relate lexical items
 – extracting synonyms
• Towards lexical relation extraction for discourse segmentation
2 – Tools and methods

Attribute and relation extraction from texts

• Attribute acquisition from texts (UNITN)
 – Evaluating representations for attributes or properties
 – Similarities/ differences when building lexicon or ontology
 – what makes for a good 'attribute'? How can that information be learned?

• Evaluation of pattern-based relation extraction from various types of corpora (IRIT-CSC)
 – Dependency of a pattern efficiency and meaning on textual genre
 – Evaluation of pattern-matching results
 – Need for pattern comment to decide how to reuse it
 – Definition of domain specific patterns involving concepts for information extraction
 • Application to bio-medicine, relation between genes and pathologies
2 – Tools and methods

Concept and relation acquisition from texts

• Meaning elicitation from schemas
 – UNITN and IRST, 7 joint papers, P. Bouquet’s talk
 – Lexical resources and ontologies as means to interpret word categories in word hierarchies

• Concept extraction cycle in keeping with document collections (IRIT-CSC and IRIT-SIG)
 – Identification of new concepts / relations from corpora
 – Consistency issues when adding new concepts and relations
2 – Tools and methods

Ontologies for representing « meaning » in documents (IRIT-CSC with IRIT-SIG)

• Document management with ontologies
 – Document classification with a domain ontology (OntoExplo)
 – Document management with concept hierarchies
 – Content description with semantic annotation

• Information retrieval using ontologies or lexical models (i.e. WordNet)
 – Query expansion
 – Document representation with concepts

• Ontologies for querying structured documents
 – when document structure reflects problem solving stages
 • Diagnosis procedures data base
 • Scientific papers and PhD. in human sciences (archaeology)
 – Taking advantage of text structure for automatic annotation with concepts
3 – Meaning negotiation and evolution

Direct negotiation through interaction between agents (cf “agents” area)

• Meaning negotiation process and interests (UNITN)
 – Related linguistic and social dimensions (Actor Network Theory)
 – Goal of negotiation
 • plausible meaning for ambiguous clauses, semantic equilibrium
 – Underlying interests force meaning negotiation within a social network

• Take into account the embodied nature of meaning (Position talk, A. Oltramari (INST-LOA))
 – analysis of static and dynamic dimensions of human cognition
 • meaning is embodied (dynamic dim;)
 • physical features of experiences help to structure cognition and language
 – Application to human-computer interaction and to reduce ambiguity
 • static and dynamic dimensions of cognition need to be encoded
3 – Meaning negotiation and evolution

Mediated “negotiation” through documents, data or knowledge models (ontologies)

how people with different conceptualizations may succeed in exchanging knowledge about a specific domain.

• Semantic coordination (UNITN)
 – Assumption
 • Communication language (e.g. English for humans) works as a coordination tool,
 • It can be used to convey potentially non aligned meanings
 – As a technological solution,
 • reuse the results of meaning elicitation
 • use logical reasoning to derive semantic relations across WDL formulae built by agents equipped with different ontologies.
3 – Meaning negotiation and evolution

Mediated “negotiation” through documents, data or knowledge models (ontologies)

• Focus: Changes that lead to distinct conceptualizations and terminologies in specific domain (IRIT-CSC)
• Method
 – analyzing natural language used in texts
 – Mapping texts and domain models (ontologies or terminologies)
 – Comparing domain ontologies and terminologies
• Technical solutions: NLP + model and text mapping
• Application
 – Localize risk and critical situations in large documentations
 – Linking scientific papers to scientific data through meta-data
 – Reduce mis-interpretations of documents and data in large and long duration projects in space like Rosetta (CNES)
Outlook: knowledge dynamics

• Re-examine right-frontier constraints in dialogue with a dynamic semantics and a theory of discourse interpretation (IRIT - ISTC)

• Meaning evolution in natural language, lexica, cognitive representations and ontologies (UNITN, IRIT, ISTC)
 – Identification in language
 – Representation management

• Meaning negotiation or confrontation (IRIT, UNITN, ISTC)
 – Within human communities
 – In man-system interaction