

Area #5: Lexicon, ontologies, semantic interoperability and information extraction

Chair: Nathalie Aussenac-Gilles (IRIT) aussenac@irit.fr

Area #5: Lexicon, ontologies, semantic interoperability and information extraction

Concern

- To improve interaction and mutual understanding
- To explicitly represent the contents of the information exchanged, mainly in its linguistic form.

Means

2

3

- What is meaning? investigate semantics and lexical categories
- How to represent meaning? Representations, lexicon and ontology
- How to identify meaning in texts? Text analysis, information extraction
- How to use representations to represent text contents? Semantic annotation for information retrieval
- How to human negotiate, stabilize or modify meaning? How to detect, anticipate or represent this?

Involved disciplines:

 formal semantics, knowledge engineering, linguistics, natural language processing, information extraction and retrieval, sociology, philosophy.

Participants to Area #5

- IRIT LILAC
 - Nicholas Asher
 - Philippe Muller
 - Laure Vieu
- IRIT CSC
 - Nathalie Aussenac-Gilles
 - Axel Reymonet
 - Mouna Kamel
 - Bernard Rothenburger
 - Nacim Chikhi
- IRIT SIG
 - Josiane Mothe
 - Mohand Boughanem
 - Florence Sedes
- UNITN DIT
 - Paolo Bouquet
 - Massimo Poesio
 - Fausto Giunchiglia
- UNITN DISCOF
 - Marco Cruciani
 - Vincenzo D'Andrea
 - Alexander Lazovik

- ISTC LOA
 - Nicola Guarino
 - Alessandro Oltramari
 - Laure Vieu
 - Aldo Gangemi
 - Eduard Barbu
 - Carola Catenacci
 - Olga Capirci
 - Cristina Caselli
 - Elena Pizzuto
 - Geri Steve
- IRST
 - Luciano Serafini
 - Stafano Zanobini

Session overview

- Activities during 2006
 - Lectures in Verona by N. Asher
 - sample joint work : Bootstrapping semantics on the Web: meaning elicitation from schemas, P. Bouquet (with L. Serafini and S. Zanobini)
- Work done
 - Theoretical investigations about semantics and lexical categories
 - Techniques and tools to go from language to representations
 - Meaning negotiation and evolution
- Future directions
 - Knowledge dynamics
 - Position talk by A. Oltramari, LexiPass methodology: a conceptual path from frames to senses and back
 - Position talk by N. Guarino, The "Senso Comune" initiative

N. Asher's lectures on Ontology and Language,

Verona (June 20-21-22 + July 3-5-6, 2006)

- Ground work of a theory of lexical meaning and predication requires: lexical semantics, compositional semantics and discourse semantics
- Technical apparatus of this theory of predication and lexical meaning:
 - a type driven theory of predication
 - typed lambda calculus
 - some previous theories of lexical meaning like the Generative Lexicon of Pustejovsky
 - the notion of complex types with underspecification.
- Link to discourse semantics

- Well-founded lexica and ontologies
 - Contribution of formal semantics, lexical and discourse semantics
 - Formal grounding for ontology engineering (ISTC-LOA)
 - Speech act and language analysis (IRIT-LILaC))
 - Articulation between lexica and ontologies
 - Conceptual Analysis of Lexical Taxonomies (ISTC-LOA, OntoWordnet project)
 - Interfacing Ontologies and Lexical Resources (ISTC-LOA, IRIT-CSC)
 - Ontology enrichment with lexical resources (UNITN, ISTC-LOA)
 - Clarifying the distinction between lexica and ontologies (UNITN, ISTC-LOA)

Discourse semantics for analyzing speech acts (IRIT-LILac with ISTC-LOA)

- applications of discourse semantics in a variety of areas
 - lexical semantics, the semantics of modals, questions,
 evidentials and quantification, and the theory of speech acts.
- Definition of complex types
 - uses in the lexicon (for analyzing copredication, relative predication and depictive clauses)
 - uses at the discourse level (analysis of complex speech acts)
- A dynamic semantics together with a theory of discourse interpretation can give a much more satisfactory analysis of speech acts

Lexical semantics based on ontologically well-founded representation theories (IRIT – LILAC and LOA)

- Semantics of space, time and motion, semantics of parthood
- Functional dependence for parthood relations
 - explains the behavior of functional parthood with respect to transitivity.
 - accounts for a variety of phenomena.
- Committed to the existence of some sort of universals.
 - Linguistic universals were used
 - socially-dependant categories could have been used as well.
 - what exactly are the categories involved? Need for an ontological point of view
- Semantics of time: Formally differences between categories of concrete objects
 - mass terms and singular nouns, singular and collective entities,
 - objects and events, with respect to their spatio-temporal properties.

Relation identification from texts

- Identification of temporal relations (IRIT-LILaC)
- Automated processing of temporal information in written texts
 - the extraction of temporal adjuncts,
 - the computation of their reference,
 - the extraction of events descriptions and computation of their respective relations.
- Extraction of lexical relations from dictionaries (IRIT-LILaC)
 - using a semantic distance to relate lexical items
 - extracting synonyms
- Towards lexical relation extraction for discourse segmentation

Attribute and relation extraction from texts

- Attribute acquisition from texts (UNITN)
 - Evaluating representations for attributes or properties
 - Similarities/ differences when building lexicon or ontology
 - what makes for a good 'attribute'? How can that information be learned?
- Evaluation of pattern-based relation extraction from various types of corpora (IRIT-CSC)
 - Dependency of a pattern efficiency and meaning on textual genre
 - Evaluation of pattern-matching results
 - Need for pattern comment to decide how to reuse it
 - Definition of domain specific patterns involving concepts for information extraction
 - Application to bio-medicine, relation between genes and pathologies

Concept and relation acquisition from texts

- Meaning elicitation from schemas
 - UNITN and IRST, 7 joint papers, P. Bouquet's talk
 - Lexical resources and ontologies as means to interpret word categories in word hierarchies
- Concept extraction cycle in keeping with document collections (IRIT-CSC and IRIT-SIG)
 - Identification of new concepts / relations from corpora
 - Consistency issues when adding new concepts and relations

Ontologies for representing « meaning » in documents (IRIT-CSC with IRIT-SIG)

- Document management with ontologies
 - Document classification with a domain ontology (OntoExplo)
 - Document management with concept hierarchies
 - Content description with semantic annotation
- Information retrieval using ontologies or lexical models (i.e. WordNet)
 - Query expansion
 - Document representation with concepts
- Ontologies for querying structured documents
 - when document structure reflects problem solving stages
 - Diagnosis procedures data base
 - Scientific papers and PhD. in human sciences (archaeology)
 - Taking advantage of text structure for automatic annotation with concepts

3 – Meaning negotiation and evolution

Direct negotiation through interaction between agents (cf "agents" area

- Meaning negotiation process and interests (UNITN)
 - Related linguistic and social dimensions (Actor Network Theory)
 - Goal of negotiation
 - plausible meaning for ambiguous clauses, semantic equilibrium
 - Underlying interests force meaning negotiation within a social network
- Take into account the embodied nature of meaning (Position talk, A. Oltramari (INST-LOA)
 - analysis of static and dynamic dimensions of human cognition
 - meaning is embodied (dynamic dim;)
 - physical features of experiences help to structure cognition and language
 - Application to human-computer interaction and to reduce ambiguity
 - static and dynamic dimensions of cognition need to be encoded

3 – Meaning negotiation and evolution

Mediated "negotiation" through documents, data or knowledge models (ontologies)

how people with different conceptualizations may succeed in exchanging knowledge about a specific domain.

- Semantic coordination (UNITN)
 - Assumption
 - Communication language (e.g. English for humans) works as a coordination tool,
 - It can be used to convey potentially non aligned meanings
 - As a technological solution,
 - reuse the results of meaning elicitation
 - use logical reasoning to derive semantic relations across WDL formulae built by agents equipped with different ontologies.

3 – Meaning negotiation and evolution

Mediated "negotiation" through documents, data or knowledge models (ontologies)

- Focus: Changes that lead to distinct conceptualizations and terminologies in specific domain (IRIT-CSC)
- Method
 - analyzing natural language used in texts
 - Mapping texts and domain models (ontologies or terminologies)
 - Comparing domain ontologies and terminologies
- Technical solutions : NLP + model and text mapping
- application
 - Localize risk and critical situations in large documentations
 - Linking scientific papers to scientific data through meta-data
 - Reduce mis-interpretations of documents and data in large and long duration projects in space like Rosetta (CNES)

Outlook: knowledge dynamics

- Re-examine right-frontier constraints in dialogue with a dynamic semantics and a theory of discourse interpretation (IRIT - ISTC)
- Meaning evolution in natural language, lexica, cognitive representations and ontologies (UNITN, IRIT, ISTC)
 - Identification in language
 - Representation management
- Meaning negotiation or confrontation (IRIT, UNITN, ISTC)
 - Within human communities
 - In man-system interaction