4 . NIVERSITA DEGLI STUDI Dept of Information and Communication Technology

a,l'@:/ DI TRENTO

2d. The Unified Modeling Language

Use Case Diagrams
Class Diagrams
Attributes, Operations and Constraints
Generalization and Aggregation
Sequence and Collaboration Diagrams
State and Activity Diagrams

© 2007 John Mylopoulos UML -- 1

S
2‘0 fj?‘g UNIVERSITA DEGLI STUDI
2o DI TRENTO

Dept of Information and Communication Technology

UML Diagrams

v UML was conceived as a language for modeling software.
Since this includes requirements, UML supports world
modeling (...at least to some extend).

v UML offers a variety of diagrammatic notations for
modeling static and dynamic aspects of an application.

% The list of notations includes use case diagrams, class
diagrams, interaction diagrams -- describe sequences of
events, package diagrams, activity diagrams, state
diagrams, ..more...

© 2007 John Mylopoulos umML -- 2

i~ UNIVERSITA DEGLI STUDI
moe DI TRENTO

Dept of Information and Communication Technology

Use Case Diagrams

v A use case [Jacobson92] represents “typical use
scenaria” for an object being modeled.

% Modeling objects in terms of use cases is consistent
with Cognitive Science theories which claim that every
object has obvious suggestive uses (or affordances)
because of its shape or other properties. For example,

v Glass is for looking through (...or breaking)

v' Cardboard is for writing on...

v Radio buttons are for pushing or turning...

v Icons are for clicking...

v' Door handles are for pulling, bars are for pushing...

% Use cases offer a notation for building a coarse-grain,
first sketch model of an object, or a process.

© 2007 John Mylopoulos umML -- 3

UNIVERSITA DEGLI STUDI

Dept of Information and Communication Technology

DI TRENTO

Use Cases for a
Meeting Scheduling System

Initiator Participant

ValidateUser

@ —

Use case

Generate
Schedule

Withdraw

ScheduleMtg Edit
Constraints

Actor

Provide
Constraints

© 2007 John Mylopoulos

UML -- 4

UNIVERSITA DEGLI STUDI Dept of Information and Communication Technology

DI TRENTO

Use Cases for a Car

. Mechanic
Driver GasAttendant

FixCar

udes>>
<<extends>>

FixCarOntheRoad

TurnOnEngine CheckOil

© 2007 John Mylopoulos uML -- 5

Dept of Information and Communication Technology

Use Cases

v Use cases may represent user goals, or user
interactions; for example, ScheduleMtg can be thought
as a goal (there are many ways to schedule a meeting),
but validateUser is probably not.

B é’é‘ NIVERSITA DEGLI STUDI
& DI TRENTO

v Use cases make sense for usable things, such as
designed artifacts, including processes; they don't make
sense for unusable things (e.g., the sky).

% (Consequently) Use cases constitute a special-purpose
modeling construct for software or other artifacts.

% [The notion of scenario, as a typical course of actions
or events, is probably more appropriate for a general
purpose modeling language.]

© 2007 John Mylopoulos UML -- 6

ﬁ(éi%{i/\i]\ 4 I I
Bl UNIVERSITA DEGLI STUD! Dept of Information and Communication Technology

Features of Use Cases

% An actor is a role that a user plays with respect to the
object being described; don't think of actors as either
users (e.g., Maria), or positions (e.g., department
chair).

% (When do I stop??..) For any one software development
project, you probably don't want more than 100 use
cases.

© 2007 John Mylopoulos umML -- 7

Sirike,
z *; UNIVERSITA DEGLI STUDI

| <<extends>> vs <<includes> >

RS
% <<extends>> implies that one use case adds
behaviour to a base case: used to model a part of a
use case that the user may see as optional system
behavior; also models a separate sub-case which is
executed conditionally.

%, <<includes>>: adds behavior to a base case (like a
procedure call). used to avoid describing the same
flow of events several times, by putting the common
behavior in a use case of its own.

Dept of Information and Communication Technology

<<extends>>

Check Prin't
Campaign
Budge sSummary

<<includes

© 2007 John Mylopoulos uML -- 8

i~ UNIVERSITA DEGLI STUDI
moe DI TRENTO

Dept of Information and Communication Technology

Class Diagrams

% Class diagrams describe the kinds of objects found in
the application, and their inter-relationships.

v There are two types of inter-relationships:
associations and subtypes [Fowler97]

% Class diagrams are basically an adaptation of EER
diagrams, with some minor differences.

% UML class diagrams may model some part of the real
world (e.g., the world of meetings and schedulings), a
design specification (e.g., for a system that does
meeting scheduling), or an implementation.

© 2007 John Mylopoulos uML -- 9

Sk ' cati
Bl UNIVERSITA DEGLI STUD Dept of Information and Communication Technology

Comparison: EER vs Class Diagrams

v EER diagrams allow N-ary relationships, N22: Class
diagrams only allow binary relationships.

v EER diagrams allow multi-valued attributes, class
diagrams do not.

% EER diagrams allow the specification of identifiers (an
often-encountered type of constraint), while class
diagrams do not.

% Class diagrams allow dynamic classification, but EER
diagrams do not.

© 2007 John Mylopoulos uML -- 10

Dept of Information and Communication Technology

© 2007 John Mylopoulos

Meeting Schedulin
multiplicity role
attributes |_Meeting | sttends © Person
ptime y «— name
o place 0..* 2..* email
generalization [. ————— association
: ;+ initiages ‘1
has composition
0..1
Timetable
ScheduledMtg inifiator
RequestedMtg
1 aggregation
0..*
MtgRequirement
TimeReq
SpaceReq EquipmentReq
LocationReq
UML --

11

) | INIVERSITA DEGLI STUDI Dept of Information and Communication Technology
NG %/

Notes on Associations

% Associations represent semantic relationships. Each
association can have up to two roles for participating
objects. Each role can also have an associated
cardinality range (“multiplicity”).

% Associations represented with directed arrows are
navigatable only in one direction; for example, if the
Meeting-Person association was represented with an
arrow pointing towards Person, this would indicate
that from a Meeting we can navigate to all meeting
persons, but given a person, we can't find all the
meetings she has participated in.

© 2007 John Mylopoulos UML -- 12

= UNIVERSITA DEGLI STUDI

(O

‘ Dept of Information and Communication Technology
DITRENTO

Notes on Attributes

% Attributes are always single-valued.

% Attributes can have an associated type (a class), a
default value, and a visibility value of + (public), #
(protected) and - (private). They can also be derived
(/attr) or not.

v, There is no semantic difference in UML between
attributes and directional associations.

v, Other models treat attributes as associations with an
existence constraint which says: if an object is
deleted, so are its attributes and their values.

© 2007 John Mylopoulos UML -- 13

i~ UNIVERSITA DEGLI STUDI
moe DI TRENTO

Dept of Information and Communication Technology

Notes on Operations

% These are “"the processes a class knows how to carry
out” [Fowler97, p63]. They are specified in the third
layer of a class box.

% Specification includes a visibility value, name,
parameter list and returned value type.

% For conceptual modeling, Fowler argues -- rather
vaguely -- that operations should be used to define
the responsibilities of a class.

% It makes better sense to distinguish a subclass of
objects -- agents/positions/roles -- which can
participate in activities, and describe for each the
activities they know how to carry out.

© 2007 John Mylopoulos UML -- 14

Dept of Information and Communication Technology

Operations and Constraints

Meeting

+ time: Time = 9am

+ place: Place = LP266

+ schedule(ConstrLst) :Meeting
+ cancel()

i1f place=SF2201 then time#12pm;
if Meeting.initiator is Disabled
then place is AccessibleRm;

B How do you

say that "If one of the participants is disabled,
then the place must be disabled-accessible??

B We need some sort of a First Order language for constraints:
if (exists p:Meeting.participant) p is Disabled

then place is AccessibleRm

© 2007 John Mylopoulos

UML -- 15

= UNIVERSITA DEGLI STUDI

OV

% DITRENTO

Object Constraint Language (OCL)

% Some constraints can be adequately expressed in the
graphical language (ex. cardinality of an association).

Dept of Information and Communication Technology

v Some can not. For example, constraints within
operation specifications (pre- and post-conditions)

% OCL expressions are constructed from a collection of
pre-defined elements and types.

% The language has a formal syntax and semantics and
supplements the expressiveness of UML.

[Warmer99] Warmer, J. Kleppe, A. The Object Constraint
Language: Precise Modeling with UML Addison-Wesley
1999.

© 2007 John Mylopoulos UML -- 16

/£ UNIVERSITA DEGLI STUDI

Dept of Information and Communication Technology

DI TRENTO

OClL Examples

OCL expression

Interpretation

Person

self . .age

In the context of a specific person,
the value of the property 'age’ of that
person—-i.e. a person’'s age.

Person

self.income == 5,000

The property 'income’ of the person
under consideration must be greater
than or equal to 5,000.

Person

self wife.sex = female

self . wife->notEmpty implies

If the set 'wife’ associated with a
person is not empty, then the value of
the property ‘sex’ of the wife must be
female. The boldface denotes an
OCL keyword, but has no semantic
import in itself.

self _employee->81ze <=

S50

The size of the set of the property
‘employee’ of a company must be
less than or equal to 50. That is, a
company cannot have more than 50
employees.

Company

self .employee->select

[age > 50)

This specifies the set of employees of
a company whose age is greater than
S0.

© 2007 John Mylopoulos

uML --

17

= UNIVERSITA DEGLI STUDI

T
A\t
HON

% DITRENTO

Multiple and Dynamic Classification

% Classification refers to the relationship between an
object and the classes it is an instance of.

Dept of Information and Communication Technology

% Traditional object models (e.g., Smalltalk, C++,.)
assume that classification is single and static.

% Multiple classification allows an object to be an instance
of several classes that are not is-a-related to each
other; for example, Maria may be an instance of
GradStudent and Employee at the same time.

% If you allow multiple classification, you want to be able
to specify which combinations of instantiations are
allowed. This is done through discriminators.

% Dynamic classifications allows an object to change its
type during its lifetime.

© 2007 John Mylopoulos UML -- 18

Dept of Information and Communication Technology

Multiple Classification

be an instance of Male or Female.

TA and may become a Professor.

TA
Male
—» Person < Professor
sex role
{mandatory} <<dynamig¢c>>
Female student
Student
Staff

B Mandatory means that every instance of Person must

B <<Dynamic>> means that an object can cease to be a

© 2007 John Mylopoulos

UML -- 19

Dept of Information and Communication Technology

Generalization

% Multiple generalization involves a class which has two
or more superclasses that are not is-a related. For
example, TA is a specialization of Student and
Employee.

v In UML, multiple generalization is allowed. Inheritance
conflicts are resolved by predefined order of
superclasses: renaming of attributes or operations is
also allowed.

v For each discriminator, the associated collection of
classes can be declared to be complete/incomplete,
also disjoint/overlapping

© 2007 John Mylopoulos uML -- 20

Shrd,
1 =2 UNIVERSITA DEGLI STUDI
oo DI TRENTO

Dept of Information and Communication Technology

Stereotypes

%, Stereotypes offer "a high level classification of an
object..tell you the kind of object it is” [Fowler97].

% Stereotypes define the types of constructs that can be
used in a UML diagram. You can think of them as
offering a metamodel of UML diagrams, or as giving the
graphical syntax of UML diagrams.

% In UML, stereotypes are shown delimited by <<..>>.

% Note that the stereotypes shown in class diagrams (such
as <<includes>>, <<extends>>) are metaclasses
which define the UML metamodel.

v One can extend UML by creating new stereotypes as
specializations of built-in ones.

© 2007 John Mylopoulos uML -- 21

% UNIVERSITA DEGLI STUDI Dept of Information and Communication Technology

%5 DI TRENTO
<<metaclass>>
Actor
lgser
<<metaclass>> <<metaclass>>
UML CLass " Use Case
<<metaclass>>
| f | f Boundary
uses extends
<<metaclass>> <<metaclass>>
Class 4 Control
<<metaclass>>
— Entity

© 2007 John Mylopoulos UML -- 22

Dept of Information and Communication Technology

composition

Car

agg}egation

Aggregation

—>

Engine

1..1

drives

Person

1..1
drives

Train

© 2007 John Mylopoulos

UML -- 23

i~ UNIVERSITA DEGLI STUDI
moe DI TRENTO

Dept of Information and Communication Technology

Notes on Aggregation

% Aggregation represents the partof relationship.

% Composition is a strong form of aggregation, where a
part can only participate in one composition relationship.

% Aggregation has been formalized in [Motschnig93], etc.:
Every aggregation can be classified along two dimensions:

v Dependent/Independent -- if an aggregation
relation is dependent, then when you remove the
whole you also remove the part:

v Shared/Exclusive -- if an aggregation relationship
is exclusive, a part can't be part of several wholes.

v So, composition amounts to a dependent,exclusive
aggregation relationship.

© 2007 John Mylopoulos UML -- 24

i~ UNIVERSITA DEGLI STUDI
moe DI TRENTO

Dept of Information and Communication Technology

Objects vs Values

% Values are mathematical objects, such as numbers,
tuples, lists and sets. They come with their own
equality predicate so that they can be compared.
Values are immutable.

% (Reference) objects, on the other hand, have equality
defined by their internal identifier. This means that
two processes which have been running independently
can never generate the same object, but may well be
using the same values.

% Some conceptual models do make the distinction,
[Fowler97] appears not to.

% The presence of values can influence (positivelyl) the
semantics of attributes.

© 2007 John Mylopoulos UML -- 25

K"&@% . . .
4 UNIVERSITA DEGLL STUD! Dept of Information and Communication Technology
RS DI TRENTO

Qualified Associations

% Idea is that when you have a multi-valued association,

you may have a key for all the values of that
association.

% For instance:

: : 1 B
University emp l# 0 *emp oyedBy Person
Computer user uses
userld
System 0..%* Ferson

© 2007 John Mylopoulos UML -- 26

-
Shnike,

Dept of Information and Communication Technology

= % UNIVERSITA DEGLI STUDI
w0 DI TRENTO

Association Classes

employedBy

% Association classes allow you to treat associations as classes:

University

Employment

hireD:Date
sal :Amount

same employer.

Person

In UML you can only have a single instance of an association
class for every pair of objects: this doesn't allow, for
instance, several employments of the same person by the

© 2007 John Mylopoulos

UML -- 27

Dept of Information and Communication Technology

Template Classes
Template classes are parameterized classes; this construct is
useful if you want to model groups or lists whose elements
are all of the same ‘I'ype: T
Group
Make (T)
Delete(T)
7
<<bind>>
<7 <<bind>>
<TA>
:GI‘OU.Q<TA>
:GI‘OU.Q<TA>

© 2007 John Mylopoulos UML -- 28

Dept of Information and Communication Technology
Visibility

% Private/public attributes and operations have obvious
semantics.

% Protected attributes and operations can only be used
by the owner class and its specializations.

% Question is: can one instance of a class see protected
attributes of another instance of the same class?

v, C++ allows this, Smalltalk does not. Smalltalk is
obviously right...

© 2007 John Mylopoulos UML -- 29

Dept of Information and Communication Technology

Object Diagrams

% These are like class diagrams, except now we model
instances of the classes defined in class diagrams.

% Object diagrams are mentioned in [60golla98], but not in

[Fowler97].
yMtg ici Jack:
mvMtqg: participates e
ScheduledMtg Person
time:12pm
place:LP266
participates

Jeff:
Person

© 2007 John Mylopoulos uML -- 30

i~ UNIVERSITA DEGLI STUDI
%% DITRENTO

Dept of Information and Communication Technology

Interaction Diagrams

% Interaction diagrams capture interactions among objects.

% Typically, an interaction diagram models what happens
for a single use case.

% An interaction diagram shows a number of example
objects and the messages that are passed between them
during the execution of the use case.

% There are two (comparable) types of interaction
diagrams: sequence diagrams, and collaboration diagrams.

% Use icons to denote the objects participating in an
intferaction diagram (sequence or collaboration).

© 2007 John Mylopoulos UML -- 31

4% DI TRENTO

UNIVERSITA DEGLI STUDI

X

Dept of Information and Communication Technology

X

rondition

Sequence Diagram for ScheduleMtg

S

. iteration
Initiator Staff S€heduler Participanft
:Person :Person sPerson :Person
1. call() >
rticipatin
2. what’'s up?() pa. clpating
< _ object
3. give mtg 4, *[for all
] details() participants] >
inform() 5. acknowledge()
@ 6. *[for all >

<

participants] remind()
7. giveTimetable{)

8.

prompt (timetables)

9.

show schedule()

o,

10. [decision=0K]

scheduleOK’ed ()

11. *[for all>
participants]
inform(mtg)

© 2007 John Mylopoulos

UML -- 32

S, . ..
T Y NIVERSITA DEGLI STUDI Dept of Information and Communication Technology

4 DI TRENTO
Concurrency and Synchronization
i i B Some of the features of
N, o sequence diagrams are
. Person :Person useful for modeling
giveDetails() — concurrent computer
D processes, rather than for
adtivation asynchionous world modeling
communication | """ B Statecharts are much
I more elegant for modeling
/ concurrency.
pbject ® Numbering messages is
imactive optional for sequence
diagrams.
L [decision=0K] show
scheduleOK’ed()’ schedule()

© 2007 John Mylopoulos UML -- 33

Dept of Information and Communication Technology

[Lochovsky98]

| LI

Selecting a Course to Teac
g a C to Teach
Cl) :Professor :Course :Course
A\ CourseOption SelectionMgr : Courselnfo Offering :ProfessorInfo
| Pro—fesggierid("lochov”)>— : - - -
enterPassword(“aE:) yz”) i
:| Validate(“locl‘:.iov”, “abcxyz”)
enterSemester(“98>w1) i
enterCourseOptioE “ladd”) i
enterCourseN ameS'E oftware Engineerin‘,g:v,”)
enterCourseNumb}er “CSE403”) i
getofferings(“CS]Ef%”, “O8wi”)
getofferings(“CEE 1037, “O8wi”)
selectCourseOffer:n b(1101) "get("98wi) >
addoffering(“loglov”
addoffering(“lochioy”)
> get(“lochov”™) >

| linkprofespor()

© 2007 John Mylopoulos

UML -- 34

Dept of Information and Communication Technology

Collaboration Diagrams

7 :sendSchedule ()
4—

scheduler
:Person

initiator
:Person

6:promﬁtil/)'
l:giveDetails|()

8 :approveSchedu

3:acknowledge()
5:sendDetails ()
<—

staff I participant
:Person 2:inform() :Person
4:remind()
9:inform()

© 2007 John Mylopoulos UML -- 35

9 UNIVERSITA DEGLI STUD Dept of Information and Communication Technology

=
XN

7

How to Use Collaboration Diagrams

% Collaboration diagrams model scenaria; each scenario
describes a possible sequence of events and actions.

% For a complex process, use several collaboration
diagrams; make sure each collaboration diagram is
simple and easy to understand.

% A special designation is available for objects which
are created or destroyed during a collaboration:

v' Created during execution of the collaboration
:Employee{new}

v' Destroyed during execution
:Employee{destroyed}

v’ Created and destroyed
:Employee{transient}

© 2007 John Mylopoulos UML -- 36

KS'EN

4 UNIVERSI(I)A DEGLI STUDI

Dept of Information and Communication Technology

O @
f— bt
N\ : Inform(courseList) N\
. Professor :Administrator
3:Propose(courseList’)
K \I/ 2: *[for each professor]
Inform(courseList)
4:Agree(courselm o
I
/\
5. Update(courseL}t’) AssociateChair :Professor
<<entity>> <<entity>> <<entity>>
: Courselnfol —> [_CourseOtfering™ —="|. ProfessorInfo
6: *[For each course] 7: *[For each professor]
Update() Update()

© 2007 John Mylopoulos

UML -- 37

SR,
#fi=% UNIVERSITA DEGLI STUDI
2o DI TRENTO

Dept of Information and Communication Technology

Packages

% Packages allow one to define useful subsets of a
model to facilitate understanding and other
modeling tasks.

% There are many criteria to use in defining the

subsefts:

v Ownership -- who is responsible for which
diagrams;

v Application -- each application has its own

obvious partitions; e.g., a university
department model may be partitioned into
staff, courses, degree programmes, ...

o2007 sohnit\dges - - clusters of classes used toaether. e’d.”” *

> RS DEGuSTUD Dept of Information and Communication Technology
A Package Diagram
. % A dependency means
Persons that if you change a
: class in one
: — package, you may
Constraints| — have to change
— | something in the
Meetings o other.
dependency ¢ The concept is
similar to
compilation
dependencies.
©2007 John Mylopoules v, It's desirable "*fo0%

SR,
#fi=% UNIVERSITA DEGLI STUDI
2o DI TRENTO

Dept of Information and Communication Technology

State Diagrams

% These are state transition diagrams and describe
the lifetime of some object (a person, a
student, ...)

% Transitions are supposed to represent actions
which occur quickly and are not interruptible.
States represent longer-running activities.

v A transition can have an associated event
[guard] action, all of which are optional.

v, When a transition has no associated event, it
fires as soon as its source state activity is done.

% State diagrams can have superstates, consisting
o 2007 700 fygeveral states. This is basically the statechkért «

Dept of Information and Communication Technology

State Diagram for Purchase Order

/gm Checking 7 [all items in stock]

Do/check items)

start

Dispatching
Do/package items

© 2007 John Mylopoulos

[some item not /deliver
In stock] package
em received
ltem received [all items in stock]
[some item not v
In stock]
Waiting Delivered
UML -- 41

c =% UNIVERSITA DEGLI STUDI

¢ Dept of Information and Communication Technology
DITRENTO

Events

UML distinguishes four different types of
events:

% Change events designate when a condition
becomes true
E.g., when(balance < 0)

% Signal events designate the receipt of an
explicit (real-time) signal from one object to
another

% Call events indicate the receipt of a call for
an operation by an object (request events
would be more appropriate for non-software

©2007 John W'ing) UML -- 42

ﬁ@\

4 UNIVERSI(I)A DEGLI STUDI

Dept of Information and Communication Technology

Course Lifetimes

Initialization]

of ferNewCourse/

count=0;create(CourseRoster)

) [count=10]
Open J » Closed

addStudent[count<10]

caqunt=count+1;

getStudentInfo(info);

addStudent ()

[Lochovsky98]
I

quarterStarted

cancel
cancel
v
[Canceled —p
J/delete(CourseRoster

v

© 2007 John Mylopoulos

UML -- 43

Sk Dept of Information and Communication Technology

=== UNIVERSITA DEGLI STUDI

2o DI TRENTO

% A state represents a time period in the life
of an object during which the object satisfies
some condition, performs some action or waits
for an event.

% In general a state can be characterized by a
predicate which is true while the state is “on".

% Such a predicate may be defined in terms of:
v The value(s) of one or more attributes of

the class
E.g., a person's address
v' The existence of a link to another object
02007 7 TR0 folklore...) The interval between twa. -- «

Shrd,
1 =2 UNIVERSITA DEGLI STUDI
o DI TRENTO

Dept of Information and Communication Technology

Activities

v Some states represent the lifetime of an activity
that takes time to complete

v starts when a state is entered

v either completes or is interrupted by an event
that causes an outgoing transition

% Special activity constructs:

do/stateDiagramName (parameterList) --
“calls” another state diagram:

entry/action -- carry out the action when
entering the activity;

et - c 1) ’ |

UML -- 45
©2007 John Mylgpoyles. -

Dept of Information and Communication Technology

Course Lifetimes, Again

[Initialization) addCourse/ count=0;
' do / Tnitiali CourseRoster.Create()
o / Initialize | OpenNew)
addStudent [count<10 J
addStudent [count<10]
Open)
—»| entry / RegisterStudent(Student) J
_exit / CourseRoster. AddStudent(student)

[count=10]
cancel

Cancelled cancel Closed

| do / FinalizeCourse
Wil)elete()

© 2007 John Mylopoulos UML -- 46

quarterStarted

SRED, . . .
) Dept of Information and Communication Technology

%% = UNIVERSITA DEGLI STUDI

41108 DI TRENTO

% State transition diagrams can be very hard to
read once they grow to more than a few dozen
states.

% For UML activity diagrams, states can be
composed into superstates. Such compositions
make it possible to view an activity at different
levels of abstraction.

% For example, the Closed state of the last
activity diagram may have its own state transition
diagram which describes what happens while this
state is “on”.

o 2009 NEER. are two types of superstates: oML -

Dept of Information and Communication Technology

An OR Superstate

© 2007 John Mylopoulos UML -- 48

1 =2 UNIVERSITA DEGLI STUDI
e DI TRENTO

bS tate Diagram for Purchase Order

Dept of Information and Communication Technology

/get order Checking Dispatching
Do/check items Do/package items

ltem receiv
[some item
In stock]

I Waiting

cancel

OR Superstate

Cancelled Delivered

© 2007 John Mylopoulos UML -- 49

f»/
7

& ‘%
E X
g
4“6 DI TRENTO

UNIVERSITA DEGLI STUDI

5‘I'a 1. e _Bi' é gf'; ﬁiﬁn_oyg mmunication Technology

(Auto) Transmission

Transmission

select R
o >[Neutral ’[Reverse]
A select N
select N select F
v
4 Forward)
stop upshift y upshift
® [First [Second ’[Third]
downshift downshlftL

%

© 2007 John Mylopoulos

UML -- 50

Dept of Information and Communication Technology

An AND Superstate

Cancelled
l Waiting] Mcel
Checking} >£Di spatching ‘

—————————————————— Delivered

‘ Authoriz inngi:m:ﬁ.zLed

— Rejected
Join (unlabelled

Fork

n)
../

© 2007 John Mylopoulos UML -- 51

Dept of Information and Communication Technology

UNIVERSITA DEGLI STUDI
DI TRENTO

Complex State Diagram Transitions

\
oS

% Transition to superstate boundary = transition

to initial state of the superstate.
="entry actions of all regions entered are
performed
% There may also be transitions directly into a
complex state region (like program “gotos”).
% Unlabelled transition from a superstate
boundary = transition from the final state of

the superstate

I="exit actions of all regions exited are
performed

oz007 7 Yvetvelled transition from a suberstafé’ — ~

Dept of Information and Communication Technology

Bridge Vulnerability Rules

Playing Bridge Rubber

© 2007 John Mylopoulos

N-S vulnerability
) N-S game 1 N-S game
‘—’ Not >[Vu|nerable 9 >[N-S wins
vulnerable))
E-W vulnerability
E-W game E-W game
‘—> Not] J {Vulnerable] J >[E-W wins
vuInerabIeJ J
UML -- 53

Dept of Information and Communication Technology

1 -2 UNIVERSITA DEGLI STUDI
3¢ DI TRENTO

Taking a Course
/ Taking a Course \

Incomplete

|
0—»[Lab1]M»[Lab2]—»@

o—> project done ’[Passed]
‘—’\ Project *®

Py »| Final pass >®
‘ Exam J
\ /

\
\ fa"\ »[Failed] y

© 2007 John Mylopoulos UM -- 54

UNIVERSITA DEGLI STUDI

Dept of Information and Communication Technology

DI TRENTO ° °
Auto Transmission
4 Ignition A
turn key to start
[Transmission release
] in Neutral]]
@ Off | > Starting On
N 4 turn key off |)
turn key off v
Transmission
| select R >
.—>[Neutral |, [Reverse]
select N
select NT lselect F
4 Forward h
stop upshift upshift
‘_,[First] [Second Third]
L downshift downshift)

© 2007 John Mylopoulos

UML -- 55

Dept of Information and Communication Technology

7% UNIVERSITA DEGLI STUDI
%" DI TRENTO

Activity Diagrams

% Like Perti nets, activity diagrams allow transitions with
several input and output states:

© 2007 John Mylopoulos UML -- 56

£ UNIVERSITA DEGLI STUDI
% DITRENTO

Dept of Information and Communication Technology

An Example

———

s
@/

© 2007 John Mylopoulos

UML -- 57

‘\ 9 BFTI\I{E%ST'(T) 4 DEGLISTUDI Dept of Information and Communication Technology
A

Another Example: Order Processing

v, The Process Order use case:

"When we receive an order, we check each
line item on the order to see if we have the
goods in stock. If we do, we assign the goods
to the order. If this assignment sends the
quantity of those goods in stock below the
reorder level, we reorder the goods. While
we are doing this, we check to see if the
payment is O.K. If the payment is O.K. and
we have the goods in stock, we dispatch the

©2007 John Mylepoulos Pay K—but-we :IO. .“%L -- 58

Dept of Information and Communication Technology

; 4 UNIVERSITA DEGLI STUDI
0

Cancel
Order

"Order Processing Activity Diagram

[failed] /Authorize
Payment

[stock assigned to

Receive
Order

'

-

for each line
item on order

[succeeded]

[need to

all line items and
payment authorized]

Dispatch
Order

reorder]

Reorder
Item

© 2007 John Mylopoulos

ML -- 59

SRED,
L)))
A= UNIVERSITA DEGLI STUDI
2o DI TRENTO

Dept of Information and Communication Technology

Activities

% An activity state represents an action in the
execution of the activity. An activity state
normally contains an action expression and
usually has no associated name

% Actions may be described by:

v'Natural language

v' Structured English

v'Pseudo-code

v'Programming language

v Another activity diagram
% An action expression may only use attributes
02007 70 S9REJiNKs of the owning object UML -- 60

Dept of Information and Communication Technology

s / UNIVERSITA DEGLI STUDI

More About Activity Diagrams

% Decision points:

Calculate\ [cost < $50] Charge,
<total cost) ’<\ > Cl;%?&ﬁ[{ s
[cost = $50] Get
™ authorizatio

% Dead ends: there may be transitions in an
activity diagram with no destination state;
this can mean that:

v'Not all processing has been specified,

02007 7o YAl That another activity diagram will Takeuu. -- s

ZEATN
S & 1;\9

@
)
y |

& N\ . . .
L NIVERSITA DEGLI STUDI eptgof Information and Communica
DI TRENTO imianes

Get Order

G Dispatching

Authorizing Authorized

© 2007 John Mylopoulos

. pt of Infgrmation and Communication Technology
sse e —Mope SWimlanes
o

Finance l Order Stock
Processing Manageyr
-
Order

!

Receive
Supply

_for each line
item on order

Choose

Authorize [failed] utstalnding
raer It€ 5
[succeeded] n

- for each chos

%ar'a‘;? [in StOCki order item
Assign to Assign
Order Goods to

Order
[need to [all outstandifg
reorder] order items filled]

|
< Reorder > : Ad_d
Item . \Remainder
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
Payment '
|
_J :
|
|
|
|
|
|
|
|
!
|

[stock assigned to
all line items and — l v
payment authorized]

© 2007 John Mylopoulos

/’&%5%\
/ UNIVERSITA DEGLI STUDI
#5%" DI TRENTO

Dept of Information and Communication Technology

Modeling with UML

(For comparison purposes) To model with UML you
need to answer the following kinds of questions:

v"What are the users doing? -- use cases
(Jacobson)

v"What are the objects in the real world?
(Rumbaugh)

v"What objects are needed for each use case?
(Jacobson)

v"How do objects collaborate? (Jacobson, Booch)
v"What are allowable sequences of actions and
activities?

UML -- 64
©2007 John Mylogogfos , _ __ _ nm_..__ Li_ 1:f M. __ £ _L:__a_~

SRED,
A= UNIVERSITA DEGLI STUDI
2o DI TRENTO

Dept of Information and Communication Technology

Conclusions

.

v UML amounts to a combination of EER diagrams,
statecharts and other diagrammatic notations.

% Much of this is useful for conceptual modeling.
Some diagrams, however, are appropriate for
software modeling only.

% The great contribution of UML is that for the
first time ever, there is a modeling standard; this
has led to compatibility and portability of
conceptual models.

v The great weakness of UML is that it was
designed by committee, and some design decisions

Were Jasec on |:E| | E:I" ratne Fhan—tec IIulMEL:-i-l 65

©2007 John Mylopoulos

Stede,

i~ UNIVERSITA DEGLI STUDI
moe DI TRENTO

©

—Conference—on—Advanced—information—Systems—Engineering-
©2007 JohoMXIRE93). Paris. June 1993.

Dept of Information and Communication Technology

References

[Booch97] Booch, G., Rumbaugh, J., Jacobson, l., The Unified
Modeling Language User Guide, Addison-Wesley, 1997.

[Fowler97] Fowler, M., Scott, K., UML Distilled, Addison-Wesley, 1997.

[Gogolla98] Gogolla, M., “UML for the Impatient”, technical report 3-
98, Fachberiech Mathematik und Informatik, Universitaet Bremen,
1998.

[Harel87] Harel, D., “Statecharts: A Visual Formalism for Complex
Systems”, Science of Computer Programming 8, 1987.

[Jacobson92] Jacobson, |, Christerson, M., Jonsson, P., and
Overgaard, G., Object-Oriented Software Engineering: A Use Case
Driven Approach, Addison-Wesley, 1992.

[Lochovsky98] Lochovsky, F., Lecture Notes on Software
Engineering, Department of Computer Science, University of
Washington, 1998,
http://Iwww.cs.washington.edu/education/courses/403/

[Motschnig93] Motschnig-Pitrik, R., “The Semantics of Parts versus
Aggregates in Data/Knowledge Modeling”, Proceedings Fifth

UML -= 66

