
Professional master on technologies for e-governmentProfessional master on technologies for e-government

Lecture 11-12:Lecture 11-12:

Basics for implementing OWL ontologies in ProtBasics for implementing OWL ontologies in Protééggéé

ALESSANDRO OLTRAMARIALESSANDRO OLTRAMARI
oltramari@loa-cnr.it

Laboratory for Applied Ontology (CNR), Trento, Italy:
 http://www.loa-cnr.it

2

Outline

LECTURE 11 (today):
 Ontology Web Language (OWL): main features and examples

• Questions?
 Protégé: an integrated platform for developing ontologies

LECTURE 12 (next Wednesday)
 Questions?
 Case study: an implemented ontology for e-government

LECTURE 11

4

Ontology Languages

 Ontology languages allow users to write explicit
formal specifications of conceptualizations related
to a given domain.
• RDF, RDF(S), DAML-ONT, OIL, DAML+OIL
• OWL 1.0 (W3C’standard)

 Core requirements:
• Well-defined syntax
• Well-defined semantics
• Efficient reasoning support
• Sufficient expressive power

5

Syntax

 Well-defined syntax is important for enabling machine-
processing of information

• RDF syntax (XML-based) is hard to be considered as user-friendly!

• Instead of directly writing the code, users exploits ontology
development tools, such as Protégé, Swoop, Top Braid
Composer,…

6

Semantics
 Well-defined (formal) semantics describes rigorously the

meaning of knowledge
 It allows for precise reasoning. For ontological knowledge, we

can reason about
• Class membership: if x is an instance of class C, and C is a

subclass of D, then we can infer that x is an instance of D
• Equivalence of classes: If class A is equivalent to class B, and

class B equivalent to class C, then A is equivalent to C, too.
• Consistency: given x instance of class A and suppose that:

– A is a subclass of B ∩ C
– A is subclass of D
– B and D are disjoint

then we have an inconsistency  the ontology must be fixed
• Classification (or subsumption reasoning): if we have declared

that certain property/value pairs are sufficient condition for
membership of a class A, and if x satisfies these conditions, we can
conclude that x must be instance of A.

7

Efficient reasoning support

 Inferences like the one presented before can be made
mechanically, instead of manually.

 Reasoning support is important for
• Check the consistency of an ontology
• Check for unintended relationships between classes
• Automatically classify instances in classes

 Automatic reasoning help for
• Designing large ontologies (eventually involving multiple authors)
• Integrating and sharing different ontologies

8

Ontology Web Language (OWL)

 Formal semantics and reasoning support are provided by
mapping ontology language to logical formalisms and using
automated ‘reasoners’ that already exist for those formalisms.

 OWL is (partially – we’ll see why) mapped on a description logic,
and makes use of existing reasoners such as FaCT and
RACER.

 Description logics are a decidable fragment of FOL.

REMINDER: Logics are decidable if
computations/algorithms based on the logic will terminate
in a finite time.

9

OWL sub-languages
 OWL-LITE

Syntactically simplest used for class hierarchy and simple constraints
 OWL-DL
 Based on DL  used when automated reasoning is needed
 OWL-Full

Most expressive used when expressivity is more important than
reasoning

Basic components of OWL ontologies

11

Class

 In the following we introduce some examples of OWL core components;
most are taken from the ontology pizza.owl (we’ll see how this ontology
looks like in the Protégé-OWL platform).

<owl:Class rdf:ID="AnchoviesTopping">
 <rdfs:subClassOf rdf:resource="#FishTopping"/>
 <owl:disjointWith rdf:resource="#PrawnsTopping"/>
 <owl:disjointWith rdf:resource="#MixedSeafoodTopping"/>
</owl:Class>

 OWL extends RDF: it adopts RDF meaning of classes and properties,
extending the expressivity with its own primitives

 owl:Thing  the most general class (it subsumes every class);
 owl:Nothing  the empty class (every class subsumes it)

12

Object Property

 Object property relates classes (objects) to other classes (objects):
<owl:ObjectProperty rdf:about="#hasTopping">

 <rdfs:subPropertyOf>
 <owl:ObjectProperty rdf:about="#hasIngredient"/>
 </rdfs:subPropertyOf>
 <rdfs:domain rdf:resource="#Pizza"/>
 <rdfs:range rdf:resource="#PizzaTopping"/>
 <owl:inverseOf>
 <owl:ObjectProperty rdf:about="isToppingOf"/>
 </owl:inverseOf>
 </owl:ObjectProperty>

 InverseOf interchange domain with range

13

Datatype Property

 Datatype property relates classes (objects) to datatype values:

<owl:DataProperty rdf:ID="#Table_number">
<rdfs:range rdf:resource=

“http://www.w3.org/2001/XMLschema#nonNegativeInteger"/
>

 </owl:DataProperty>

 OWL does not provide predefined datatypes: it uses XML Schema
datatypes

 Language layering: XMLXML(S)RDFRDF(S)OWL

14

Property restrictions (1/2)

 <rdfs:subClassOf> relates a class C with an higher class C’.
 OWL allows to declare that if C satisfies some conditions, which namely

represent all the conditions a sub-class of C’ must have, then C is
subclass of C’.

<owl:Class rdf:ID="AmericanHotPizza">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasTopping"/>
 <owl:someValuesFrom

 rdf:resource="#JalapenoPepperTopping"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
 existential quantification (∃) = owl:someValuesFrom
♣ universal quantification (∀) = owl:AllValuesFrom

15

Property restrictions (2/2)
 Other types of restrictions are

• owl:hasValue (states the specific value that a property must have)
• owl:minCardinality (states the minimum value that a property must have)
• owl:maxCardinality (states the maximum value that a property must have)

 owl:Restriction defines an anonymous class, which has no id, no owl:Class
definitions, and local scope; it can only be used in the one place where the
restriction appears.

<owl:Class rdf:ID="PizzaTopping">
<rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasTopping"/>
 <owl:minCardinality

rdf:datatype =“&xsd;nonNegativeInteger>1
 </owl:minCardinality>

 </owl:Restriction>
</rdfs:subClassOf

 </owl:Class>

16

Special properties

 owl:TransitiveProperty
– e.g. “is taller than”

 owl:SymmetricProperty
– e.g., “is sibling of”

 owl:FunctionalProperty : defines a property that has at most
one unique value for each object

– e.g. “age”; “height”,…

 owl:InverseFunctionalProperty : defines a property for
which two different objects cannot have the same value

– e.g. “isTheIdentityCardNumberOf”

17

Boolean combinations
 owl:complement owl:unionOf owl:intersectionOf
 CheesyPizza is equivalent to the intersection between Pizza class

and the class of pizzas that have some cheese topping

<owl:Class rdf:ID="CheeseyPizza">
 <owl:equivalentClass>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:someValuesFrom rdf:resource="#CheeseTopping"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#hasTopping"/>
 </owl:onProperty>
 </owl:Restriction>
 <owl:Class rdf:about="#Pizza"/>
 </owl:intersectionOf>
 </owl:Class>
 </owl:equivalentClass>

18

Enumerations

 <owl:oneOf rdf:parseType="Collection">
 <Country rdf:ID="America"/>
 <Country rdf:ID="England"/>
 <Country rdf:ID="France"/>
 <Country rdf:ID="Germany"/>
 <Country rdf:about="#Italy"/>
 </owl:oneOf>

19

References

 G. Antoniou and F. van Harmelen, “Web
Ontology Language”, Handbook on Ontologies,
Springer, 2004.

 M. Horridge, H. Knublauch, A. Rector, R.
Stevens, C. Wroe, “A practical guide to building
OWL ontologies using The Protégé-OWL plug-in
and CO-ODE Tools Edition 1.0. Available at:
http://protege.stanford.edu/

 http://protege.stanford.edu/plugins/owl/publicatio
ns/2004-07-06-OWL-Tutorial.ppt

 http://www.w3.org/TR/owl-features/
 http://www.sts.tu-harburg.de/r.f.moeller/racer/
 http://www.mindswap.org/2003/pellet/
 http://www.cs.man.ac.uk/ horrocks/FaCT/

