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Outline
—————————————————————————————

B Introduction to logic-based knowledge representation

B Knowledge representation and conceptual modeling
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A simple example
—————————————————————————————
Let us consider the situation illustrated in the figure:

c

a b

d

How this situation can be modeled?
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Informal analysis
—————————————————————————————

c

a b

d B there are different objects

B the objects have different shapes

B the objects have different colors

B the objects are ‘spatially’ related
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Informal model #1
—————————————————————————————

c

a b

d B 4 individuals: a, b, c, d

B 5 properties: being white, be-
ing gray, being triangular, being
rectangular, being round

B 1 relation: supports

Using a natural language sentence, we can describe the previous
situation as follows:

“the gray triangle a and the white triangle b support
the white rectangle c that supports the gray round d”.

Note: supports is not a pure spatial relation.
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Set theoretical model #1 (M1)
—————————————————————————————

c

a b

d
• D1 = {a, b, c, d}

• White1 = {c, d}

• Gray1 = {a, b}

• Triang1 = {a, b}

• Rect1 = {c}

• Round1 = {d}

• Supp1 = {〈a, c〉, 〈b, c〉, 〈c, d〉}

We obtain the following structure:

M1 = 〈D1,White1,Gray1,Triang1,Rect1,Round1,Supp1〉
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Informal analysis #2
—————————————————————————————

c

a b

d
B 9 individuals: a, b, c, d,

white, gray, triangular, rectangu-
lar, round

B 3 properties: being an object, be-
ing a color, being a shape

B 2 relation: supports, has shape,
has color

Using a natural language sentence:

“the object a has a gray color and a triangular shape
and it support the object c that has a white color and
a rectangular shape...”.

(?) is which sense this NL sentence differs from the previous one?
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Set theoretical model #2 (M2)
—————————————————————————————

c

a b

d
• D2 ={a, b, c, d,wh, gr , tr , re, ro}

• Object2 = {a, b, c, d}

• Color2 = {wh, gr}

• Shape2 = {tr , re, ro}

• hasColor2 ={〈a, gr〉, 〈b, gr〉,
〈c,wh〉, 〈d,wh〉}

• hasShape2 ={〈a, tr〉, 〈b, tr〉,
〈c, re〉, 〈d, ro〉}

• Supp2 = {〈a, c〉, 〈b, c〉, 〈c, d〉}
We obtain the following structure:

M2 = 〈D2,Object2,Color2,Shape2, hasColor2, hasShape2,Supp2〉
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Relational data model
—————————————————————————————
Relational models organize data in tables that represent relations.
In this framework, we can represent our example with 2 tables:

c

a b

d
Object

ID Color Shape
a gr tr
b gr tr
c wh re
d wh ro

Supports
Supporter Supportee

a c
b c
c d
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Set theoretical view on relational model (Mr)
—————————————————————————————

Object
ID Color Shape
a gr tr
b gr tr
c wh re
d wh ro

Supports
Supporter Supportee

a c
b c
c d

• Dr ={a, b, c, d,wh, gr , tr , re, ro}

• IDr = {a, b, c, d}

• Color r = {wh, gr}

• Shaper = {tr , re, ro}

• Supporter r = {a, b, c}

• Supporteer = {c, d}

• Objectr ={〈a, gr , tr〉, 〈b, gr , tr〉,
〈c,wh, re〉, 〈d,wh, ro〉}

• Suppr = {〈a, c〉, 〈b, c〉, 〈c, d〉}

Mr = 〈Dr, IDr,Color r,Shaper,Supporter r,Supporteer,
Objectr,Suppr〉
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Modeling using FOL
—————————————————————————————
You have already seen what first order logic is. Is it possible to
model the previous situation using that formalism?

FOL is based on a clear distinction between:

B individual constants and individual variables

B predicates
– we will call property a unary predicate, and

– we will call relation a n-ary predicate with n > 1

Constants and predicates will be respectively noted using lower
and upper case sans serif characters to clearly distinguish them
from elements and sets that has been noted in italic
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Instance-of
—————————————————————————————

B The instance-of relation is one of the basic relations considered
in conceptual modeling

B It links an individual (tuple) with a property (relation)

B In set theory it is represented by membership
e.g. b ∈ White, 〈a, gr〉 ∈ hasColor

B In FOL it is represented by predication
e.g. White(b), hasColor(a, gr)

⇒ Classical FOL semantics links predication to membership:
• constants (variables) are mapped to elements in the domain
• predicates and relations are respectively mapped to sets

of elements and sets of tuples
FOL allows one level, membership infinite levels of instantiation.
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FOL theory that corresponds to M1
—————————————————————————————

c

a b

d
• 4 constants: a,b,c,d

• 5 properties: White1, Gray1,
Triang1, Rect1, Round1

• 1 relation: Supp1

By means of these primitives we can write the FOL theory that
‘corresponds’ to M1

T h1: Gray1(a) ∧ Gray1(b) ∧White1(c) ∧White1(d)
Triang1(a) ∧ Triang1(b) ∧ Rect1(c) ∧ Round1(d)
Supp1(a, c) ∧ Supp1(b, c) ∧ Supp1(c, d)
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FOL theory that corresponds to M2
—————————————————————————————

c

a b

d
• 9 constants: a, b, c, d, wh, gr, tr,

re, ro

• 3 properties: Object2, Color2,
Shape2

• 3 relations: hasColor2,hasShape2,
Supp2

T h2:
Object2(a) ∧ Object2(b) ∧ Object2(c) ∧ Object2(d)
Color2(wh) ∧ Color2(gr) ∧ Shape2(tr) ∧ Shape2(re) ∧ Shape2(ro)
hasColor2(a,gr)∧hasColor2(b,gr)∧hasColor2(c,wh)∧hasColor2(d,wh)
hasShape2(a,tr)∧hasShape2(b,tr)∧hasShape2(c,re)∧hasShape2(d,ro)
Supp2(a, c) ∧ Supp2(b, c) ∧ Supp2(c, d)
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FOL theory that corresponds to Mr
—————————————————————————————

c

a b

d
• 9 constants: a, b, c, d, wh, gr, tr,

re, ro

• 5 properties: IDr, Colorr, Shaper,
Supporterr, Supporteer

• 2 relations: Objectr, Suppr

T hr: IDr(a) ∧ IDr(b) ∧ IDr(c) ∧ IDr(d)
Colorr(wh) ∧ Colorr(gr) ∧ Shaper(tr) ∧ Shaper(re) ∧ Shaper(ro)
Supporterr(a)∧Supporterr(b)∧Supporterr(c)
Supporteer(c)∧Supporteer(d)
Objectr(a,gr,tr)∧Objectr(b,gr,tr)∧Objectr(c,wh,re)∧
Objectr(d,wh,ro)∧Suppr(a, c) ∧ Suppr(b, c) ∧ Suppr(c, d)
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Comparing the models (and the theories)
—————————————————————————————

B M2 and Mr both accept individuals like colors and shapes
(Dr = D2) while M1 considers only the objects of M2 and the
IDs of Mr (D1 = Object2 = IDr)

B ‘being a color’ and ‘being a shape’ are represented both in M2

(Color2 and Shape2) and in Mr (Color r and Shaper) while in
M1 we represent ‘being gray’, ‘being white’, ‘being triangular’,
etc. that apply directly on the entities in the domain

B ‘supports’ is represented in the same way in all the models

B In M2 we have hasColor2 and hasShape2 to link objects to
their attributes, while in Mr the relation Object2 links one ID
to all its attributes (it is a ternary relation in this case)

(?) Why Objectr is a relation (with argument IDr) and not a class?
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Formal comparison
—————————————————————————————

B Is it possible to introduce a more formal comparison, for exam-
ple establishing mappings between the previous theories?

B Using the FOL we can follow at least two strategies:

• we consider a global theory that is the union of the theories
we want to map and the mappings are expressed in that
theory

• we consider mappings as external links among theories (we
need a suitable language to express these mappings)

B We will follow the first strategy assuming (i) that all the the-
ories have disjoint predicates, and (ii) that, for constant, the
principle “same name, same constant” holds (instead of having
disjoint names for constants and mapping axioms like a1 = a2)
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Formal mappings (1/2)
—————————————————————————————
Let us start with a theory T h that is the union of T h1, T h2, T hr

Can you see general/intuitive mappings between predicates?

B “colors are colors, shapes are shapes, and IDs are objects”
∀x(Color2(x) ↔ Colorr(x))
∀x(Shape2(x) ↔ Shaper(x))
∀x(Object2(x) ↔ IDr(x))

B “supports is supports”
∀x, y(Supp1(x, y) ↔ Supp2(x, y) ↔ Suppr(x, y))

B “T h1 accepts only objects/IDs”
∀x(White1(x) → Object2(x))
and the same argument restrictions for all predicates in T h1
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Formal mappings (2/2)
—————————————————————————————
More complex mappings:

B ∀x, y, z(Objectr(x, y, z) ↔ (hasColor2(x, y) ∧ hasShape2(x, z)))

B ∀x, y(hasColor2(x, y) ↔ ∃z(Objectr(x, y, z))

B ∀x(White1(x) ↔ (hasColor2(x,wh))

B ∀x(White1(x) ↔ ∃z(Objectr(x,wh, z))

• The last two mappings makes explicit the roles of the color and
shape constants in theories T h1 and T hr

(?) Do you agree on the link ∀x(Object2(x) ↔ IDr(x))?
It is formally correct, but does it match your intuitions?
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∗Set-theoretical counterpart of FOL mappings
—————————————————————————————
Is it possible to find a set theoretical counter-part of the FOL
mappings?

B ∀x(Color2(x) ↔ Colorr(x))
Color2 = Color r

B ∀x(White1(x) → Object2(x))
White1 ⊆ Figures2

B ∀x(White1(x) ↔ (hasColor2(x,wh))
White1 = {x|〈x,wh〉 ∈ hasColor2}

B ∀x, y(hasColor2(x, y) ↔ ∃z(Objectr(x, y, z))
hasColor2 = {〈x, y〉|〈x, y, z〉 ∈ Objectr}
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Extension vs. intension (1/3)
—————————————————————————————
Let us now suppose that the situation changes:

c
ab

d

B The previous models an theories do not represent anymore this
new situation and new theories and models are needed, but do
these two different situations have something in common?

(?) Is it possible to reuse something from FOL theories or from
set-theoretical models?

• Sets are builded on instances while FOL predicates apply to
constants and some mappings does not involve constants.
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Extension vs. intension (2/3)
—————————————————————————————

B The idea is to consider more abstract theories/models that rep-
resent conceptualizations of a domain independently from a spe-
cific arrangement of that domain.

• In other terms, we want to represent in a formal way knowledge
instead of just data about a domain.

B In lecture 1, the distinction between intensional vs. extensional
relations has been characterized in terms of Montague’s possible
worlds semantics.

• In this framework a relation is a function that to each possible
world associates the extension of the relation, i.e. a relation is
a set of set of tuples.
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Extension vs. intension (3/3)
—————————————————————————————

B From a modeling (and maybe theoretical) perspective, the Mon-
tague’s approach is really demanding because it requires knowl-
edge about all the possibles arrangements of the objects in the
world.

B How is it then possible to capture the invariances we are inter-
ested in without assuming a sort of omniscience?

• Logic allows us this kind of abstraction. The idea is to represent
necessary knowledge by means of axioms. These axioms are by
definition valid in all the models of the theory, and models can
represent different arrangements of the objects in the world, but
we do not need to specify all these models from the beginning,
we need just axioms.
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∗Limits of logic
—————————————————————————————

(!) Problematic for representing data and dynamics of data.

– Description Logics introduce two levels: T-Box is about gen-
eral knowledge while A-Box is about data. But the dynamics
of data is still problematic.

– The explicit introduction of time partially solves the prob-
lem of dynamics but complicates a lot the theory.

(!) Problematic for representing possible knowledge and typicality.

– Modal logics and default / non-monotonic logics try to ad-
dress these problems.

But let us start with the analysis of some abstractions introduced
in the database community for which data are important.
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Relations in relational data models (1/2)
—————————————————————————————
B What is the difference between the following two tables?

Object1
ID Color Shape
a gr tr
b gr tr
c wh re
d wh ro

Object2
Shape ID Color

tr a gr
tr b gr
re c wh
ro d wh

B Following the set theoretical reading, the relations represented
in the two tables are different (actually they are disjoint):

Object1 = {〈a, gr , tr〉, 〈b, gr , tr〉, 〈c,wh, re〉, 〈d,wh, ro〉}
Object2 = {〈tr , a, gr〉, 〈tr , b, gr〉, 〈re, c,wh〉, 〈ro, d,wh〉}
Object1 ∩Object2 = ∅
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Relations in relational data models (2/2)
—————————————————————————————
B Relational data modeling introduces tables to abstract from the

mathematical notion of relation (a set of tuples)

a. Relational schemes, restrictions on the arguments of relations
(attributes in data modeling), are more abstract than tuples

Object1(ID ,Color ,Shape); Object2(Shape, ID ,Color)

b. and the substitution of tuples with mappings from attributes
to values allows for abstracting from the order of attributes

⇒ Object1 and Object2 become the same (abstract) relation
with scheme Object(ID ,Color ,Shape). In our example:

Object = {µ1, µ2, µ3, µ4} where
µ1(ID) = a, µ1(Color) = gr, µ1(Shape) = tr
µ2(ID) = b, µ2(Color) = gr, µ2(Shape) = tr ...

26



∗Relations schemes and FOL
—————————————————————————————
B Relational schemes represent quite general knowledge: they

characterize the kind of entities that can be in a specific re-
lation, and for this reason, intuitively they are independent
from specific states of the world.

(?) How a relational scheme can be represented in FOL?

• Let us consider Object(ID ,Color ,Shape); by means of one
relation and three properties we can write the following axiom
(called argument restriction of Object):

∀x, y, z(Object(x, y, z) → ID(x) ∧ Color(y) ∧ Shape(z))

• Differently from the relational scheme, this formulation is not
independent from the order of arguments; it is possible to sim-
ulate this independence but that is not central for our goal.
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Keys (1/4)
—————————————————————————————
B Let us now consider the attribute ID , introduced in our rela-

tional model.

B The chosen name underline a particular role of this attribute,
a key in relational data models:

A set S of attributes of an (abstract) relation R is a key iff:

1. R cannot have two tuples that agree in all the attributes in
S

2. no proper subset of S has property (1)

• ID is a key of the relation Object, i.e. it is not possible to
have two rows with the same value in the column ID
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Keys (2/4)
—————————————————————————————
B What is the intuition behind that?

• The intuition regards the fact that objects can have just a color
and a shape, i.e. one object cannot have two shapes or colors

B We defined keys for relations but, more correctly, they are de-
fined for relational schemes therefore keys do not depend on
which tuples are present in the relation but only on the argu-
ments, i.e. the notion of key is an abstract/conceptual one

B Keys encapsulate a modal notion: it is not possible that, there
are no possible states of the world in which, two different tuples
agree in all the attributes in the key
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Keys (3/4)
—————————————————————————————
What key for Supports?

c

a b

d Supports
Supporter Supportee

a c
b c
c d

c
ab

d
Supports

Supporter Supportee
c b
c a
b d
a d
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Entity-Relationship (ER) Diagrams
—————————————————————————————
Before answering the previous questions, let us consider a graphi-
cal formalism designed to summarize in an intuitive way the rela-
tional schemes. In these diagrams:

B rectangles represent entity sets;

B circles represent attributes (linked to their entities sets by edges);

• attributes part of the key (for their entity set) are underlined;

• if an entity set has just an attribute the attribute is omitted;

B diamonds represent relationships.

But, while ER diagrams assume the distinction between entity
sets and relationships, in relational data modeling we have only
relational schemes! How these two languages can match?
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Coming back to our example
—————————————————————————————
B Let us consider our two relational schemes:

Object(ID ,Color ,Shape)
Supports(Supporter ,Supportee)

B in order to build the ER diagrams for these schemes we need to
decide if Object and Supports are entity sets with multiple
attributes or relationships,

or, in a similar way

B if ID, Color, Shape, Supporter, Supportee are attributes or entity
sets.

• As already observed, intuitively Object is much closer to an
entity set than to a relationship, while the opposite is true for
Supports. Therefore we can accept the following ER diagram.
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ER diagram of our example
—————————————————————————————

Objects

ID

Color

Shape ISA

ISA Supporter

Supportee

Supports
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Remarks on the ER diagram: ISA relation
—————————————————————————————

B There is one ISA relation between Supporter and Object
and one between Supportee and Object

B The ISA relation links two entity sets:

• from a set theoretical and logical perspective the ISA relation
is easy; it corresponds to inclusion (⊆) that ‘corresponds’ to
the FOL implication (→);

• in a relational data model the ISA relation is more difficult
because we need to take into account how the sub-entity sets
(Supportee and Supporter) inherit the attributes of the super-
entity set (Object)

In lecture 9 we will see that this is a quite interesting/open
problem
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∗Remarks on the ER diagram: Roles
—————————————————————————————
If Supporter and Supportee can be conceptually defined as:

∀x(Supporterr(x) ↔ ∃y(Suppr(x, y)))
∀x(Supporteer(x) ↔ ∃y(Suppr(y, x)))

why do we need them in the model?

Objects

ID

Color

Shape

Supports
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Remarks on the ER diag.: Attributes/Keys
—————————————————————————————
B The distinction between Attributes and Keys refers to the in-

tuitive one between partial and complete identifiers.

• Color and Shape only partially identify an object, i.e. it is
possible to have different objects with the same color and shape;

• ID completely identifies an object because it is not possible to
have two different objects with the same ID.
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The ER diagram in FOL (1/3)
—————————————————————————————
Let us try to change the perspective and look for a possible en-
coding of the first ER diagram in FOL.

B In particular, let us use T h2 to capture previous ER diagrams.

• Attributes and entity sets correspond to unary predicates, re-
lations to n-ary predicates, links between attributes and entity
sets to binary relations.

• We start with basic argument restrictions (we do not write uni-
versal quantifier that applies to the whole formula):

hasID(x, y) → Object(x) ∧ ID(y)
hasColor(x, y) → Object(x) ∧ Color(y)
hasShape(x, y) → Object(x) ∧ Shape(y)
Supports(x, y) → Object(x) ∧ Object(y)
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The ER diagram in FOL (2/3)
—————————————————————————————
Now let us try to capture the notion of attribute and key

• Attribute:
Object(x) → ∃y(hasID(x, y))
Object(x) → ∃y(hasColor(x, y))
Object(x) → ∃y(hasShape(x, y))

• Key:
hasID(x, y) ∧ hasID(x′, y) → x = x′

B On this topic there is a huge discussion.

• Are keys necessary in FOL theories?

• Or are objects, intended as entities and not as tuples of at-
tributes, enough?
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The ER diagram in FOL (3/3)
—————————————————————————————
At the end let us try to capture the roles:

• Roles:
Supporter(x) ↔ ∃y(Supports(x, y))
Supportee(y) ↔ ∃x(Supports(y, x))

• we can easily infer:
Supporter(x) → Object(x)
Supportee(x) → Object(x)

and therefore, following the previous equivalencies, the attributes
and keys of Object apply also to Supporter and Supportee

Note: Accepting the previous equivalencies, we can avoid Sup-
porter and Supporter from the set of primitives of the theory con-
sidering them just as syntactic sugar.
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Remarks on Attributes (1/3)
—————————————————————————————

B The last FOL theory presupposes the existence of entities like
colors, shapes, and names/IDs. Is this reasonable/founded?

• There are cognitive theories of concepts that assume spaces of
colors or shapes, as for example the color splinter

Saturation

Hue

Br
ig
ht
ne
ss

Black

White
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Remarks on Attributes (2/3)
—————————————————————————————

B Controversial axioms for attributes:
ID(x) → ∃y(hasID(y, x))
Color(x) → ∃y(hasColor(y, x))
Shape(x) → ∃y(hasShape(y, x))

i.e. it is true that for each value of an attribute there is an
object with this attribute value?

B In some cases the attributes are abstract construction (like cost)
and therefore it is possible to build an infinite number of values;
does this means that there is an infinite number of objects?
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Remarks on Attributes (3/3)
—————————————————————————————

B Let us consider the following mapping introduced before:
White1(x) ↔ hasColor2(x,wh)

B This mapping makes explicit that if we want to represent colors
with predicates

1. we need one predicate for each color, therefore if the colors
are infinite we need infinite predicates.

2. we need second order to describe relations between colors
(e.g. this color is similar to this other color) that are re-
quired, for example, to capture the structure of the color
splinter.
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Strengthening the theory (1/3)
—————————————————————————————

B We saw that, w.r.t. conceptual distinctions, ER diagrams are
more ‘transparent’ than relational data model even though all
ER diagrams can be translated in relational data models.

B FOL is a substantial gain in expressive power but right now we
have not really used this additional expressive power.

B E.g. for Supports we just considered the argument restriction

Supports(x, y) → Object(x) ∧ Object(y)

that characterize very weakly the concept of ‘supporting’: very
different relations can be defined on obejcts.

(?) How can we better characterize Supports using FOL?
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Strengthening the theory (2/3)
—————————————————————————————
Let us start answering to some general questions:

B Is it possible that one object supports itself?

• If not we can add the following axiom:
¬Supports(x, x) (irreflexivity)

B Is it possible that two objects “support each other”?

• If not we can add the following axiom:
Supports(x, y) → ¬Supports(y, x) (asymmetry)

B If one object supports a second object that supports a third
object then does the first object support the third one?

• If yes we can add the following axiom:
Supports(x, y) ∧ Supports(y, z) → Supports(x, z) (transitivity)
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Strengthening the theory (3/3)
—————————————————————————————
Let us continue looking for possible links with other properties and
relations in the theory, for example we can introduce the following
general constraints.

B Round objects cannot support other objects:
Round(x) → ¬∃y(Supports(x, y))

where Round can be syntactically defined as:
Round(x) , hasShape(x, ro)

B Triangular objects can support other objects only together with
at least another object:
Triang(x) ∧ Supports(x, y) → ∃z(Supports(z, y))

where Triang can be syntactically defined as:
Triang(x) , hasShape(x, tr)
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Reasoning in FOL
—————————————————————————————
In FOL we can use the deductive system in order to prove some
intended results but also to check for the equivalence or indepen-
dence of axioms. For example, it is possible to prove that:

B Supports(x, y) → ¬Round(x) is an alternative but equivalent
formulation of Round(x) → ¬∃y(Supports(x, y))

B or that from the irreflexivity of Supports its asymmetry follows.

• Sketched proof.
By contradiction let us assume Supports(x, x).
Then, for the reflexivity of implication, we have:
Supports(x, x) → Supports(x, x).
Contradiction.
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Knowledge engineering
—————————————————————————————
We have seen that:

B there are alternative languages with different expressive powers
to represent knowledge

B it is possible to chose different primitives and to formally char-
acterize these primitives in different ways

B it is possible to introduce axioms at different levels of generality

B different existential axioms represent different commitments on
the entities assumed in the domain of quantification

Knowledge engineering is a discipline that develop method-
ologies and technics that help in the domain analysis, primitives’
selection and formalization, etc.

47



∗Evaluating the models/theories
—————————————————————————————

B Which is the best model? Does that question make sense?

B Is ‘best’ a relative notion?

B How ca we talk of adequacy of models with respect some goals?

B How the quality of a model can be evaluated?

B A lot of these questions are still open research question.... but...
here we are at least interested in:
–are ontological commitment and ontological parsimony good
evaluation parameter?
– is common-sense adequacy important from models, and is it
easy to understand this kind of adequacy?

48


