——
. HDOUTA1L0T I f ey ple)[e]d Inatitute of Cognitive Scienca and Technology
l@l AL A ! L -] J ! talian Mational Research Counc

Professional master on technologies for e-government
Lecture 11-12:

Basics for implementing OWL ontologies in Protégé

ALESSANDRO OLTRAMARI

oltramari@loa-cnr.it

Laboratory for Applied Ontology (CNR), Trento, Italy:
http://www.loa-cnr.it

QOutline

LECTURE 11 (today):
= Ontology Web Language (OWL): main features and examples
* Questions?
= Protege: an integrated platform for developing ontologies

LECTURE 12 (next Wednesday)
= Questions?
= Case study: an implemented ontology for e-government

Ontology Languages

= Ontology languages allow users to write explicit
formal specifications of conceptualizations related
to a given domain.
- RDF, RDF(S), DAML-ONT, OIL, DAML+OIL
« OWL 1.0 (W3C’standard)

= Core requirements:
* Well-defined syntax
* Well-defined semantics
« Efficient reasoning support
« Sufficient expressive power

Syntax

= Well-defined syntax is important for enabling machine-
processing of information

RDF syntax (XML-based) is hard to be considered as user-friendly!

Instead of directly writing the code, users exploits ontology
development tools, such as Protege, Swoop, Top Braid
Composet,...

Semantics

Well-defined (formal) semantics describes rigorously the
meaning of knowledge

It allows for precise reasoning. For ontological knowledge, we
can reason about

Class membership: if x is an instance of class C, and C is a
subclass of D, then we can infer that x is an instance of D

Equivalence of classes: If class A is equivalent to class B, and
class B equivalent to class C, then A is equivalent to C, too.
Consistency: given x instance of class A and suppose that:

— Alisasubclassof BNC

— Alis subclass of D

— B and D are disjoint

then we have an inconsistency - the ontology must be fixed

Classification (or subsumption reasoning): if we have declared
that certain property/value pairs are sufficient condition for
membership of a class A, and if x satisfies these conditions, we can
conclude that x must be instance of A.

Efficient reasoning support

Inferences like the one presented before can be made
mechanically, instead of manually.

Reasoning support is important for
» Check the consistency of an ontology
* Check for unintended relationships between classes
» Automatically classify instances in classes

Automatic reasoning help for
* Designing large ontologies (eventually involving multiple authors)
» Integrating and sharing different ontologies

Ontology Web Language (OWL)

Formal semantics and reasoning support are provided by
mapping ontology language to logical formalisms and using
automated ‘reasoners’ that already exist for those formalisms.

OWL is (partially — we’ll see why) mapped on a description logic,
and makes use of existing reasoners such as FaCT and
RACER.

Description logics are a decidable fragment of FOL.

REMINDER: Logics are decidable if
computations/algorithms based on the logic will terminate
in a finite time.

—_—

Q

OWL sub-languages

OWL-LITE

Syntactically simplest > used for class hierarchy and simple constraints
OWL-DL

Based on DL - used when automated reasoning is needed
OWL-Full

Most expressive —>used when expressivity is more important than
reasoning

OWL-Full

OWL-DL

OWL-Lite

Class

= In the following we introduce some examples of OWL core components;
most are taken from the ontology pizza.owl (we’ll see how this ontology
looks like in the Protége-OWL platform).

<owl:Class rdf:ID="AnchoviesTopping">
<rdfs:subClassOf rdf:resource="#FishTopping"/>
<owl:disjointWith rdf:resource="#PrawnsTopping"/>

<owl:disjointWith rdf:resource="#MixedSeafoodTopping" />
</owl:Class>

= OWL extends RDF: it adopts RDF meaning of classes and properties,
extending the expressivity with its own primitives

= owl:Thing -2 the most general class (it subsumes every class);
= owl:Nothing -2 the empty class (every class subsumes it)

® :

Object Property

= QObject property relates classes (objects) to other classes (objects):
<owl :ObjectProperty rdf:about="#hasTopping">
<rdfs:subPropertyOf>
<owl :ObjectProperty rdf:about="#hasIngredient"/>
</rdfs:subPropertyOf>
<rdfs:domain rdf:resource="#Pizza"/>
<rdfs:range rdf:resource="#PizzaTopping"/>
<owl:inverseOf>
<owl :ObjectProperty rdf:about="isToppingOf"/>
</owl:inverseOf>
</owl:ObjectProperty>
= InverseOf interchange domain with range

12

Datatype Property

= Datatype property relates classes (objects) to datatype values:

<owl:DataProperty rdf:ID="#Table number">

<rdfs:range rdf:resource=

“http://www.w3.0rg/2001/XMLschema#nonNegativeInteger"/
>

</owl:DataProperty>

= OWL does not provide predefined datatypes: it uses XML Schema
datatypes

= Language layering: XML->XML (S) 2 RDF->RDF (S) 2 OWL

@ :

<rdfs:subClassOf> relates a class C with an higher class C’.

OWL allows to declare that if C satisfies some conditions, which namely

represent all the conditions a sub-class of C’ must have, then C is
subclass of C’.

<owl:Class rdf:ID="AmericanHotPizza'>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasTopping"/>
<owl:someValuesFrom

rdf : resource="#JalapenoPepperTopping" />
</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>
existential quantification (3) = owl: someValuesFrom
universal quantification (V) = owl:AllvValuesFrom

Other types of restrictions are
owl:hasValue (states the specific value that a property must have)

owl:minCardinality (statesthe minimum value that a property must have)
owl :maxCardinality (states the maximum value that a property must have)

owl:Restriction defines an anonymous class, which has no id, no owl:Class
definitions, and local scope; it can only be used in the one place where the
restriction appears.

<owl:Class rdf:ID="PizzaTopping'">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasTopping"/>

<owl :minCardinality
rdf:datatype ="“&xsd;nonNegativelInteger>1l

</owl:minCardinality>
</owl:Restriction>
</rdfs:subClassOf
</owl:Class>

owl : TransitiveProperty
— e.g. “is taller than”

owl : SymmetricProperty
— e.g., “is sibling of”

owl :FunctionalProperty :defines a property that has at most
one unique value for each object

— e.g. “age”’; “height”,...

owl: InverseFunctionalProperty : defines a property for
which two different objects cannot have the same value

— e.g. “isTheldentityCardNumberOf”

= owl:complement owl:unionOf owl:intersectionOf

= CheesyPizza is equivalent to the intersection between Pizza class
and the class of pizzas that have some cheese topping

<owl:Class rdf:ID="CheeseyPizza'>
<owl :equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl :Restriction>
<owl:someValuesFrom rdf:resource="#CheeseTopping"/>
<owl:onProperty>
<owl :ObjectProperty rdf:about="{#hasTopping"/>
</owl:onProperty>
</owl:Restriction>
<owl:Class rdf:about="#Pizza"/>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

17

Enumerations

<owl :oneOf rdf:parseType='"Collection">
<Country rdf:ID="America"/>
<Country rdf:ID="England"/>
<Country rdf:ID="France"/>
<Country rdf:ID="Germany"/>
<Country rdf:about="#Italy"/>
</owl:oneOf>

G. Antoniou and F. van Harmelen, “Web
Ontology Language”, Handbook on Ontologies,
Springer, 2004.

M. Horridge, H. Knublauch, A. Rector, R.
Stevens, C. Wroe, “A practical guide to building
OWL ontologies using The Protége-OWL plug-in
and CO-ODE Tools Edition 1.0. Available at:
http://protege.stanford.edu/

http://protege.stanford.edu/plugins/owl/publicatio
ns/2004-07-06-OWL-Tutorial.ppt

http://www.w3.org/TR/owl-features/
http://www.sts.tu-harburg.de/r.f.moeller/racer/
http://www.mindswap.org/2003/pellet/
http://www.cs.man.ac.uk/ horrocks/FaCT/

