
Brief Intro to First Order Logic

Laboratory for Applied Ontology, ISTC-CNR, www.loa-cnr.it

S. Borgo – 3 Oct. 2007

S. Borgo – 3 Oct. 2007

Overview

Motivations

• What you will be able to understand

• What you care to understand

Content

• Syntax

• Semantics

• Logical equivalence

• Proof theory (just a bit)

• Consistency, Soundness, Completeness

S. Borgo – 3 Oct. 2007

Motivations

What you will be able to understand

S. Borgo – 3 Oct. 2007

First Incompleteness Theorem (Gödel, 1931)

• Any consistent formal system F within which a certain
amount of elementary arithmetic can be carried out is
incomplete,

that is

• there are statements of the language F which can neither
be proved nor disproved in F.

This mathematical result (together with the second Gödel’s
incompleteness theorem) is the most cited and celebrated
theorem outside mathematics. You can find references to it in the
writings of mathematicians, logicians, and philosophers as well as
of physicists, theologians, literary critics, architects, cognitivists,
and so no.

S. Borgo – 3 Oct. 2007

What is important to understand it?

• Any consistent formal system F within which a certain
amount of elementary arithmetic can be carried out is
incomplete

• Any consistent formal system F within which a certain
amount of elementary arithmetic can be carried out is
incomplete

• Any consistent formal system F within which a certain
amount of elementary arithmetic can be carried out is
incomplete

S. Borgo – 3 Oct. 2007

Formal system, Consistent, (In)Complete

Roughly, just to have a hint

• A formal system is a system of axioms (in some fixed
language) equipped with rules of reasoning which allow one
to generate (derive / prove) new statements (theorems).

• A formal system is consistent if there is no statement for
which the statement itself and its negation are both
generated (derivable) in the system.

Only consistent systems are interesting.

• A formal system is complete if for every statement of the
language either the statement or its negation can be derived
in the system.

S. Borgo – 3 Oct. 2007

Motivations

What you care to understand

S. Borgo – 3 Oct. 2007

What you care to understand

We study formal systems as a tool to explicitly represent what
we know (or care to know) of a problem, a situation, a state of
the world.

Formal systems for knowledge representation have several
advantages:

B the information can be processed automatically

B the consistency of the information is easier to test

B the knowledge is more reliably shared with other people and
systems.

S. Borgo – 3 Oct. 2007

To prove vs To be true

There are two ways to use formal systems

B To reason on statements syntactically:
essentially based on deduction (proof theory)
(this is what we mentioned earlier)

B To reason on statements semantically:
essentially based on semantics (model theory)
(this is much more relevant to this class, we will see it later)

These alternatives are equivalent only in special cases.

S. Borgo – 3 Oct. 2007

Why formal systems?

Statements in natural language (e.g., English, Italian, Korean)
are often ambiguous. They can be interpreted in different and
incompatible ways: “Yesterday, I saw a doctor.”

To make sure that different people (or robots, informatic
systems etc.) do not reach incompatible conclusions from the
same statements, we need a precise and unambiguous
language.

Logic provides a series of formal languages that have the
property of being precise and unambiguous (provided we use
them correctly and with some attention).

S. Borgo – 3 Oct. 2007

Content: First Order Logic (FOL)

Syntax

S. Borgo – 3 Oct. 2007

Syntax - 1

Symbols of first order logic (FOL) are divided in logical and
non-logical

1) logical symbols

B symbols for propositional connectives:
¬ (not), ∧ (and), ∨ (or), → (implies), ↔ (if and only if)

B symbols for propositional constants: > and ⊥

B symbol for identity: = [it may be omitted]

B separation symbols (parentheses): (,)

B symbols for individual variables: x1, x2, . . . , y1, y2...

B symbols for quantifiers: ∀ (for all), ∃ (exists)

S. Borgo – 3 Oct. 2007

Syntax - 2

2) non-logical symbols (parameters)

B predicate symbols (each associated to a positive integer
(arity)): P, Q, R,...

B function symbols (each associated to a positive integer
(arity)): f , g, h,...

B constant symbols (names): a, b, c, ...

A language of FOL is
an enumerable set of non-logical symbols.

S. Borgo – 3 Oct. 2007

Languages: examples 1 and 2

Predicate logic
B Symbol of identity: NO

B Predicate symbols (for each n > 0): Pn
1, Pn

2, . . .

B Function symbols (for each n > 0): NO

B Constant symbols: c1, c2, . . .

Set theory
B Symbol of identity: YES

B Predicate symbols: ∈ (binary)

B Function symbols (for each n > 0): NO

B Constant symbols: NO

S. Borgo – 3 Oct. 2007

Languages: example 3

Elementary number theory

B Symbol of identity: YES

B Predicate symbols: < (binary)

B Function symbols: s (unary, the successor function), +
(binary, the addition function) and × (binary, the product
function)

B Constant symbols: 0

S. Borgo – 3 Oct. 2007

Examples for your intuition

A formal language is used to represent information (among
other things).

(1) “Some cats are white”
(2) “All the chairs are broken”

(1) ∃x (Cat(x) ∧White(x))

(2) ∀x (Chair(x) → Broken(x))

Can you guess the meaning of the following?
(3) ∀x (Cat(x) → White(x))

(4) (∃x Chair(x)) → ∃y Broken(y)

S. Borgo – 3 Oct. 2007

Terms

Given a language L, the set of terms of L is given by the
following rules:

B Every symbol of constant and of variable is a term

B If t1, . . . , tn are terms and f is a function symbol of arity n,
then f (t1, . . . , tn) is a term

Examples of terms: x, c, x + c, f (x, y + c)

S. Borgo – 3 Oct. 2007

Formulas - 1

Given a language L, a formula (of or in L) is any finite sequence
of logical and/or non-logical symbols provided the non-logical
symbols belong to L.

The formulas which “receive meaning” are called
well formed formulas (wff)

We call atomic formulas those obtained by the following rules:

1. > and ⊥ are atomic formulas
2. If t1 and t2 are terms then t1 = t2 is an atomic formula
3. If t1, . . . , tn are terms and P is a predicate symbol of arity n,

then P(t1, . . . , tn) is an atomic formula.

Examples of atomic fomulas:
c = d, P(x), Q(x, c), R(x, f (x, y + c))

S. Borgo – 3 Oct. 2007

Formulas - 2

The set of formulas of L is the set obtained by the following
rules:

(1) Every atomic formula is a formula
(2) If A is a formula, then ¬A is a formula
(3) If ◦ is a binary connective, A and B formulas, then A ◦ B is a

formula
(4) If A is a formula, x a variable, then ∀x A and ∃x A are

formulas

Examples of formulas:
Alive(x),∃x Loves(x, Bush),∀z R(x, f (x, y + c))

S. Borgo – 3 Oct. 2007

More examples

B Is_Big(Home(John)) ∧ Is_Bigger(Home(John),Home(Rob))

B ∀x (x = Author_Of(Divinacommedia) → Born_In(Firenze,x))

B ∀x (2 + (x × 0) = 2)

B ∀x (5 + (0× x) = x)

B ∀x∃y Loves(x, y) everybody loves somebody

B ∀x∃y Loves(y, x) everybody is loved by somebody

B ∃x∀y Loves(x, y) somebody loves everybody

B ∃x∀y Loves(y, x) somebody is loved by everybody

S. Borgo – 3 Oct. 2007

Order of the connectives

To simplify the writing, we establish an order on the connectives
(from left to right)

∀,∃,¬,∧,∨,→,↔

Thus, formula ∀xP(x) → ∃y∃zQ(y, z) ∧ ¬∀xR(x)
is equivalent to

(∀x(P(x)) → ((∃y(∃zQ(y, z))) ∧ (¬(∀x(R(x))))))

We posit that the binary connectives are associative (give
precedence) to the right

A → B → C is equivalent to A → (B → C)

S. Borgo – 3 Oct. 2007

Open and closed formulas

Quantifier: an expression of form ∀x or ∃x.

Scope of a quantifier: the subformula to which it applies.
E.g. P(x) is the scope of ∀x in formula P(y) ∧ Q(x) ∧ ∀x P(x).

All occurrences of a variable y outside the scope of quantifiers
∀y and ∃y are said to be free. The other are said bound.

A variable can have bound and free occurrences in the same
formula.
E.g., the first occurrence of x and the occurrence of y are free in
formula

Q(x) ∧ ∀x (P(x) → Q(y))

S. Borgo – 3 Oct. 2007

Sentences

Examples of open and closed formulas. Can you tell which of
these are open and which are closed formulas?
(1) ∃x Loves(x, Bob)

(2) ∀x, y∃z (z = exp(x + y) ∧ <(z))

(3) ∀y R(c2, f (c1, y + c2)) ∧ ∃z P(z)

(4) ∀x∃y (Q(x, y) ∧ x = f (y + c))

(5) P(x)

(6) ∀z (R(x, f (x, y + c)) ∧ P(z))

(7) ∀z R(x, f (x, y + c))

(8) (∀x P(x)) ∧ Q(x)

A sentence (or closed formula) is a formula without free
(occurrences of) variables.

S. Borgo – 3 Oct. 2007

Very good!

We have finished with the syntax of first order logic.

Ready for the next step?

S. Borgo – 3 Oct. 2007

Content

Semantics

S. Borgo – 3 Oct. 2007

Interpretation - 1

So far we:

- constrained languages and grammatical rules.
- isolated some special sets like terms and formulas.
- described some simplifications obtained via ordering the
connectives.
- distinguished open and closed formulas depending on the
occurring variables.

Still we haven’t said anything about when sentences are true or
false. We have seen some examples and their “informal
reading” in natural language.

Interpretations (or models or structures) provide the information
to correctly and precisely understand formulas in these
languages.

S. Borgo – 3 Oct. 2007

Interpretation - 2

An interpretation of a language specifies the following:
(1) A domain D (namely, a non-empty set).
(2) A denotation for each constant in the language, that is, an

element of the domain that carries that constant as a
name.

(3) A function from Dn to D for each function of arity n in the
language.

(4) A set of n-tuples for each predicate of arity n in the
language.

Obviously, the interpretation depends on the language since it
has to associate each element in the language with its specific
“meaning.”

Note: sometimes “interpretation” is used to mean (2)-(4) only.

S. Borgo – 3 Oct. 2007

Interpretation: example 1

Assume we have the language to express formula

L(b, F(F(b)))

(Note: L must be a binary predicate and F a unary function for the
formula to be well founded.)

Let us fix the interpretation:

(1) Domain D= {Ben, John, Tom}

(2) The denotation of b is Ben.

(3) The function from D1 to D for F is F(Ben)=John, F(John)=Tom,
and F(Tom)=Tom.

(4) A set of 2-tuples for predicate L is {(Ben,Ben),(Ben,Tom)}.

Can you tell if the formula is true or false in this interpretation?
(true)

S. Borgo – 3 Oct. 2007

Interpretation: example 2

Assume we have the language to express formula

∀x[(∃y (L(x, y) ∧ L(y, b))) → ¬L(x, b)]

Let us fix the interpretation:
(1) Domain D= {Betty, John, Lucy}
(2) The denotation of b is Betty.
(3) -
(4) A set of 2-tuples for predicate L is {(Betty,Betty),

(John,Betty), (Lucy,John)}.

Can you tell if the formula is true or false in this interpretation?
(false)

S. Borgo – 3 Oct. 2007

Interpretation: multiple example - 3.1

Assume we have the language to express formula

∀x∃yP(x, y)

Interpretation 1:

B D = set of human beings

B P is interpreted as the set of pairs (a, b) such that b is the
natural father of a

True or False?

Meaning: each human being has a father

S. Borgo – 3 Oct. 2007

Interpretation: multiple example - 3.2

As before, take the language to express formula

∀x∃yP(x, y)

Interpretation 2:

B D = set of human beings

B P is interpreted as the set of all pairs (a, b) where a 6= b

True or False?

Meaning: take P(a, b) to mean b knows a
given any human being there is someone that knows him/her

S. Borgo – 3 Oct. 2007

Interpretation: multiple example - 3.3

As before, take the language to express formula

∀x∃yP(x, y)

Interpretation 3:

B D = set of Italian regions as of year 2007

B P is interpreted as set of pairs (a, b) with regions a and b
sharing a boundary

True or False?

Meaning:
every Italian region shares a boundary with another Italian
region

S. Borgo – 3 Oct. 2007

The truth-values

We are able to tell if a sentence of a given language is true or
false in a given interpretation. But it looks hard if the sentence
is complex.

We can make the assignment of truth-values very easy by
taking it as the result of a step-by-step process.

Given a sentence ϕ and an interpretation I given (domain D
and interpretation of the language elements Int), i.e.
I = 〈D, Int〉, we want to define I(ϕ) such that

B I(ϕ)= T if ϕ is true in interpretation I

B I(ϕ)= F if ϕ is false in interpretation I

S. Borgo – 3 Oct. 2007

Notations

A structure is a pair of type 〈D, Int〉 (i.e., another way to write an
interpretation). In terms of structures, the expression I(ϕ) = T
is written:

〈D, Int〉 |= ϕ

and is read “structure 〈D, Int〉 satisfies ϕ” or “structure 〈D, Int〉 is
a model for ϕ”
Analogously, the notation I(ϕ) = F is written:

〈D, Int〉 6|= ϕ

and is read “structure 〈D, Int〉 does not satisfy ϕ” or “structure
〈D, Int〉 is not a model for ϕ”

Note: in this notation the denotation of a constant c, predicate P
and function f are written cInt, PInt, and f Int (resp.ly).

S. Borgo – 3 Oct. 2007

Sentence true in structure 〈D, Int〉

Let 〈D, Int〉 be a structure for the language L.

(1) 〈D, Int〉 |= > and 〈D, Int〉 6|= ⊥
(2) If A is an atomic formula of type P(t1, . . . , tn), then

〈D, Int〉 |= P(t1, . . . , tn) iff tInt
1 , . . . , tInt

n ∈ PInt

(3) If A is an atomic formula of type t1 = t2 then
〈D, Int〉 |= t1 = t2 iff tInt

1 = tInt
2

(4) 〈D, Int〉 |= ¬A iff 〈D, Int〉 6|= A

(5) 〈D, Int〉 |= A ∧ B iff 〈D, Int〉 |= A and 〈D, Int〉 |= B

(6) 〈D, Int〉 |= A ∨ B iff 〈D, Int〉 |= A or 〈D, Int〉 |= B

S. Borgo – 3 Oct. 2007

Sentence true in interpretation I

(7) 〈D, Int〉 |= (A → B) iff 〈D, Int〉 6|= A or 〈D, Int〉 |= B

(8) 〈D, Int〉 |= (A ↔ B) iff both 〈D, Int〉 |= A and 〈D, Int〉 |= B or
both 〈D, Int〉 6|= A and 〈D, Int〉 6|= B

In the remaining cases, we write A{d=x} to indicate that we
extend the interpretation to variable x (in a sense, treating
it as a constant) by stating that the denotation of x is
element d of the domain.

(9) 〈D, Int〉 |= ∀xA iff for all d ∈ D we have 〈D, Int〉 |= A{x=d}

(10) 〈D, Int〉 |= ∃xA iff there exists a d ∈ D for which
〈D, Int〉 |= A{x=d}

(Note: there are some further constraints in these last two cases that
we ignore here.)

S. Borgo – 3 Oct. 2007

Example 1

〈D, Int〉 |= ∃x(P(x) ∧ Q(x))

B First, apply case (10)
we need to verify that there exists d ∈ D such that
〈D, Int〉 |= (P(x) ∧ Q(x)){x=d}
i.e. 〈D, Int〉 |= P(x){x=d} ∧ Q(x){x=d}

B Second, apply case (5)
we need to verify 〈D, Int〉 |= P(x){x=d} and 〈D, Int〉 |= Q(x){x=d}

B Finally, because of case (2), it suffices to check if d ∈ PInt and
d ∈ QInt

B Go back with this result to assign value to the formula

S. Borgo – 3 Oct. 2007

Example 2

〈D, Int〉 |= ∀x(P(x) → Q(x))

B First, apply case (9)
verify that for all d ∈ D we have 〈D, Int〉 |= (P(x) ∧ Q(x)){x=d}
i.e. 〈D, Int〉 |= P(x){x=d} ∧ Q(x){x=d}

B Second, apply case (7)
we need to verify 〈D, Int〉 6|= P(x){x=d} or 〈D, Int〉 |= Q(x){x=d}

B Finally, because of case (2), it suffices to check if we have d 6∈ PInt

or d ∈ QInt

B Store this result and go to the first step to assign a different
element to x. When you are have checked all the elements, you
get the value of the formula from case (9).

(Note that this formula is true for each element whenever PInt is the
empty set.)

S. Borgo – 3 Oct. 2007

Validity

A formula A of the language L is valid if and only if it is true in all
the interpretations (structures) of L. In this cse, we write

|= A

to indicate that A is true no matter what structure we put on the
left of the |= sign.

A set of formulas in a language L is said to be satisfiable if and
only if there exists an interpretation (structure) 〈D, Int〉 of L such
that 〈D, Int〉 |= A for each formula A in Γ.

S. Borgo – 3 Oct. 2007

Content

Logical equivalence and related notions

S. Borgo – 3 Oct. 2007

Logical equivalence and logical consequence

Fix a language L and let Γ be a set of closed formulas and A a
closed formula in L.

A is a logical consequence of Γ, written Γ |= A, if and only if for
each structure 〈D, Int〉 of L, if 〈D, Int〉 |= B for all B ∈ Γ, then
〈D, Int〉 |= A.

Two formulas A and B of the language L are logically (or
semantically) equivalent, written A ≡ B, if and only if for each
structure 〈D, Int〉 of L we have

〈D, Int〉 |= A iff 〈D, Int〉 |= B

S. Borgo – 3 Oct. 2007

Examples of equivalent formulas

Formulas that differ only because of the following issues are
equivalent

I bound variables
∀xP(x) ≡ ∀yP(y)

I the order of similar quantifiers
∀x∀yP(x, y) ≡ ∀y∀xP(x, y)
(indeed, we can write ∀x, yP(x, y))

I the elimination of quantifiers that do not bound any variable
∀xP(y) ≡ P(y)

S. Borgo – 3 Oct. 2007

Examples with quantifiers and negation - 1

Important equivalences

I ∀xP(x) ≡ ¬∃x¬P(x)
I ¬∀xP(x) ≡ ∃x¬P(x)
I ∃xP(x) ≡ ¬∀x¬P(x)
I ¬∃xP(x) ≡ ∀x¬P(x)

S. Borgo – 3 Oct. 2007

Examples with quantifiers and negation - 2

Other important equivalences

I ∀x(P(x) ∧ Q(x)) ≡ ∀xP(x) ∧ ∀xQ(x)
I ∃x(P(x) ∨ Q(x)) ≡ ∃xP(x) ∨ ∃xQ(x)
I ∀x(P(x) ∨ Q) ≡ (∀xP(x)) ∨ Q if x not free in Q
I ∃x(P(x) ∧ Q) ≡ (∃xP(x)) ∧ Q if x not free in Q

S. Borgo – 3 Oct. 2007

Ok, we are almost done!

S. Borgo – 3 Oct. 2007

Content

Proof Theory

S. Borgo – 3 Oct. 2007

The role of Proof Theory

The goal is to derive new sentences from others via the
systematic application of a well established set of rules. You
can think of a rule as a way to manipulate a formula (or a set of
formulas) to obtain another formula so that, if the first is (are)
accepted, the latter must be accepted as well.

The rules are motivated by our intuition on what the
connectives represent in the logic. They are not motivated or
justified by semantic considerations.

There are several types of rules for first order logic (Hilbert
style, Natural Deduction, Sequent calculus) and each type can
provide different sets of rules.

S. Borgo – 3 Oct. 2007

Examples of rules

Beside special rules like modus ponens, in general there are
two rules for each connective and quantifier. Given a
connective (or quantifier), one rule is for obtaining a formula
with the connective (quantifier) from other simpler formulas
(connective-introduction), one to obtaining a formula without the
connective (quantifier) from a formula with the connective
(connective-elimination).
For example,

A → B A
B

(modus ponens)

A B
A ∧ B

(∧-introduction)
A ∧ B

A
(∧-elimination)

S. Borgo – 3 Oct. 2007

Example of deduction

We prove the formula

A ∧ ∃xP(x) → ∃x(A ∧ P(x))

The deduction does not uses any information external to the
logic itself. The goal is to show that formula ∃x(A ∧ P(x)) is
obtained from A ∧ ∃xP(x) by a correct application of the rules of
deduction.

A ∧ ∃xP(x)
A

A ∧ ∃xP(x)
∃xP(x)
P(a)

A ∧ P(a)

∃x(A ∧ P(x))

S. Borgo – 3 Oct. 2007

Consistency

The relationship between semantics and proof theory is crucial
in many aspects.

A set of formulas (theory or formal system) is syntactically
consistent if it is not possible to derive both a formula and its
negation, i.e., both A and ¬A.
(This is the notion we introduced at the very beginning)

A set of formulas (theory or formal system) is semantically
consistent if it has a model.

S. Borgo – 3 Oct. 2007

Soundness and Completeness

Given a semantically consistent set of formulas Γ. A set of
deduction rules is sound if each formula that can be derived
from Γ using the rules is satisfies by any model of Γ.

A semantically consistent set of formulas Γ together with a set
of rules is said to be complete if both

(1) each formula true in all the models of Γ can be proved
from Γ using the rules in the set and

(2) each formula derived via the rules from formulas in Γ is
true in all the models of Γ.

