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Formal ontology
—————————————————————————————
Brings together two senses of formal.

B Rigorous: formal framework, e.g., logic.

B Foundational: search for invariants across domains (Husserl).
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Rigorous
—————————————————————————————
Starting from the informal conceptual analysis it is necessary to
choose:

B the kinds of entities we accept in the domain;

B the formal language (logical framework + primitives);

B the properties of the primitives (axioms).
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Foundational
—————————————————————————————
Basic tools for ontology development:

B import results coming from logic, philosophy, linguistics, cog-
nitive science, mathematics, computer science, etc. in order to
identify a set of well founded conceptual primitives that are
general enough to be applied to several domains constituting
the basis for the development of more domain oriented models.

⇒ Intrinsically multidisciplinary.
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Formal ontology again
—————————————————————————————
Facilitates:

B a precise representation (and communication) based on cogni-
tively transparent and theoretically well founded primitives;

B the reuse of theories in different contexts and domains;

B a modular approach to ontology building;

B the comparison between different theories that correspond to
alternative ontological positions.
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Basic notions
—————————————————————————————
But what are these basic notions coming from different disciplines?

B Essentiality and identity.

B Properties and qualities.

B Dependence.

B Parthood, connection, and unity.

B Time, space, and space-time.

B Objects, constitution, and composition.

B Events, participation, and causality.
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Outline
—————————————————————————————

B Orders

B Mereologies

B Theories of time
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Orders (1/5)
—————————————————————————————
Orders are quite simple and abstract structures that are useful
for general and heterogeneous comparisons between entities:

B “is more/less ... than”: “is bigger than”, “is smaller than”,
“is later than” ...

B “is to the left of”, “is an ancestor of”, “is a divisor of”,
“is part of”...

Note: in the following we will consider as formal framework the
FOL with identity.
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Orders (2/5)
—————————————————————————————

B A partial order is a binary relation ≤ such that:

A1 x ≤ x (reflexivity)
A2 x ≤ y ∧ y ≤ z → x ≤ z (transitivity)
A3 x ≤ y ∧ y ≤ x → x = y (antisymmetry)

B A strict partial order is a binary relation < such that:

A4 x < y ∧ y < z → x < z (transitivity)
A5 x < y → ¬y < x (asymmetry)
T1 ¬x < x (irreflexivity)
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Orders (3/5)
—————————————————————————————

B In a partial order, defining < as:

D1 x < y , x ≤ y ∧ ¬y ≤ x

we obtain a strict partial order.

B In a strict partial order, defining ≤ as

D2 x ≤ y , x < y ∨ x = y

we obtain a partial order.

B Therefore it is the same to start from the ≤ or the < primitive.

10



Orders (4/5)
—————————————————————————————

B Classical additional properties for orders

A6 x ≤ y ∨ y ≤ x (total/linear order)
A7 x < y → ∃z(x < z ∧ z < y) (dense order)
A8 x < y → ∃z(x < z ≤ y ∧ ¬∃v(x < v < z))

x < y → ∃z(x ≤ z < y ∧¬∃v(z < v < y)) (discrete order)
A9 ∃x∀y(x ≤ y) (left bounded)

A10 ∃x∀y(y ≤ x) (right bounded)
A11 ∀x∃y(y < x) (left unbounded)
A12 ∀x∃y(x < y) (right unbounded)

B On finite domains, all orders are discrete and bounded.

B Examples: 〈N,≤〉, 〈Z,≤〉, 〈Q,≤〉, 〈R,≤〉, 〈2A,⊆〉.
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Orders (5/5)
—————————————————————————————

B Many orders on many domains!
– weights, heights, numbers, instants (precedence), preferences...
these are not parthood!

B Specificities of Parthood?
– Surely not a linear order
– Dense, discrete, bounded, unbounded: all possible options

So?
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A bit of history of mereologies
—————————————————————————————
Mereology: from the greek meros, ‘the theory of parthood’

B Lesniewski 1927-1931, On the Foundations of Mathematics.
Alternative to Set Theory for escaping Russells paradox

• No null individual (no empty set)

• No distinction between urelements (∈) and sets (⊆): a single
relation of parthood

B Tarski 1935. Link with algebra.

B Leonard and Goodman 1940. The calculus of individuals, nom-
inalism.

B Contemporary studies: Peter Simons (1986), Achille Varzi (1996).
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Why is the Parthood relation important?
—————————————————————————————
Today, the majority of ontologies use at least a parthood relation.

B Philosophical, cognitive and linguistic relevance.

B Spatial and temporal reasoning based on vague information:
impossibility to use exact coordinates, trajectories in terms of
mathematical functions, and calculus.

B Reference to extended entities (e.g., temporal periods, spatial
regions), possibly composed of parts of the same nature.

B No calculus, yet still a rigorous formal approach: logical theo-
ries.

Note: similarly to the case of orders, no one single mereology, but
a plurality of different mereologies.
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Hasse diagrams
—————————————————————————————

B Graph on finite domains

B Convention: all vertical or oblique arcs are implicitly oriented
from bottom to top and indicate a strict order.

B Example: the following diagram graphically represents the
formula a < c ∧ b < c

c

a

������
b
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Basic mereology (M)
—————————————————————————————

B We note the parthood relation with P.

B A basic mereology M is a reflexive, transitive, and antisymmet-
ric relation, i.e. it is a partial order.

B Useful definitions (proper part corresponds to strict order):

D3 PP(x, y) , P(x, y) ∧ ¬P(y, x) (proper part)
D4 O(x, y) , ∃z(P(z, x) ∧ P(z, y)) (overlap)
D5 PO(x, y) , O(x, y) ∧ ¬P(x, y) ∧ ¬P(y, x) (proper overlap)

y

x

x y

z
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Minimal and extensional mereologies (1/2)
—————————————————————————————

B Supplementation

ws PP(x, y) → ∃z(P(z, y) ∧ ¬O(z, x)) (weak suppl.)
ss ¬P(x, y) → ∃z(P(z, y) ∧ ¬O(z, x)) (strong suppl.)

y

x

x y
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B Extensionality:

we ∃z(PP(z, x)) ∧ ∀z(PP(z, x) ↔ PP(z, y))) → x = y (weak)
se ∀z(O(z, x) ↔ O(z, y)) → x = y (strong)

note that we does not follows from ws, see theorem (T5).
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Minimal and extensional mereologies (2/2)
—————————————————————————————
MM = M ∪ {ws} minimal mereology
EM = M ∪ {ss} extensional mereology

B Theorems:

T2 EM ` ws

T3 EM ` we

T4 EM ` se

T5 MM 0 we

T6 M ∪ {we} 0 se

T7 M ∪ {se} ` ws
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Closure mereology (1/3)
—————————————————————————————

B Sum:

D6 Sum(s, x, y) , ∀z(O(z, s) ↔ (O(z, x) ∨ O(z, y)))
sum ∀x, y ∃s(Sum(s, x, y))

s a b
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B Product:

D7 Prod(p, x, y) , ∀z(P(z, p) ↔ (P(z, x) ∧ P(z, y)))
prd O(x, y) → ∃p(Prod(p, x, y))

x y
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Closure mereology (2/3)
—————————————————————————————

B Difference:

D8 Diff(d, x, y) , ∀z(P(z, d) ↔ (P(z, x) ∧ ¬O(z, y)))
dif ∃z(P(z, x) ∧ ¬O(z, y)) → ∃d(Diff(d, x, y))

B Complement:

D9 Compl(c, x) , ∀z(P(z, c) ↔ ¬O(z, x))
cmp ∃z(¬O(z, x)) → ∃c(Compl(c, x))

B Universe (noted with Un):

uni ∃x∀y(P(y, x))
T8 ∃z(z = Un) ∧ x 6= Un → (Compl(c, x) ↔ Diff(c,Un, x))

x y
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Closure mereology (3/3)
—————————————————————————————
CM = M ∪ {sum, prd} closure mereology
CMM = CM ∪ {ws} closure minimal mereology
CEM = CM ∪ {ss} closure extensional mereology

B Theorems:

T9 CMM ` ss therefore CMM and CEM are equivalent.
T10 CEM ` Sum(s, x, y) ∧ Sum(s′, x, y) → s = s′

T11 CEM ` Prod(p, x, y) ∧ Prod(p′, x, y) → p = p′

T12 CEM ` dif

T13 CEM ` Diff(d, x, y) ∧ Diff(d′, x, y) → d = d′

T14 CEM ` Compl(c, x) ∧ Compl(c′, x) → c = c′
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Atomic mereology
—————————————————————————————

B Atoms, atomicity, and atomic essentialism:
D10 At(x) , ∀y(P(y, x) → y = x) (atom)

at ∀x∃y(At(y) ∧ P(y, x)) (atomicity)
ate (At(z) → (P(z, x) → P(z, y))) → P(x, y) (at. essent.)

B Atomic mereologies
AEM = EM ∪ {at}
the same for all other mereologies

B Theorems:
T15 AEM ` ate

T16 EM ∪ {ate} ` at

T17 M ∪ {ate} ` ss

T18 AM ∪ {we} ` se
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Back to mereology requirements
—————————————————————————————

B No distinction between urelements (∈) and sets (⊆)

• in the Sum “operator”, the sum and the addenda are at the
same level

B No null individual (no empty set)
• the mereologies we considered are not based on an axiom

like

A13 ∃x(∀y(P(x, y)))
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Which mereology?
—————————————————————————————

B Extensionality

– Identity between my body and the collection of my organs

• parthood vs. spatial inclusion + theory of constitution and
levels of reality

B Closure

– sum of my nose and Caesars toe

• mereotopology (part+connection) to identify wholes

B Transitivity

– My hand is part of me, and
I’m part of the University of Trento, but
My hand is not part of the Committee
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The space of mereologies
—————————————————————————————
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Libraries of theories
—————————————————————————————

B The libraries of theories as, for example, the library/space of
mereologies are very important conceptual tools because they
‘encapsulate’ a deep analysis of different notions that are intu-
itively linked to the a general one (parthood for mereologies).

B Different theories can be adequate to specific modeling require-
ments:the user selects the theory that better matches his needs.

B No monolithic/standardized approach: the links between the
theories in the library make explicit their (in)compatibilities.

• In this lecture, we will see how different mereologies can be
reused for modeling some perspectives on time.

• In the following of the course you will see their application to:
space, physical objects, qualities, organizations, etc.
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