
The Role of Foundational Ontologies in Manufacturing

Domain Applications

Stefano Borgo1, and Paulo Leit�o2

1 Laboratory for Applied Ontology, ISTC-CNR, via Solteri 38,

38100 Trento, Italy

borgo@loa-cnr.it
2 Polytechnic Institute of Bragan�a, Quinta Sta Apol�nia, Apartado 1134,

5301-857 Bragan�a, Portugal
pleitao@ipb.pt

Abstract.1 Although ontology has gained wide attention in the area of informa-

tion systems, a criticism typical of the early days is still rehearsed here and

there. Roughly, this criticism says: general ontologies are not suited for real ap-

plications. We believe this is the result of a misunderstanding of the role of

general ontologies since, we claim, even foundational ontologies (the most gen-

eral and formal ontologies) have a crucial role in building reusable, adaptable

and transparent application systems. We support this view by showing how

foundational ontologies can be used in the manufacturing control area. Our ap-

proach (partially presented here through an example) provides a domain-

specific ontology which is explicitly designed for applications, theoretically or-

ganized by a foundational ontology, driven by the application field for all in-

tents and purposes, suitable for communication across different applications.

1. Introduction

In information science, ontology stands for a knowledge engineering artifact consti-

tuted by an interpreted language plus a set of explicit assumptions; its goal is to de-

scribe a certain reality of interest [1]. Taking the degree of semantic precision as basic

metric, ontologies form a spectrum with simple glossaries and thesauri on one side

and rich logical theories on the other. Ontologies resembling glossaries and thesauri,

like WordNet [2], are helpful in organizing databases and protocols where only termi-

nological services are needed. When sophisticated knowledge structures become

necessary, much richer systems should be applied, e.g. those described in the Library

of Foundational Ontologies [3]. Since these rich ontologies do not enjoy nice compu-

tational properties, to maintain effective computability one separates representation

and reasoning issues by adopting two types of ontology: a foundational ontology that

provides the full system and is applied at development-time, and a lightweight ontol-

1 The first author has been partially supported by the Provincia Autonoma di Trento. The

authors would like to thank Claudio Masolo and the anonymous referees for their comments.



ogy (a simplified version of the previous) that furnishes an efficient, although mini-

mal, system used at run-time. Adopting this distinction, we concentrate on founda-

tional ontologies and show their role in generating reliable representation systems.

Ontologies are nowadays quite common in information systems2, however in the

literature one hardly finds real applications developed on top of foundational ontolo-

gies. There are several reasons for this; foundational ontologies are relatively new and

only in the last few years well axiomatised and justified systems have been proposed.

Moreover, the development of application systems based on these ontologies is de-

manding so that few projects have undertaken this challenge [4]. More often, re-

searchers focus on goals that seem to be just pieces of the process we envision [5].

Our hope is that a consistent deployment of foundational ontologies in a traditional

and well established area like the manufacturing domain will foster a better under-

standing of these theoretical tools and of the advantages of systems based on them.

The majority of the ontologies so far developed in Artificial Intelligence express

simple relationships among terms (primarily taxonomies) perhaps with some set of

formal constraints (formal ontologies). Foundational ontologies stand out as special-

ized logical theories (a subclass of formal ontologies) not limited to particular do-

mains and developed with the intention of characterizing explicitly a viewpoint on the

ÒrealityÓ: the aim is to capture formally the (intended) meaning of the adopted lan-

guage. Among the advantages in applying these, they drastically reduce misinterpre-

tation of the knowledge base (semantic explicitness) and make information sharing

reliable even in communication among untrained users and software agents (concep-

tual transparency). However, these ontologies are trustworthy only if based on a care-

ful and detailed ontological analysis of (a viewpoint of) reality, a lengthy and time-

consuming process which must be coupled with a rigorous logical characterization.

Furthermore, they must guarantee the coverage of general and disparate concepts,

allow for subtle distinctions, and make space for the specific interests of potential

users. Indeed, the primitive notions of the ontology and the constraints stated to char-

acterize them form a richly structured framework where entities, concepts, and rela-

tions of the domain at stake must find a place. In other terms, in deploying a founda-

tional ontology one assumes that this system covers (perhaps only implicitly) all pos-

sible concepts and relations of interest. Furthermore, one accepts the view that any

element in the domain can be captured in logical terms within this framework and that

any expression means whatever the formal semantics states. Some researchers main-

tain that these assumptions are too strong and that no ontology can deliver such a

characterization of the language. Consequently, they prefer to use weak terminologi-

cal ontologies claiming that foundational ontologies are too brittle theoretical tools

and, as such, not suited for application domains [6].

We disagree with this general standpoint. We believe this criticism is the result of a

misunderstanding of the significance of foundational ontologies in application do-

mains. It is widely recognized that foundational ontologies furnish an important tool

for establishing links and comparisons among domain ontologies, especially when the

focus is on communication and standardization. Indeed, they make explicit the phi-

losophical, cognitive, and linguistic commitments the different systems have. How-

ever, this is not the only role such ontologies can play. On the contrary, we claim that

2 http://www.semanticweb.org/



foundational ontologies are crucial for the very development of domain-specific on-

tologies and, as such, they are profitable in applications. The case we present corrobo-

rates this view by applying foundational ontologies in modelling problems, by show-

ing the role of foundational ontologies in building applicative systems, and by high-

lighting their relevance. For this, we chose to work in a domain (manufacturing enter-

prise) that has proven to be quite successful in modelling production processes but

that shows some weakness in the area of information integration and management.

Organization of the paper. Section 2 gives an overview of the manufacturing do-

main and section 3 concentrates on the ADACOR architecture with its terminological

system. In section 4, we discuss interoperability issues and briefly look at different

foundational ontologies available in the literature motivating our choice to adopt the

DOLCE ontology. The next section begins with an introduction to DOLCE and pro-

ceeds with the alignment of ADACOR to this ontology. Then, we show how to for-

malize (a part of) a crucial example. Section 6 concludes with some general remarks.

2. Manufacturing Problem Description

This study applies to manufacturing control systems. We look at a manufacturing

enterprise that produces discrete items, and model (part of) the factory plant compo-

nents as well as aspects of the scheduling, monitoring, and execution processes.

2.1 Manufacturing System Description

The manufacturing enterprises produce products that are offered to the market. The

products are described by the product model, which contains all technical data and

describes the constitution of a product, and by the process model, which defines how

to produce the product. The process model specifies the process plan, that is, a list of

operations and related information like estimated processing time and requirements

necessary to produce the part. An operation is a job to execute and involves one of the

following main functions: processing, assembly, storage, transportation, manipula-

tion, maintenance or inspection. Each operation has aggregated a set of services.

A customer interacts with a company to order one of the available products or a

new product. This order, known as customer order, involves the reference to a prod-

uct, a quantity, a deliver date and a price. Additionally, it is necessary to create fore-

cast orders to anticipate the market demands. The manufacturing planning convert the

customer and forecast orders into production orders, aggregating if possible several

customer orders into a production order, to obtain volume and transport advantages.

The production orders must specify a quantity, a delivery date and a cost. A produc-

tion order is indexed to a product object and comprises a list of work orders. A work

order is a job that should be executed by a resource.

The shop floor consists of a group of resources (such as movers, transporters, drill-

ing, milling, and turning machines) with different characteristics (spindle speed, list

of tools and grippers, tool length compensation, payload, time autonomy, etc.), which

have to be carefully described in the factory model. Each resource is an entity that can



execute a certain range of jobs, when it is available, as long as its capacity is not ex-

ceeded. The availability of a resource is represented by an agenda that indicates the

list of orders allocated to the resource over the time. The agenda comprises also time

slots where the resource is: free, allocated to execute orders, temporarily out of serv-

ice (due for example to maintenance) and out of service.

2.2 Manufacturing Control Description

The main functions required by a manufacturing control system are process planning,

resource allocation planning, plan execution, and pathological state handling.

The production of a product involves the execution of several steps, according to a

precedence diagram, defined in the process plan. At the process planning level, the

manufacturing orders are launched to the shop floor, associated to a process plan that

defines the required sequence of operations and the required machine type for each

operation. Based on the available resources, it is possible to create alternative process

sequences, each one indicating the exact resource that should execute each operation.

The resource allocation planning schedules the necessary operations to produce the

parts, including processing, transport, maintenance and set-up operations, taking into

account the process plans, the constraints and resources capacity, in order to produce

the products, minimizing the costs and increasing the productivity, and organizing the

production unit to react to any modification in demand or machine failure.

The plan execution functions deals with the physical implementation of the sched-

ule into the factory through the dispatching of the scheduled orders to the manufactur-

ing process, and with the production progress monitoring. The reaction to distur-

bances is initially taken by the execution plan level, and may imply the need of re-

scheduling of the operations with the aim of minimizing the effects of the disturbance.

2.3 Towards a Manufacturing Ontology

In order to improve agility and flexibility, nowadays one uses distributed approaches

in developing manufacturing control applications. These are built upon autonomous

and cooperative entities, such as those based on multi-agent and holonic systems.

In the communication between distributed and autonomous entities, besides the is-

sues related to interfaces and protocols, it is important to verify that the semantic

content is preserved during the exchange of messages. These distributed entities need

to have a common understanding of the concepts of their domain knowledge, which is

given by a domain (or core) ontology [7]. The inter-operability in distributed and

different multi-agent or holonic platforms increases the need for shared ontologies, in

order to allow the exchange of knowledge between those distributed platforms.

3. ADACOR Holonic Control Architecture

Our work concentrates on an application domain where several different approaches

are implemented and improved continuously. To ground the discussion, we must first



select one architecture and one foundational ontology and then provide an ontological

assessment of the concepts adopted by the first through the knowledge structure pro-

vided by the latter. Once the notions of this architecture have been ontologically ana-

lyzed and classified, we can use the resulting system as a core ontology in the manu-

facturing domain, perhaps including new concepts from other architectures.

One of the proposed architecture for the manufacturing control is ADACOR

(ADAptive holonic COntrol aRchitecture for distributed manufacturing systems) [8],

which addresses the agile reaction to disturbances at the shop floor level, increasing

the agility and flexibility of the enterprise, when it works in volatile environments,

characterized by the frequent occurrence of unexpected disturbances. In the following

sections, we introduce this system and clarify its ontological stand.

3.1 Overview of ADACOR Manufacturing Control System

The ADACOR architecture is based in the Holonic Manufacturing Systems (HMS)

paradigm3, and it is built upon a set of autonomous and cooperative holons, each one

being a representation of a manufacturing component, i.e., a physical resource (nu-

merical control machines, robots, etc.) or a logic entity (orders, etc.). A generic

ADACOR holon comprises the Logical Control Device (LCD) and the physical re-

source capable of performing the manufacturing tasks, if it exists. The LCD device is

responsible for regulating the logic activities related to the holon and comprises three

main components: decision, communication and physical interface components [8].

The ADACOR architecture groups the manufacturing holons into product, task,

operational and supervisor holon classes. Each available product to be produced in the

factory plant is represented by a product holon that contains all knowledge related to

the product and is responsible for the short-term process planning. Each production

order launched to the shop floor in order to execute a product (or sub-product) is

represented by a task holon, which is responsible to manage the execution, containing

the dynamic information about the production order. Operational holons represent the

physical resources available in the shop floor, such as operators, robots and numerical

control machines, managing their behaviors according to the resource goals and skills.

The supervisor holon introduces coordination and global optimization in decentralized

control approaches and is responsible for the group formation and coordination.

The ADACOR adaptive production control balances between a more centralized

and a more flat approach, due to the self-organization associated to each ADACOR

holon, translated in the autonomy factor and in the propagation mechanisms.

3 HMS (http://hms.ifw.uni-hannover.de/ ) translates to the manufacturing world the concepts

developed by Arthur Koestler for living organisms and social organizations [9]. Holonic

manufacturing is characterized by holarchies of holons (i.e., autonomous and cooperative en-

tities), which represent the entire range of manufacturing entities. A holon, as Koestler de-

vised the term, is a part of a (manufacturing) system that has a unique identifier, may be

made up of sub-ordinate parts and, in turn, can be part of a larger whole.



3.2 The ADACOR Manufacturing Ontology

ADACOR defines its own manufacturing ontology, expressed in an object-oriented

frame-based manner as recommended in the FIPA Ontology Service Recommenda-

tions [10]. Thus, the architecture uses classes to describe concepts and predicates and

fixes them as part of the application ontology. This allows for a practical and fast way

of creating an ontology with an immediate underlying implementation.

Gripper

-gripperType [s]: String
-handleVol [s]: Integer

Transporter

-autonomy [s]: Integer

Mover

-skills [m]: Property
-grippers [m]: Gripper

Producer

-skills [m]: Property
-tools [m]: Tool

Resource

-resId [s]: String
-name [s]: String
-location [s]: String
-type [s]: String
-agenda [m]: WorkOrder
-failures [m]: Disturbance

has

has

is-a

is-a
is-a

is-a

is-a

has

ProductionOrder

- prodOrderId [s]: String
- clientOrderId: String
- pPlan [m]: ProcessPlan
- quantity [s]: Integer
- earliestDate [d]: Date
- dueDate [d]: Date
- wos [m]: WorkOrder
- rm [s]: RawMaterial

has

has allocated

executes an

has
precedence

has

RawMaterial

-rmId [s]: String
-description [s]: String
-materialType [s]: String
-X_dimension [s]: Integer
-Y_dimension [s]: Integer
-Z_dimension [s]: Integer
-radius [s]: Integer

Product

-prodId [s]: String
-name [s]: String
-description [s]: String
-drawing [s]: String
-subProd [m]: Product
-procPlan [s]: ProcessPlan

ProcessPlan

-operations [m]: Operation

has

uses

has

has

Tool

-lifeTime [s]: int
-cutMaterial [s]: String
-cuttingSpeed[s]: Integer
-wear [s]: Integer

Disturbance

-codeId [s]: String
-type [s]: DisturbanceType
-solutionApplied [s]: String
-recoverTime [s]: Integer
-OccurenceDate [s]: Date

DisturbanceType

-distId [s]: String
-type [s]: String
-setOfSymptoms [m]: String
-description [s]: String
-solutions [m]: String

Setup

-setupId [s]: String
-description [s]: String
-duration [s]: String

Property

-name [s]: String
-value [s]: String

has

requires a

uses

has

has

WorkOrder

-woId [s]: String
-quantity [s]: Integer
-scheduleStart [s]: Date
-scheduleEnd [s]: Date
-actualStart [s]: Date
-actualEnd [s]: Date
-opId [s]: Operation
-state [s]: String
-executedBy [s]:Resource
-priority [s]: Integer

Operation

-operationId [s]: String
-name [s]: String
-description [s]: String
-duration [s]: Integer
-precedence [s]: Operation
-setupId [s]: Setup
-requirements [m]: Property

Fig. 1.Manufacturing Ontology Developed in the ADACOR Architecture

The manufacturing ontology used in ADACOR is developed through the definition

of a taxonomy of manufacturing components, which contributes to the analysis and

formalization of the manufacturing problem (these components are mapped into a set

of objects, illustrated in the UML-like diagram of Figure 1). For this, one must fix the

vocabulary used by the distributed entities over the ADACOR platform, isolate the

ADACOR-concepts, the ADACOR-predicates and -relations, the ADACOR-

attributes of the classes, and the meaning of each term. Note that not all ADACOR

concepts find a place in Figure 1. The diagram is restricted to the relationships be-

tween simple manufacturing components used by the manufacturing control system.

For example, since a production order may index one customer order or an aggrega-

tion of these, this relationship and the latter concept are not shown.

ADACOR-concepts are expressions that hold for complex entities whose structure

can be defined in terms of classes or objects. The main concepts in the ADACOR

architecture (see Figure 1) are informally described as follows:

- Product: entity produced by the enterprise (it includes sub-products).

- Raw-material: entity acquired outside the enterprise and used during the produc-

tion process, e.g. blocks of steel, nuts and bolds (unless produced internally).



- Customer order: entity that the enterprise receives from a customer that requests

some products.

- Production order: entity obtained by converting the customer and forecast or-

ders (it may result from the aggregation of several customer orders).

- Work order: entity generated by the enterprise in order to describe the produc-

tion of a product. The work order lists one or more operations including their

processing time, participants (e.g. name and number of resources involved in the

execution), priority, scheduled dates, state and quantity.

- Resource: entity that can execute a certain range of jobs as long as its capacity is

not exceeded. Producer, mover, transporter, tool, and gripper are specializations

of the resource object and inherit its characteristics4.

- Operation: a job executed by one resource. There are different types of opera-

tions among which drilling, maintenance, and reconfiguration of resources.

- Disturbance: unexpected event, such as machine failure or delay, that degrades

the original production plan.

- Process Plan: description of a sequence of operations, including temporal con-

straints like precedence of execution, for producing a product.

- Property: an attribute that characterizes a resource or that a resource should sat-

isfy to execute an operation.

Predicates are expressions that allow to establish relationships among concepts.

The main predicates in the ADACOR ontology are informally described as follows:

- SubproductOf(x,y): x is a product which is a sub-product (a component) of y.

- Allocated(x,y,i): operation x is allocated to resource y during time interval i.

- Available(x,y,t): resource x is available at time t to perform operation y.

- RequiresTool(x,y): operation x requires tool y.

- HasTool(x,y,t): resource x has tool y available in its tool magazine at time t.

- RequiresSkill(x,y): execution of operation x requires property (skill) y.

- HasSkill(x,y): resource x has property (skill) y.

- HasFailure(x,y,t): a disturbance x occurred in resource y at time t.

- Proposal(x,y,w,z,u): the entity x proposes to the entity y the execution of the

work order w with location u and charging the price z.

4. Interoperability in Manufacturing Control Applications

The ontologies currently used in the manufacturing domain are the result of non-

coordinated efforts and relinquish the interoperability with other agents communities.

As seen in section 3.2, in the ADACOR architecture a basic and proprietary manufac-

turing ontology has been developed to support the inter-operability between

ADACOR holons. However, the lack of inter-operability between different agent-

based or holonic manufacturing control platforms pushes for a common manufactur-

ing ontology capable of merging (or at least of communicating adequately with) these.

4 Here we do not consider human operators which, for completeness, should be listed among

the resources of the system. Indeed, sometimes operations like maintenance or reconfiguring

must be executed by human operators.



Lately, several efforts to develop standard mechanisms for the unambiguous ex-

change of information within the manufacturing domain have been undertaken. The

International Organization for Standardization (ISO) developed STEP (Standard for

the Exchange of Product Model Data) that defines a standard data format for exchang-

ing a complete product specification (e.g. geometry and production process) between

heterogeneous CAD/CAM systems. However, STEP refers to the product information

only and does not cover the process and enterprise engineering information. A set of

initiatives seeks to fulfill this gap. The Process Specification Language (PSL) project

[11] aims to develop general ontology for representing manufacturing processes to

serve as an interlingua to integrate multiple process-related applications throughout

the manufacturing life cycle. A Language for Process Specification (ALPS) [12] iden-

tifies information models to facilitate process specification and to transfer this infor-

mation to process control. The Toronto Virtual Enterprise (TOVE) [13] defines a

domain-specific ontology for enterprise modelling. The Enterprise Ontology provides

Òa collection of terms and definitions relevant to business enterprises to enable coping

with a fast changing environment through improved business planning, greater flexi-

bility, more effective communication and integrationÓ [14]. The goal of the Process

Interchange Format (PIF) project [15] is to support the exchange of business process

models across different formats and schemas. We conclude with the Plinius project

[16], whose goal is to define a domain-specific ontology for mechanical properties of

ceramic material. Of course, this list of projects is far from complete, it is provided

just to show the variety of approaches and standardization initiatives in this area.

In spite of the referred efforts to develop ontologies in areas related to manufactur-

ing, as of today no formal ontology is available in the manufacturing domain. The

application of foundational ontologies to support the interoperability between agent-

based and holonic manufacturing control applications provides a feasible and reliable

way to solve this problematic situation. Also, the ongoing activity of the holonic

manufacturing community within FIPA (Foundation for Intelligent Physical Agents)

to adequate the FIPA specifications to the manufacturing requirements would benefit

as well from the adoption of well-justified and organized formal ontologies, that is,

ontologies furnished with a deep logical characterization.

Just a few foundational ontologies have been developed and motivated to a satis-

factory level in the literature, in particular DOLCE (the Descriptive Ontology for

Linguistic and Cognitive Engineering, http://www.loa-cnr.it/Ontologies.html), GFO

(the General Formal Ontology [17], http://www.onto-med.de), OCHRE (the Object-

Centered High-level Reference Ontology, developed by L. Schneider [3]), OpenCyc

(http://www.opencyc.com), SUMO (the Suggested Upper Merged Ontology [18],

http://www.ontologyportal.org) and, although only partially formalized, BFO (the

Basic Formal Ontology. developed at IFOMIS [3], http://www.ifomis.uni-leipzig.de).

Since foundational ontologies are complex systems, there are two crucial elements

that should be considered in choosing an ontology: the ontology has to provide a rich

set of conceptual distinctions (at least relatively to the domain of application), and all

the features that one deems relevant should be clearly characterized (or characteriz-

able) within the ontology. In our case, the chosen foundational ontology is the

DOLCE ontology because it distinguishes between objects (like products) and events

(like operations), it includes a useful differentiation among individual qualities, qual-

ity types, quality spaces, and quality values, it allows for fine descriptions of proper-



ties and capacities, and it relies on a very expressive language, namely first-order

modal logic5; all features crucial in modelling physical objects, agents, and processes.

Even more so, DOLCE let the user define the qualities needed in the application,

allowing in this way a great level of freedom while facilitating update and mainte-

nance. Finally, as said in the introduction, the application of a foundational ontology

should be coupled with a lightweight version of that very ontology: lightweight ver-

sions of DOLCE are available in LOOM, DAML+OIL, RDFS, DIG, and OWL.

5. Formalization of the ADACOR Ontology in DOLCE

DOLCE, the foundational ontology developed at the Laboratory for Applied Ontology

(ISTC-CNR, http://www.loa-cnr.it), is mainly an ontology of particulars in the sense

that it focuses on this class of entities. Universals (predicates) are considered in so far

as they help in the classification of particulars. This ontology adopts the multiplicative

approach, that is, it assumes that different entities can be co-located in the same

space-time. Co-located entities differ because they enjoy incompatible properties, for

example, a drilling machine does not survive a radical shape deformation while its

amount of matter does, therefore the machine and the amount of matter are different

entities in DOLCE, yet co-located. An important aspect of DOLCE is the treatment of

qualities. Endurants (objects like a gripper, a person) and perdurants (events like mak-

ing a hole, moving a steel block) come with a bunch of qualities, e.g. shape, weight,

duration, velocity, etc. Qualities may be specific to a subclass of entity, for instance

weight is a quality of physical endurants only. An entity like Hammer_#123 has its

own individual qualities: its shape, its weight, its color, etc. that exist as long as that

hammer does. These individual qualities are elements in DOLCE so that one can refer

to them directly in formal expressions. For each quality, there exists a quality space:

the quality space of shape, the quality space of weight, etc. Each individual quality of

an entity (say, its weight-quality) is associated to a position in the corresponding qual-

ity space (the weight-space) and this position is called its quale. This allows us to

make important distinctions and comparisons even before introducing measurement.

Indeed, measures depend on units of measurement and methodologies, thus are ob-

tained only once these elements have been fixed. Independently of the measurement,

at each point in time the hammer weight-quale is a precise position in the weight

quality space. Two hammers that have the same weight-quale, must have the same

weight-measure, no matter how we assign measures to positions in the space.

On a different level, the DOLCE ontology has been compared to other founda-

tional ontologies (e.g. OCHRE and BFO in [3]) and it is included in other merging

initiatives [19]. This is important to our project: it is generally granted that interoper-

ability is obtained through the compliance with ontologies thus, if DOLCE is included

in merging initiatives, our core ontology is likely to be easily linked to other manufac-

turing ontologies, at least those developed for interoperability.

5 This should not be surprising. Foundational ontologies are used to structure the knowledge

base and are not applied at run-time when computability and effectiveness issues are crucial.



The taxonomy of the most basic categories of particulars in DOLCE is depicted in

Figure 2. An informal (and partial) description of the main predicates is given next.

We refer the reader to [3] for the formal characterization of these predicates and a

throughout discussion of the DOLCE assumptions.

Fig. 2. Taxonomy of DOLCE basic categories [3]

ED(x), PED(x) stand for Òx is an endurantÓ and Òx is a physical endurantÓ, respec-

tively. An endurant is an entity that is wholly present at any time it is present. It is

physical if located in space and time: a hammer, a mover machine, an amount of

plastic. See the predicate NASO below for examples of non-physical endurants.

PD(x) stands for Òx is a perdurant or eventÓ, i.e., an entity that is only partially pre-

sent at any time it is present. For instance, consider the perdurant Òproducing an

item of type #234Ó that consists in attaching two metal pieces together with screws

and painting the resulting piece. While the painting goes on, the (temporal) part

corresponding to attaching the two pieces is not present anymore and when this is

present, the painting is not yet. Perdurants can have spatial parts as well. Note that

objects are not parts of perdurants, rather objects participate in them. Perdurants

form four sub-classes: achievements, accomplishments, states, and processes.

In the manufacturing domain, one needs to refer to a wide variety of operations. Some

of these, like turning, are said to be homeomeric, i.e., every part of a turning is a turn-

ing itself. In other terms, if one divides a turning operation with temporal interval t in

two parts, one initial operation with interval t1, and one final operation with interval t2
(such that t1 and t2 partition t), then both the initial and the final operations have all

the characteristics of a turning operation. This does not happen with, say, a setup

operation. It is necessary for a setup to reach a specific state since it is the achieve-

ment of such a state that justifies its classification as a setup. Thus, if we divide a

setup operation in two temporal parts, only one of the two sub-operations (if any) can

be considered a setup operation. This and similar distinctions will drive the ontologi-



cal classification of the ADACOR notions and are captured by the DOLCE predicates

below.

ACH(x) stands for Òx is an achievementÓ. These perdurants are characterized by

anti-cumulativeness (the sum of two achievements of, say, type A is not an event

of type A) and atomicity (they do not have temporal parts). E.g., the completion of

a machine reconfiguration is an achievement but the reconfiguration itself is not.

ACC(x) stands for Òx is an accomplishmentÓ. These are non-atomic perdurants, i.e.,

they have temporal parts. For example, a reconfiguration can be composed of sev-

eral sub-events (like the reconfiguration of different parts of a production line).

However, the sum of reconfigurations of some type A is never a reconfiguration of

the same type, that is, accomplishments enjoy anti-cumulativeness.

ST(x) stands for Òx is a stateÓ. This class of perdurants is cumulative, thus it is

closed under mereological sum in the sense that the sum of two perdurants of type

A (say, drilling events) is a perdurant of the same type (a drilling). Also, these

perdurants are homeomeric. Drilling and moving perdurants are in this class.

NAPO(x) stands for Òx is a non-agentive physical objectÓ. These are objects that

have spatial and temporal location but to which one cannot ascribe intentions, be-

lieves, or desires; e.g., products and production orders.

NASO(x) stands for Òx is a non-agentive social objectÓ. These objects have neither

(direct) spatial or temporal location nor intentions, believes, or desires. They de-

pend generically on societies like laws and plans.

qt(q,x) stands for Òq is a quality of xÓ. Qualities are basic ÔpropertiesÕ of entities.

They can be perceived or measured. In this sense, they represent partial charac-

terizations of an entity and depend existentially on it. Every endurant (perdurant)

comes with its physical (temporal) qualities.

ql(r, q), ql(r,q,t) stand for Òr is the quale of the perdurant's quality qÓ, Òr is the quale

of the endurantÕs quality q during time tÓ, respectively. The quale is the position

of an individual quality in the corresponding quality space. If a quality space is

poor, then there are few different positions in it and it is likely that corresponding

individual qualities (of different entities) are associated to the same quale. Rich

quality spaces allow for finer distinctions among qualities. Two entities with indi-

vidual qualities associated to the same quale (in their quality space) are undistin-

guishable regarding to the corresponding quality.

5.1 Alignment of ADACOR with DOLCE

DOLCE provides a natural way to classify entities in the ADACOR architecture.

Beside the basic distinction between endurants and perdurants, descriptions can be

modelled explicitly as a type of objects, and properties are simply qualities. Below,

we present the classification of some entities of section 3 according to our work.

Products, resources and orders6 are physical, non-agentive objects (NAPO)

(Product(x) ! Resource(x) ! Order(x)) " NAPO(x)

6 The notions of resource and agent are related. Section 5.3 discusses these in the manufactur-

ing domain. Also, note that we distinguish between orders and order-descriptions.



In ADACOR, raw-material refers to objects and to amounts of matter as well, thus

we classify raw-material as generic physical endurants (PED)

Raw_material(x) " PED(x)

At this point, we constrain the meaning of the terms ÒOrderÓ and ÒResourceÓ in

ADACOR, that is, we formalize the predicates of ADACOR that are new in DOLCE,

Order(x) # (Production_order(x) ! Customer_order(x) ! Work_order(x))

Resource(x) # (Producer(x) ! Mover(x) ! Transporter(x) ! Gripper(x) !

Tool(x))

The remaining entities of section 3 are perdurants (PD) since they identify activi-

ties or states. DOLCE makes a clear-cut distinction between achievements (ACH),

accomplishments (ACC), states (ST), and processes (PRO). We found this partition of

perdurants very helpful and it is used systematically in the system. Note that ÒOpera-

tionÓ and ÒDisturbanceÓ are disjoint top classes of ADACOR perdurants7.

Operation(x) " PD(x)

Disturbance(x) " ACH(x)

Â (Operation(x) $ Disturbance(x))

Completion(x) " ACH(x)

(Setup(x) ! Reconfiguration(x) ! Inspection(x) ! Maintenance(x) ! Assem-

bly(x) ! Production(x)) " ACC(x)

(Transportation(x) ! Turning(x) ! Drilling(x) ! Milling(x)) " ST(x)

Most notably, in our limited list we find no instance of the DOLCE notion of process.

Consider, for instance, transportation: since all the temporal parts of transportation are

transportation as well, this type of event is stative (ST). A similar argument holds for

turning, drilling, and milling.

As done for the endurants, we must characterize the meaning of the general terms

ÒOperationÓ, ÒDisturbanceÓ, ÒCompletionÓ and ÒReconfigurationÓ in our formaliza-

tion. The constraints are given below.

Operation(x) # (Completion(x) ! Reconfiguration(x) ! Inspection(x) !

Setup(x) ! Maintenance(x) ! Assembly(x) ! Production(x) ! Milling(x) !

Transportation(x) ! Turning(x) ! Drilling(x))

Disturbance(x) # (Failure(x) ! Delay(x))

Completion(x) # (Completion_of_setup(x) ! Completion_of_inspection(x) !

Completion_of_assembly(x) ! Completion_of_reconfiguration(x) ! Com-

pletion_of_maintenance(x) ! Completion_of_production(x))

Reconfiguration(x) # (Addition_of_new_resource(x) ! Change_of_layout(x)

! Removal_of_resource(x) ! Change_of_resource_capability (x))

7 In principle, one can consider disturbances as operations. However, this seems unnatural to

people working in manufacturing. For this reason, disturbances and operations are presented

as disjoint classes.



There is a misalignment between the notion of Setup as an operation (above) and

the concept of Setup in Figure 1. Some operations may have a Setup operation as

requirement and this is the reason to show Setup as a separate entry in Figure 1.

The notions of Delay, Disturbance, and Failure are related concepts and their for-

malization require some caution. A disturbance is an unexpected event: machine fail-

ure or machine delay are the only examples of disturbances we consider. These are

crucial since they affect the scheduled production plan. When an operation is being

executed, we can expect several different scenarios: (1) the resource finishes the exe-

cution of the operation within the estimated time interval, (2) the resource fails and it

cannot finish the operation (a failure has occurred) or (3) the operation is delayed (a

delay has occurred). Thus, failures and delays are perdurants and machines participate

in them. Clearly, Failure is a kind of accomplishment. However, the classification of

Delay is less obvious: a delay occurs when the need of rescheduling is officially es-

tablished, thus it is an atomic event. Also, the sum of two delays is not a delay since

the sum does not correspond to a single rescheduling requirement. Thus, Delay is

taken to be an accomplishment as well.

As mentioned in the manufacturing description, a ÒProcess PlanÓ is a description of

a sequence of operations (plus related properties and interconnections). Then, a Proc-

ess Plan is a non-agentive social object (NASO), which implies that it is non-physical.

Indeed, we distinguish the description (a nonÐphysical object) from the document that

contains the description (a physical object)8. Here it suffices to consider the first:

Process_plan(x) " NASO(x)

In the terminology of DOLCE, skills are qualities of objects. For each type of skill

we must include a quality space and, for each object that has that skill, an individual

quality specific to that object. It is crucial to note that we inherit from DOLCE the

distinction between individual qualities (stating that the object at stake has that skill)

and the corresponding quale (roughly, a classification of the objectÕs skill). The quale

shows the characteristic of that object with respect to the given skill. For example,

consider ÒAutonomyÓ to be an individual quality9 enjoyed by any resource. It charac-

terizes for how long a resource can work without the need to re-fill its batteries (as-

suming a way of measuring this skill is given). If AutL is the class of autonomy-

qualities, then the following constraint states that ÒAutonomyÓ is a quality defined for

resources only

AutL(q) " %x (qt(q,x) $ Resource(x))

The specific relations Òq is the autonomy of resource xÓ and Òresource x has auton-

omy d at time tÓ are not part of the language but can be defined in it as follows

Autonomy(q,x) =def Resource(x) $ AutL(q) $ qt(q,x)

Autonomy(d,x,t) =def Resource(x) $ %q (Autonomy(q,x) $ ql(d,q,t))

8 This distinction raises in different forms and it is pervasive. For instance, one should distin-

guish between order and order-description, operation and operation-description, and so on.

This issue is related to the notion of role. See [20] for a treatment of roles in DOLCE.
9 One could take ÔAutonomyÕ to be reducible to other simpler qualities. This alternative view is

compatible with the characterization we provide.



Every resource must be explicitly associated to a (finite) set of qualities or skills that

capture its characteristics, e.g. Autonomy, Magazine_capacity, Max_feed_rate. If

QL1,É,QLn are the skills of resource Ai, then we set the following constraint

%q1,É,qn(QL1(q1,Ai) $ É $ QLn(qn,Ai))

Then, by using skill indices in the argument we can define the relation Has_skill

Has_skill(y,j) =def Resource(y) $ %q QLj(q,y)

Sometimes we must be able to state some general condition (like Òresource x has

tool y availableÓ) or to select resources that not only have a given skill but that can

perform it in a certain way. These cases are captured through the notion of ÒRequire-

mentÓ, that is, through relations like ÒHas_drilling_feed_speed_rateÓ, ÒHas_toolÓ,

etc., that describe some general properties. These relations are often defined by com-

plex logical expressions so here some of them are presented with a minimal charac-

terization only (below we use QLd for a quality related to drilling, this is not charac-

terized further; f-s-r stands for Ôfeed speed rateÕ)

Executes(x,y,t) " (Resource(x) $ Operation(y) $ T(t))

(resource x executes operation y at time t)

Has_tool(x,y,t) " (Resource(x) $ Tool(y) $ T(t))

(resource x has tool y available at time t)

Has_drilling_feed_speed_rate(x,t,a,b) =def (Resource(x) $ %q (QLd(q,x) $ & y

ql(y,q,t) " a!y!b) (resource x has drilling f-s-r between a and b at t)

Requires_skill(x,j) =def (Operation(x) $ & y,t (Executes(y,x,t) "

Has_skill(y,j))) (operation x requires skill y to be executed)

Setup_requires_tool(x,y) =def (Setup(x) $ & z,t (Executes(z,x,t) "

Has_tool(z,y,t))) (setup x requires tool y to be performed)

Milling_requires_autonomy(x,t,y) =def (Milling(x) $ & z,d (Executes(z,x,t) $

Autonomy(d,z,t) " d'y)) (milling x at time t requires autonomy at least y)

5.2 An Example: Bidding for a Job Task

We concentrate on a specific example, an instance of a task allocation interaction, and

show how the ontology shapes its formalization in the system. Here, we limit our-

selves to the language fragment introduced in sections 3 and 5.

The agent t1 (contractor) has a job task that comprises two different operations,

Òmach-pieceÓ and Òdrill-holesÓ. The first operation has precedence over the second,

that is, the Òdrill-holesÓ operation can start only once the first operation has been

completed. The Òmach-pieceÓ operation for this job must be executed by a resource

with the following characteristics: it should be a milling machine with feed speed

1000. For the second operation the following is needed: it should be executed by a

drilling machine with the feed speed 700. Agent t1 sends a message to all agents

connected to the system. The message announces an operation and the requirements

for it. For example, the message for the operation Òdrill-holesÓ is:



(Cfp

:sender (agent-identifier :name t1)

:receiver (agent-identifier :name mach-a, mach-b)

:language FIPA-SL0

:ontology Adacor-ontology

:protocol FIPA-Contract-Net

:content ((ONLY-OPERATION (OPERATION :name drill-holes

:exectime 55 :rawmaterial steel-100 :precedence mach-piece

:properties (set (PROPERTY :name mach_type :value drilling)

(PROPERTY :name speed :value 700)) :quantity 100 :state

NOT-ALLOCATED :earlieststart 094248884 :duedate 094316884))

)

The message contains several fields where the language, ontology and protocol

used in the message construction are reported. The content of the message stores the

information that the contractor wants to send to the contractees. In this case the con-

tent has information formatted using the ÒOperationÓ concept.

Without entering into the details of the message configuration and exchange proto-

cols, our ontological assessment of the terminology allows us to share information

with a clear meaning (through the formal semantics of the DOLCE ontology) by in-

cluding logical expressions in the message. Let us write ÒDrillH1Ó for this specific

operation, then the entry content is explicitly characterized by the following10:

Bidder(x,DrillH1,t) "

(Resource(x) $

%y (Has_tool(x,y,t) $ Drilling_tool(y)) $ Available(x,DrillH1,t) $

& j (Requires_skill(DrillH1,j) " Has_skill(x,j)) $

& a,b (Has_drilling_feed_speed_range(x,t,a,b) " a!700!b) $

Autonomy(d,x,t) $ d'55)

where ÒBidder(x,DrillH1,t)Ó stands for Òx bids to perform operation DrillH1 at time

tÓ, and ÒDrilling_tool(y)Ó is a specialization of ÒTool(y)Ó.

With the alignment of ADACOR to DOLCE, the above logical expression states

formally (in an explicit and ontologically sound setting) that if an entity x bids for the

job DrillH1 at a time t, then x has the following (now unambiguous) characteristics:

- x is a resource

- a tool to execute drilling operations is available to x at time t

- x is available at time t to execute the drilling operation DrillH1

- x has all the skills required by the drilling operation DrillH1

- x has capacity to drill at 700 feed speed rate at time t

- x is autonomous for at least 55 time-units

Each resource agent verifies its capabilities to execute the operation (both in terms

of skills and calendar) and, if it finds a time t such that the conditions above are satis-

fied, it answers the call for operation DrillH1 and time t.

10 This is only a partial characterization limited to the adopted language fragment.



If agent mach-a wants to bid the announcement, it produces this message:

(Propose

:sender (agent-identifier :name mach-a)

:receiver (agent-identifier :name t1)

:language FIPA-SL0

:ontology Adacor-ontology

:protocol FIPA-Contract-Net

:content ((OP-PROPOSE (OPERATION :name drill-holes :exectime

55 :rawmaterial steel-100 :precedence mach-piece :properties

(set (PROPERTY :name mach_type :value drilling) (PROPERTY

:name speed :value 700)) :quantity 100 :state NOT-ALLOCATED

:earlieststart 094248884 :duedate 094316884)(PROPOSAL

:name mach-a :price 100 :location IDIT)))

)

The bid message is similar to the first one but now the content of the message con-

tains different information, translated with the relation between the ÒOperationÓ and

the ÒProposalÓ concepts. The proposal data structure comprises the name of the entity

that is sending the proposal, its physical location and the price proposed to execute the

operation. In particular, if the system is formalized according to the alignment to the

DOLCE ontology, agent mach-a can send a logical expression stating that this agent

can execute the operation DrillH1, that it satisfies all the constraints (this part is ob-

tained easily from the one given above), and other relevant information like restric-

tions in the operational skills that may interfere with the job execution. Furthermore,

the message will include a new piece of information11

Proposal(mach-a,t1,DrillH1,100,IDIT)

where the predicate ÒProposalÓ, being ontologically characterized, is now a formal

concept with clear meaning and implications (obligations, responsibilities, legal

rights) even for the new entities not previously connected to the system.

5.3 Issues in Modelling the Manufacturing Domain

If the need to distinguish between values (essentially, numbers) and value ranges can

be taken for granted in the manufacturing domain, subtler distinctions are not. We

find helpful to distinguish a skill of a machine (for instance, being able to execute a

particular job like drilling a hole) from qualitative and quantitative aspects of that skill

(the way the hole is obtained, the speed of execution and so on). Indeed, being able to

execute a particular operation is a necessary condition to answer a bid for a work

order independently of qualitative and quantitative aspects. On the other hand, these

aspects are necessary for any rescheduling process. Similar distinctions arise in deal-

ing with time. Talking of the expected duration of an operation, one may need to refer

to the precise event (the operation executed by a given resource at a given time), the

duration of that event (the time is spans), and the length of a temporal interval.

A different set of problems raises from the different conceptualization of the enti-

ties in the domain. For instance, the notion of agent in the manufacturing community

11 For the sake of the example, here we assume that a single operation can play the role of a

work order.



is often application-dependent, that is, the very same entity might (or might not) play

the role of an agent in a manufacturing process depending on the application we are

considering. However, in other cases the notion of agent is used in absolute terms,

that is, an agent is any entity that has the capacity to initiate actions (perhaps in a

proactive and rational way). An analogous argument holds for the notion of resource

as used in this paper. These views appear to be incompatible since in the first case

simple tools (like a hammer) might be considered on a par with machines (complex

floor resources) while in the latter case such tools are ontologically distinct from

agents. In order to be transparent across different ontologies, the modeller must take

this different conceptualizations seriously. For instance, one can classify these entities

as (generic) physical objects and allow the application specifications to introduce

further differentiations among the entities (with corresponding ontological properties

attached to them). This issue could be solved within DOLCE exploiting the use of

quality spaces or introducing roles explicitly.

Other entities seem hard to formalize because we point to different aspects in dif-

ferent contexts. An example is the notion of raw-material. Consider a company that

produces clothes and that buys buttons from another producer. For the company, the

buttons are classified as raw-material. Indeed, this company conceptualizes buttons as

ÒcomponentsÓ of the items it produces and not as ÒproductsÓ themselves. However,

the very same items are products for the button producer. This discrepancy is only

apparent since ontologically the items we refer to (talking of raw-material or product)

have the same properties in all contexts; they are physical objects with well defined

characteristics. The real problem is that raw-material is not an ontological distinction

and thus it collects things of different ontological types like amounts of matter (sand,

water, steel and the like) and complex artefacts (buttons, pipes, hammers). This is the

reason we classify them as generic (physical) endurants. Further characterizations

have to take into account the specific items one is talking about.

6. Conclusions

Our work, here presented only in part, aims at a domain-specific ontology (core on-

tology) for the manufacturing production field. Once completed, the resulting ontol-

ogy will be well-founded, in particular because driven by a foundational ontology.

Also, it inherits the advantages of a richly characterized ontology making it suitable

for information communication and sharing. On the other hand, it is modelled by the

subject field because specific applicative concerns have driven the alignment and

refinement of the initial vocabulary. In short, the combination of a foundational on-

tology and an application architecture to produce a core ontology has the advantage of

mixing bottom-up and top-down strategies maintaining crucial characteristics of both.

As of today, the concrete application of foundational ontologies is rather limited.

We believe this situation is due more to structural than to scientific reasons. The de-

velopment of foundational ontologies requires highly interdisciplinary efforts and

involves expertise in a variety of areas (logic, philosophy, linguistics, conceptual

modelling, information systems). There are only a few research groups that cover

adequately these areas and that are active in ontology for information science. Unfor-



tunately, application domains (enterprise management, medicine, law, and the like)

differ considerably so that the application of general ontologies to these domain is

necessarily the result of specific collaboration efforts with domain experts. This ex-

plains the actual shortage of concrete examples, although recently we have observed

increasing interests in the exploitation and comparison of application experiences

centred upon foundational ontologies12. We believe that when foundational ontologies

become available with clear documentation and supporting tools for the non-trained

user, we will notice an increasing application of these ontologies and, consequently,

an improvement of the average domain-specific ontologies available on the market.

7. References

1. N. Guarino, Formal Ontology and Information Systems, FOIS 1998, Trento, Italy, pp 3-15.

2. C. Fellbaum (ed.), WordNet An Electronic Lexical Database, Bradford Book, 2000.

3. C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A. Oltramari, Ontology Library (Wonder-

Web Deliverable D18), http://wonderweb.semanticweb.org/deliverables/documents/D18.pdf

4. D.M. Pisanelli, A. Gangemi, G. Steve, Ontologies and Information Systems: the Marriage of

the Century?, Proceedings of Lyee Workshop, Paris 2002.

5. P. Bertolazzi, C. Krusich, M. Missikoff, An Approach to the Definition of a Core Enterprise

Ontology: CEO, OES-SEO Õ01, Rome, 2001.

6. Y. Wilks, Ontotherapy: or how to stop worrying about what there is, 2003/8/6

http://www.racai.ro/EUROLAN-

2003/html/presentations/SheffieldWilksBrewsterDingli/Ontotherapy_YWilks.ppt

7. A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, Understanding Top-Level Ontological

Distinctions, Workshop on Ontologies and Information Sharing, IJCAI 2001.

8. P. Leit�o and F. Restivo, Holonic Adaptive Production Control Systems, Proceedings of the

28th Annual Conference of the IEEE Industrial Electronics Society, 2002, pp 2968-2973.

9. A. Koestler, The Ghost in the Machine, Arkana Books, London, 1969.

10. Foundation for Intelligent Physical Agents, http://www.fipa.org/ (June 2003).

11. C. Schlenoff, A. Knutilla, S. Ray, Unified Process Specification Language: Requirements

for Modelling Process, NIST, Interagency Report 5910, Gaithersburg MD, September 1996.

12. B. Catron, S. Ray, ALPS: A Language for Process Specification, International Journal of

Computer Integrated Manufacturing, Vol. 4, No. 2, 105-113, 1991.

13. F. Fadel, M. Fox and M. Gruninger, A Generic Enterprise Resource Ontology, 3rd IEEE

Workshop on Enabling Technologies: Infrastructures for Collaborative Enterprises, 1994.

14. M. Uschold, M. King, S. Moralee, Y. Zorgios, The Enterprise Ontology, The Knowledge

Engineering Review, 13(1), Special Issue on Putting Ontologies to Use, pp. 31-89, 1998.

15. J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost and the PIF WG, The PIF Process

Interchange Format and Framework, Know. Eng. Rev. 13(1), pp.91-120, 1998.

16. P. van der Vet, P.-H. Speel, N. Mars, The PLINIUS Ontology of Ceramic Materials.

ECAIÕ94, Workshop on Comparison of Implemented Ontologies, 1994.

17. B. Heller, H. Herre, Ontological Categories in GOL, Axiomathes (14):1 pp 57-76.

18. I. Niles and A. Pease, Toward a Standard Upper Ontology, FOIS 2001, pp. 2-9

19. P. Martin, Correction and Extension of WordNet 1.7, LNAI 2746, pp 160-173.

20. Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, A., Guarino, N.,

Social Roles and their Descriptions, KR 2004, pp. 267-277

12 This is one motivation for the workshop on ÒCore Ontologies in Ontology EngineeringÓ

which is held at EKAW 2004, http://www.loa-cnr.it/core_onto.html


