N,

= DATA &

-/ KNOWLEDGE
;ﬁ ENGINEERING
ELSEVIER Data & Knowledge Engineering 39 (2001) 51-74

www.elsevier.com/locate/datak

Supporting ontological analysis of taxonomic relationships
Christopher Welty **, Nicola Guarino °

& Computer Science Department, Vassar College, Poughkeepsie, NY 12604-0462, USA
® LADSEB-CNR, Padova, Italy

Abstract

Taxonomies are an important part of conceptual modeling. They provide substantial structural information, and are
typically the key elements in integration efforts, however there has been little guidance as to what makes a proper
taxonomy. We have adopted several notions from the philosophical practice of formal ontology, and adapted them for
use in information systems. These tools, identity, essence, unity, and dependence, provide a solid logical framework
within which the properties that form a taxonomy can be analyzed. This analysis helps make intended meaning more
explicit, improving human understanding and reducing the cost of integration. © 2001 Published by Elsevier Science
B.V.

1. Introduction

Ontology is a discipline of Philosophy that deals with what is, with the kinds and structures of
objects, properties, and other aspects of reality. While much of the philosophical practice of
ontology dates back to Aristotle and what his students called “metaphysics,” the term ontology
(ontologia) was coined in 1613 by Rudolf Gockel and apparently independently by Jacob Lor-
hard. According to the OED, the first recorded use in English was in 1721. Today’s ontology
includes questions such as, “what is a castle?” and “what is a hole?”” The way we answer these
questions reflects the way we perceive and interact with the world.

By the early 1980s, researchers in Al and especially in knowledge representation had realized
that work in ontology was relevant to the necessary process of describing the world of intelligent
systems to reason about and act in [25]. This awareness and integration grew and spread to other
areas until, in the latter half of the final decade of the 20th century, the term ‘“ontology’ actually
became a buzzword, as enterprise modeling, e-commerce, emerging XML meta-data standards,
and knowledge management, among others, reached the top of many businesses strategic plans. In
addition, an emphasis on ‘“knowledge sharing” and interchange has made ontology an application
area in its own right.

* Corresponding author. Tel.: +1-914-437-5992; fax: +1-914-437-7498.
E-mail address: weltyc@cs.vassar.edu (C. Welty).

0169-023X/01/$ - see front matter © 2001 Published by Elsevier Science B.V.
PI:S0169-023X(01)00030-1



52 C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74

Framework

Conceptual Model

A=
Va

Ontology

e I N = /&
I

Minimal Top-Level Ontology

Conceptualization

Ontology-Driven Modeling Principles

Useful Property Kinds

Formal Ontological Properties/Relations

Fig. 1. Overview of the methodology.

In general, the accepted industrial meaning of “ontology” makes it synonymous with “‘con-
ceptual model”, and is nearly independent of its philosophical antecedents. We make a slight
differentiation between these two terms, however (as shown later in Fig. 1): a conceptual model is
an actual implementation of an ontology that has to satisfy the engineering trade-offs of a running
application, while the design of an ontology is independent of run-time considerations, and its
only goal is to specify the conceptualization of the world underlying such an application. In this
paper we describe a well-founded methodology for ontological analysis (called OntoClean) that is
strongly based on philosophical underpinnings, and a description-logic-based system that can be
used to support this methodology. Although the methodology is not limited to analyzing taxo-
nomies, we focus on that aspect of it here.

Most of the work described here have been published previously in a preliminary form, as will
be noted in specific sections. This paper is an extended version of [13] that presents a broader view
of the overall methodology and an extended discussion of a system to support it. We note that
some valid criticisms of the formalizations we have presented previously have been raised in [19]
and [6]. While the basic intuitions underlying these notions remain the same, some of the for-
malizations that follow have been updated in light of these criticisms. Further work and dis-
cussion are needed to fully address these changes and their implications, but it is out of the scope
of this paper, whose main purpose is to provide an overview of the methodology we have de-
veloped for conceptual modeling.

2. Background

The notions upon which our methodology is based are subtle, so before describing them in
more detail we discuss the basic intuitions behind them and how they are related to some existing
notions in conceptual modeling.



C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74 53
2.1. Taxonomies

Taxonomies are a central part of most conceptual models. Properly structured taxonomies help
bring substantial order to elements of a model, are particularly useful in presenting limited views
of a model for human interpretation, and play a critical role in reuse and integration tasks.
Improperly structured taxonomies have the opposite effect, making models confusing and difficult
to reuse or integrate.

Clearly, insights into how to properly construct a taxonomy are useful. Many previous efforts
at providing these insights have focused on the semantics of the taxonomic relationship (also
called is-a, class inclusion, subsumption, etc.) [2], on different kinds of relations (generalization,
specialization, subset hierarchy) according to the constraints involved in multiple taxonomic re-
lationships (covering, partition, etc.) [28], on the taxonomic relationship in the more general
framework of data abstractions [7], or on structural similarities between descriptions [1,4].

Our approach differs in that we focus on the arguments (i.e., the properties or concepts) in-
volved in the subsumption relationship, rather than on the semantics of the relationship itself. The
latter is taken for granted, as we take the statement “iy subsumes ¢’ for arbitrary properties s
and ¢ to mean that, necessarily: '

Vx &(x) — (x). (1)

Our focus in this chapter will be on verifying the plausibility and the well-foundedness of single
statements like (1) on the basis of the ontological nature of the two properties ¢ and . Where for
example description logics can determine whether one (complex) description does subsume an-
other, this methodology can help determine whether or not a primitive property can subsume
another.

2.2. Basic notions

We begin by introducing the most important philosophical notions: identity, essence, unity, and
dependence. The notion of identity adopted here is based on intuitions about how we, as cognitive
agents, in general interact with (and in particular recognize) individual entities in the world
around us. Despite its fundamental importance in Philosophy, the notion of identity has been
slow in making its way into the practice of conceptual modeling for information systems, where
the goals of analyzing and describing the world are ostensibly the same.

The first step in understanding the intuitions behind identity requires considering the distinc-
tions and similarities between identity and unity. These notions are different, albeit closely related
and often confused under a generic notion of identity. Strictly speaking, identity is related to the
problem of distinguishing a specific instance of a certain class from other instances of this class by
means of a characteristic property, which is unique for it (that whole instance). Unity, on the other
hand, is related to the problem of distinguishing the parts of an instance from the rest of the world
by means of a unifying relation that binds the parts, and only the parts together. For example,

! All the ontological constraints we shall introduce here will be implicitly considered as necessary, i.e. true in every possible world.
Indeed, we believe that modal necessity is what distinguishes — within a particular conceptualization of the world — an ontological truth
from a contingent assertion. The specific modal logic adopted will be clarified later.



54 C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74

asking, “Is that my dog?” would be a problem of identity, whereas asking, “Is the collar part of
my dog?” would be a problem of unity.

Both notions encounter problems when time is involved. The classical one is that of identity
through change: in order to account for common sense, we need to admit that an individual may
remain the same while exhibiting different properties at different times. But which properties can
change, and which must not? And how can we reidentify an instance of a certain property after
some time? The former issue leads to the notion of an essential property, on which we base the
definition of rigidity, discussed below, while the latter is related to the distinction between syn-
chronic and diachronic identity. An extensive analysis of these issues in the context of conceptual
modeling has been made elsewhere [11].

The fourth notion, ontological dependence, may involve many different relations such as those
existing between persons and their parents, holes in pieces of cheese and the cheese, and so on [27].
We focus here on a notion of dependence as applied to properties. We distinguish between ex-
trinsic and intrinsic properties, according to whether they depend or not on other objects besides
their own instances. An intrinsic property is typically something inherent in an individual, not
dependent on other individuals, such as having a heart or having a fingerprint. Extrinsic prop-
erties are not inherent, and they have a relational nature, like “being a friend of John”. Some
extrinsic properties are assigned by external agents or agencies, such as having a specific social
security number, having a specific customer ID, even having a specific name.

It is important to note that our ontological assumptions related to these notions ultimately
depend on our conceptualization of the world [9]. This means that, while we shall use ex-
amples to clarify the notions central to our analysis, the examples themselves will not be the
point of this paper. When we say, e.g., that “having the same fingerprint” may be considered
an identity criterion for PERSON, we do not mean to claim this is the universal identity
criterion for PERSONSs, but that if this were to be taken as an identity criterion in some
conceptualization, what would that mean for the property, for its instances, and its rela-
tionships to other properties?

To see how these intuitive notions can be used, consider for instance a bunch of bricks. The
bricks are made and sit in a pile for a while, and are then used to build a castle. The castle, over
time, crumbles back into a pile of bricks. How would we describe the lifetime of this bunch of
bricks in terms of properties, relationships, and objects? Do we represent castles and bunches
of bricks as two different properties? If so, do we have a single object which is always a “bunch of
bricks”, but which is only sometimes a “castle”’, or do we have two objects, one a castle and the
other a bunch of bricks with a relationship between them? Our analysis helps with these choices by
exposing certain assumptions underlying them. For example, many would agree that a bunch of
bricks is identified by the bricks themselves — if we remove or replace a few bricks then we have a
different bunch. A castle, on the other hand, does not seem to have this property — we can remove
or add bricks to the castle and still consider that it is the same castle. Our framework is designed to
clarify and exploit the logical consequences of decisions like this.

These decisions are ultimately the result of our sensory system, our culture, etc. and again the
aim of this methodology is to clarify the formal tools that can both make such assumptions ex-
plicit, and reveal the logical consequences of them.



C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74 55
2.3. Related notions

Identity has many analogies in conceptual modeling for databases, knowledge bases, object-
oriented, and classical information systems, however none of them completely captures the notion
we present here. We discuss some of these cases below.

Membership conditions. In description logics, the conceptual models usually focus on the suf-
ficient and necessary criteria for class membership, that is, recognizing instances of certain classes
[3]. This is not identity, however, as it does not describe how instances of the same class are to be
told apart. This is a common confusion that is important to keep clear: membership conditions
determine when an entity is an instance of a class, i.e., they can be used to answer the question, “Is
that ¢ dog?” but not, “Is that my dog?”

Globally unique IDs. In object-oriented systems, uniquely identifying an object (as a collection
of data) is critical, in particular when data are persistent or can be distributed [31]. In databases,
globally unique IDs have been introduced into most commercial systems to address this issue.
These solutions provide a notion of identity for the descriptions, for the units of data (individuals,
objects or records), but not for the entities they describe. It still leaves open the possibility that
two (or more) descriptions may refer to the same entity, and it is this entity that our notion of
identity is concerned with. There is nothing, in other words, preventing two descriptions of the
same dog from being created independently at different times/places, and thus having different
IDs; The two records describe the same dog, but they are different pieces of data. Globally unique
IDs provide identity criteria for database records, but not for the entities in the world the records
describe.

Primary keys. Some object-oriented languages provide a facility for overloading or locally
defining the equality predicate for a class. In standard database analysis, introducing new tables
requires finding unique keys either as single fields or combinations of fields in a record. These two
similar notions very closely approach our notion of identity as they do offer evidence towards
determining when two descriptions refer to the same entity. There is a very subtle difference,
however, which we will attempt to briefly describe here and which should become more clear with
the examples at the end of the chapter.

Primary (and candidate) keys and overloaded equality operators are typically based on ex-
trinsic properties that are required by a system to be unique. In many cases, information systems
designers add these extrinsic properties simply as an escape from solving (often very difficult)
identity problems. Our notion of identity is based mainly on intrinsic properties—we are interested
in analyzing the inherent nature of entities and believe this is important for understanding a
domain.

This is not to say that the former type of analysis never uses intrinsic properties nor that the
latter never uses extrinsic ones — it is merely a question of emphasis. Furthermore, our analysis is
often based on information which may not be represented in the implemented system, whereas the
primary key notion can never use such information. For example, we may claim as part of our
analysis that people are uniquely identified by their brain, but brains and their possession may not
appear in the final system we are designing. Our notion of identity and the notion of primary keys
are not incompatible, nor are they disjoint, and in practice conceptual modelers will need
both.



56 C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74
3. The formal tools of ontological analysis

In this section we shall present a formal analysis of the basic notions discussed above, and we
shall introduce a set of meta-properties that represent the behavior of a property with respect to
these notions. Our goal is to show how these meta-properties impose some constraints on the way
subsumption is used to model a domain, and to present a description logic system for checking
these constraints.

3.1. Preliminaries

Let us assume that we have a first-order language L, (the modeling language) whose intended
domain is the world to be modeled, and another first-order language L, (the meta-language)
whose constant symbols are the predicates of L,. Our meta-properties will be represented by
predicate symbols of L;. Primitive meta-properties will correspond to axiom schemes of Ly. When
a certain axiom scheme holds in L, for a certain property, then the corresponding meta-property
holds in Z,. This correspondence can be seen as a system of reflection rules between Ly and L,
which allow us to define a particular meta-property in our meta-language, avoiding a second-
order logical definition. Meta-properties will be used as analysis tools to characterize the
ontological nature of properties in L,, and will always be defined with respect to a given con-
ceptualization. In Section 5 we present an representation of L.

We denote primitive meta-properties by bold letters preceded by the sign “+”, “~=>" or “~”’, and
the notation ¢ to indicate that the property ¢ has the meta-property M. The reading of each
meta-property and its significance will be described in the subsequent sections.

In our analysis, we adopt a first-order logic with identity. This will be occasionally extended to
a simple temporal logic, where all predicates are temporally indexed by means of an extra ar-
gument. If the time argument is omitted for a certain predicate ¢, then the predicate is assumed to
be time invariant, that is 3¢ ¢(x,7) — V¢ ¢(x, ). Note that the identity relation will be assumed as
time invariant: if two things are identical, they are identical forever. This means that Leibniz’s rule
holds with no exceptions.

We make some use in this paper of modal notions such as “necessary” and ‘“‘possibly” op-
erators which quantify over possible worlds; [J¢ means ¢ is necessarily true, i.e., true in all
possible worlds, and {>¢ means ¢ is possibly true, i.e., true in at least one possible world. Our
domain of quantification will be that of possibilia. That is, the extension of predicates will not
be limited to what exists in the actual world, but to what exists in any possible world [22].
Therefore, we shall quantify over a constant domain in every possible world. Worlds will be
considered ‘“‘histories” rather than “snapshots”, and we shall consider all of them as equally
accessible. As a result, we shall adopt the simplest quantified modal logic, namely S5 plus the
Barcan Formula [17].

For example, a predicate like “Unicorn’ will not be empty in our world, although no instance
has actual existence there. Actual existence is therefore different from existential quantification
(“logical existence”), and will be represented by the temporally indexed predicate E(x, ), meaning
that x has actual existence at time 7 [16].

Finally, in order to avoid trivial cases in our meta-property definitions, we shall implicitly
assume the property variables as restricted to discriminating properties, properties ¢ such that
Oax p(x) A OIx —d(x). In other words, discriminating properties are properties for which there is



C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74 57

possibly something which has this property, and possibly something that does not have this
property, they are neither tautological nor vacuous.

3.2. Rigidity

Lowe [23] defines an essential property of an object to be a property that is necessary for this
object, i.e., the object has that property always and in every possible world. Essentiality is a re-
lationship between an individual and a property. The notion of rigidity originally introduced in [§]
is very much related to essentiality, and turns out to be very useful for conceptual modeling, This
definition has evolved somewhat to reflect more accurately the way time and modality are related
together:

Definition 1. A rigid property is a property that is essential to all its instances, i.e., a property ¢
such that: O(Vxt ¢(x, 1) — OVY ¢(x,7)).

Definition 2. A non-rigid property is a property that is not essential to some of its instances, i.e.,

O(Fx, B, 1) A O ~(x, ).

Definition 3. An anti-rigid property is a property that is not essential to «l/l its instances, i.c.,
(vt §(x,1) — O ~(x, 7).

For example, we normally think of PERSON as rigid; if x is an instance of PERSON, it must be
an instance of PERSON in every possible world. The STUDENT property, on the other hand, is
normally non-rigid; we can easily imagine an entity moving in and out of the STUDENT property
while being the same individual.

Anti-rigidity was added as a further restriction to non-rigidity. The former constrains all in-
stances of a property and the latter, as the simple negation of rigidity, is not very informative.
Anti-rigidity attempts to capture the intuition that all instances of certain properties must possibly
not be instances of this property. Consider the property STUDENT, for example: in its normal
usage, every instance of STUDENT is not necessarily so.

Modal necessity is often confused with temporal permanence, but it is more general. For ex-
ample, it is possible for a person to be a student their whole life, but this does not violate an anti-
rigid assertion on the property PERSON. That the person was a student their whole life was
accidental, i.e., not necessary: there are possible worlds in which this was not the case. The impact
for information systems is simple: an anti-rigid property must possibly change, however there is no
requirement that for each individual it does actually change. A rigid property, on the other hand,
must not change. A non-rigid property has no restrictions, for some instances it may be essential
(must not change), for some it may change. This weakness of non-rigidity led us to the stronger
anti-rigid meta-property.

Rigid properties are marked with the meta-property +R, non-rigid properties are marked with
—R, and anti-rigid properties with ~R. Note that rigidity as a meta-property is not “inherited”” by
sub-properties of properties that carry it, e.g., if we have PERSON™® and Vx STUDENT (x) —
PERSON (x) then we know that all instances of STUDENT are necessarily instances of PERSON,
but not necessarily (in the modal sense) instances of STUDENT. In this case, we would assert
STUDENT® to indicate that every instance of STUDENT can cease to be a student, however no



58 C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74

instance of STUDENT can cease to be a person. On the other hand, we can show that anti-rigidity
is inherited, e.g., any property subsumed by STUDENT must be anti-rigid.

Rigidity is also intuitively tied to existence, however we leave this philosophical discussion for
future work.

3.3. Identity

In the philosophical literature, an identity condition (1C) for an arbitrary property ¢ is usually
defined as a suitable relation p satisfying the following formula:

d(x) A d(y) — (p(x,y) < x=y). (2)

For example, an IC for the property PERSON may be having-the-same-SSN or having-the-
same-fingerprints, if these relations are assumed to satisfy (2). When a relation p satisfying (2)
exists for a property ¢, we say the property carries an IC. The goal here is to find a relation that,
for all instances of a property, is tantamount to identity. In information systems we typically
provide artificial or extrinsic criteria for making this determination (q.v. Section 2.3), but in
ontology this is the most basic question in explaining the existence of classes of entities: how do we
know that an entity exists, how can it be identified?

As discussed in more detail elsewhere [11,15], the formulation in (2) has some problems, in our
opinion. The first problem is related to the need for distinguishing between supplying an 1C and
simply carrying an IC: it seems that non-rigid properties like STUDENT can only carry their ICs,
inheriting those supplied by their subsuming rigid properties like PERSON. The intuition behind
this is that, since the same person can be a student at different times in different schools, an IC
allegedly supplied by STUDENT (say, having the same registration number) may be only local,
within a certain studenthood experience.

The second problem regards the nature of the p relation: what makes it an IC, and how can we
index it with respect to time to account for the difference between synchronic and diachronic
identity?

Finally, deciding whether a property carries an IC may be difficult, since finding a p that is both
necessary and sufficient for identity is often hard, especially for natural kinds and artifacts. We
believe therefore that a more practical approach is required for work in information systems.

For these reasons, we have defined (2) as follows:

Definition 4. An IC is a sameness formula X that satisfies either (3) or (4) below, excluding trivial
cases [11] and assuming the predicate E for actual existence discussed in Section 3.1:

OE(x,6) A p(x,t) NE, )N, ) Ax =y — Z(x,p,t,1)), (3)
O(E(x,6) A d(x,t) NE(v, ) N dp(n,¢) A X(x,p,1,1') — x =y). (4)

The sameness formula ¢ is a logical formula that expresses ICs for some property, usually in
terms of the identity of related parts or properties. For example an IC for PERSON may be the
formula fingerprint(x,t) = fingerprint(y,t').

As correctly pointed out by Kaplan [19] and Carrara and Giaretta [5], there are many possible
trivial formulae that satisfy the formal requirements for being an IC, but are not informative.



C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74 59

While we may begin to exclude logically some of these trivial cases, it is useful to point out that
valid ICs must be informative.

An IC is necessary if it satisfies (3) and sufficient if it satisfies (4), and need not be both. This is,
as mentioned above, weaker than (2), as is our reliance on actual existence, indicating that these
formulae may only be heuristics for identity, however we believe they are more practical for in-
formation systems.

Based on this, we define two meta-properties:

Definition 5. Any property carries an 1C iff it is subsumed by a property supplying this IC (in-
cluding the case where it supplies the IC itself).

Definition 6. A property ¢ supplies an IC iff (i) it is rigid; (ii) there is an IC for it; (iii) the same IC
is not carried by all the properties subsuming ¢. This means that, if ¢ inherits different (but
compatible) ICs from multiple properties, it still counts as supplying an IC.

Definition 7. Any property carrying an IC is called a sortal [30].

Any property carrying an IC is marked with the meta-property +I (—I otherwise). Any property
supplying an IC is marked with the meta-property +O (-O otherwise). The letter “O” is a
mnemonic for “own identity”’. From the above definitions, it is obvious that +O implies +I and
+R. For example, both PERSON and STUDENT do carry identity (they are therefore +I), but
only the former supplies it (+0). The property RED, e.g., normally does not carry identity — there
is no necessary or sufficient formula that will identify or re-identify red things simply because they
are red. Note that being red, the property itself, is trivially true of all instances of RED and is
therefore not a legitimate 1C.

3.4. Unity

In previous work we have extensively discussed and formalized the notion of unity, which is
itself based upon the notion of part [11]. This formalization is based on the intuition that
something is a whole if there exists a division such that all its members are connected to each other
and to nothing else. We assume here that the axiomatization of the part relation is as shown in
Table 1, where P(x,y,t) means that x is a (proper or improper) part of y at time .

Briefly, we define:

Definition 8. An object x is a whole under w iff w is a relation such that all the members of a certain
division of x are linked by w, and nothing else is linked by w.

Table 1

Axiomatization of the part relation, adapted from Simons [27]
PP(x,y,t) =qer P(x,y, 1) N\~ x =1y Proper part
O(x,»,1) =qer 3z (P(z,x,t) A P(z,,1)) Overlap
Px,y,t) NP(y,x,t) > x =y Anti-symmetry
P(x,y,t) ANP(y,z,t) — P(x,z,1) Transitivity

PP(x,y,t) — 3z (PP(z,»,t) A =O(z, x, 1)) Weak supplementation




60 C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74

Definition 9. A property ¢ carries a unity condition iff there exists a single relation w such that
each instance of ¢ is necessarily a whole under .

Depending on the ontological nature of the w relation, which can be understood as a “gen-
eralized connection”, we may distinguish three main kinds of unity for concrete entities (i.e., those
having a spatio-temporal location). Briefly, these are:

e Topological unity: based on some kind of topological or physical connection, such as the rela-
tionship between the parts of a piece of coal or an apple.

o Morphological unity: based on some combination of topological unity and shape, such as a ball,
or a morphological relation between wholes such as for a constellation.

o Functional unity: based on a combination of other kinds of unity with some notion of purpose as
with artifacts such as hammers, or a functional relation between wholes as with artifacts such as

a bikini.

As the examples show, nothing prevents a whole from having parts that are themselves wholes
(with a different UC). This can be the foundation of a theory of pluralities, which is however out
of this paper’s scope.

As with rigidity, in some situations it may be important to distinguish properties that do not
carry a common UC for all their instances, from properties all of whose instances are not nec-
essarily wholes. As we shall see, an example of the former kind may be LEGAL AGENT, all of
whose instances are wholes, although with different UCs (some legal agents may be people, some
companies). AMOUNT OF MATTER is usually an example of the latter kind, since none of its
instances are wholes necessarily. Therefore we define:

Definition 10. A property has anti-unity if every instance of the property is not necessarily a
whole.

Any property carrying a UC is marked with the meta-property +U (-U otherwise). Any
property that has anti-unity is marked with the meta-property ~U, and of course ~U implies —U.

3.5. Dependence

The final meta-property we employ as a formal ontological tool is based on the notion of
dependence. As mentioned in Section 2.2, we focus here on ontological dependence as applied to
properties. The formalization below is based on Simons’ definition of notional dependence [27]. We
are aware that this is only an approximation of the more general notion of extrinsic (or relational)
property, and that further work is needed (see for instance [18]).

Definition 11. A property ¢ is externally dependent on a property  if, for all its instances x,
necessarily some instance of y must exist, which is neither a part nor a constituent of x:

Vo O(p(x) — Iy ¥(y) A =Py, x) A =C(y,x)). (5)

The part relation P was discussed in Section 3.4. The relation C(x,y) is used to denote con-
stitution. Constitution differs subtly from part, in that it refers to the substance of which an entity
is made. A castle is made of bricks, a statue from (perhaps) marble. Constitution usually relates
concrete entities to mereologically essential wholes (i.e., collections or masses). Constitution is an



C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74 61

important notion to grasp, because it is commonly confused with subsumption. We discuss
constitution with more rigor in [11], and give further examples of it in Section 6.

Clearly if we do not discount parts and constituents in (5), nearly all properties denoting
classes of concrete entities would be dependent, since all non-atomic concrete entities have
parts and are constituted of some material. In addition to excluding parts and constituents, a
more rigorous definition must exclude qualities (such as colors), things which necessarily exist
(such as the universe), and cases where  is subsumed by ¢ (since this would make ¢ de-
pendent on itself). Intuitively, we say that, for example, PARENT is externally dependent on
CHILD (one cannot be a parent without having a child), but PERSON is neither externally
dependent on heart nor on body (because any person has a heart as a part and is constituted
of a body).

An externally dependent property is marked with the meta-property +D (—D otherwise).

3.6. Constraints and assumptions

The first observation descending immediately from our definitions regards some subsumption
constraints. If ¢ and  are two properties then the following constraints hold:

¢~® must subsume ¥, (6)
¢ must subsume ", (7)
¢"Y must subsume Y, (8)
¢~V must subsume ™Y, 9)
¢ ™ must subsume Y™, (10)
Properties with incompatible ICs/UCs are disjoint. (11)

Constraints (6)—(10) follow directly from our meta-property definitions (see [12] for more dis-
cussion and examples), and (11) should be obvious from the above discussion of identity and
unity, but it is largely overlooked in many practical cases [12,15]. See Section 6 for an example
that shows the practical use of these constraints.
Finally, we make the following assumptions regarding identity (adapted from Lowe
[23]):
o Sortal individuation. Every domain element must instantiate some property carrying an 1C (+I).
In this way we satisfy Quine’s dicto “No entity without identity’ [26].
o Sortal expandability. If two entities (instances of different properties) are the same, they must be
instances of a property carrying a condition for their identity.

4. Methodology

The specific goal of this methodology is to make modeling assumptions clear. One of the most
important ways the methodology is used is in analyzing taxonomies to form well-founded taxo-
nomies, which are discussed further in Section 6.

The methodology is made up of a number of formal analysis tools that can be grouped into
four distinct layers, such that the notions and techniques within each layer are based on the



62 C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74

notions and techniques in the layers below. In Fig. 1, the methodology is depicted as four layers
that support a process in which a person’s or group’s conceptualization evolves into a concrete
conceptual model. In this section, we very briefly outline the purpose of each layer and the tools in
it, followed by a brief discussion of a system to support the methodology.

4.1. First layer: Foundations

In the lowest, foundational, layer of the methodology are the meta-properties described in
Section 3. As discussed there, the meta-properties correspond to axiom schemes in the modeling
language and properties in the meta-language. Properties in the modeling language correspond to
constant symbols in the meta-language. This proves important for our support system, which
implements only the meta-language.

4.2. Second layer: Useful property kinds

The second layer in the methodology contains an ontology of useful property kinds, originally
presented in [12].

The formal ontology of properties discussed in [12] distinguishes eight different kinds of
properties based on the valid and most useful combinations of the meta-properties discussed in
Section 3. These are shown in Table 2 and in Fig. 2. These property kinds enrich a modeler’s
ability to specify the meaning of properties in an ontology, since the definition of each property
kind includes an intuitive and domain-independent description of how this kind of property
should be used in an ontology.

Table 2
All possible combinations of the meta-properties

+D
+0 | +I | +R Type
-D
+D
O | +I | +R Quasi-type
D El
O | +I| ~R | +D Material role %
O | +I| ~R | -D Phased sortal
+D
- 1| -R Mixin
O | + D
+D
O | -I|+R D Category 3
B
O|-I|~R| +D Formal Role %
R| D ;
-0 | -I +D Attribution




C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74 63

Category

Non-
sortal

Attribution

Formal Role

Role .
Material

Property role
Phased

. sortal

Non-rigid

Sortal Mixin

Type

Rigid <
Quasi-type

Fig. 2. Taxonomy of properties.

As discussed later, deciding what the identity criteria are for all instances of a property is a
subtle task that requires training and experience, although engaging in discussion with team
members on these questions is often, in practice, very illuminating. Given that our methodology
only requires knowing whether a property has an IC or not, our system contains examples of
common kinds of identity criteria as ad hoc meta-properties, to assist less experienced modelers
with these decisions. For example, the meta-property +CO, designates a countable property. This
is an important specialization of sortals. In many cases, besides carrying identity (+I), countable
properties also carry unity (+U). A countable property can only subsume other countable
properties, and indicates that its instances can be counted. For example, the property WATER is
ordinarily not countable (one does not count the water filling a cup), however the property CUP is
countable. Of course, this does not imply that the property WATER does not have identity; a
property may be non-countable and still have an IC.

4.3. Third layer: Ontology-based modeling principles

The third layer in the methodology contains the notions of backbone property and stratification.

The backbone taxonomy. One of the principal roles of taxonomies is to impart structure on an
ontology, to facilitate human understanding, and to enable integration. We have found that a
natural result of our analysis is the identification of special properties in a taxonomy that best fill
this role. We call these properties backbone properties, which constitute the backbone taxonomy
[12].

The backbone taxonomy consists only of rigid properties, which are divided into three kinds (as
discussed above): categories, types, and quasi-types. Categories cannot be subsumed by any other
kinds of properties, and therefore represent the highest level (most general) properties in a tax-
onomy. They are usually taken as primitive properties.

Types are critical in our analysis because according to the assumptions presented in Section 3.6,
every instance instantiates at least one of these properties. Therefore the backbone provides the
basic structure of the entire domain.



64 C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74

These notions give rise to an idealized view of how ontologies should be structured taxo-
nomically, as shown in Fig. 3. While strict adherence to this idealized structure may not always be
possible, we believe that following it to the degree possible will grow to be an important design
principle for conceptual modeling, with pay-offs in understandability and ease of integration.

Stratification. A very important result of our analysis is the recognition of multiple entities,
based on incompatible identity or unity criteria, where usually only one entity is conceived. The
classical example is the statue and the clay it is made of, which count as different objects in our
analysis. This view results in a stratified ontology [10], where entities belong to different levels,
depending on their unity and identity assumptions:

e +ME. Properties carrying a mereologically extensional I1C. Certain properties, as discussed in
Section 3.5, concerning masses or plural entities have as a necessary identity condition that
the parts or members of their instances must be the same (instances cannot change their parts).
For example GROUP-OF-PEOPLE, if the members change, it is a different group. These prop-
erties cannot subsume properties with —ME.

o +UT. Properties carrying topological unity. See Section 3.4. Properties with +UT have unity
(+U), and cannot subsume properties with —UT. In addition, these properties are normally de-
pendent on properties with +ME, due to constitution. A brick, for example, is constituted of
clay.

o +UM. Properties carrying morphological unity. See Section 3.4. Properties with +UM have
unity (+U), and cannot subsume properties with —UM. In addition, these properties are nor-
mally dependent on properties with +UT, due to constitution. A garden path, for example,
may be constituted of non-touching bricks scattered in a particular pattern.

o +UF. Properties carrying functional unity. See Section 3.4. Properties with +UF have unity
(+U), and cannot subsume properties with —UF. In addition, these properties are normally de-
pendent on properties with +UT or +UM, due to constitution. A castle, for example, may be
constituted of bricks, and is only a whole while it can still function as a castle.

We distinguish, based on these meta-properties, levels of ontological stratification: the physical
level, the functional level, etc. In addition, other types of identity and unity conditions can be
conceived that would define e.g., the biological level (living things), the social level (organiza-

Non-sortals Backbone Taxonomy
Attributions Fl;):lgill
Sortals Top Types
Types &
| Quasi-Types
Mixins M]:E)elzsal

Phased Sortals

Fig. 3. Ideal taxonomy structure. In general, a property in one group must be subsumed by a property in the group(s) above it.



C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74 65

tions), etc. Entities at the higher levels are constituted (and co-located with) entities at the lower
levels. Properties at each level are disjoint from properties at other levels. The advantage of this
view is a better semantic account of the taxonomic relation, a better account of the hidden on-
tological assumptions, and in general better ontologies. The costs are a moderate proliferation (by
a constant factor corresponding to the number of levels) of the number of entities in the domain,
and the necessity to take into account different relations besides is-a, such as dependence, spatio-
temporal co-localization, and constitution.

4.4. Fourth layer: Top level ontology

The highest layer of our methodology is a top-level ontology designed using the notions and
techniques of the layers below. First steps towards this layer of the methodology have been
discussed in [10].

4.5. Questionlanswer system

Finally, we have captured the notions and techniques from these four layers in a knowledge-
based system that guides conceptual modelers through the analysis process. This approach is
similar to that of [29], and is described more fully in Section 5. The system implements only the
meta-language, providing some consistency checking of the constraints outlined in Section 3.6.

5. Knowledge-based support

The methodology based on these techniques requires that the assignment of meta-properties to
properties in an ontology be performed by hand. This analysis in all cases requires that the
modeler be very clear about what each property means. We have developed a support system that
can help modelers with this analysis, as it can verify the consistency of a taxonomy based on the
constraints described in Section 3.6. A modeler enters information about properties to be used in a
conceptual model, and the proposed taxonomic structure. Meta-properties are assigned, and the
consistency of the taxonomy is then checked automatically.

In this section we describe aspects of the system and in the next section walk through a simple
example using the system.

5.1. Overview

The system implements all the constraints and all the inferences described in previous sections
for the meta-language. It has two basic modes of operation: a question/answer (Q/A) mode and a
batch mode. It is our intention to make both modes of the system available online.

In Q/A mode, the system is designed to assist a modeler in choosing the appropriate meta-
properties for their properties by asking a series of questions. More general questions are asked
first, such as “Does the property carry identity?”” and the modeler may respond yes, no, or unsure.
If unsure about a meta-property, more specific questions can be asked such as, ““Are instances of
the property countable?” It is always possible to leave answers unknown, of course in these cases
the system cannot verify the correctness of those properties.

As the properties are being entered, the information presented so far is checked for consistency,
and any inferences are made. For example, if a modeler answers ““yes’ to the question that assigns
the ~R meta-property, the system will infer that the property is also —R. If a modeler assigns +R



66 C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74

to a property and also asserts that it is subsumed by a property with ~R, the system will im-
mediately raise an appropriate error.

The system is implemented in CLASSIC, a description logic system developed at AT&T Bell
Labs in 1990 [3]. CLASSIC was chosen mainly because of its familiarity to the implementors,
however there are some good rationale for this choice. All the reasoning required of the meta-
language is provided, almost no code other than I/O was needed. CLASSIC is the only description
logic with a full explanation system implemented and included, making it possible to generate
explanations for constraint violations (as opposed to simply saying there was a violation).

The total system without the meta-property definitions is under 14K of LISP code. The system
works by first loading in the definitions, allowing us to add and modify them. Then the modeler
may invoke the Q/A system or simply load a batch file consisting of properties and their meta-
property tags (+R, +I, etc.). An example of how the meta-properties are defined is given in Fig. 4,
as well as an example property specification for batch mode.

5.2. Reasoning

The reasoning required of the system is fairly rudimentary for a description logic. In addition to
the obvious implications of the property kind taxonomy shown in Fig. 2 (i.e., a type is a sortal and
a rigid sortal), the system is designed so that no redundant information need be specified, making
the job of the modeler a bit easier.

The system uses the open world assumption regarding the meta-properties of the properties the
modeler enters. A property is not assumed to have any meta-properties until they are asserted by
the modeler. To accomplish this within the description logic framework, as well as provide for the
possibility of “‘unknown’ answers in a binary truth valued logic, each possible meta-property
assignment is represented as a concept. For example, there is a concept corresponding to the rigid
meta-property, as well as concepts for non-rigid and anti-rigid, i.e., three concepts as shown in
Fig. 4. Opposite meta-properties are handled by making their corresponding concepts disjoint
from each other, thus when you assert a property is e.g., rigid, the system knows that it cannot be
non-rigid. Anti-rigid is asserted to be subsumed by non-rigid, thus when a property is assigned ~R
it is known to be —R as well. To leave a meta-property as unknown, the modeler must basically
answer “no’’ to two questions, e.g., “Is the property rigid?”” and “Is the property non-rigid?”

It is important to keep in mind that since the properties of the modeler’s ontology are actually
constant symbols in the meta-language, the modeler’s properties are represented as individuals in
the system, and are instantiated when the modeler enters their names. They are allowed to have
two relations: the generalization/specialization-of relation and the name of a characteristic rela-
tion. For each relation, the modeler is asked if there are values for it.

(define-meta-prop rigid-property nil (define-meta-prop anti-rigid-property
:disjoint-partition rigid non-rigid-property
:tag "+R" :tag "~R"
:classify-message "The property ~a is rigid" :disjoint-partition anti-rigid
:question "Is this property rigid?") :classify-message "The property ~a is anti-rigid"

:question "Is this property anti-rigid?"
(define-meta-prop non-rigid-property nil

:tag "-R" (define-property 'red-apple :ask? nil
:classify-message "The property ~a is non-rigid" :tags "+I-0+U-D~R"
:question "Is this property non-rigid?" :xvs ' ((subsumed-by apple red))

:disjoint-partition rigid)

Fig. 4. Example meta-property definitions.



C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74 67

Since the modeler’s properties are individuals, the description logic does not provide any special
reasoning services for subsumption between them. Classic provides automatic relation inverses, so
asserting that one property is a specialization of another causes the generalization inverse to be
asserted as well. In addition, the generalization/specialization relations between the individuals are
defined to be transitive, as expected. This requires some special machinery since Classic does not
support transitivity, but can easily be accomplished in the standard way with a primitive (non-
transitive) version of the relation and the transitive version, as with the canonical parent/ancestor
relations in Prolog.

All the constraints (other than the obvious ones provided by disjointness) are expressed as
necessary conditions on the concepts representing the meta-properties. For example, constraint
(6) in Section 3.6 is represented as a necessary condition on anti-rigid properties: V generalization-
of - ANTI-RIGID-PROPERTY (i.e., an anti-rigid property can only be the generalization of anti-
rigid properties).

All inference and constraint checking is done as soon as the information is made available by
the modeler. The explanation system provided by Classic is therefore particularly important in
batch mode, as the modeler cannot benefit from the context of having just answered a question to
know why an inconsistency was generated.

5.3. Evaluation

While the system was not designed to be particularly usable, we have evaluated it along two
dimensions: effectiveness of the questions and scalability.

5.3.1. Scalability

We have tested the system on randomly generated hierarchies up to 20,000 nodes in batch
mode. The reasoning the system performs is trivial and experimental results indicate two di-
mensions of complexity: number of properties and number of parents. In each dimension, com-
plexity was observed to be linear, with the system performing all reasoning as fast as the batch files
would load. Combining the two dimensions (i.e., large datasets with much multiple inheritance)
resulted in polynomial increases.

We are not concerned with the latter result as the artificial data were difficult to generate, and
based on our experiences do not seem to correspond to real systems. In fact, we believe an im-
portant result of our methodology is a drastic reduction in multiple inheritance links between
properties [12].

5.3.2. Effectiveness of questions

We have found that among people who have done a lot of conceptual modeling, many aspects
of our methodology make sense. In fact the methodology is in use by several companies for
conceptual modeling and integration projects such as OntoWorks and Document Development
Corporation, among others. The main difficulty in applying it, however, is understanding when
and what identity and unity conditions apply to properties in a domain.

We have attempted to gather together a few examples of common identity and unity criteria,
and the system is designed to incorporate this additional information as further sub-concepts of
the existing meta-property definitions.



68 C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74

When a modeler is unsure about a particular meta-property, and therefore answers “no” to the
questions for the two disjoint concepts that represent it, the system moves further down the hi-
erarchy of concepts. If a modeler is sure about a meta-property and therefore answers “yes” to a
question, the Q/A system does not ask any more questions about it.

6. Example

In this section we provide a brief example of the way our analysis can be used. A complete
version of this example is available [14].

We begin with a set of properties arranged in a taxonomy, as shown in Fig. 5. In Table 3 we
provide some basic explanations of the intended meaning of these properties. The taxonomy we
have chosen makes intuitive sense prima facie, and in most cases the taxonomic pairs were taken
from existing ontologies such as Wordnet [24], Pangloss [20], and CYC [21]. See [10] for more
similar examples of intuitive taxonomic orderings in existing ontologies that are inconsistent
under our analysis.

The modeler, after making these initial decisions about the meta-properties and taxonomy,
starts the system. For brevity, we assume the modeler enters the first four properties in batch
mode, and the system responds, as shown in Fig. 6.

The final error indicates to the modeler that something is wrong with having AMOUNT-OF-
MATTER subsume LIVING-BEING; the more general concept is mereologically extensional and
has no unity, and a living being has biological unity. This is one of the most common modeling
mistakes our methodology can reveal: living beings are not amounts of matter, they are consti-
tuted of matter. Constitution is not subsumption. The correction is to make LIVING-BEING
subsumed directly by ENTITY.

The modeler makes this correction and proceeds. For the next property, RED, we show an
interaction with the Q/A system in Fig. 7. In this interaction, we can see that the modeler is unsure
about whether or not the property carries a UC, answering no to all questions. The system then

Entity-U-D+R

Location Amount of matter

Red Agent Group

Physical
object

Living being Group of people

Social entity

Animal Legal agent

Vertebrate

Ay

' Caterpillar
Red apple

Organization

Country Butterfly Person

Fig. 5. A messy taxonomy.



C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74

Table 3
Meta-properties assigned to the initial properties

69

Property Meta-properties Kind Notes

Entity -I+U-D+R Category Everything is an entity

Location +0~U-D+R Type Generalized regions of space. Locations are
+ME (mereological extensional IC), no UC,
there is no way to isolate a location

Amount-of-matter +0~U-D+R Type Mass sortal: unstructured or scattered stuff, as
lumps of clay or some bricks. +ME, no UC

Red -I-U-D-R Formal Intended as Red thing. No common IC nor UC/

attribution

Agent -I-U+D~R Formal role Being an active participant in some event.
Agents have no common IC/UC, i.e., one
condition that holds for all instances

Group +0~U-D+R Type Unstructured collections of wholes +ME. Note
that ~ U for groups represents a particular
ontological choice by the modeler (which
ignores the mathematical sense of groups)

Physical object +0+U-D+R Type Isolated material objects. IC:
same-spatial-location, topological UC

Living being +0+U-D+R Type IC: same-DNA (necessary), biological UC

Group of people +I-0O~U-D+R Quasi-type Groups whose elements are people. Like for
group, IC is ME, when the people change it is a
different group

Social entity -I+U-D+R Category Groups of people brought together for some
social reason. No common 1C. UC: social
connection

Fruit +0+U-D+R Type Whole pieces of fruit. IC (necessary):
same-plant and same-shape? topological UC

Food +I-0~U+D~R Material role Amounts of edible stuff. Dependent on things
that eat them, nothing is food necessarily

Animal +0+U-D+R Type IC: same-brain? biological UC

Legal agent +I-U+D~R Material role Legally recognized entities. Local IC, no
common unity, dependent on the legal body
that recognizes them

Apple +0+U-D+R Type IC (necessary): same shape, color, skin pattern?
Topological UC

Country +I+U-D~R Phased sortal Places, recognized by convention. IC:
government, regions. Countries are countable,
so some UC. A place can stop being country
and still exist (e.g. Prussia)

Red apple +I-0-D~R Mixin Inherits IC and UC from Apple. No apple is
necessarily red

Caterpillar +I+U-D~R Phased sortal IC: spots, same cocoon? Biological UC, but the
same entity can be something else, so anti-rigid

Butterfly +I+U-D~R Phased sortal IC: wing pattern? Biological UC, but the same
entity can be something else, so anti-rigid

Vertebrate +I-0+U-D+R Quasi-type Vertebrate animals. Biological classification,
adds membership conditions but probably no
IC/uC

Organization +0+U-D+R Type Groups of people together for some reason,
with roles that define some structure. IC:
same-mission (necessary), and functional UC

Person +0+U-D+R Type IC could be same-fingerprint (sufficient),

biological UC




70 C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74

---The property ENTITY does not carry unity ---Property AMOUNT-OF-MATTER is a type.
---Property ENTITY is a category. ---The property AMOUNT-OF-MATTER is rigid

---The property ENTITY does not carry identity and ---The property AMOUNT-OF-MATTER carries identity
is a non-sortal and is a sortal

---The property ENTITY is rigid ---The property AMOUNT-OF-MATTER carries its own
---The property ENTITY is independent identity

---The property ENTITY does not carry its own iden- ---The property AMOUNT-OF-MATTER is independent
tity

Initial Classification of AMOUNT-OF-MATTER: +I +0
Initial Classification of ENTITY: +CA +R -D -U -I - ~U -D +R -U +TP

0
---The property LIVING-BEING carries unity.
---The property LOCATION does not carry unity ---Property LIVING-BEING is a type.
---Property LOCATION is a type. ---The property LIVING-BEING is rigid
---The property LOCATION is rigid ---The property LIVING-BEING carries identity and
---The property LOCATION carries identity and is a is a sortal
sortal ---The property LIVING-BEING carries its own iden-
---The property LOCATION carries its own identity tity
---The property LOCATION is independent ---The property LIVING-BEING is independent

*CLASSIC ERROR* while processing:
Initial Classification of LOCATION: +I +R -D -U +0O Trying to combine disjoint primitives:

+TP @tc{UC-PROP} and @tc{NON-UC-PROP}.
*EXPLANATION*: ~U (AMOUNT-OF-MATTER) cannot sub-

---The property AMOUNT-OF-MATTER carries anti- sume +U (LIVING-BEING).

unity.

---The property AMOUNT-OF-MATTER does not carry

unity

Fig. 6. Sample output for first four properties in batch mode.

? (define-property 'red)

Is this property subsumed by any others? (v or n) y

What is it (list for multiple values): entity

Are instances of this property identified by a characteristic relation? (y or n) n
Is this property anti-rigid? (y or n) n

Does the property carry its own identity? (y or n) n

Is this property rigid? (y or n) n

Is this property non-rigid? (y or n) y

Are instances of this property dependent on instances of another property? (y or n) n
Are instances of this property independent? (v or n) y

Does the property carry an identity criterion (answer no if unknown)? (y or n) n
Are all instances of this property identifiable in different ways? (y or n) y

Does this property carry unity? (y or n) n

Are all instances of this property non-wholes? (y or n) n

Are instances of this property wholes under different relations? (y or n) n

Are all instances of this property countable? (y or n) n

Are there instances of this property that are not countable? (y or n) y

---The property RED does not carry unity

---Property RED is an attribution

Initial Classification of RED: -I -U -D -R -0 +AT

Fig. 7. Sample output for RED in Q/A mode.

asks a question regarding countability, which is an indicator of unity. The modeler indicates that
not all instances of red can be counted (consider the number of red patches in a red carpet), and
the system concludes that the property does not carry unity.

This gives a flavor for how the systems works. We now skip to the next problematic property in
the ontology. When the modeler enters the information for PHYSICAL-OBJECT, the system
raises an error:

Trying to combine disjoint primitives: UC-PROP and NON-UC-PROP.
"EXPLANATION" : ~ U (AMOUNT-OF-MATTER) cannot subsume
+ U (PHYSICAL-OBJECT).



C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74 71

This is yet another example of constitution being confused with subsumption. Physical objects
are not themselves amounts of matter, they are constituted of matter. The solution is to make
PHYSICAL-OBJECT subsumed directly by ENTITY.

The next problem occurs with the property ANIM AL, which was declared to be subsumed by
AGENT:

Trying to combine disjoint primitives: INDEPENDENT-PROP

and DEPENDENT-PROP. *
EXPLANATION": +D (AGENT) cannot subsume — D (ANIMAL).

This is a different kind of problem in which subsumption is being used to represent a type
restriction. The modeler intends to mean, not that all animals are agents, but that animals can be
agents. This is a very common misuse of subsumption, often used by object-oriented program-
mers. The correct way to represent this kind of relationship is with a covering, i.e.,
Vx AGENT (x) — SOCIAL-ENTITY (x) V ANIMAL(x). Clearly this is a different notion than sub-
sumption. The solution is to remove the subsumption link between ANIMAL and AGENT, and
represent this information elsewhere.

The modeler proceeds, fixing problems like these until finished. The system uncovers three more
errors regarding BUTTERFLY, CATERPILLAR, and COUNTRY. The former two are phased
sortals, which require a common subsuming property according to the sortal expandability
principle, so LEPIDOPTERAN is added to the taxonomy. The original choice of meta-properties
for COUNTRY reveals that it is a phased sortal, and requires another phased sortal to “phase
into”. The modeler is forced to justify this decision and realizes that there are indeed two different
properties: country as a social entity (COUNTRY in Fig. 8) and country as a location (GEO-
GRAPHICAL REGION in Fig. 8). The initial choice was based on a common misuse of multiple
inheritance, representing multiple meanings of the same word.

Entity -I-U-D+R

Amount of matter Physical object Red
+0~U-D+R +0+U-D+R -I-U-D-R
- Agent : :
Food Social entity
L. . -I-U+D~R
+-0~U+D~R Living being +0+U-D+R
+0+U-D+R / Group
+0-U-D+R .
Location Legal agent +g:gl+tR
+0-U-D+R +0-U+D~R /
\ Animal Group of people
+0+U-D+R b ot peop Country
. +I-0-U-D+R O+D+R
Geographical +O+D+
region : Apple
+O.D+R Vertebrate Lepidopteran Organization +0-D+R
_O+I-D+R +0+U-D+R +O+D4R
/ T

Person Butterfly Caterpillar Red apple
+0-D+R +I-O+U-D~R +I-O+U-D~R +[-O-D~R

Fig. 8. The final taxonomy with highlighted backbone.



72 C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74

The final corrected taxonomy is shown in Fig. 8. More detailed descriptions of all the errors in
the initial taxonomy and the solutions can be found in [14].

In addition to checking constraints and performing simple inference, the system also supports
the methodology with several simple procedures for displaying useful slices of the ontology, such
as the backbone taxonomy, the role taxonomy, phased sortals, etc.

Phased sortals are themselves cause for special consideration. Some attempt at describing them
was made in [12] based on the work of Wiggins [32], however further analysis and clarification is
needed. This remains an open issue. Real phased sortals seem to appear rarely in our experience,
and therefore isolating them and checking that they are correct is a useful practice.

7. Conclusion

We have discussed several notions of formal ontology used for ontological analysis in Phi-
losophy: identity, unity, essence, and dependence. We have formalized these notions in a way that
makes them useful for conceptual modeling, and introduced a methodology for ontological
analysis founded on these formalizations.

Our methodology is supported by a system that helps the conceptual modeler study the deep
ontological issues surrounding the representation of properties in a conceptual model, and we
have shown how this methodology can be used to analyze individual taxonomic links and make
the taxonomy more understandable. In particular, we have also shown how to identify the
backbone taxonomy, which represents the most important properties in an ontology that subsume
every instance.

Unlike previous efforts to clarify taxonomies, our methodology differs in that:

o [t focuses on the nature of the properties involved in subsumption relationships, not on the na-
ture of the subsumption relation itself (which we take for granted).

o [tis founded on formal notions drawn from ontology (a discipline centuries older than database
design), and augmented with practical conceptual design experience, as opposed to being
founded solely on the former or latter.

o It focuses on the validation of single subsumption relationships based on the intended meaning
of their arguments in terms of the meta-properties defined here, as opposed to focusing on struc-
tural similarities between property descriptions.

Finally, it is important to note again that in the examples we have given, we are providing a way

to make the meaning of properties in a certain conceptualization clear. We do not, for example,

mean to claim that “Person is-a Legal-Agent” is wrong. We are trying to point out that in a

particular conceptualization where LEGAL-AGENT has certain meta-properties (such as being

anti-rigid) and PERSON certain others (such as being rigid), it is inconsistent to have person
subsumed by legal-agent.

Acknowledgements

This work was supported in part by the Eureka Project (E! 2235) IKF, the Italian National
Project TICCA (Tecnologie cognitive per I'interazione e la cooperazione con agenti artificiali),
and a Research Committee Grant from Vassar College. We would like to thank Claudio Masolo,



C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74 73

Milena Stefanova, Pierdaniele Giaretta, Alessandro Oltramari and Bill Andersen for their useful
comments.

References

[1] S. Bergamaschi, C. Sartori, On taxonomic reasoning in conceptual design, ACM Transactions on Database Systems 17 (3) (1992)
285-422.

[2] R. Brachman, What IS-A is and isn’t: an analysis of taxonomic links in semantic networks, IEEE Computer 16 (10) (1983) 30-36.

[3] RJ. Brachman, D.L. McGuinness, P.F. Patel-Schneider, L. Resnick, A. Borgida, Living with CLASSIC: when and how to use a
KL-ONE-like language, in: J. Sowa (Ed.), Principles of Semantic Networks, Morgan Kaufmann, Los Altos, CA, 1990, pp. 401-
456.

[4] D. Calvanese, M. Lenzerini, D. Nardi, Description logics for conceptual data modeling, in: J. Chomicki, G. Saake (Eds.), Logics
for Databases and Information Systems, Kluwer, Dordrecht, 1998, pp. 229-264.

[5] M. Cararra, P. Giaretta, Identity criteria and sortal concepts, in: C. Welty, B. Smith (Eds.), Formal Ontology in Information
Systems, ACM Press, New York, 2001.

[6] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, Understanding top-level ontological distinctions, in: Proceedings of the 2001
IJCAI Workshop on Ontologies and Information Sharing, 2001.

[7] R.C. Goldstein, V.C. Storey, Data abstractions: why and how?, Data and Knowledge Engineering 29 (1999) 293-311.

[8] N. Guarino, M. Carrara, P. Giaretta, An ontology of meta-level categories, in: D.J.E. Sandewall, P. Torasso (Eds.), Principles of
Knowledge Representation and Reasoning: Proceedings of the Fourth International Conference (KR94), Morgan Kaufmann, San
Mateo, CA, 1994, pp. 270-280.

[9] N. Guarino, Formal ontology in information systems, in: N. Guarino (Ed.), Formal Ontology in Information Systems.
Proceedings of FOIS’98, Trento, Italy, 6-8 June 1998, 10S Press, Amsterdam, 1998a, pp. 3-15.

[10] N. Guarino, The role of identity conditions in ontology design, in: Proceedings of the IJCAI-99 Workshop on Ontologies and
Problem-Solving Methods: Lessons Learned and Future Trends. Stockholm, Sweden, IJCAI Inc, 1999b.

[11] N. Guarino, C. Welty, Identity, unity, and individuality: towards a formal toolkit for ontological analysis, in: Proceedings of
ECAI-2000: The European Conference on Artificial Intelligence, IOS Press, Berlin, Germany, 2000.

[12] N. Guarino, C. Welty, A formal ontology of properties, in: R. Dieng (Ed.), Proceedings of 12th International Conference on
Knowledge Engineering and Knowledge Management, Springer Verlag LNCS, Berlin, Germany, 2000.

[13] N. Guarino, C. Welty, Ontological analysis of taxonomic relations, in: A. Lander, V. Storey (Eds.), Proceedings of ER-2000: The
International Conference on Conceptual Modeling, vol. 1920, Springer Verlag LNCS, Berlin, Germany, 2000.

[14] N. Guarino, C Welty, Ontology-driven conceptual analysis, in: AAAI-2000 Tutorial Presentation. Austin, Texas, 2000, Notes
available at: http://www.cs.vassar.edu/faculty/welty/aaai-2000/.

[15] N. Guarino, C. Welty, Identity and subsumption, in: R. Green (Ed.), Semantic Relations, Kluwer, Dordrecht, 2001.

[16] G. Hirst, Existence assumptions in knowledge representation, Artificial Intelligence 49 (1991) 199-242.

[17] G.E. Hughes, M.J. Cresswell, A New Introduction to Modal Logic, Routledge, London, 1996.

[18] I.L. Humberstone, Intrinsic/extrinsic, Synthese 108 (1996) 205-267.

[19] A. Kaplan, Towards a consistent logical framework for ontological analysis, in: C. Welty, B. Smith (Eds.), Formal Ontology in
Information Systems, ACM Press, New York, 2001.

[20] K. Knight, S. Luk, Building a large knowledge base for machine translation, in: Proceedings of American Association of Artificial
Intelligence Conference (AAAI-94). Seattle, WA, 1994, pp. 773-778.

[21] D. Lenat, R.V. Guha, Building Large Knowledge-Based Systems, Addison-Wesley, Reading, MA, 1990.

[22] D. Lewis, New work for a theory of universals, Australasian Journal of Philosophy 61 (4) (1983).

[23] E.J. Lowe, Kinds of Being. A Study of Individuation, Identity and the Logic of Sortal Terms, Basil Blackwell, Oxford, 1989.

[24] G.A. Miller, WORDNET: a lexical database for english, Communications of ACM 2 (11) (1995) 39-41.

[25] J. McCarthy, Circumscription — A form of non-monotonic reasoning, Artificial Intelligence 13 (1980) 87-127.

[26] W.V.O. Quine, Ontological Relativity and Other Essays, Columbia University Press, New York, London, 1969.

[27] P. Simons, Parts: A Study in Ontology, Clarendon Press, Oxford, 1987.

[28] V.C. Storey, Understanding semantic relationships, Very Large Databases Journal 2 (1993) 455-488.

[29] V. Storey, D. Dey, H. Ullrich, S. Sundaresan, An ontology-based expert system for database design, Data and Knowledge
Engineering 28 (1998) 31-46.

[30] P.F. Strawson, Individuals An Essay in Descriptive Metaphysics, Routledge, London and New York, 1959.

[31] R. Wieringa, W. De Jonge, P. Spruit, Roles and dynamic subclasses: a modal logic approach, in: Proceedings of European
Conference on Object-Oriented Programming, Bologna, 1994.

[32] D. Wiggins, Sameness and Substance, Blackwell, Oxford, 1980.



74 C. Welty, N. Guarino | Data & Knowledge Engineering 39 (2001) 51-74

Chris Welty is an Associate Professor at Vassar College, and has consulted in the real world at large and small companies including
GE, AT&T, and IBM. He holds a Ph.D. in computer science from Rensselaer Polytechnic Institute. He is editor in chief of intelligence
Magazine, steering committee chair of the Automated Software Engineering Conferences, an ACM Distinguished Lecturer, and the
program chair of the 2001 conference on Formal Ontology in Information Systems (FOIS-2001). His research interests include
ontology and ontological analysis, ontologies for information, for digital libraries, and for software understanding, and in general in
improving information retrieval by representing knowledge.

Nicola Guarino is a senior research scientist at the Institute for System Theory and Biomedical Engineering of the Italian National
Research Council (LADSEB-CNR). For about ten years now he has been actively promoting the study of the ontological foundations
of knowledge representation and knowledge engineering with an interdisciplinary approach centered on logic, philosophy, and lin-
guistics. He was chairman of the First International Conference on Formal Ontology in Information Systems (FOIS’98), is associate
editor of the International Journal of Human and Computer Studies, has edited 3 journal special issues on ontology-related topics, and
has published more than 30 papers in international journals, books and conferences. His research activities regard ontology design,
conceptual modelling, knowledge sharing and integration, logical modeling of physical objects, and ontology-driven information
retrieval.



