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Abstract
We compare several geometrical theories based on mereology (mereogeometries) in a unified framework.

Most theories in this area lack in formalization and this prevents any systematic logical analysis. We

overcome this problem by isolating a common domain in R
n
 and, selecting natural  interpretations, we

use this framework to show several interdependencies among primitive relations of these theories. We

conclude that, for dimension n ≤ 3 and with some additional assumptions, most of the theories

considered are equivalent in the provided interpretation.

Sommario
In questo lavoro vengono confrontate in un ambiente unificato molte geometrie basate sulla mereologia

(mereogeometrie). La maggior parte di queste teorie sono deficitarie dal punto di vista della

caratterizzazione formale e ci  preclude un’analisi logica sistematica. Questo problema viene evitato

identificando in R
n
 un dominio comune a tutte le teorie e, fissate le interpretazioni naturali  delle

primitive, si utilizza questo ambiente unificato per evidenziare alcuni legami sussistenti tra le relazioni

primitive delle varie teorie. Viene mostrato come, per dimensioni n ≤ 3, introducendo alcune ipotesi

aggiuntive sul dominio, molte delle teorie considerate sono equivalenti nell’interpretazione fissata.
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Abstract
We compare several geometrical theories based on

mereology (mereogeometries) in a unified

framework. Most theories in this area lack in

formalization and this prevents any systematic

logical analysis. We overcome this problem by

isolating a common domain in R
n
 and, selecting

natural  interpretations, we use this framework to

show several interdependencies among primitive

relations of these theories. We conclude that, for

dimension n ≤ 3 and with some additional

assumptions, most of the theories considered are

equivalent in the provided interpretation.

1 Introduction
Since the eighteen century, the need for rigor in

mathematics has suggested a more formal approach to

classical areas including Euclidean geometry. This has lead

to investigations into the ontological principles explicitly

and implicitly assumed in mathematical fields.

The subsequent development of modern geometry

shows that the formalism could not help in deciding

ontological matters when interdefinable primitive relations

are involved.

Despite the fact that Lobacevskij published his

approach to geometry as early as 1829, we had to wait for

Whitehead [1929], Nicod [1962], and de Laguna [1922]

before critical analysis of geometrical entities was seriously

developed. These authors, refusing the classical

commitment to points, lines, and planes, consider extended

regions (bodies, solids, or volumes) as primitive

geometrical entities:

Au lieu de parler de points et de relations entre points, ces
g om tries parlent de volumes et de relations entre

volumes˚; de m me qu’ailleurs on nomme volume une
certaine classe de points, on nomme ici point, inversement,
une certaine classe de volumes.  ([Nicod, 1962], p.26)

At this point, Euclidean geometry lost its absolute

value in mathematics and since then a variety of geometrical

theories, differing in their domains or primitive relations,

have been introduced. These theories have been studied

according to their adequacy to specific tasks at hand. In

particular, the authors above were interested in the cognitive

plausibility of geometry, which explains why extended

regions were taken as basic elements. To phrase is as Nicod

did, "nature gives us volumes".

This formalization of new geometries developed at the

beginning of the twentieth century, had some drawbacks.

The primitives were often only partially characterized [de

Laguna, 1922; Whitehead, 1929] and sometimes, as in the

work of Tarski and Nicod [Tarski, 1956; Nicod, 1962], only

indirectly  axiomatized. Tarski considered parthood and

being a sphere as primitives and defined several relations

among spheres (e.g. concentricity), relying on the intended

interpretation of those primitives. He axiomatized

mereology directly and introduced points in the theory as

classes of concentric spheres. In this way, he could define

equidistance among points using properties of spheres

centered on those points and use the well-known axioms of

Euclidean geometry to characterize fully the predicate being
a sphere on which equidistance depends. Nicod took

parthood and conjugation as primitives and assumed all

theorems of Euclidean geometry as axioms (providing an

intended interpretation for the primitives.) Both these

authors were aware of the formal drawbacks of their

approaches. Their main goal was to show that extended

regions could be taken as the fundamental entities of

geometry. However, their indirect approach does not help to

isolate those primitive properties that are very important on

the cognitive and applicative sides.

Later, Grzegorczyk [1960] and then Clarke [1981; 1985]

were able to solve these problems but only limiting

themselves to the topological level, considering theories

based on parthood and connection relations

(mereotopologies). The main reason is that these suffice to

define points as second-order entities, which is what they

were interested in.

In the last decade, mereogeometry, i.e. geometry based

on mereology or region-based geometry, has attracted

renewed interest and has been studied in mathematics

[Gerla, 1994] but also in other domains. One can find

mereogeometrical theories in several areas like formal
ontology, where the notion of parthood and connection are

studied in very general terms [Simons, 1987; Casati and



Varzi, 1999]; cognitive science, where the formalization of

semantics in natural languages and the study of cognitive

processes are considered from a qualitative point of view

[Aurnague et al., 1997]; and qualitative spatial
representation and reasoning in AI [Bennett et al., 2000a;

Borgo et al., 1996; Dugat et al., 1999; Pratt and Lemon,

1997; Randell and Cohn, 1992; Stock, 1997]. In all these

cases, the choice of primitives is determinant to ensure

ontological clearness, correspondence between theorical and

applicative notions, and to improve computational

efficiency. 
1

The increasing request for rich mereogeometries and the

variety of application domains where these are being

applied, motivate the development of several theories. They

are sometimes driven by very specific problems and they

end up differing on entities, properties, and principles. The

next step in this research area is to develop methods that

allow us to compare and classify theories in such a way that

differences, expressive powers, and conceptual

incompatibilities can be made explicit. In this way, it

would be easier to the practitioners to: (i) select a theory

which is most apt to the applicative or theoretical tasks at

stake, (ii) extend or modify an already available theory, (iii)

integrate or exchange results among different theories.

In this paper, we provide an initial answer to this

request for comparison. We consider the R
n
 framework for

the study of semantic relationships that can be established

among several mereogeometries.

2 A Semantic Strategy of Comparison
Given two first-order theories with a (partial)

axiomatization, one may compare them on the syntactic or

semantic level in a standard logical approach. In the former

case, one exploits the interdefinability of primitive relations

between both theories to prove the equivalence of their

axiomatics. In the latter case, one compares domains and

relations of (classes of) models for the theories. Such

systematic analyses are available for mereotopologies only,

especially on the syntactic level ([Simons, 1987; Casati and

Varzi, 1999; Masolo and Vieu, 1999]) and to some degree

on the semantic level ([Biacino and Gerla, 1991; Asher and

Vieu, 1995]).

These types of comparison are not really relevant in the

case of mereogeometries that are more expressive than

mereotopologies, because of lack of rich enough

formalization in first order logic. Actually, another kind of

comparison has been already used for mereotopologies:

Cohn and Varzi [1998] took classical point-set topology as

a common framework for comparing the intended

interpretations of the theories. We here propose a similar

approach for mereogeometries taking R
n
 as common
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Clearly these three areas are not disjoint, and

interdisciplinary studies can contribute to develop theories

that are more understandable and reusable.

framework and interpreting the theories’ primitives in

models embedded in this framework.
2

Rejecting classical mathematical systems because not

ontologically adequate is not incompatible with using them

to express and compare models of region-based theories. In

general, mereogeometries focus on qualitative relations; they

do not aim at capturing "new" notions of space, not even at

enriching classical geometry. Indeed, spatial theories

adequate to cognitive or applicative tasks are generally

expressible in R
n
, i.e., Cartesian geometry, which has the

advantages of being expressive enough and well understood.

A logician could find this discussion unsatisfactory. In

logic, a semantic analysis considers classes of models for a

theory, whereas we are selecting only a specific model for

each theory. This approach allows us to work with theories

having a minimal characterization, and sometimes relying

on generic descriptions without going very far into

formalization. Only the definitions, with respect to R
n
, of

the entities in the domain and of the primitive relations

among them are necessary. The theories we are considering

are relevant because of the intuitions underlying the

formalization and not because of their axiomatics. Our task

is to provide tools to pinpoint the notions that are more

interesting and useful, and understand how/when new

notions may be assimilated to those already present in the

literature.

A critical point is that we must have an interpretation

for each theory. When this is missing or incomplete
3
, we

must build up one as close as possible to the informal

description of the primitives provided by the authors and

compatible with the axioms; in short, a natural

interpretation. In the case of equivalent interpretations, we

choose one that facilitates the comparison from a technical

point of view and makes it as clear as possible.

3 Theories in the Comparison
In this section we list the mereogeometries that we will

compare, together with (i) the basic entities and primitive

relations an (ii) their intended or natural interpretation in R
n
.

Relations are indicated by their formal names, the indexes

give the arity of the relations: C(2)
 stands for is connected

to, CCon(3)
 for can connect, CG(2)

 for is congruent to,

Closer(3)
 for is closer to than to, Conj(4)

 for are conjugate,

ConvH(2)
 for is the convex hull of, P(2)

 for is part of, S(1)

for is a sphere, SR(1)
 for is a simple region.

In order to specify the intended or natural

interpretations in R
n
, we need:

•  topological operators: closure ([]), interior (¡);

•  Euclidean distance, Dist: Rn
 × R

n
 → [0, +∞);

                                                
2
However, we will not reach the completeness of the result

of Cohn and Varzi. These authors were able to characterize all

theories that can be interpreted in topological terms. This kind

of completeness is much more complex when mereogeometrical

theories are considered.
3
Often these interpretations do not give enough

information, for instance about existential conditions of

entities.



•  standard relations like convex-subspace (Conv),

connected-subspace
4
 (Conx), manifold (M), congruent-

subspaces (Congr), and the following relations

definable from these in R
n
 (lower-case variables stand

for points, capital variables for sets):

Dist(X, Y) = inf{Dist(x, y) | x ∈  X e y ∈  Y};

Diam(X) = sup{Dist(x, y) | x, y ∈  X};

Ball(c, r) = {x | Dist(x, c) < r}, where r > 0;

Btw(x, y, z) iff Dist(x, y) + Dist(x, z) = Dist(y, z);

∂(X) = [X] − X;

In what follows, ℑ  is the interpretation function and σ
the assignment function. To simplify notations we write Xi

instead of ℑ σ(xi) and, for any formula φ, φ ⇒  Phi (where

Phi is a relation in R
n
) instead of ℑ σ(φ) = Phi.

Here then are the theories we will focus on:

T1  Theory first presented in [Tarski, 1956] and later

developed in [Bennett et al., 2000b]:

Domain = {non-empty regular open subsets of Rn
}

= {X ⊂  R
n  | X ≠ ∅  ∧  [X]¡ = X};

P(x, y) ⇒  X ⊆  Y;

S(x) ⇒  ∃ c,r(X = Ball(c, r)).

T2  Theory presented in [Borgo et al., 1996] and

simplified in [Bennett et al., 2000b]:
5

Domain = {non-empty regular open subsets of Rn
};

P(x, y) ⇒  X ⊆  Y;

SR(x) ⇒  M(X);

CG(x, y) ⇒  Congr(X, Y).

T3  Theory given in [Nicod, 1962]:
6

Domain = {non-empty regular closed connected subsets
of Rn

}

= {X ⊂  R
n
 | X ≠ ∅  ∧  [X¡] = X ∧  Conx(X)};

P(x, y) ⇒  X ⊆  Y;

Conj(x, y, x’, y’) ⇒  ∃ x, y, x’, y’ (x ∈  X ∧  y ∈  Y ∧  x’ ∈  X’
∧  y’ ∈  Y’ ∧  Dist(x, y) = Dist(x’, y’)).

T4  Theory introduced in [de Laguna, 1922]:
7

Domain = {non-empty regular closed connected subset
of Rn with finite diameter};

CCon(z, x, y) ⇒  ∃ z, z’, x, y (z, z’ ∈  Z ∧  x ∈  X ∧  y ∈  Y
∧  Dist(z, z’) = Dist(x, y)).

T5  Theory presented in [Aurnague et al., 1997]:
8

Domain = {non-empty regular subsets of Rn
};

= {X ⊂  R
n
 | X ≠ ∅  ∧  [X] = [X¡] ∧  X¡ = [X]¡};

C(x, y) ⇒  X ∩  Y ≠ ∅ ;

Closer(z, x, y) ⇒  Dist(Z, X) < Dist(Z, Y).

                                                
4
A connected subspace is often called self-connected in

the literature. We will use both terms indifferently.
5
According to the motivations given by the authors, the

theory presented in [Borgo et al., 1996] is explicitly restricted

to R
3
 but we can easily generalize it to R

n
.

6
The informal interpretation is given at pages 27-28.

7
The informal interpretation is given at pages 449-450

8
No intended interpretation for the relation Closer i s

provided. The interpretation we propose satisfies all the given

axioms and, as far as we can tell, it is faithful to their approach.

T6  Theory given in [Cohn, 1995]:
9

Domain = {non-empty regular open subsets of Rn
};

C(x, y) ⇒  [X] ∩ [Y] ≠ ∅ ;

ConvH(x, y) ⇒  Conv(X) ∧  Y ⊆  X ∧  ¬∃ Z(Conv(Z) ∧
 Y ⊆  Z ∧  Z ⊂  X);

3.1 Choosing the Domain
To compare all the theories in a homogeneous way their

models must be based on the same domain.
10

 The theories

listed above involve three general domains (T3 and T4

include further restrictions):

D1 = {non-empty regular open subsets of Rn
};

D2 = {non-empty regular closed subsets of Rn
};

D3 = {non-empty regular subsets of Rn
};

All the theories only consider extended entities and do

not refer to lower-dimension objects like, for instance,

boundaries.
11

 In D3 we find both closed and open regular

regions so that the corresponding theory T5 turns out to be

richer than the others. However, there are a couple of

problematic aspects. From a cognitive point of view, it is

not clear which criteria to apply to isolate physical objects

associated with open, closed or semi-closed regular regions.

On the ontological side, mereological extensionality does

not hold in this case; the closure and the interior of a region

are both in the domain but not their difference (the boundary

itself). It turns out that D3 gives a peculiar set of entities

that increases considerably the complexity of the

comparison. Therefore, here we will limit ourselves to the

simpler cases given by D1 and D2.

Having excluded domain D3, we notice that for all

primitives
12

 R(x1, ., xn) and for all the interpretations ℑ
considered above, ℑ (R)(X1, ., Xn) implies ℑ (R)([X1], .,

[Xn]) in R
n
. We can therefore choose a unique interpretation

function that applies to both domains D1 and D2

maintaining the same meaning  for the primitives. This

interpretation ℑ ’ is defined as follows:

•  if ℑ (R)(X1, ., Xn) implies ℑ (R)(X1…, ., Xn…) in R
n
,

then ℑ ’(R) = ℑ (R);

•  else ℑ ’(R)(X1, ., Xn) = ℑ (R)([X1], ., [Xn]).

Now we can choose indifferently D1 or D2. Let us take

D1, hereafter called D.

                                                
9
This theory was originally restricted to R

2
. It can be

extended to R
n
.

10
Allowing for different domains makes the comparison

much more complex from the technical point of view and it i s

not clear that this would significantly enrich the conceptual

analysis.
11

The approach we present here could be used also to

compare the class of theories that admit boundary-like entities

(heterogeneous theories as opposed to homogeneous theories

like those considered in this paper). However, it is not clear in

which terms it is possible to compare heterogeneous vs

homogeneous theories.
12

With the exception of S for which we slightly modify the

definition of Ball.



Since T5 is defined on D3, it makes little sense to

involve T5 as such in the comparison. However, below we

will still consider an interpretation for the primitive relation

Closer because of the interesting aspects it presents.

To compare some theories we need additional

constraints on D (note that HP2 → HP1):

HP1: ∀ X, Y ∈  D (Dist(X, Y) = d → ∃ x, y (x ∈  [X] ∧  y ∈  [Y]

∧  Dist(x, y) = d));

HP2: ∀ X ∈  D (Diam(X) = d < +∞).

HP1 rules out some (but not all) infinite regions so

that, for instance, we cannot find two regions with closest

boundaries behaving as asymptotic functions as we move

towards infinity in some direction. In particular, this

ensures that two regions have zero distance if and only if

their closures intersect. HP2 forces us to consider only finite

regions, i.e. regions whose closure is a compact.

3.2 Choosing the Interpretation
Having fixed the domain we now consider the following

interpretation for the primitive relations that agrees with the

requirements stated above:

C(x, y) ⇒  [X] ∩ [Y] ≠ ∅ ;

CCon(z, x, y) ⇒  ∃ z,z’,x,y(z,z’ ∈  [Z] ∧  x ∈  [X] ∧  y ∈  [Y] ∧
Dist(z, z’) = Dist(x, y));

Closer(z, x, y) ⇒  Dist(Z, X) < Dist(Z, Y);

Conj(x, y, x’, y’) ⇒  ∃ x,y,x’,y’(x ∈  [X] ∧  y ∈  [Y] ∧  x’ ∈  [X’] ∧
y’ ∈  [Y’] ∧  Dist(x, y) = Dist(x’, y’));

ConvH(x, y) ⇒  Conv(X) ∧  Y ⊆  X ∧  ¬∃ Z(Conv(Z) ∧  Y ⊆  Z
∧  Z ⊂  X);

P(x, y) ⇒  X ⊆  Y;

SR(x) ⇒  M(X);

S(x) ⇒  ∃ c,r(X = Ball(c, r)).

On the basis of the domain and the interpretation

chosen above, we can demonstrate the following theorems,

making explicit the semantics of some defined predicates:

PP(x, y) =def P(x, y) ∧  ¬ P(y, x)) ⇒  X ⊂  Y;

O(x, y) =def ∃ z(P(z, x) ∧  P(z, y)) ⇒  X ∩  Y ≠ ∅ ;

z = x + y ⇒  Z = [X ∪  Y]¡;

SC(x) =def ∀ y,z(x = y + z → C(y, z)) ⇒  Conx(X);

IP(x, y) =def P(x, y) ∧  ∀ z(C(z, x) → O(z, y))

⇒  X ⊂  Y ∧  ∂(X) ∩  ∂(Y) = ∅ ;

SR(x) =def ∀ y,z(x = y + z → ∃ w(SC(w) ∧  O(w, y) ∧
O(w, z) ∧  IP(w, x))) ⇒  M(X);

MCP(x, y) =def SC(x) ∧  P(x, y) ∧  ¬∃ z(SC(z) ∧  P(z, y) ∧
PP(x, z)) ⇒  Conx(X) ∧  X ⊆  Y ∧  ∂(Y\X) = ∂(Y)\∂(X);

P(x, y) = ∀ z(C(z, x) → C(z, y)) ⇒  X ⊂  Y.

We also give the semantics of relations among spheres

introduced in [Tarski, 1956] and in [Bennett et al., 2000b].

SCG(2)
 stands for sphere congruence, CNC(2) for

concentricity, SCG(4)
 for pair of sphere congruence and

BTW(2)
 for betweeness:

SCG(x1,x2) ⇒  ∃ c1,c2,r (X1 = Ball(c1, r) ∧  X2 = Ball(c2, r));

CNC(x1,x2) ⇒  ∃ c,r1,r2 (X1 = Ball(c, r1) ∧  X2 = Ball(c, r2));

SCG(x1,x2,x3,x4) ⇒  ∃ c1,c2,c3,c4,r1,r2 (X1 = Ball(c1, r1) ∧
X2 = Ball(c2, r2) ∧  X3 = Ball(c3, r1) ∧  X4 = Ball(c4, r2)

∧  Dist(c1, c2) = Dist(c3, c4));

BTW(x1,x2,x3) ⇒  ∃ c1,c2,c3,r1,r2,r3 (Btw(c1,c2,c3) ∧
X1 = Ball(c1,r1) ∧  X2 = Ball(c2,r2) ∧  X3 = Ball(c3,r3)).

4 Comparison of the Theories
Fig. 1 shows some semantic links among the interpretations

of primitives considered in theories T1-T6.

T1 T2 T3 T4 T5

HP1

HP2HP1, R3
T6

Figure 1. Semantic links among primitives in T1-T6.

(Here R
3
 means that a link is verified only for R

n
 with n ≤ 3)

An arrow Ti → Tj means that it is possible to define

the primitive relations of Tj from those of Ti, having

proved that the interpretations of the primitives of Tj and

those of their interpretations in Ti are equivalent in D.

Further assumptions are shown in the labels.

In the following, we give these detailed definitions.

The reader can find complete proofs of these semantic

equivalences in [Tech. Rep. 2001]
13

.

T3 → T4  CCon is defined using Conj:

CCon(x, y, z) =def Conj(x, x, y, z).

T4 → T5  We first introduce C from which one obtains

P, +, and SC as in ⁄3.2:

C(x, y) =def ∀ z(CCon(z, x, y));

Closer(z, x, y) =def ∀ w((SC(w) ∧  CCon(w, z, y)) →
CCon(w, z, x)) ∧  ∃ w’(SC(w’) ∧
CCon(w’, z, x) ∧  ¬ CCon(w’, z, y)).

T5 → T3 (assuming HP1)  We first introduce C (relying

on the domain D), from which one obtains P , +, SC, and

MCP as in ⁄3.2. We define also new relations: Eq(z, x, y)

stands for z is equidistant from x and y, EqD(x, y, x’, y’) for

x is as close to y as x’ is to y’, ClD(x, y, x’, y’) for  x and y
are closer each other than x’ and y’, ClEqD(x, y, x’, y’) for

x’ and y’ are not closer each other than x’ and y’:

C(x, y) =def ¬∃ z(Closer(x, z, y));

Eq(z, x, y) =def ¬ Closer(z, x, y) ∧  ¬ Closer(z, y, x);

EqD(x, y, x’, y’)=def ∃ z(Eq(x,z,y) ∧  Eq(x’,z,y’) ∧  Eq(z,x,x’));
ClD(x,y,x’,y’)=def ∃ z(Eq(x,z,y) ∧  Eq(x’,z,y’) ∧ Closer(z,x,x’));
ClEqD(x, y, x’, y’) =def ClD(x, y, x’, y’) ∨  EqD(x, y, x’, y’)
Conj(x, y, x’, y’) =def ∃ a,b,a’,b’,px,py,p’x,p’y(MCP(a, x) ∧

MCP(b, y) ∧  MCP(a’, x’) ∧  MCP(b’, y’) ∧  C(px, a) ∧
C(py, b) ∧  C(p’x, a’) ∧  C(p’y, b’) ∧  ClEqD(a, b, px, py)

∧  ClEqD(a’, b’, p’x, p’y) ∧  EqD(px, py, p’x, p’y)).

T3 → T2 (assuming HP2) In order to define CG from

Conj and P, we use an idea already applied in [Borgo et al.,
1996], where the authors showed how to define CG from S
and P . Since T3, T4, T5 are equivalent under the
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Momentarily suppressed to maintain anonymity



assumption HP1 and since HP2 is stronger than HP1, P and

all needed relations can be defined using only Conj:14

EqDiam(x, y) =def SR(x) ∧  SR(y) ∧
∀ a,b(P(a+b, x)→∃ a’,b’(P(a’+b’,y) ∧  Conj(a, b, a’, b’))) ∧
∀ a,b(P(a+b, y)→∃ a’,b’(P(a’+b’,x) ∧  Conj(a, b, a’, b’)));

S-SR(x) =def ∀ y(MCP(y, x) →
¬∃ z(MCP(z, x) ∧  ¬ z = y ∧  EqDiam(z, y))));

S-CGR(x, y) =def S-SR(x) ∧  S-SR(y) ∧ 
∀ u,v((MCP(u, x) ∧  MCP(v, x) ∧  ¬u = v)

→ ∃ u’,v’(MCP(u’, y) ∧  MCP(v’, y) ∧  EqDiam(u’, u) ∧
EqDiam(v’, v) ∧ CONJ(u, v, u’, v’))) ∧
∀ u,v((MCP(u, y) ∧  MCP(v, y) ∧  ¬u = v)

→ ∃ u’,v’(MCP(u’, x) ∧  MCP(v’, x) ∧  EqDiam(u’, u) ∧
EqDiam(v’, v) ∧ CONJ(u, v, u’, v’)));

CG(x, y) =def

∀ z((S-SR(z) ∧  P(z, x))→∃ w(S-CGR(w, z) ∧  P(w, y)))

∧ 
∀ z((S-SR(z) ∧  P(z, y))→∃ w(S-CGR(w, z) ∧  P(w, x))).

T2 → T1 (assuming HP1)  We first introduce C from

which one obtains P , +, SC as in ⁄3.2, and PO(2) partial
overlap. Then we use the definition of sphere given in

[Borgo et al., 1996]:

C(x, y) =def ∀ z∃ z’(CG(z’, z) ∧  O(z’, x)∧  O(z’, y));
PO(x, y) =def O(x, y) ∧  ¬ P(x, y) ∧  ¬ P(y, x)

S(x) =def SR(x) ∧  ∀ y((CG(x, y) ∧  PO(x, y)) → SR(x−y)).

T1 → T3  This direction follows from the relations

based on P and S, see ⁄3.2 for their interpretations:

CONJ(x, y, x’, y’) =def ∃ sx,sy,s’x,s’y(SCG(sx, sy, s’x, s’y) ∧
∀ sxc,syc,s’xc,s’yc((CNC(sxc, sx) ∧  CNC(syc, sy) ∧
CNC(s’xc, s’x) ∧  CNC(s’yc, s’y)) →
O(sxc, x) ∧  O(syc, y) ∧  O(s’xc, x’) ∧  O(s’yc, y’))).
T1 → T6  P and S suffice to define BTW, see ⁄3.2 for

their interpretations:

Conv(x) =def ∀ s,s’,s’’(P(s+s’, x) ∧  BTW(s’’, s, s’))→O(s’’,x);

ConvH(x, y) =def ¬∃ z(Conv(z) ∧  P(y, z) ∧  PP(z, x)).

The details of these characterizations and their proofs

are quite interesting in themselves. However, it is not

possible to dwell on this subject here. In the following

section we direct our attention to some general aspects and

remarks.

4.1 Analysis of the Results

The strongest result we obtain is that, for dimension n ≤ 3

and under assumption HP2, the sets of primitives of each

theory T1-T5 are equivalent in the interpretation above.

Furthermore, these "translations" make explicit several

conceptual connections. Regarding T6, C and ConvH do

not allow one to construct any notion of distance and this

theory is less expressive compared to the others. Note that

we assume restriction n≤3 on the dimension of the space

only when defining S using P and CG. Besides this case,

all the results hold in any dimension.

The authors of [Bennett et al., 2000b] propose another

definition of S from P and CG and they try to provide
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This holds even without assumption HP1. As we have

seen: (i) CCon can be defined by Conj without P and (ii) C can

be defined using CCon. From this, the other relations follow

and so P is dispensable.

semantic equivalence in the domain of open regular regions.

However, this attempt fails since it does not rule out

regions like Reuleaux polytopes
15

.

At present we do not know whether HP2 can be disposed of,

as we needed it in our proof of T3 → T2. The same

assumption is used in the direct proof of T1 → T2 using

the definition proposed in [Borgo et al., 1996].

Among the other direct links, T2 → T3 is a simple

exercise, whereas a direct connection T3 → T1 is quite

complex (see [Tech. Rep. 2001]). T3, T4, and T5 have

simpler connections. Assumption HP1 is necessary in

defining C from Closer to impose that two closed regions

at distance zero share a point. We conclude remarking that C
and therefore P are definable from Conj (or Ccon) without

assumption HP1. As a result, primitive P is not necessary

in T3.

4.2 Impact of the Choice of the Domain

We already pointed out in section ⁄3 that similar results

hold when we compare these theories in the domain of

closed regular regions. It is interesting to see how the

hypotheses on the domain affect the proofs. In this way, one

provides a rough estimation of the independence of the

results from the selected context. For example, we know

from [Randell and Cohn, 1992; Masolo and Vieu, 1999]

that P cannot be defined from C (with the interpretations

given in ⁄3.2) in an atomic theory. A similar result holds

for C and SR in T2.

The definition of S in terms of P, SR, and CG falls short

of capturing sphericity when some restriction on the

isometries of the space is introduced: in a set of rectangles

with only translations as isometries, any rectangle does

satisfy the definition of sphere. Despite this dependence, the

definition of S is cognitively relevant. A region is a sphere

whenever isotropic
16

 flaws cannot be detected.

The case of S is paradigmatic, though this situation holds

for most of the definitions considered. In general, all our

proofs depend on the properties of R
n
. (Here connection T3

→ T4 is the only exception.) These dependencies are not

surprising and one has to consider these results in the given

context. At the same time, it is clear that these definitions

provide a major opportunity to clarify conceptual

relationships and intended meanings.

5 Conclusions
We have developed a method for comparing

mereogeometries and presented several new results about

well-known theories. Such a comparison emphasizes the

cognitive aspects of these theories and minimizes the degree

of formal characterization with respect to standard logical

techniques. It allows us to shed light on the relationships

between formalization, expressive power and intuitive

meaning. It also improves the understanding of each theory
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An example in R
2
 is the region obtained by intersecting

the three discs centered at the three vertices of an equilateral

triangle and with radius equal to the side of the triangle.
16

A region is isotropic if invariant with respect to

directions.



highlighting properties of their primitives and relationships

with respect to other theories. This provides a reliable base

of comparison for the pratictioner.

However, our approach is not a substitute for usual

logical methods. The results obtained with this method

depend on the particular domain and interpretations selected.

Further work is needed to fully understand the problematic

aspects that arise in a comparison based on intuitive

interpretations and to provide a satisfactory set of criteria for

an optimal application of the method. Possible

developments include: (i) widening the classes of theories

that can be considered in a single comparison; (ii)
controlling/modifying of the general setting provided in the

framework R
n
; and (iii) generalizing the method to other

frameworks to allow different comparisons.
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