ZU064-05-FPR rsl"8009 24 June 2008 21:23

THE REVIEW OF SYMBOLIC LOGIC 1
Volume 1, Number 1 (2008), 1-46. Printed in the USA.

FULL MEREOGEOMETRIES

STEFANO BORGO AND CLAUDIO MASOLO

National Research Council, Institute of Cognitive Sciences
and Technologies — ISTC-CNR, Laboratory for Applied Ontology
e-mail: borgo@loa-cnr.it, masolo@loa-cnr.it

Abstract. We analyze and compare geometrical theories based on mereatmgogeo-
metried. Most theories in this area lack in formalization, and this prevents any systematic logical
analysis. To overcome this problem, we concentrate on specific interpretations for the primitives and
use them to isolate comparable models for each theory. Relying on the chosen interpretations, we in-
troduce the notion of environment structure, that is, a minimal structure that contains a (sub)structure
for each theory. In particular, in the case of mereogeometries, the domain of an environment structure
is composed of particular subsets df.R’he comparison of mereogeometrical theories within these
environment structures shows dependencies among primitives and provides (relative) definitional
equivalences. With one exception, we show that all the theories considered are equivalent in these
environment structures.

1. Introduction. At the time Lobachevskii (1835) published “New principles of ge-
ometry with complete theory of parallels,” the axiomatic foundation of geometry was
based on points. Such a formal system, caliedlidean geometryalls short of satisfying
cognitive concerns since it aims at modeling physical space relying on the abstract notion of
point. The matter in dispute is that human experience of space is experience in magnitude
and points cannot be empirically experienced. This simple observation makes evident the
need for cognitively and philosophically sound geometrical systems whose formal study
began in the 19th century (although it has received less emphasis with respect to the
contemporary and orthogonal research on the fifth Euclidean axiom).

Taking solids as basic entities in his system, Lobachevskii revolutionizes the founda-
tions of geometry from the ontological viewpoint and shows how to fill the gap between
geometrical and spatial entities. As it happens often with revolutionary approaches, the
work of Lobachevskii is quite obscure, and it is presented only informally. One has to wait
almost a century to find a formal presentation of the new approach.

The theories developed by Whitehead (1929) (see also Biacino & Gerla, 1991, 1996, for
a formal characterization of the theory of Whitehead), De Laguna (1922), Nicod (1924),
Tarski (1956a), and Grzegorczyk (1960) aim at showing that the concept of point is not
necessary in the foundation of geometry and, consequently, that the conceptualization
of space can differ on several aspects: properties of the space (e.g., Euclidean vs. non-
Euclidean geometries), primitive relations (e.g., being aligned, equidistance), and ontolog-
ical nature of entitie$.From the viewpoint of geometrical construction, these approaches
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1 Instead of talking ofsolids these authors refer t@gions bodies or volumes In some cases,
these notions are not deeply characterized, thus it is difficult to understand if they presuppose a
different intuition about physical objects and their possible locations in space. In this gatitsr,
andregion are taken as generic and intuitive notions. In addition, some authors have recently
developed theories based on domains containing entities of different dimensions, e.g., points,
lines, and surfaces. See Gotts (1996) and Galton (1996, 2004).

(© 2008 Association for Symbolic Logic 1755-0203
doi:10.1017/S175502030808009X



ZU064-05-FPR

rsI"8009 24 June 2008 21:23

2 STEFANO BORGO AND CLAUDIO MASOLO

revolutionize the classical method of defining regions as sets of points. Indeed, here points
are treated as particular sets of regiérince the new theories succeed in defining Eu-
clidean entities and relations within a different logical domain, one cannot rely on purely
formal arguments to establish which entities and relations deserve the role of geometrical
primitives. Euclidean geometry is now challenged at the level of the basic entities, and
external considerations start leaking into the geometry paradise.

The new geometries are justified by questions that arise outside the geometrical formal-
ism itself and provide formal theorieslequatefor different tasks. In particular, region-
based geometries seem to be cognitively more sound than point-based geometries since
they make possible a direct mapping from empirical entities and laws to theoretical entities
and formulas. Several issues need to be considered: the consequences of choosing extended
regions as primitive entities, the meaning of experiencing empirically extended regions,
and the doubts about perfect regichBSollowing De Laguna, one wonders what it means
to consider points to be sets of solids. Does it follow that the concept of point is defined
in empirical terms? ldealized regions seem closer to empirical experience than Euclidean
points; still they already require a form of abstraction. Once we admit this, it is not clear
where to stop. Then, why should we reject the usual notion of point? De Laguna is aware of
this problem: “Although we perceive solids, we perceive no abstractive set of solifis(
accepting the abstractive set, we are as veritably going beyond experience as in accepting
the solid of zero-length” (De Laguna, 1922, p. 460).

Beginning with the work of Clarke (1981, 1985), theories based on extended entities
have attracted much interest for both their formal asfemts their applicative potentiali-
ties. The ontological clearness and the evident connection with physical entities justify the
philosophical interest in these theories. This approach receives particular emphasis in the
field of formal ontology Here one assumes the relationspafthood and connectionto
be basic notions that are exemplified by spatial or material entities like physical objects,
chunks of matter, holes, etc. (see Simons, 1987; Casati & Varzi, 1999; Smith, 1998).
Nowadays, one refers to these theoriemaseotopologiesince they are characterized by
the combination of mereology (based on parthood) and topology (based on connection).
Following this terminology, we calinereogeometriethe theories that aim to reconstruct
geometry extending mereotopological systems.

Mereogeometries are used in various areas. In Schmidt (1pAgjcsis presented as

a theory based on extended entities. This theory allows to refer explicitly to the objects
involved in experiments. Generally speakinggnitive sciencandcomputational linguis-
tics analyze the possibility of formalizing human learning, conceptualization, and catego-
rization of spatial entities and relations. In particular, Knaatfél. (1997) and Renet al.
(2000) take into account the cognitive adequacy of topological relations, while Aurnague
et al. (1997) and Muller (1998a) show how mereogeometrical notions are central in the
semantics of natural language. Donnelly (2001) formalizes the theory of De Laguna in
the perspective ofommon-sense analysid spatial concepts. Ikomputer sciencand

2 n particular, points are often defined as filters of regions. For a detailed discussion on the
construction of points in mereotopology, see Biacino & Gerla (1991).

3 Tarski defines points as classes of concentric spheres. However, in nature we do not find
perfectly spherical objects. One can argue similarly about fractal-shaped regions or regions with
an infinitely oscillating boundary (see Pratt-Hartmann & Schoop, 2000, for a discussion on
‘pathological’ regular regions).

4 See Gerla (1994) for a good survey of mathematical research in this area. An analysis in terms of
lattices is given in Stell (2000) and in terms of algebras imf3chet al. (2001).
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more specifically inqualitative spatial representation and reasonifgge Cohn & Haz-
arika, 2001; Vieu, 1997, for good overviews), mereogeometries are applied for modeling
qualitative morphology and movement of physical bodies (Bennett, 2001; Beziradit
2000a,b; Borgeet al, 1996; Cristaniet al, 2000; Dugatet al, 1999; Muller, 1998b;
Galton, 2000; Li & Ying, 2003; Randell & Cohn, 1989, 1992), for describing geographical
spaces and entities (Beographical Information Syster(Rratt-Hartmann & Lemon, 1997;
Pratt-Hartmann & Schoop, 2000; Stock, 1997), as well as for characterizdicaland
biological information(Schulz & Hahn, 2001; Cohn, 2001; Smith & Varzi, 1999; Donnelly,
2004).

In all these areas, specific foundational and applicative concerns affect the development
of the theories based on geometrically extended entities. Indeed, in the literature, there
are numerous mereogeometries that differ on primitive entities, formal properties, as well
as general principles. One surmises that this variety of systems has motivated a plethora
of results on their relative strengths and drawbacks. Surprisingly, reading the literature,
one cannot find an extended study of the relationships among these systems. Although
extensive discussions on the cognitive, linguistic, and philosophical motivations for a the-
ory are often undertaken, these are not accompanied by more formal considerations. The
few arguments brought forward to discuss the relative expressive power are limited to
antecedent versions of the presented theory and cannot be generalized to broader classes of
systems. Such a lack of comparative analysis has practical reasons, in particular the poor
axiomatization of most mereogeometries.

This being the situation, in the following sections, we try to fill the gap by presenting
a method to systematically compare classes of mereogeometries. In our intentions, this
method allows for a comparison of formal theories while concentrating on the meaning
of the primitives. We consider it as a first answer to the need of assessment in this area.
One can use this approach to state equivalences and similarities among the theories, in this
way facilitating both reuse and communication among different applications. Since this
task cannot be undertaken with the standard logical machinery (as mentioned above, most
of the mereogeometries available in literature are only weakly formalized), the method we
propose gives prominence to conceptual and ontological issues, issues that are at the center
of the systems we are interested in. The goal is to make explicit important differences like
description completeness and conceptual incompatibilities. Beside the direct advantage
provided by a reliable classification method, such a comparison would help in selecting
theories (perhaps according to the applicative or theoretical tasks one is facing), developing
new theories, and extending or modifying those already available.

2. Conceptual comparison. Generally speaking, logical theories are compared at the
syntactic or the semantic level. In the first case, one focuses on the interdefinability of
primitive relations assumed in the theories to prove the equivalence of their axiomatics,
while in the second case, one compares (classes of) models of these theories. Systematic
analyses of these kinds have been developed on mereotopologies: Casati & Varzi (1999),
Simons (1987), and Masolo & Vieu (1999) consider the syntactic level, while Biacino &
Gerla (1991, 1996), Asher & Vieu (1995), Pratt-Hartmann & Schoop (1998, 2002), Roeper
(1997), and Stell (2000) focus on the semantic level.

These kinds of comparison make sense if the theories are well characterized, i.e., the
given axiomatization captures thetended modeland so thentended meaningsf the
primitives. In the case of mereogeometries, only 2 theories have been proved to be seman-
tically complete with respect to the models expressed in terms’oDiRnnelly (2001)
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provided a full axiomatization for the theory of De Laguna (1922), which is based on
the primitive can connectwhereas the theory of Tarski (1956a), based on the primitives
parthoodandbeing a sphergds fully axiomatized by Bennett (2002)The other mereoge-
ometries available in the literature are only ‘partially’ axiomatized (they are not completely
characterized with respect to the intended models), see Aureagli€1997), Borgcet al.
(1996), and Cohn (1995), or are axiomatized only indirectly relying on point-based axioms
(Nicod, 1924)

In order to overcome this lack of explicit or direct formalization and to carry out an
exhaustive and informative analysis of the links between the different theories, we follow
the approach delineated for the mereotopologies by Cohn & Varzi (2003) and compare
the mereogeometries on the basis of tleiended model€Cohn and Varzi take classical
topology as a unifying framework for the comparison. In the case of mereogeometries, we
rely on R' since this system is generally used by the authors to describe the (intended)
models of their theorie$.

Some authors describe the intended models in a formal way, while in other cases, the
models are only sketched. Therefore, our first task is to isolate interpretatiofistiaR
conform with the formal and informal descriptions and that are compatible with the given
axiomatizations. We call any such interpretatiomedural interpretation and the underly-
ing models are dubbethtural modelf the theory. These notions are discussed below.

Our second (and main) task is to compare these natural/intended models within the cho-
sen unifying framework, i.e.,'R The analysis of the models (see The Theories and Their
Interpretations section) reveals that they differ significantly on the primitive predicates
adopted while the domains of interpretation, henceforth caldral domainsare quite
similar. Indeed, all these domains are contained in the class of nonesgpigr regions®
As a consequence, most of our work concentrates on the relationship among primitives.
Technically speaking, we will proceed as follows: first, we collect all the primitives, say
P1, ..., Py, in the systems we want to compare. Then, for each primfyveve fix an
interpretationR; in the classD of regular regions of R (for some fixedm). Keeping
the R’s fixed, we define severanvironment structuresDj, R{, ..., R}), where R/
is the restriction ofRi to D; € D. We write ® without indices for the most inclusive
environment structure, namely = (D, Ry, ..., Rp).

5 Tarski himself axiomatizes the primitives only indirectly. He first defines several relations among
spheres (e.g., concentricity), relying on the intended interpretation of the primitives, and provides
axioms only for parthood. Then, he introduces points as classes of concentric spheres. In this
way, he can define equidistance among points using properties of concentric spheres and adopt
the Euclidean axioms to constrain equidistance and, indirectly, the preteiatpa sphere
Nicod considers the primitiveparthood and conjugation(from which he defines points and
their standard relationships) and assumes all theorems of the point-based Euclidean geometry
as axioms to force the desired interpretation for the 2 primitives. He does not provide a direct set
of axioms for the chosen primitives. Nicod is aware of the formal drawbacks of this approach. His
main goal was to show that extended regions can be taken as the fundamental entities of geometry,
and the method he applied does the job. As a result, the system has no proper axiomatization.
This is not in contrast with the ontological nature of mereogeometries becduiseuRed only
as an ‘environment’ for intended models. Indeed, these rely on region® an&not on single
points. In addition, spatial theories adequate to cognitive or applicative tasks focus on qualitative
relations and do not aim at capturing ‘new’ notions of space.

A subsetA of R" is said to be a regular region if (a) the closurefoéquals the set obtained by
the topological closure of the biggest open sefiand (b) the interior ofA equals the biggest
open set contained in the topological closureddfself, see Basic Notions in'Rsection.
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Given an environment structude; = (Dj, R{, ...,Rland a mereogeometily, we
define theocal structure®; (T) to be the structure obtained fro@m; by dropping the sets

Rij which are not the semantic counterpart of primitive$ jr.e., ®; (T) is the ‘projection’
of @ on the primitives off . For example, ifP, and P; are the only primitives oT, then
@;(T) = (Dj, R{, R}). Similarly, we write®; (T+T’) for the structure obtained from;
by dropping the setsziJ which are the semantic counterpart of primitives neither imor
in T’, i.e., the projection ofb; on the union of primitives ol andT’. These local struc-
tures furnish the backbone of our comparison. As a consequence, our strategy is structure
dependent and constitutes a generalization of more traditional comparison methods.
Using environment structures, one can formalize the noticcoateptually equivalent
theories This is the motivation for the definitions below. LEf T’ be 2 mereogeometries.

Definition 1. If P is a primitive ofT, we say that P igxplicitly @;-definablein T’ if there
exists an expressiap in the language of’ such that the interpretations of P andare
equivalent in the local structur®; (T + T’). Expressiory is called a®j-definition of P
inT'.

Definition 2. A theoryT is a ®j-subtheoryof T if every primitive P ofT has an explicit
®j-definition inT’.

Definition 3. Two theoriesT and T’ are ®j-equivalentif T is a ®;-subtheory ofl” and
T’ is a®j-subtheory off .

Definition 4. Let T and T’ be theories with natural domains;and Dj, respectively.
We say thafl and T’ are conceptually equivalerit they are both®;-equivalent andD -
equivalent.

The notions ofdj-equivalent and conceptual equivalence call attention to the domains
of interpretation and to the expressive power of the systems. In our terminology, 2 theories
are®;-equivalentf, roughly speaking, when interpreted in the domBiptheir primitives
have the same expressive power. Now, assume that we have a first-order translation between
2 ®j-equivalent theories. Given a deductively complete axiomatization of the first theory
in Dj, this furnishes a complete axiomatization of the second theory as well (of course,
such an axiomatization is relative to the given domiaijn).

In the case wher& has natural domai; andT’ has natural domai, the fact that
they ared;-equivalent andp j-equivalent tells us thal is a trueconceptual counterpart
of T’ (and vice versa) since one theory captures the natural model(s) of the other when it
is interpreted over the corresponding domain. Finally, note that the notion of conceptual
equivalence is independent from the overall set of theories one is considering, that is, from
the overall environment structure. Indeed, the inclusion (or exclusion) of other theories
does not alter the results abduandT’.

Some mereogeometries already furnish definitions that aim to capture primitives of
other theories. In these cases, it is crucial to verify whether the defined relations really
correspond to those primitives. For example, the theory in Donnelly (2001) (tfdooy
Mereogeometries section), defines the relationnection(C) in terms of the primitivecan
connect{CCon) as follows:

C(X, Y) =qgef VZ(CCon(z, X, ¥)). (2..1)

SinceC is a primitive in the theory of Cohn (1995) (thecf$ of Mereogeometries sec-
tion), its interpretation must agree with the interpretation obtained by (2.1). In this case,
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one must verify that the interpretation of C defined as in (2.1), which depends on the
interpretation ofCCon, conforms with the natural interpretation 6f given by Cohn
(1995) in the domains associated to these theories. A crucial step in our comparison is
to provide this kind of analysis.

We hasten to point out that this method is not universal and not always straightforward.
Sometimes, it is hard to isolate a meaningful environment for comparison or it might turn
out that a complete comparative analysis is too complex to be carried out. Some issues
based on these considerations are discussed in Environment Structures section. Also, it
is important to take into account that existential axioms (taken to constrain the domain
of interpretation for a given theory) might fail in environment structures with restricted
domains.

In the next section, we give a description of the mereogeometries studied in this paper
together with their natural models expressed IR Environment Structures section, we
fix and justify our choice of environment structures, and in Translations Between Theories
section, we present the details of the comparison verifying the explicit syntactic translations
across the theories and introducing new or corrected translations whenever necessary.

3. Mereogeometries. In this section, we present the mereological systems considered
in this paper and fix their formal interpretations. Sincé iR the common underlying
framework, we begin by listing some standard relations of this system and then use them
to interpret the mereogeometrical vocabulary.

3.1. Basic notions in R. Here we recall some topological and geometrical relations
and functions on R these are needed for interpreting mereogeometry:

e topological operatorglosure([]), interior (°);
¢ Euclidean distance, dist"& R" — [0, +00);
e standard operators, functions, and relations definable from these.

Also, recall that a subseX of R" is said to be aegular regionwhenever A]° = A° and
[A°]T=[A]

In the following list of operators and relations, lowercase variables stand for points of
R" and uppercase variables for regular regions'ln R

Operators and functions in"RX andYnonempty):

ball(c, r) = {x|dist(x, ¢) < r}, wherer > O; (nonempty open ball of radius centerc)
o(X) = [X] — X°; (boundary ofX)
diam(X) = supdist(x, y)|x, y € X}; (diameter ofX)
dist(X, Y) =inf{dist(x, y)[x € X Ay € Y};0 (distance betweeK andY)

Relations R (X andY nonempty):

Btw(x, vy, 2) iff dist(y, X)+ dist(x, z) = dist(y, 2); (x is betweery andz)
Congr(X, Y) iff there exists an isometry such that
f(X)=Y; (X is congruent tor)

9 Sometimes, we write dist( Y) for dist({x}, Y) and analogously for dis, y). Also, note that we
use the logical symbols, vV, —, etc. both in the mereogeometrical languages and in the semantic
statements.
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ConyX) iff Vx,y,z((X,y € XA

Btw(z, X, y)) = z € X); (X is a convex region)
Conx(X) iff YA,B((A° # @A

B° £ @A X° = A°UB°) - A°N B® # 0); (X is a connected region)
WConx(X) iff VA,B((A° # @A

B° £ @A X° = A°U B°) - [A] N[B] # 9); (X is a weakly connected region)
WWConx(X) iff VA B((A° £ @ A B° #

DA X° = A°U B°) — dist(A, B) =0); (X is aw-weakly connected region).

From the definitions, for alX C R", we have ConxXX) — WConx(X) — WW-
Conx(X). The converse does not hold. However, we have (WWCEM diam(X) <
+00) — WConx(X). These results are proven in Appendix A. Other topological and
geometrical lemmas based on the notions given above become handy in proving theorems
of later sections. These lemmas are collected in Appendix A as well.

3.2. The theories and their (natural) interpretations.As we have seen, the natural
interpretation of the nonlogical primitives is crucial for the comparison. Because of this,
we provide detailed notes with references to the literature and point out the cases where
the information available is not satisfactory.

In this section, we list the nonlogical vocabulavy, the domainD;, and the (natural)
interpretation [J; of each mereogeometily we consider. Also, assume that an assignment
functionJ, from the set of variables to regular regions ith s been fixed for each index
n.If D € (R"), then [R(x, y)]j and [R]; (X, Y) stand for R];(In(X), In(y)), where
In(x) = X (X € Dj C D). Finally, since there is no danger of confusion, throughout the
paper we write k] j for Jn(x) whenever the inden is fixed by the context.

T1 — Theory presented in Tarski (1956a) and further developed in Bennett (2001) and
Bennettet al. (2000b):
Vi ={P, S}, where
P(x, y) stands for X is part ofy’ and
S(x) for ‘x is a sphere’;
D; = {nonempty regular open subsets ¢fR
= {X CR"[X # @A [X]° = X};
[P, Yli=XCY;
[SX)]1=3ceR"r e RT (X =hall(c,r)).

T2 — Theory presented in Borgat al. (1996)1°

Vo = {P, SR, CG}, where
P(x, y) stands for X is part ofy’,
SR(x) for ‘x is a simple region’ (orx is connected’), and
CG(x, y) for ‘x is congruent to/’;

D2 = {nonempty regular open subsets &f®ith finite diametey

= {X C RYX # @A [X]° = Xadiam(X) < +oo};

[P, y)]l2=XCY;

[SR(x)]2 = Conx(X);

[CG(x, y)]2 = CongrX, Y).

10 This theory is restricted toksince it was developed for the description of physical objects. One
can easily generalize it to"Roy varying the axioms on the space dimension.
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T3 — Theory given in Nicod (1924
V3 = {P, Conj}, where
P(x, y) stands for X is part ofy’ and
Conj(x, y, X/, ¥ for ‘x,y andx’,y’ are conjugates’;
D3 = {nonempty regular closed connected subsets"$f R
= {X CR"[X # @A [X']= XA Conx(X)};
[P, V]Is=XCY;
[Conj(x, y,x", y)]ls=3p,q, P, ad'(pe XAqeYAp e X Aq eYAdist(p, )
= dist(p’, 9).

T4 — Theory introduced in De Laguna (1922) and further developed in Donnelly (2801):
V4 = {CCon}, where
CCon(x, y, z) stands for x can connect botly andz’;
D4 = {nonempty regular closed connected subset'ofvizh finite diametey
= {X C RMX # @A [X°] = XA Conx(X)A diam(X) < +oo};
[CCon(x, Y, 2)]4 = dist(Y, Z) < diam(X).

T5 — Theory first introduced in Van Benthem (1983) and further developed in Aurnague
etal.199713
Vs = {C, Closer}, where
C(x, y) stands for x is connected ty’ and
Closer(x, vy, z) for ‘x is closer toy than toz’;
Ds = {nonempty regular subsets of p*
={XCRX#DA([(X]=[XTA X =[X])}
[Cx, YIs=XNY # &,
[Closer(x, y, 2)]s = dist(X, Y) < dist(X, Z).

T6 — Theory given in Cohn (1995) and Cokhal. (1997a,b):
Ve = {C, ConvH}, where
C(x, y) stands for X is connected tg’ and
ConvH(x, y) for ‘x is the convex hull of/’;
D¢ = {nonempty regular open subsets dfR
={XCRMUX#BA[X]°=X};

11 Nicod provides an informal description 6bnj: “[D]eux volumesAA’, BB’ sontconjugiess'il
existe un point deA et un point deA’, un point deB et un point deB’, sepaés par la rd@me
distance” (Nicod, 1924, pp. 27-28). He also characterizes the domain, see (Nicod, 1924, p. 27).
12 pe Laguna provides an informal description 6fCon: “[T]o say that C can connectA
and B would be understood to mean that we could, if we wished, @uin simultaneous
contact with A and B” (De Laguna, 1922, p. 450), i.e., considering a domain of
closed regions, €Con(x,y, 2] = 3p, P’ a4, r(p, P’ € XA Qg € Y Ar € ZAa dist(p,
p’) = dist(g, r)). In Donnelly (2001), a different interpretation is giverC§on(x, y, 2)]4 =
dist(Y, Z) < diam(X). This interpretation is equivalent to the one of De Lagun®ip but,
as shown in Definitions ifT1 section, in the domains containing nonconnected regions, it does
not satisfy all the axioms provided by De Laguna. Since we are working in domains containing
nonconnected regions as well, we consider the weaker one.
13 No intended interpretation for the relatiloser is provided. The interpretation we propose
seems self-evident and satisfies all the axioms. As far as we can tell, it is faithful to this approach.
14 van Benthem (1983) considers only convex and bounded regions.
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[Cx, Y6 =[X] N[Y] # @
[ConvH(x, )]s =Con X) AY C X A =3Z(Con Z) AY C Z A Z C X).

4. Environment structures. Having listed all the systems and their (natural) inter-
pretations, the next issue is the definition of the environment structures for the comparison.
The key step in this part of our method is the choice of the structure domains.

As we have seen, all mereogeometries in the Mereogeometries section consider non-
empty regular regions and do not refer to lower dimension objects like points or boundaries.
Looking at the descriptions, we see that all the domains, with the only exceptiDsg, of
contain regular regions only, and these are either all open or all closed (perhaps with
additional constraints). In particulaf; = Dg = {X C R"|X # @ A X =[X]°} is the
set of regular open regions. Let us call this domBig. From the topological point of
view, Do is the counterpart oDc = {X C R"|X # @ A X =[X°]}, the set of regular
closed regions, since there exists a bijectforDo — D¢ given by f (X) = [X] such that
f=1(X) = X°, f71(f(X)) = X, and f (f ~1(X)) = X.

DomainDs is the union ofDg andDc. In Ds, set inclusion €) is nonextensional: iK
is a regular closed region iDs, thenX® € Ds andX® C X, but there is nothing ils that
makes the difference between these regions. This is a major difference bétveem
the other systems, and it has far-reaching consequences already at the mereotopological
level (Cohn & Varzi, 2003). In this paper, we concentrateeextensional systems; thus,
we leave out the domaiBs. Indeed, set inclusion is extensional in all the other theories
of Mereogeometries section, and it is used extensively to prove the results of Translations
Between Theories section. This does not mean that we diSrBisdtogether. Instead, we
take the interpretations @ andCloser provided by the authors df5 and apply these in
the other domains. Admittedly, this covers only one direction in the comparisbh wfth
the other systems, but the analysis of theofigsT6 in the natural domain of5 is quite
complex and we leave this subject for future work.

Focusing on the relationship betweBg andDc, one wonders if it is possible to reduce
the comparison to domains containing open regions (or closed regions) only. Let us start
with a specific example. Two of our theories are interpreted in the class of closed regions,
namely T3 (primitives P and Conj) and T4 (primitive CCon). From Lemma L.5 (see
Appendix A), we see that the interpretation of P, i@,,is independent from the open-—
closed distinction. The interpretation 6fCon behaves analogously since from Lemmas
L.8 and L.9, we have disK, Y) = dist([X], [Y]) = dist(X°, Y°) and diam{) = diam([X°])
= diam(X®). The case of Conj is different. The natural interpretationli) is given by
the formula

Ap,q, P, d(peXAqeYAap eX Aq eY Adist(p,q) =dist(p’,q")). (4.1)

If we want to make justice of this interpretation in the domBig, we should consider the
topological closures of the variable values, that is, the following fornitla:

3p,a, p,a'(pe[XIage[YIAp € [XTAq e[Y]Adist(p,q) =dist(p’, q)). (4.2)

However, formulas (4.1) and (4.2) are equivalenbig only. For a counterexample Do,
letn = 1 and takeX = (0, 1), Y = (4, 5), X' = (1, 2), andY’ = (3, 4). Thus, in botiDgo

15 Recall that, in a formula, the interpretation of the variables is restricted to the donggin D
However, the formula itself may refer to regions outsidg, vhich justifies our use of [ ] in
the formula.
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andDc, formula (4.2) coincides with the (informal) interpretation provided by the authors,
while (4.1) is specialized tB¢ since it takes advantage of the properties of that domain. In
particular, taking (4.2) to be the interpretation @wonj, our comparison can be carried out
in both the domain®o andDc. This example suggests a way to reliably restrict our anal-
ysis to a subclass of regular regions, §xy, by allowing us to ‘transfer’ the results to the
other,Dc. Indeed, taking the closure of the values given by the assignment function, that is,
substituting K] for any occurrence oX in the interpretation of a formula, we can interpret
in Do also those primitives that are defined on the domain of regular closed regions.
Finally, since some primitives seem to occur in several systems, we need to verify that
the corresponding interpretations are compatible. If this is not the case, these have to be
taken as distinct primitives. In our case, 2 primitives occur in several the®rissncluded
in T1, T2, andT3, andC is included inT5 andT6. P has the same interpretation in all
the theories; thus, we can identify the primiti®ein all these theories. Regardir®@ its
interpretation differs in the 2 domaii3s and Dg. Since the interpretation in5 is based
on a domain that we do not consider in this paper, we have to evaluate the adequacy of the
original interpretation in the actual domains we use for the comparison. In the domain of
open regions, the interpretation ©fgiven by T5 reducesC to standard overlap, a relation
that is weaker than any connection relation. This result seems in contrast with the goals of
the authors. In the case of closed regions, the interpretati@pobvided byT5 coincides
with that of T6. These observations suggest that the interpretati@(xofy) as ‘the inter-
section of the closure of regionsandY is nonempty’ is more reliable. Nonetheless, some
arbitrariness seems to be involved in this choice. We overcome this criticism by providing
a definition ofC in terms ofCloser (the only other primitive ofT5) that is compatible
with the chosen interpretation f@. That is, a deeper analysis shows that the relafias
definable througl€loser in Do or D¢ (this definition is given in Dispensable Primitives
section). Furthermore, from this result and Proposition 1, one can se€lihsdr can
defineC even if one decides to interpret it in the other way, i.e., as the standard overlap
relation. That is, the real interpretation©fin the domains we consider is irrelevant since,
as we show, this relation is dispensable (see Dispensable Primitives section).
Putting things together, we end up with 8 distinct environment structdrgsby. These
have fixed vocabulary = {C, CCon, CG, Closer, Conj, ConvH, P, S, SR} and fixed
interpretation functions (Table 1) but different domains (Table 2). Recall that each theory is
associated with a specific domain, i.e., the domain of its natural model. As a consequence,
with the exception of theory5, we associate each theory with the structure isolated by its
natural domain and the interpretation functions given at the end of Environment Structures
section and call this theatural environment structur®r that theory (Table 2).

Definition 5. LetT be a theory and D the domain of its natural model. The natural envi-
ronment structure of is the environment structure among tig—®, that has domain D.

From Conceptual Comparison section, given 2 theories and a domaimlsay and
D,, the theories are said to ldg, -equivalent iff the relation disk, Y) < diam(Z) can be
defined in the structuré, (T1) = (D,, X C Y, dc,r (X° = ball (c, r)) withr € R™), and
the relationsX C Y and3dc,r (X° = ball(c, r)) can be defined in the structude, (T4) =
(Dg, dist(X, Y) < diam(2)). In other terms, both the structurés, (T1) and®,(T4) can
be definitionally expandetb the structuréD,,, dist(X, Y) < diam(Z), X C Y, dc,r (X° =
ball(c, r)) withr € R*), see Hodges (1997).

Before moving to the next section, we add a couple of words to motivate our choice
of CCon'’s interpretation. TheCCon primitive is introduced in a domain of connected
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regions, and there are different ways to generalize it to the more comprehensive domain
we consider in this paper. At first sight, when working in the domain of all open regular
regions, one might want to impose that@Con(x, y, z), variablex must range over
connected regions only. This constraint would capture the intuition that whenever a region
‘can connect’ 2 given regions, then it ‘can connect’ any 2 regions that are at closer distance.
However, this constraint is too strong with respect to the underlying intuition that in R
accepts that the regiok = (0,1)U (2,3) ‘can connectY = (10,12) andZ = (13,15). From

a broader perspective, the problem is to understand which properties of the primitive that
are guaranteed by the peculiarity of the original domain should be explicitly enforced in
the more general interpretation. Our approach in these cases is to adopt the interpretation
that makes the primitive weaker. Such a choice allows us to better analyze the import
of the primitive. For the sake of completeness, note that one could informally interpret
CCon(x, Y, 2) as ‘there are 2 points of whose distance is equal to the distance between

a point ofy and a point oz’ This interpretation has been discharged for the simple reason
that it would makeCCon a subcase dfon;.

5. Translations between theories. In the previous sections, we have prepared the
elements for the formal comparison. The mereogeometries that we consider have been
presented in Mereogeometries section, and the environment structures have been chosen
and motivated in Environment Structures section. Now, we enter into the actual comparison
giving the formal results. In this section, we collect the theorems, while their proofs, which
are sometimes long and involved, are presented in the appendices.

Since in the previous section we have shown how to reduce the comparison to struc-
tures with domain inDo only, we abuse the above notation by usihg—®; as natural
environment structures even for theories whose natural doBadrcontained irDc.

5.1. Verifying the given explicit definitions. First, we prove that the explicit defini-
tions, provided by each theory and of interest for the comparison, are satisfied in the natural

Table 1. Interpretation of the vocabulary on nonempty regular regionsdbf R

[Cx, MI=[X]N[Y] # 2

[CCon(z, x, y)] = dist(X, Y) < diam(2)

[CG(x, y)] = Congr(X, Y)

[Closer(z, x, y)] = dist(Z, X) < dist(Z, Y)

[Conj(x, y, X', y)] = I,y XY (X €[X] Ay €[Y] A X €[X'] AY €[Y'] Adist(, y)
= Cist(x’, y))

[ConvH(x, y)]= Con(X) AY C X A =3Z(ConZ) AY C ZA Z C X)

[P, yl=XcY

[SCO] = Jer (X° = ballc, r)) withr e Rt

[SR()] = Conx(X)

In this case, we indicate the interpretation function with the double brackets [ ] without indices.
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Table 2. Structures and theidomains.

STRUCTURE DoMAIN DOMAIN DESCRIPTION NATURAL
Nonempty regular EVIRONMENT
regionsand ... OF

@, Dy =Do={XCR'X#@

A [X]° =X} open T1,T6
Dp Dp ={X € Dol diam(X) < +oco} open and finite T2
o, D, ={X € Do| Conx(X)} open and connected
[oX} Ds = {X € Dg| Conx(X) open, finite,

A diam(X) < 4oo} and connected
@, D, =Dc={XCR"X#@

A [X°]= X} closed T3
D D, ={X € Dc| diam(X) < +oo} closed and finite
@, D, = {X e Dc| Conx(X)} closed and connected
Dy Dg = {X € D¢| Conx(X) closed, finite,

A diam(X) < 4oo} and connected T4

environment structure for that theory. We will see that there is one exception: the definition

proposed int1 to capture the relatioBCon yields an interpretation function that does not

satisfy the axiomatization of the primiti@Con given inT4. We will show how to modify

such a definition to capture the correct meaning of the primitive. Regafdingie do not

take into account the definitions it provides because they are conceived for the ddsnain
First, we consider the (derived) interpretations of those mereotopological notions that

receive a common definition in the theoriEs-T6. These notions are extensively used in

the rest of the paper.

Proposition 1. In all the structuresd,,_g, the following holds:

(DP) LetP*(X,y) =def Vi (C(X, w)
— C(y, w)), then

[P*(X, Y)]a—s = X C Y;16 (x is a part ofy)
(DPP)  LetPP(x,y) =det P(X, ¥) A =P(y, X), then

[PP(xV]u-s=XCY,; (x is a proper part of)
(DO)  LetO(x,y) =def IZ(P(z, X)A P(z, y)), then

[OXY]as = XNY # ; (x andy overlap)

(DPO) LetPO(X,Y) =def O(X, Y) A —
P(x, y) A = P(y, x), then
[PO(X, Y)]u—s=XNY # DA
“XCYA-YCX; (x andy partially overlap)

16 Note that the interpretation &f* is identical to the interpretation fixed f& (Table 1). For this
reason, in the following we will identify?* with P.
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(D+) Let SUM(z, X, ¥) =def Vw(O(w, 2) <
(O(w, X)V O(w, ¥))), then
[SUM(z, X, Y]a=s = (Z=[XUY]?); (zis the sum ok andy)
(D-) Let DIF(z, X, Y) =def Vw(P(w, 2) <>
(P(w, X) A = O(w, ¥))), then
[DIF(z, X, Y)]a-s = (Z = X—=[Y]); (zis x minusy)
(DEC)  LetEC(X, y) =def C(X, ¥) A = O(X,y), then
[EC(X, Y)a—s = [X] N[Y] #
AXNY =@. (x andy are externally connected)
(DIP) LetIP(X,y) =def P(X, ¥) A
vz(C(z, x) — O(z, y)), then
[P, V]a—s=[X]ICY; (x is an interior part ofy)
(DTPP) LetTPP(X, y) =def PP(X, Y)
AJZ(EC(z, X) A EC(z, y)), then
[TPPX,W]o—s=XCY A
oXynao(yY) £ a; (x is an tangential proper part g
(DSC)  LetSC(X) =def VY,Z(SUM(X, v, 2)
— C(y, 2)), then
[SCO)] =5 = WConx(X); (x is weakly connected).

Proof. See Appendix B.1. O

We are now ready to analyze the definitions provided in some theories, ndihel2,
T4, andT6. The goal here is to ensure that these definitions capture correctly the intended
notions, to provide counterexamples where they do not, and to propose a corrected version
when needed. To distinguish the vocabulary of the environment structures in Environment
Structures section from the relation symbols within a theory, we label those in the latter
group with the index of the theory where they occur. For insta@géx,y) is the connec-
tion relationship defined in theoryl, while C(x,y) is the connection relationship with
interpretation as in Table 1.

5.1.1. Definitions in T1. Primitives ofl: P, S. The explicit definitions provided in
this theory involve 2 relationships that we do not discuss directly. The @€, is the
relationship that holds between 2 concentric spheres and is introduced and defined by
Tarski (1956a). More precisely, in this paper Tarski prov@bIE(x, y)]=3c e R", rr’ e
R" (X =ball(c,r) A Y =ball(c, r")). We do not repeat the argument and refer the reader to
that paper on this topi€€NC is adopted inT1 without changes, and it is used to define the
connection relation as shown in definition (DC1) below. The oth@Gs which is needed
to captureCCon. The definition ofCG given in the language of1 is quite complex. In
FromT1 to T2 section, we provide an improved definition©6 (within theoryT1) that
works in all the domains. There we also prove that its interpretation corresponds to that of
Environment Structures section. For the time being, we show that the existing definition of
CCon given in Bennett (2001) and Bennettal. (2000b) must be corrected.

Explicit definitions furnished i 1:

(DC1) Ci(X,y) =def IZ(S(2) A VZ(CNC(Z, 2) - (O(Z, x) A O(Z, V))));
(DSR1) SRj1(X) =gef VY, Z(SUM (X, Y, 2) — 3s(S(s) A O(s,y) AO(s, 2) AP(s, X)));
(DCC1) CConi(z, X,Y) =def 3Z(CG(Z,2) A C1(Z,X) A C1(Z, Y)).

Proposition 2. [C1(X, V] u—s = [C(X, ¥)] and[SR1(X)]«—s = [SR(X)].



ZU064-05-FPR

rsI"8009 24 June 2008 21:23

14 STEFANO BORGO AND CLAUDIO MASOLO
Proof. See Appendix B.2. O

Proposition 3. Let[CG(X, y)] = Congnr(X, Y), then
[CConi(z, X, V)]w = F2,Z,X,¥(z.Z € [Z] A X € [X] Ay € [Y] A dist(x,y) =
dist(z, 2)).

Proof. See Appendix B.3. O

In D, (i.e., the natural domain d&f1), the interpretation o€Con; is not equivalent to
the interpretation o€Con given in Table 1. For example, lat= 1 and takeX = (2, 3),
Y = (5,6),andZ = (0, 1) U (7, 8). Then, dist¥, Y) < diam(2), but—3z, 7, x, y(z, Z €
ZAX e XAy e YAdistk, y) = dist(z, Z)). In addition, while the interpretation in
Table 1 satisfies all the axioms given by De Laguna orctireconnecprimitive in all the
structures, the interpretation 6fCon; does not satisfy (i, ) the following De Laguna
axiom:
3Ix, y(CCon(a, x, y) A =CCon(b, x, y)) —» —3z,0v(CCon(b, z,v) A =CCon(a, z, v)).

A counterexample i, (for n = 1) is obtained by takingh =(3, 5), B =(0, 1)U (7,
8), X=(2,3),Y=(5,6),Z=(-1,0),andV = (8, 9).

We conclude that (DCC1) does not capture the De Laguwaaisconnecprimitive, and
therefore, in our conceptual comparison, we will not make use of this definition.

5.1.2. Definitions in T2. Primitives of2: P, SR, CG. The definition (DC2), given
below, uses the relationshNC. This has been discussed in Definitiongthsection and
is adopted inT2 without changes with respect to Tarski's work. Of course, the correctness
of CNC in this theory depends on the correctness of definition (DS2), which establishes
what counts as a sphere in this theory.

Explicit definitions furnished if2:
(DS2) S5(X) =def SR(X) A VY, Z((CG(X, y) A PO(X, y) A DIF(z,x,Yy)) — SR(2));
(DC2) Ca(X,Y) =def 32(S5(2) AVZ(CNC(Z, 2) = (O(Z, x) A O(Z, y)))).

Proposition 4. [S5(X)] s = [S(X)] (@ is the natural environment structure df2) and
[S501a.y,0 # [SOO].

Proof. See Appendix B.4. O
Proposition 5. [C2(x, y)] = [C(x, y)] provided[ S5 (xX)] = S(X).
Proof. It follows from the proof of Proposition 2. O

Bennettet al. (2000a) propose a definition & based orP and CG together with an
attempt to provide semantic equivalence in the domain of open regular regions. We are
not going to consider this definition in our comparison because, unfortunately, it fails to
capture the notion of sphere. The interested reader can easily verify that the definition in
that paper does not rule out nonspherical regions like Reuleaux polytbpes.

5.1.3. Definitions in T4. Primitive of4: CCon. Explicit definitions furnished iif4:

(DC4*) CZ(X, Y) =def vz(CCon (21 X, Y)),

17 A Reuleaux polytope in Ris the region obtained by intersecting the 3 discs centered at the
vertices of an equilateral triangle with radius (of length) equal to (the length of) the side of the
triangle itself.
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(DP4*)  Py(X,Y) =det VZ(Cy(z, X) — C4(Z, ¥));
(DP4") PZ(X, Y) =def VZ, w(CCon(w, z, X) - CCon(w, z, Y));
(DCl4) Closera(z, X, y) =def 3a(CCon(a, z, X) A =CCon(a, z, y)).

Proposition 6. [C}(x, V)] 5,6 = [C(X, y)] (@5 is the open counterpart @by, i.e., of the
natural environment structure of4) and [C; (X, Y)]a4,, # [C(X, Y)].

Proof. See Appendix B.5. O

Proposition 7. [C,(x,V)]a—s = [P VI [P;(x,Y]«—s = [PXx, Y], and
[Closers(z, X, Y)]o—s = [Closer(z, x, y)].

Proof. See Appendix B.6. d

5.1.4. Definitions in T6. Primitives of6: C, ConvH.
Explicit definitions furnished irT6:18
(DPG) P4(X7 y) =def VZ(C(Zv X) 4 C(27 y))v
(DCM6) Complg(y, X) =def VZ(C(z, y) <> =IP(z, x));°
(DSR6) SRg(X) =def VY, z, w((SUM(X,Yy,2) A Complg(w, X)) — Fo(SC) A
O(v,y)
A O®,2) A—C(v, w))).20

Proposition 8. [Ps(X, ¥)]Pa—s = [P(X, y)] and[SRs(X)ISR,-s = [SR(X)].
Proof. See Appendix B.7. a

5.2. Dispensable primitives.Using extensively the definitions and results of the pre-
vious sections, we now investigate if some primitives of a th@argan be defined (in all
®,_s) on the basis of the other primitives of the same théldryThis ‘internal reduction’
points out redundancies and reduces the steps needed to compare the theories.

Proposition 9. In T2, we can us€éDSR6) to define the relatiolsR.

Proof. Directly from Proposition 8 and the fact that all the predicates used in (DSR6) are
definable inT2 with the same interpretation. 0

In T3, on the basis of the primitiv€onj, we can define the parthood relation:
(DC3%)  C3(X, y) =def ¥2(CoNj(z, Z, X, ¥));
(DP3)  P3(x, y) =def ¥2(C3(z, X) = C3(z, ).

Proposition 10. [P3(X, ¥)]«-s = [P(X, ¥)].
Proof. See Appendix B.8. O

18 The predicate®, IP, SUM, andSC in the definitions (DCM6) and (DSR6) are defined usihg
Because of Propositions 1 and 8, their definitions coincide with the original ones. For this reason,
we do not introduce new symbols for these predicates.

19 In the original papers, the complement is introduced as a primitive function. Here we adopt the
standard formulation of the complement as a relation.

20 This predicate is called ‘manifold’ in Cohn (1995).
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T1: P,S
5.3.5 5.3.1
5.3.6
T3: Conj Té6: C,ConvH T2: P,CG
5.3.4T 15-3-2
T5: Closer < T4: CCon
5.3.3

Fig. 1. Definitional links between mereogeometries (we report the primitives of each thoery).
Here Ti — Tj’ means ‘theoryT| is a ®,_g-subtheory ofTi, i.e., in ®,_gp, all the primitivesT]j

can be defined on the basis of the primitiveJbfthe labels indicate the section in which the proof is
given).

In T5, on the basis of the primitiv€loser, we can define the connection relation:
(DC5*)  Cs(X, y) =def ~3Closer(x, z, y));
(DP5)  Ps(X, y) =det VZ(C5(z, X) = C5(z,Y));
(DFD5) FDs(x) =def 32(¥X’, X" ((P5(X’, X) A P5(x”, X)) — Closer(x’, X", 2)));

(x has finite diameter)
(DC5) Cs(X, Y) =def 3z, w(FDs(2) A FDs(w) A P5(z, X) A Ps(w, y) A C5(z, w)).

Proposition 11. [Cs(X, ¥)]«—s = [C(X, Y)].

Proof. See Appendix B.9. O

5.3. Linking via explicit definitions. In this section, we show how the mereogeome-
triesT1-T6 are related in the structurds, . The connections are illustrated in Figure 1,
which shows our main result. At the end of this section, we will be able to conclude that
these mereogeometries, with the exceptiofi®fare actuallyd,_y-equivalent.

5.3.1. From T1 to T2. By Proposition 2, inT1, (DC1) define<C in all the structures;
therefore, we can use all the relations defined in Proposition 1. We use the additional
relationsID(z, X, y) (x andy are internally diametrical with respect #) and CNC(x,

y) (X is concentric withy), which were introduced by Tarski (1956a). As done before, we
report only the interpretations. A full description and the related proof of correctness can
be found in Tarski (1956a).

[1D(z,%, Y)]u—s = INtD(Z, X, Y)
(the centers ot, x, y are aligned and is the minimum sphere containing y)

[CNC(X, Y)]a—s = Jc,r1,r2 (X1 =ball(c, r1) A Xz = ball(c, r2)).
Using all these relations, we can define when 2 regions are congruent:
CG1(X, Y) =def VZ(X SS(z) —» IZ(EXCG(z, Z) A Vs,S((MSP(s, 2) A MSP(s, Z) A
SCG(s, 5)) —

((P(s, x) < P(g, ¥)) AP(s,y) < P(g, X)) A PO(s, X) < PO(s, y)) A PO(s, y) &
PO(s’, X))

(x andy are congruent regions),
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where

SCG(X, Y) =def S(X) AS(Y) A (X =Y Vv FZ,w(CNC(z, w) A EC(z,X) AEC(Z,y) A
TPP(x, w) A TPP(y, w)))
(x andy are congruent spheres)
EqD(X, ¥, X', ¥') =det SCG(X, X" ) A SCG(Y, ) A=P(X, Y) A= P(y, X) A= P(X', y) A=
P(y, X') A dzw(ID(z, X, ¥) A ID(w, X', ¥') A SCG(z, w))
(x, x” are congruent spheres and sow&’; x andy are not one part of the
other, analogously’ andy’; the centers ok, y and those of
X', y' are equidistant)
MSP(X, ¥) =def S(X) A P(X, y) A VZ((S(2) A PP(X, 2)) > —=P(z, y)) (X is a maximal
sphere contained ip)
Y SS(X) =def VY(P(Y, X) = IS(MSP(s, X) A O(s, ¥))) A
Yu,w((MSP(u, X) A MSP(w, X) A U # w) —» =SCG(u, w))
(x is the sum of a set of pairwise honcongruent spheres)

T CG(X, Y) =def ZSS(X) A ZSS(Y) A

Vs(MSP(s, x) — 3s'(MSP(s', y) A SCG(s, s))) A

Vs(MSP(s, y) — 3s'(MSP(s/, x) A SCG(s, s))) A

vs,u,s’,u (MSP(s, x) A MSP(u, x) A MSP(s', y) A MSP(U, y) A SCG(s, §)

A SCG(u, u"))
— EgD(s,u, ¢, U)
(regionsx andy are congruent and they are the sum of 2 equivalent sets of
pairwise noncongruent spheres).

Lemma l. T2is a®,_s-subtheory off 1.

Proof. We need to prove thatJG1(X, ¥)]«—s = [CG(X, y)]. See Appendix C.1. O

5.3.2. From T2 to T4. In Appendix C.2, we show thatd;(x,y)] «—s = (dist(X, Y) =
0). From this, we can define parthood By(X,y) =def VZ(C5(z, X) — C5(z, y)). The
proof that this definition is correct is as the proof of Proposition 10. Then, Proposition 1
gives us all the mereological relations used in the following definitions.

CConay(c, X, Y) =def Va,b(LDistx(a, b, X, y) — Jz(SCDiamy(z, ¢) A O(z, a) A O(z,
b)),

where:

C;(Xv y) =def VZHZ/(CG(Z/, Z) A O(Z/! X) A O(Z/! y)),
SC5(X) =def VY,Z(SUM(X, Y, 2) = C5(Y, 2)); (x is w-weakly connected)
LEDiama (X, y) =def SC5(y) A Va,b((P(a, x) A P(b, x)) — 3y (CG(Y, y) A O(Y, a) A
O(y’, b)));
(the diameter ok is less than or equal to the diameteryodind
y is w-weakly connected)
SCDiamz (X, Y) =def SC5(X) A VZ((P(Y, 2) A SC5(2)) — LEDiamz(X, 2));
(the diameter ok is less than or equal to the diameteryadindx
is w-weakly connected)
LDista(x, y, X', Y') =def Fa(SC5(a) A O(a, x) A O(a, y) A Va'(CG(a', a) - (—O(@,
X') v =0(@,y))))
(the distance ok from y is strictly smaller than the distance xffrom y’).

Lemma 2. T4is a ®,_s-subtheory off 2.
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Proof. We need to prove thatCony(c, X, y)].—s = [CCon(c, X, y)]. See Appendix
c.2. O

5.3.3. From T4 to T5. In T5, the relationC is dispensable (see Proposition 11); there-
fore, it is sufficient to provide an explicit definition @loser in terms of CCon. For this,
we use the definition (DCI4) of Definitions i section:

(DCl4) Closer4(z, X, Y) =def 3a(CCon(a, z, x) A =CCon(a,zy)).
Lemma 3. T5is a ®,_s-subtheory off 4.

Proof. We need to prove that{losers(z, X, ¥)].—s = [Closer(z, x, y)]. This follows
from Proposition 7. O

5.3.4. From T5 to T3. Here the explicit definitions we need are more complex. The
main reason is that we cannot find a way to split the definitions in pieces, which correspond
to intuitive or already known notions. So, we end up with a relatively long set of conditions
that, taken together, provide the correct constraints, although from such a set of conditions
one has little hope to recover the intuition about the defined notion.

In the specific case we deal with in this section, we further split the definition of equidis-
tance EqD*) in 2 cases depending on the dimension of the domain. This is needed for
domains of finite regions, lik®, and®;. Thus, we provide 2 definitions d&qD*: one
for the 1-dimensional domains and one for the others.

Since inT3 the relationP is dispensable (Proposition 10) andT® both C and P
are definable fronCloser (Proposition 11 and the definition (DP) of Proposition 1), the
following turns out to be an explicit definition @onj in terms ofCloser:

Conjs(x, Y, X', ¥) =def 3a,b,@",b/(SR(a) A SR(b) A SR(@") A SR(K') A

C(a, x) AC(b, y) AC(a',x) AC(',y) A EqD*(a, b, @, b") A

Vpa, pb((P(pal a) A P(pbl b) A EqD*(par pbl av b)) i (C(pal X) A C(pb! y)) A
VPa Po((P(P5, @) A P(pp, b)) A EAD*(pa, Py, @'.0") — (C(P4, X') A C(pg, ¥)),
where:

SR, given by (DSR6) in Definitions iff6 section, is defined using andP only;
FDs is defined in terms ofloser by (DFD5) in Dispensable Primitives section;
Eq(z, X, Y) =qef —Closer(z, X, y) A =Closer(z,y,X); (zis equidistant fronx andy)

andEqD* has different definitions in different domains. Thengip_ 4 for Rl andin®,_s
for R"™1, we take

(@) EqD*(X, y, X', y') =def FDs(X) A FDs(y) A FDs(X') A FDs(y') A
3z,Z(Eq(x, y, 2) A Eq(X, Y, Z) A Eq(z, X, Z) A Eq(Z, X/, 2))
(x is as close ty asx’ is toy’).

In @, _s for R, we take

(b) EaD*(x, y, X', ¥) =det (C(X, ¥) A C(X, ¥)) v FzZ(EC(z, x) A EC(z, y)
ANEC(Z, X)) A
EC(Z,Y) A CG*(z, 2)),

where
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CG®(X, Y) =def FD5(x) A FDs(y) A =C(X, y) A 321,22,23(EC(2z2, X) A EC(22, y) A
EC(z1, X) A = C(z1, 22) A EC(z3, ) A = C(z3, 22) A EQ(22, 21, 23));
CG*(X, ¥) =def FDs(X) A FD5(y) A

x=yv

(PO(X, y) A 321,22(DIF(z1, X, ¥) A DIF(22, ¥, X) A CG3(z1, 22))) V

(EC(x, y) A —=3z((PP(z, X) A CG3(z, ¥)) V (PP(z, y) A CG3(z, X)))) V

(—=C(x, y) A CG°(x, y))).2

Lemma 4. T3is a®,_s-subtheory off 5.

Proof. We need to prove thatQonjs(x, y, X', Y)]«-s = [Conj(x, y, X, Y)]. See Ap-
pendix C.3. O

5.3.5. From T3 to T1. Recall from Dispensable Primitives section ti@g(x,y) is
defined usingconj via (DC3), i.e.,

(DC3) C5(X,Y) =def VZ(CoONj(z, 2, X, ¥)).

P (and therefore alsoSUM) is definable usingC; (see Proposition 10) and
[C3(X, V] u—s = [C(X,y)] (see Appendix C.4). Therefore, we can rely on several def-
initions introduced in Proposition 1 (e.gSC and TPP) and on the definition oBR
introduced in Proposition 8.

Using these relations, we can give an explicit definition of sphere in ter@swj

S3(X) =gef FD3(X) A SR(X) A Va(LEDiamz(a, X) —
Jb(LEDiams(b, a) A P(b, x) A Vc,d(EC(c, X) A EC(d, X)) — (Conj(b, ¢, b, d))),

where
SC3(X) =def VY, Z(SUM(X, Y, 2) = C3(y, 2));
(x is w-weakly connected)
FD3(X) =def 3X', ¥, Z(SC5(X") A P(X, X') A =Conj(X’, X', Y, 2));
(x has finite diameter)
C3(X, Y) =def 3z, w(FD3(2) A FD3(w) A P(z, X) A P(w, y) A C3(z, w))
LEDiamz(x,y) =def SR(X) A SR(y) A Va,b((P(a,x) A P(b,x)) — 3Fa'.b'(P@,y) A
P(b',y) A Conj(a,b,a’,b')))
(the diameter ok is less than or equal to the diametengpfandx and
y are connected)

Lemma5. T1lis a®,_s-subtheory off 3.
Proof. We need to prove thatfz ()] ,—s = [S(X)]. See Appendix C.4. O

5.3.6. From T1 to T6. By Proposition 2, inT1, (DC1) definesC for all the structures.
Therefore, itis sufficient to provide an explicit definition@dnvH in terms ofP andS. We
use the additional relatidBTW, which was introduced by Tarski (1956a). As done before,
we report only the interpretation. A full description and the related proof of correctness
can be found in Tarski (1956a).

21 |n this definition, some conditions are redundant H@(x, y). We include them in the attempt
to improve the readability of the formula.
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|[BTW(X1, X2, X3)]|a_(3 = 301,02,C3,I’1,I’2,I’3(B'[\N(Cl, Co, Cg) A Xq = baII(cl, I’l) A Xo =
ball(cy, r2) A X3 =ball(cs, r3)).

Using the above BTW, we can define
ConvH1 (X, ¥) =def Conv(x) A P(y, X) A =3z(Conv(z) A P(y, 2) A PP(z, X)),

where
Conv(x) =def Vs1,52,3((P(s1, X) A P(S2, X) A BTW(s3, 51, 52)) — O(s3, X)).

Lemma 6. T6is a ®,_s-subtheory off 1.
Proof. [ConvH1 (X, ¥)]+—s = [ConvH(X, y)]. See Appendix C.5. O
5.3.7. The main theorem Now, we can state the main result of this paper:

Main theorem

(@) T1-T5 are ®,_p-equivalent
(b) T6is ad,_g-subtheory ofT1-T5;
(c) T1-T4 are conceptually equivalent

Proof.

(a) For®,_s, the thesis follows from Lemmas 1-5. For the structubgsy, it follows
from our argument in Environment Structures section together with the results of
Lemmas 1-5.

(b) From Lemma 6 and (a).

(c) From (a) and Definition 4. O

Note that we do not put constraints on the dimension of the space. Indeed, the result
is valid in R" for any positiven. On the other hand, the result relies on the properties
of the considered domains, and it might be hard, if possible at all, to extend it to other
domains. For example, it is known thatcannot be defined fror@ using the definition
(DP) in Verifying the Given Explicit Definitions section when dealing with atomic theories
(Masolo & Vieu, 1999; Randell & Cohn, 1992). A similar result holds betw€eandSR
as given inT2.

6. Final comments. As we have pointed out in the introduction, a major motivation
for this comparison of mereogeometries is the need of evaluating the strength of the mere-
ogeometrical systems in the literature. It is known from the work of Tarski that system
T1 can be used to capture the full system of Euclidean geometry by defining, in second-
order logic, points to be collections of concentric spheres. This result suggests that theory
T1 is perhaps the strongest system we can look for while remaining within the realm of
(region-based) geometry. The most relevant systems in the literature that we have analyzed
are formally equivalent td 1 in the sense of Conceptual Comparison section. We take this
fact as evidence that all these theories capture the ‘same’ notion of (mereo)geometry and
that the strength of other systems should be measured with respect to these.

Definition 6. A full mereogeometrys a theory that is conceptually equivalent Tcl.
Here is an immediate consequence of the main theorem

Corollary 1. T1-T4 are full mereogeometries.
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Our comparison does not establish the exact relationship between a full mereogeometry
and theoryT6. It has been argued in Cohn (1995) that the predic@tesd ConvH do
not suffice to obtain what we call here a full mereogeometry. Furthermore, the primitive
ConvH, at least when interpreted in"Rseems to be naturally related to a (restricted)
application of the Btw relation (see Basic Notions ifi Bection), that is, to a relation
that alone is too weak to capture Euclidean geometry (Tarski, 1956b). These observations
make us to believe that6 cannot be as strong 4. This is consistent with the results in
Davis (2006) and Davist al. (1999) and matches the conjecture ‘Mereology + Convexity
= Affine Geometry’ in Pratt-Hartmann (1999). However, we have no direct proof of this
and leave the issue as an open question.

Conjecture. T6is not a full mereogeometry.

We think that the conceptual analysis of mereogeometries presented in this work, even
with the limits discussed in Environment Structures section, puts order on the relationship
among important theories in the literature. In particular, the main theorem statesttiet
given environment structurethe theoriesT1-T5 have the same expressive power. This
means that, leaving aside computational issues, there is no real difference among these
theories and that, for applicative concerns, the choice of which system to adopt can be
safely based on nonlogical issues like, for instance, cognitive and modeling adequacy.

We remark here once more why our analysis is not conclusive about the classification
of theoryT5 as a full mereogeometry. We have seen that this theory is formally equivalent
to T1-T4 in the frameworks we considered. Nonetheless, our analysis also considers
nonformal aspects among which there is the natural domain of interpretation for the theory.
TheoryT5 is introduced with a natural domain that we have not considered, and we have
no proof that this theory is equivalent to the others in an environment with such a domain.
Thus, as of now, we cannot claim tha5 itself is a full mereogeometry. What we can
say is that if someone wants to use the formal syst@mvithin one of the domains we
considered, call this theor5’, then from our result it follows that theor5’ is a full
mereogeometry to all effects.

It is important to note that the definitions we have studied in this paper are all stated in a
first-order language. Therefore, they can be applied to furnish explicit definitions between
(fragments of) the theories. As we have seen, in some cases, these definitions are quite
complex. The complexity may increase even further if we look for a direct connection
between those theories that we did not link explicitly. For example, the definition of the
primitives of T1 in terms of the primitives off 5 is given indirectly: in the first step, we
define the primitives oT 3 in T5, and then, we use these to define thos&bfA complete
analysis of these definitions focusing on the complexity of the formulas could highlight
important aspects from both the conceptual and the applicative points of view.

Finally, sinceT1 is semantically complete with respect to its natural model with domain
D,, our explicit definitions in the subsections Frdrh to T2, FromT2 to T4, FromT4
to T5, FromT5 to T3, and FromT3 to T1 provide a simple way to obtain a semantically
complete axiomatization of all the theori€2—T5 in the domainD,,. This result is partic-
ularly relevant since, as we have seen, many systems are presented in the literature with a
partial axiomatization only.

7. Acknowledgments. We thank Carola Eschenbach, Nicola Guarino, and Laure Vieu
for their comments. This work has been partially funded by the Provincia Autonoma di
Trento through the projects MOSTRO and ‘Logical instruments for ontology analysis’'.
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8. Appendix A.
8.1. Basic topological and geometrical lemmas.

Lemma L.1. Given a regular set X iR", then Conx(X}» W ConxX) — WWConx(X,
while none of the converse implications hold in general. Furthermore, (WWCognx(X
diam(X) < 4+o00) —» WConx(X.

Proof. For X empty, there is nothing to prove. Otherwise, the first claim holds from the
definitions sinceA® N B° # @implies [A] N [B] # @ and the latter implies disg, B) = 0.

WConx(X) — Conx(X) fails. For a counterexample irfRtakeX = AU B, whereA =
{(x, =y)ly > 0,x > 0} andB = {(X, y)|y > 0,x > 0}. WWConx(X) —» WConx(X) fails
as well. For a counterexample ifRakeX = AU B, whereA = {(x, y)|y > 1/x > 0}
andB ={(x,y) |x >0,y <0}

Finally, let WWConxX) with diam(X) < +oo. Fix any pairA, B satisfying the defini-
tion for WWConx(X) and consider a sequenag)in A and a sequencéj() in B such that
limj_, o dist(@, bj) = 0 (such sequences exist since distB) = 0). Since diamX) < +oo,
there exisg,b € R" and subsequences; and b;) of (&) and ), respectively, such that
a=limj_ aj andb =limj_, bj. Clearly,a € [A] andb e [B], and from distq, b) =
lim; o dist@j, bj) =0, we conclude = b, that is, [A] N [B] # @ O

Lemmas L.2-L.6.Let X and Y be arbitrary sets in a topological spatteen
L.2 X° C X C[X].

L3[XUY]=[X]U[Y]and[XNY] C[X]N[Y].

L4 (XNY)°>=X°NnY°and XUY° C(XUY)°.

L5If X CY,then X C Y°and[X] C[Y].

L.6 If[X] N[Y] =@, then(X UY)° = X°UYe°.

Proof. Lemmas L.2—L.5 are basic topological results (see for instance Munkres, 2000).

Regarding L.6: from L.4, we know(° UY* C (X U Y)°; we need to sholX°UY®° D (X U

Y)°. If X orY is empty, there is nothing to prove. Assume that they are both nonempty
andx € (X UY)° thenx € XU Y. Supposex € X. If x ¢ X°, thenx € X° U Y°, and

we are done. Ik ¢ X°,i.e.,,x € d(X), thenx ¢ [Y] since [X] N [Y] = &. Thus, there
exists a neighborhood of, say! (x), such thatl (x) N Y = @. Fromx € 9(X) andx ¢

[Y], (X)) N(XUY) #dandl (x)N ~ (XUY) # @. This happens for any neighborhood

of x contained inl (x), thusx € (X U Y), contradicting the hypothesis € (X U Y)°.
Finally, we havex ¢ o(X). Thus,x € X impliesx € X°. One can prove analogously that

x € Y impliesx € Y°. From these resultg, € (X U Y)° impliesx € X° U Y°, and we are
done. O

Lemma L.7. Let X and Y be open regular sets in a topological space T, thenYX
[X U Y]° and~ [X] are open regular sets. Let X and Y be closed regular sets in a
topological space T, thef{X NY)°], XU Y, and~ (X°) are closed regular sets.

Proof. Directly from the fact that regular open sets form a Boolean algebra with
1=T,0=06,X-Y=XNY, X+Y =[XUY]°, and—X =~ [X] (Biacino &
Gerla, 1991). Analogously for the regular closed sets. O

Lemma L.8. Given 2 nonempty regular sets X and YRt
dist(X°, Y°) = dist(X, Y) = dist([ X], [Y]).
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Proof. From L.2 and from the definition of distance, we have di}([[Y]) < dist(X,
Y) < dist(X®, Y°). For the other direction, suppose (by contradiction) that di§t([Y]) <
dist(X°, Y°), i.e.,i =inf{dist(x, y)| x € [X] A Y € [Y]} < inf{dist(x, y)|x € X° Ay € Y°}
=i’. Then, there existd > 0 such that’ =i + d. From the definition of distance between
sets, for alk > 0 there exisk € [X] andy € [Y] such that dist{, y) < i + ¢, fix e = d/3,
then distk, y) < i’. Thus, ballk, ) N X° = @ or ballfy,e) N Y° = @ (otherwise, we
could find pointsx’ € X° andy’ e Y° with dist(x’, y') < i’). From this resultx ¢ [X]
ory ¢ [Y], a contradiction. Then, dist], [Y]) > dist(X°, Y°), from which the thesis
follows. O

Lemma L.9. Given a nonempty regular set X ifR
diam(X°) = diam(X) = diam([ X]).

Proof. From L.2 and from the definition of diameter, diaXt) < diam(X) < diam([X]).
For the other direction, suppose (by contradiction) that dix})( diam(X®), i.e.,s =
sugdist(x, y)|x,y € [X]} > supdist(x, y)|x,y € X°} =s'. Then, there existd > 0 such
thats —d = §'. Since for alle > 0, there exisk,y € [ X] such that dist{, y) > s — ¢, fix
¢ = d/3, then distg, y) > s’ and so ball, ¢) N X° =@ or ballfy, ¢) N X° = @. From this
result,x ¢ [X] or y ¢ [X], a contradiction. Thus, diamX]]) < diam(X°) from which the
thesis follows. O

Lemma L.10. Given 2 nonempty regular sets X and YR
diam(X UY) < dist(X, Y) + diam(X) + diam(Y).

Proof. This result follows easily from the triangular inequality. O

Lemma L.11. Given 2 open regular sets X and Y ifi.Rf X and Y have finite diameter,
then XN'Y and[ X U Y]° are open regular sets with finite diameters.

Proof. From L.7,X NY and [X U Y]° are open regular sets. In the first case, the condition
on the diameter follows fromX N Y) C X while in the second case from L.8, L.9, and
L.10. O

LemmaL.12. Given 2 nonempty regular sets X¢¥ R" with at least 1 of finite diameter:
Ix,y(x € 8(X) Ay € (Y)A dist(x, y) = dist(X, Y)).

Proof. First, we shovax,y(x € [X] Ay € [Y] A dist(x, y) = dist(X, Y)).

Assume that botlX andY have finite diameter. By definition of dis{( Y), one can find
a sequences() in X and a sequencd;() in Y such that lim_, o, dist@, bj) = dist(X, Y).
Since diamK), diam(Y) < +oo, there exist, b € R" and subsequences;{ and ;) of
(a) and @), respectively, such that= lim;_,aj andb = lim;_, . bj. Clearly,a € [X],
b € [Y], and dist&, b) = lim;_, dist(@;,bj) = dist(X, Y).

If diam(Y) = +oo, we proceed as before to isolates [ X], since [X] is compact. Then,
we consider sequench § in Y such that lim_, o, dist(@, b;) = dist(X, Y). For any positive
r, (b)) N{y e[Y]|dist(y,a) < dist(X,Y) + r} contains an infinite subsequence bf)(
call it (¢j). Then, there exists = limj_,,cj for some subsequence;f of (¢;). Clearly,
c € [Y] and distf,c) = dist(X, Y).

Now, assume that we isolatedandy satisfyingdx,y(x € [X] Ay € [Y] A dist(x, y) =
dist(X, Y)). It is easy to see that ¥ € X°, in R" one can findk’ e [X] such that dist{’,
y) < dist(X, y). Thus,x € (X). Similarly fory. O
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Lemma L.13. Given a nonempty regular set X RY' :
WConxXX) — vd(0 < d < diam(X) — 3Ix,y(X,y € X A dist(x, y) = d)).
If X has finite diameter:
Ix,y(x,y € [ X] A dist(x, y) = diam(X)).

Proof. The result is trivial ford = 0. Ford > 0, let X be open (forX closed, it follows
from this). Fixd e (0, diam(X)) and fixx,z € X such that dist{, z) = d’ withd < d’ <
diam(X) (these points exist from the definition of diam). L&t {y € X| dist(x, y) < d}
andB = {y € X | dist(x, y) > d}. Clearly, X = AU B and bothA and B are honempty
sincex € Aandz e B. If there existsu € A such that dis¥, u) = d, we are done.
Otherwise, we have tha is open in R sinceA is open inX and X is open in R. Also,
note thatB is open since, from the definitiol is open inX. From WConxK), there
existsv € [A] N [B]. Thus, distk, ») = d.

Let Oy = ball(x, ¢), for somed, such that Dx] c X and fixy € B such that dist, v)
< 0/2 (this point exists since € 9(B)). Fix the line throughy andx, call it L. Let {xy,
x2} = o(L N [Ok]) with dp = dist(y, x1) < dz = dist(y, x2). Then,d; < d < ds. Since Jy,
X2] C L is compact, the function dist oiy[x2] x {y} assumes all values in [@p]. Since
dist, on [y, x1] x {y}, assumes all values in [6] and it is strictly increasing, there exists
X* € [x1, X2] (L N [Ox]) such that dis*, y) = d. Sincex*, y € X, we are done.

For the second claim. By definition of diaXy, one can find 2 sequences ) and ;)
in X such that lim_, » dist(g;, by) = diam(X). Since diamK) < +o0, there exisg,b €
R" and subsequences;§ and p;) of (a) and @), respectively, such that = lim;_, a;
andb = limj_,bj. Clearly,a € [X], b € [X], and dist&, b) = limj_, dist@;, bj) =
diam(X). O

Lemma L.14. Given 2 nonempty regular sets X,&Y R" with finite diameter
WConxX) A WConxY) A dist(X, Y) = 0) > WConXX U Y).

Proof. If not, then there exisA° and B° nonempty such that{ U Y)° = A° U B° and
[AIN[B]=@.If A°N X° # @ andB° N X° £ @, thenA° N X° andB° N X° contradict
WConx(X). Thus, eitherX® C A° or X° C B°. Similarly for Y. Thus, we haveX® = A°
or X°=B°andY° = A°orY° = B°.

Among the 2 cases (I¥° = Y° = A° (or X° = Y° =B°)and (2)X° = A° andY®° =
B° (or vice versa), the first contradicts the assumption that Bétand B° are nonempty.
For case (2), assum¥® = A° andY® = B° (the other option is similar). From dis{( Y)
= 0 and L.8, we have disf, B) = 0. From L.1, for any regular sé&, if WConx(Z), then
WWConx(Z). In particular, WWConxX) and WWConxY). Our argument above applies
to all possible pairs of nonempty st andB° such that KUY)° = A°UB®. This proves
that WWConx U Y) holds. Since L.10 implies that diadd(U Y) is finite, it suffices to
recall L.1 to conclude WCon} U Y). O

Lemma L.15. Given 2 nonempty regular sets X ,&YR" with finite diameter?
[X] N [Y] # @ < dist(X, Y) = 0.

Proof. From L.12 and the definition of dist. O

22 Note that this result provides an indirect proof of (WWCoXxk diam(X) < +oo) —
WConx(X).
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Lemma L.16. Given an open regular set X R", Con\X) — Conx X).

Proof. If X is empty, there is nothing to prove.Xf is nonempty, we proceed by contradic-
tion. Let X° = A° U B° with A°, B® both nonempty and N B = @. SinceX is convex,

for anya € A andb € B the segmentg, b) should be contained iAU B. But (&, b) N A

and @, b) N B are open nonoverlapping segments, and an open segment cannot be split
into 2 open nonoverlapping subsegments. This implies thédf)(¢ X and contradicts the
assumptiorCony X). O

Lemma L.17. Given aregular connected (Conx) region XRA and a point pe [ X], there
exists YC X such that ConfY), diam(Y) < 4+o0, and pe [Y].

Proof. If X is with finite diameter, there is nothing to show. Let diadhE +oco and X open
(if X is closed, considerx°). If p e X, there existsC, = ball(p, r) C

X for somer, and we are done. Ip € 6(X), letC; =ball(p, r) and conside?, = C; N X.
We show that, for some Z, is connected. By contradiction, let us assume that, far, &}

is not connected. Sincg; is open, given a poirg € Z3, itis possible to find a (connected)
neighborhood) of g contained inZ;. Fix q and letA; be the maximal connected part of
Z; that containgy. Build 2 sequences of regions;, Ay, ...andBs, By, ..., such that
An is the maximal connected open region parZaf= ball(p, n), An C Ant+1, @andB, =
Zn — An. SinceZ, is not connected by hypothesis aAd is a maximal connected region,
we have thatA, and By, are openZ, = Ay U By, and A, N By = @. Since fom — +o0,
Zn = X, we have thaiX = (UA,) U (UBy). Since, for eacm, A, and B, are open and
An N By =3, we get UA)N (UBy) = @, i.e., X is not connected, a contradiction. [

Lemma L.18. Given a regular set X ifR":
WWConxX) — Vd(0 < d < diam(X) — 3Ix,y(X,y € X A dist(x, y) = d)).

Proof. If WConx(X), then this claim reduces to L.13. X is finite, then it follows from
L.1 and L.13. Now, assume th&tis infinite, WWConx) and not WConxX). We prove
something even stronger, that is, we show that each regula¢ séth infinite diameter
contains a regular s&f C X whose diameter is also infinite and such that WCanx(
From this, applying L.13 t&’, we conclude.

Fix a rationa®® yp € X° and letZg = UC, whereC C X, WConx(C) andyp € C°.
First, sinceyp is internal, there exist® C X open ball centered iy, and from L.16,
WConx(D), thusZg # @. We show that WConx{p). Suppose WConxp) fails, then
there existA® and B° nonempty such thaZ; = A° U B° and [A] N [B] = @. Since
WConx(C) andC® C Z5 = A° U B®, for all C in UC, we have eitheA° N C° = @ or
B°NC° =d@. ThenC°® C A° orC° C B°. However,yp € C for all suchC, thus either for
allC,C° C A°orforallC,C° C B°. Thatis, eitherA° = @ or B° = @, a contradiction.
This proves WConxZp). Note thatZg is closed inX. Indeed, ifx € X N 8(Zp), then
WConx(Zj U {x}) holds since the only hope to find a counterexample is by split@igg (
{x})° into Z3 and{x}°, but the latter set is empty. Thugg U {x} itself is one of theCs
considered in the construction @f. This impliesx € Zg and soZy is closed inX.

If diam(Zp) = +oo, we are done. Otherwise, considér— Zg and lety; be a rational
in (X — Zp)°. We repeat the construction above to fiidmaximal in X — Zg such that
WConx(Zy). If diam(Z1) = +oo, we are done. Otherwise, consid€r— (Zo U Z;) and let

23 A point in R is rational if all its coordinates are rational numbers.
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y2 be a rational point in se{ — (Zg U Z1))°. Again, we repeat the construction above to
find Z, maximal in X — (Zg U Z1) such that WConxZ»). We proceed in this way till we
find a setZ; with WConx(Z;) and diamg;) = +oo or till we cover all of X°. In the first
case, we are done because of L.13. We show that the latter case cannot happen. Indeed,
in the latter case we obtain a sequence of countably many regulaZ;jsétsvering X°
since the rationals are dense iR)Ruch that, for all, WConx(Z;) and diamg;) < +oo.

Fix Zg. If dist(Zg, Zj) # 0 for all Z; # Zo, it suffices to putZg = AandUi-.oZj = B

to find a contradiction to WWConX). Let Zj1 be such that disHp, Zj;) = 0 and let
ZoU Zj1 = U1. By L.14, WConx1). As before, there existg;, such that distd,, Zj»)

= 0. LetU; U Zj» = Uy. By L.14, WConx{2). We proceed in this way constructing sets
Ur = U1 U Zj,. Let Uy, = UU;. First, note that if there exisissuch thatZ; ¢ U,
then we can reapply the argument above to get a contradiction to WWEpnxhus,
Usx = UZj. By construction, we have WCorl¥(,). However,U3, = UZP = X°, and
since eacl?; is closed inX, we actually haved),, = UZ; = X. This contradicts the
assumption that WCon¥() fails. Thus, either that assumption is wrong (i.e., WCotx(
holds) or for somd, WConx(Z;j) and diamg;j) = +oo, which is what we needed to
prove. O

Lemma L.19. Given a set X irR", if Y is the smallest convex set containing X (the convex
hull of X), then dianiX) =diam(Y).

Proof. If X is empty, there is nothing to prove. X is nonempty, we proceed by con-
tradiction. SinceX C Y, we need to consider only case: diaf(< diam(Y). From this
assumption, there exist € Y — X andy e Y such that dist{,y) > diam(X). By the
definition of Y, sincex € Y — X, there exista,b € X such thatx is betweera andb.
Consider the balB of radiusr = dist(x,y) centered ay and the lind througha, x, and

b. Sincex € I, there are only 2 cases to consideis tangent toB or | intersectsB. In

the first case, dist(y) > r = dist(x,y), contradicting the assumption. In the latter case, by
the so-called Pasch axiom of Euclidean geometry, at least one beanaab has to lie
outsideC. Thus, we reached a contradiction again. O

9. Appendix B.
9.1. Proof of Proposition 1. (DP) P*(X,y) =gef Vw(C(X, w) — C(y, w)) and
[P+(X,¥)]a—s = X C Y.

Proof. We have to prove that in all the domains,
XCY & VW([IW]N[X]#3 - [WINI[Y] # D).

(=) Trivial.

(<) (By contradiction) Assumer(X C Y). SinceX andY are both open, then(X C
[Y]D by L.2 and L.5. It suffices to fix an open baN contained inX— [Y]. Such aWw exists
becauseX — [Y] is open and nonempty. O
(DPP)PP(X,y) =def P(X, ¥) A =P(y, X) and [PP(X,y)] -5 = X C Y.

Proof. This follows from the obvious equivalenc&{C Y A =(Y C X)) &= X cY.O

(DO) O(x,y) =def F2(P(z, x) A P(z,y)) and [O(x,Y)]a—s = XNY # @.
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Proof. We have to prove that in all the domains:
JZ(ZCTXAZCY)e XNY £0.
(=) From the hypothesiZ C (X NY). SinceZ is nonempty in all domains, one has

XNY #£@.
(&) It suffices to fixZ open ball contained il = X N'Y. (Such a ball exists because,
by L.7, Ais an open set of R) O

(DPO) PO(X,Y) =def O(X, ¥) A =P(X, ) A = P(y, X) and
[PO(X.Y)]u—s = XNY #BA=(XCY)A=(Y C X).

Proof. Trivial. O

(D+) SUM(z, X, Y) =def Yw(O(w, 2) <> (O(w, X) v O(w, y))) and [SUM(z, X, Y)]a-s
=(Z=[XUY]).

Proof. We have to prove that in all the domains,
YVWWNZ#A£DBWNXABVWNY £0)) o Z=[XUY].

(=) Since for all nonemptyV C X we haveW N X # @, thenW N Z # @. Thus,
X C Z. Analogously, we conclud¥ C Z. Thus,X UY C Z. But Z is a regular open
region,thenKUY]°C Z.IfWNZ =0, thenWN X =G andWnNY =@. Thus,Z is
contained in the smallest regular open region that containsX¥eathdY, i.e., [X U Y]°.

(<) Substitute K U Y]° for Z in the left-hand side. Then,

(=) From L2, Wn [X U Y]° # @ implies thatwn [X U Y] # @. From L.3,
[XU Y] =X] U [Y] and thenWn [X]#£ @ or WN [Y] # @. SinceW, X, Y are open
and regular, we havd/ N X # @ orWnNY # @.

(<) XU Y is openandthen{ U Y) C [X U Y]° (from the definition of the interior
operator). SinceWN X # GvWNY # @) < WN (XUY) # D and XUY) C[XUY]°,
thenWN [ XU Y]° # @. O

(D—) DIF(z, X, y) =def YVw(P(w, 2) <> (P(w, X) A = O(w, ¥))) and [DIF(z, X, Y)]oa—s =
(Z = X=[Y);
Proof. We have to prove that in all the domains,

YWWCZo WS XAWNY =0) o Z = X—[Y].

(=) LetW = X—[Y]. Then,W C X andW NY = @. Thus,X — [Y] C Z. For the
other inclusion, leW N (X—[Y])= @. ThenW C X orW N Y = @ fails. ThuswW C Z
fails as well. Since this happens for &l satisfying this property, we conclude C X—

[Y].
(<) SubstituteX— [Y] for Z in the left-hand side. Sincé/, X, Y are all open and
regularWNY = @ iff W N [Y] = @. The equivalence follows. O

(DIP) IP(X,y) =def P(X, y) A VZ(C(z, X) = O(z, y)) and [IP(x,y)] «—5=[X] € Y.

Proof. We have to prove that in all the domains,
XCYAVZ([ZIN[X]#£D—> ZNY #£Q)) = [X]CY.

(=) (By contradiction) Suppose([X] C Y). If =(X C Y), we are done. Otherwise,
note thaty # R". From L.7, A =~[Y] is a regular nonempty open set. Fremi X] C Y)
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andX C Y, there exists a point € 6(X) andx ¢ Y. Sincex ¢ Y, x € [A]. Fix a positive
numberr and letZ = Ball(x,r)N A. Then,ZNY =@. From L.7,Z is regular open. AlsaZ
is nonempty sinc& € 0(X), X ¢ Y, andY isregular. From L.4x € [Z]. Then,ZNY =&
and [Z] N [X] # &, a contradiction.

(&) From L.2, [X] C Y implies X C Y. Now supposeZ] N [X] # @ and X] C Y,
then we haveZ] NY # @, ie,Ip(p e[Z] Ap e Y). If pe Z, thenZNY #
@. If p € 0(2), then there exists a neighborhood mfsay | (p), such thatl (p) C Y
and | (p) N Z # @. This means that there exists a popite | (p) N Z and soZ N
Y #£@. O

(DTPP) TPP(X, ¥) =dei PP(X, ¥) A 3Z(EC(z,X) A EC(z,y)) and [PP(X,¥)]o—s = X C
YA o(X)No(Y) #@.

Proof. We have to prove that in all the domains,
XCcYAdX)NOY) DB XCYAIZ(ZIN[X]£DBAZNX =D A[Z] N][Y]
Z@BANZNY =0).

(=) Let p € {o(X) N a(Y)}. The thesis follows considering an open halsuch that
pe[Z],andZNY =@.

(<) From the hypothesis, we have tl#dZ) N 6(X) # @ ando(Z) N o(Y) # . From
L.5andX c Y, it follows that [X] c [Y], therefores(X) N ao(Y) # @. (]

(DSC) SC(X) =def VY,2(SUM(X, v, 2) — C(y, 2)) and [SC(X)] 4—s = WConx(X).

Proof. From the definition of WConx and considering the given domains, WCONX(
stands fovY,Z(X =Y U Z - [Y] N [Z] # &), thus we prove that

YY,Z(X=[YUZ]° > [Y]N[Z] # @) & VY. Z/(X =Y UZ — [Y]N[Z] # D).

From the fact thaX is a nonempty open regular set, we haVeJ) Z’' = [Y' U Z']°. The
equivalence follows considering =Y’ andZ = Z'. O

(DEC) EC(X, y) =def C(x, ¥) A ~O(x,y) and [EC(x, V)]a—s = [X] N [Y] £ D A XNY

Proof. Trivial. O

9.2. Proof of Proposition 2. (DC1) Ci(X,y) =def 32(S(2) A VZ(CNC(Z, 20 —
(O(Z, x)A O(Z, y)))) and
[C1(% V]a—s =[C, I=[X] N [Y] # 2.

Proof. We have to prove that in all the domains,
[XIN[Y]# B < 3Z,cr(Z=bhallc,r)AVZ'r'(Z' =ballic,r’) - (ZNX £BAZ'NY
# 9)))-

(=) Itis sufficient to considec € [ X] N [Y]andr > 0.

(<) (By contradiction) Supposeq] N [Y] =@ andZ = ball(c, r). If ¢ ¢ 8(X) U a(Y),
then it is sufficient to consider small enough such th&’ = ball(c,r") C X (if c € X) or
Z' =bhallic,r')y CY (ifceY)orZ =ballc,r') CR"— ([X]U[Y]) (if c¢ [X]U[Y].If
c € 0(X) andc ¢ [Y], i.e., distg, Y) > 0, it suffices to considar small enough such that
Z' =ball(c,r’) N [Y] = @. Analogously forc € 8(Y), a contradiction. d

(DSR1)SR1(X) =def YY,Z(SUM(X, ¥, 2) — 3s(S(S) A O(s, y) A O(S, 2) A P(s, x))) and
[SR1(X)]a—s = [SR(X)] = Conx(X).
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Proof. We have to prove that in all the domains,

Conx(X) & VY, Z(X =[YU Z]° - 3Scr(S=ballc,r) ASNY # BASNZ
# @D A SC X)).

(=) SinceY andZ are regular open, from L.3 and L.4 we haXe=[Y U Z]° D Y U Z.
From the definition of Conx, iX =[YU Z]°=YU Z,thenYNZ #Jand,byL.7YNZ
is open. Then, there exists a b8lbuchthatSC YN Z. If X =[Y U Z]° D Y U Z, then
there existx such thatx € a(Y) N a(Z) andx € X. X is open; thus, there exists a b&ll
centered ak suchthatSC X, SNY # @, andSN Z # @.

(<) (By contradiction) Assume that there exi§tZ such thatX = YU ZandY Nz =
@. SinceX is regular,X = [Y U Z]°. ButY, Z are open and disjoint; thus, any b&l
intersecting botty andZ intersects R — X also, then=S C X, a contradiction. O

9.3. Proof of Proposition 3. (DCC1) CCon1(z, X, Y) =def 3Z(CG(Z, 2) A C1(Z, X)
AC1(Z,y)) and

[CConi(z, X, Y)]a = Trr',pqrr’ €[Z] A p € [X] A q € [Y] Adist(p, q) =
dist(r, r’)).

Proof. From Proposition 2 and the assumption th@d(x, y)] = Congr(X, Y), we have
to prove that ind,,,

Irr’,p,arr’ €[Z] Ap € [X] Aq € [Y] A dist(p, q) = dist(r, r")) & 3Z'(Congr
(Z', )N [Z1N[X] £ BA[Z]N[Y] # D).

(=) Itis sufficient to consideZ’ = f (Z), wheref is an isometry in Rwith f(r) = p
andf(r')y =q.

(<) From the fact that the congruence relation preserves distance. a

9.4. Proof of Proposition 4. (DS2)S5(X) =def SR(X) AVY,z((CG(X, y) A PO(X, y) A
DIF(z, x, y)) = SR(2)) and [S5(0)] s = [S(0)] and [S5(X)] .5 # [(X]-

Proof. A counterexample iD,, is given by a region equal to"Rminus a closed ball. This
region satisfies the definition but is not a sphere T Fhe definition does not work for
D, andD; because in these domains, a regimsatisfyingDIF(z, x, y) must be already
a connected region. Our direct proof that the definition above is correDiziis quite
complicated, and it is not reported here. However, note tBa{})] s = [S(x)] follows
indirectly from the results in Linking Via Explicit Definitions section. O

9.5. Proof of Proposition 6. (DC4*) Ca*(X,y) =def Vz(CCon(z, x, y)) and
[CaxW1 g6 = [CxWI= [XI N Y] # and [C3(xW)]a,y # [

Proof. First, we show that the following equivalence holdslip and ®;:

[X]IN[Y] # @ < vZ(dist(X, Y) < diam(2)).

Since we restrict ourselves to domains with finite regions, we can apply L.15 t&Xpet [
N [Y] # @ iff dist(X, Y) = 0. Note that for alk > 0, there exist&Z nonempty such that
diam(Z) < ¢, thendistiK, Y) = 0 iff vZ (dist(X, Y) < diam(2)).

In D, and D,, the interpretation X] N [Y] # fails. Consider, for example, regions
X={(a,b) € R? |a > 0 andb > 1/a} andY= {(a, b) € R%|b < 0}; it is easy to verify that
all the constraints on the domains are satisfied and thatdist( = 0 although K] N [Y]
=0Q. O

9.6. Proof of Proposition 7. (DP4*) P;(X,y) =def VZ(C3(z, x) — Cj(z, y)) and
[Pi(Y)la—s =[P(x,)]= X C Y.
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Proof. First, note that in all the domains, the interpretation of rela@fx,y) as defined
in (DC4*) is dist(X, Y) = 0. This follows from the proof of B.5 dropping the first step
through L.15. Thus, we have to prove that in all the domains,

X CY o VZ(dist(Z, X) =0— dist(Z, Y) =0).

(=) Trivial.

(&) (By contradiction) SupposeX C Y. SinceX andY are both open, there exists a
nonempty regular open s€tsuch thatv ¢ X andvVNY = @. LetZ be a nonempty open
ball contained irV such that(Z) N (V) = &. We have dis®, X) =0 and distZ, Y) #

0, a contradiction. O

(DP4%) P (X,y) =def VZ,w(CCon(w, z,X) = CCon(w, z, y)) and
[P; (xY)]a-s =[Px,)]1= X C Y.

Proof. It suffices to prove that in all the domains,

X CY & VvVZ,W(dist(Z, X) < diamW) — dist(Z, Y) < diamW)).

(=) Directly from the definition of distance.

(<) (By contradiction) Suppose(X C Y). SinceX andY are both open, there exists a
nonempty finite open ball c X such that disZ, Y) > 0, thusZ nontangential to — Y.
Clearly, dist¢, X) = 0, and we can always find/ such that O< diamW) < dist(Z, Y),

a contradiction. O

(DCI4) Closers(z, X, ¥) =def Ja(CCon(a, z, x)A = CCon(a,z,y)) and
[Closera(z, x, Y)]oa—s = [Closer(z, x, y)] = dist(Z, X) < dist(Z, Y).

Proof. It suffices to prove that in all the domains,
dist(Z, X) < dist(Z, Y) & JA(dist(X, Z) < diam(A) A —dist(Z, Y) < diam(A)).

This follows from the fact thal A(dist(X, Z) < diam(A)A —dist(Z, Y) < diam(A)) is
equivalent tadA(dist(X, Z) < diam(A) <dist(Z, Y)) and that for alk: > 0, we can find a
nonempty open bal such that O< diam(A) < ¢. O

9.7. Proof of Proposition 8. (DP6) Pg(X,y) =def VZ(C(z, X) — C(z, y)) and
[Pe(x,Y)]a-s =[CX,Y)]= X C Y.

Proof. From the proof of case (DP) in Proposition 1. O

(DCM6) Complg(y, X) =def VZ(C(z, y) <> — IP(z, X)) and [Complg(y, X)]a—s =
(Y = (R"= X)°).

Proof. Using the results of Proposition 1, we have to prove that in all the domains,

Y = (R" = X)° & vZ([Z] N [Y] # @ & —((Z] C X)).

E)FY=R"-X)°, thenZ]N[Y] £« [Z] N (R"= X) #£ T« —[Z] C X.

(<) (By contradiction) Assumé& # (R" — X)°. We have to prove that (BZ([Z] N
[Y]# BA[Z] C X)or (i) IZ[Z]I N [Y] =B A—=([Z] C X)). If XNY # @, to verify
(i) it is sufficient to considerf] C X NY (Z exists sinceX andY are regular open). If
XNY = @, thenY c (R"— X)° and since both these sets are open, there exists a nonempty
open ballZ such thatz c (R"— X)°andZ NY = @. Thus, takingZ small enough, we
have [Z] c (R" — X)° — Y. Then, condition (ii) is verified. d

(DSR6) SR (X) =def VY,z,w((SUM(X,y,2) A Complg(w, X))— Fo(SC(v) A O(v, ) A
O(v, 2) A= C(v, w))).
[SRs(X)]a-s = [SR(X)] = Conx(X).
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Proof. (Recall definition (DSC) from Proposition 1.) We have to prove that in all the
domains,

Conx(X) © VY, ZW (X =[YU Z]°A W = (R" — X)°) - IV(WConx(V) AV NY #
DAV NZ#DA[V]IN[W]=D).

First, sinceX is open, we have] N [W] =@ < [V]N(R"— X) =@« [V] C X.

(=) SupposeX =[YUZ]°. From L.3 and L.4, since these are all open nhonempty regions,
we haveY U Z C X.

(@) If YUz = X, then (from the definition of ConX) and L.7) setA =Y N Z is open,
nonempty, and regular. The thesis follows sireeC X and we can always find a
nonempty open baVl in A (so that WConxy) by L.16, the definition of WConx
and L.2) such thatj] C A.

(b) If X =[YU Z]°andYU Z c X, thenao(Y) Na(Z) N X # @. SinceX is open, fix
a nonempty open ball centered inp € 6(Y) N a(Z) N X with [V] C X. From the
definition of boundary, we have th&tNY % BAV N Z # @.

(&) (By contradiction) Suppose there exist nonempty open regioasd Z such that
X =YUZandYNZ=@. From the regularity oK, X =Y U Z =[Y U Z]°. Fix V such
that WConx{/) AVNY @B AV N Z # @, we prove that-([V] C X). Let us consider
VY=V NY,VZ=VNZ, andU = VYU VZ (note thatvY andVZ not necessarily belong to
a domainD amongD,, s, but this does not invalidate our inference because these regions
are not used as values of some variable). Clebrlig in V.

(@ IfU c V,thendp(pe VAP EVYApPp ¢ VZ).ButX =Y U Zandsop ¢ X.
From this,V C X is false, and by L.2, it follows that([V] C X).

(b) If U =V, from the definition of WConx{), it follows that VY] N [VZ] # @. But
fromYNZ =@, wegetVY C Y andVZ C Z so thatvVY N VZ=@. This means that
dp € o(VY) N 8(VZ). Given a neighborhootl(p) of p, we havel (p) N VY £ @
andl (p)NVZ£ B andsol (p)NY £ Bandl (p)NZ #£G. Thus,p € 6(Y) N
0(Z). SinceY andZ are openp ¢ Y U Z and, in particularp ¢ X. Finally, from
(VYU VZ) =V and L.3, it follows thatp € [V]and p ¢ X, i.e.,,—[V] C X, a
contradiction. O

9.8. Proof of Proposition 10. (DC3*) C3(x,y) =def Vz(Conj(z, z, x, y)) and
[C3(x,)]a-s = (dist(X, Y) = 0).

Proof. We have to prove that in all the domains,

dist(X, Y) =0 & VZ3z,Z,x,y(z,Z € [Z] A x € [X] Ay € [Y] A dist(z, Z) = dist
*, ¥)).

(=) Ifdist(X, Y) =0, then for eacld > 0, there exisk € X andy € Y such that dist,
y) < d. In particular, take a nonempty open bBIIC Z and considex € X andy € Y
such that dist, y) < diam(B). From L.13 and L.16, there exigtZ € B such that dist|

Z) = dist(x, y).

(<) (By contradiction) Let distk, Y) = d > 0. It is sufficient to consideZ such that
diam(Z) < d to get a contradiction. O
(DP3) P3(x,y) =det VZ(C3(z, x) — C3(z, y) and Ps(x.Y)]a—s = [P(x,y)]
=XCY.

Proof. This equivalence follows from above and B.6. d
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9.9. Proof of Proposition 11. (DC5*) Cg(x,y) =def —3z(Closer(x, z, y)) and
[C5(x.y)]a—s = (dist(X, Y) = 0).

Proof. We have to prove that in all the domains,
dist(X,Y) = 0= —3Z(dist(X, Z) < dist(X, Y)).

(=) Trivial.

(<) (By contradiction) Let distK, Y) > 0. It suffices to puZ = X to reach a contradic-
tion. O
(DP5)Ps(X, y) =def ¥z (C5(zx) = Cs(zy)) and [Ps(X, Y)]a—s = [C(x,y)] = X C Y.
Proof. It follows from B.6. O

(DFD5) FDs5(x) =gef 32(vX' X" ((P5(X’, X) A P5(x”, X)) — Closer(x’, x”, z))) and
[FDs5(X)]s—s = diam(X) < +oo.

Proof. It suffices to prove the following for alK:

diam(X) < 400 & IZ(VX,X"((X' € X A X" C X) = dist(X’, X") < dist(X’, 2))).

(=) If diam(X) < +oo, then consider a nonempty open bal such that
dist(Z, X) > diam(X). (Clearly, such a ball exists in"R

(<) (By contradiction) Assume diarX() = +oo and let disti, Z) = d. Since diamK)
= 400, we can choose a real numbreand 2 pointx,y € X such that dis¥, y) > d+ 2r
and distk, Z) < d+r. Let X’ C X be a ball centered atwith diameter less than or equal
tor andX” C X a ball centered ay with diameter less than or equaltas well (these
balls exist becausk¥ is open). Then, dis¥’, X”) > dist(X’, Z), a contradiction. d

(DC5) Cs(X, y) =def 3z, w(FDs5(2) A FDs(w) A Ps(z, X) A Ps(w, y) A C5(z, w)) and
[Cs(xYla—s =LY =[X]IN[Y] # @.

Proof. We have to prove the following equivalence in all the domains:

[X]N[Y] # @ < IZW(diam(Z) < +oo A diamW) < +co A Z C X AW C YA
dist(Z, W) = 0).

(=) Fix p e [X] N [Y]. In @, 4, a regionZ with finite diameter such tha C X and
p € [Z] is given by ballp, r) N X. Analogously forW. In @, 5, by L.17, there exists
Z C X such that diani{) < +o0o0 andp € [Z]. Analogously, forW C Y. Sincep € [Z]
N [W], we have distZ, W) = 0.

(<) From the hypothesis, we have that diath(< +oco A diamW) < +oo A dist(Z,
W) = 0. From L.15, we have4] N [W] # @. ButZ C X andW C Y, thus [X] N [Y]
# @. O

10. Appendix C.

10.1. Proof of Lemma 1. The interpretations d/ASP and =SS are obtained by sub-
stituting the interpretations of the components in the definition. For this reason, there is
nothing to prove, and in the attempt to improve readability, we simply wi&P] (X,

Y) and [ESS] (X) for the interpretations dASP(x, y) and £ SS(x), respectively. Given

this premise, we prove that

(A.1) [SCG(x, Y)]a—s = Tex,cyr (X =Ball(ck,r) A Y =Ball(cy, r));

(A.2) [EAD(x, y, X', YN a—s = 3x,Cy,Cx.,Clr /(X = Ball(cx, ) A Y = Ball(cy, r') A
X"=Ball(c;,r) A Y =Ball(cy,r"A =X C YA=Y C XA=X' CY' A=Y C XA
dist(cx,cy) = dist(cy,cy));
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(A.3) [SCG(X, Y)]a—s = Congr(X, Y) A [ZSS](X) A [ZSS](Y);
(A) [CG1(x, Y)]a—s = Congr(X, Y).

Proof. (A.1) Let X = Ball(c, rx) andY = Ball(cy, ry). We have to prove the following
equivalence in all the domains:

CongrX,Y) © X =Y v3IZW,crzr, (Z =Ball(c, r;) A =Ball(c, rp)A [Z] N [X]
ZOANZNX=BAZINY]ZDBAZNY =BAXCWAIX)NOW) #DAY C
WAdY)No(W) #£@.

(=) Fromry = ry, one has dianX) = diam(Y). If X =Y, we are done. Otherwise,
cx # cy and X, Y properly overlap or are disjoint. Fix¢ [ X U Y] such that dist, ¢) =
dist(cy, ) =r, and letZ = Ball(c, r —ry). By construction,Z] N [X] # GAZNX =D A
[Z1N[Y]#OAZNY =@. LetW = Ball(c, r + ry). By constructionX,Y c W and
a(X)Na(W) #@,5(Y)Na(W) # 3.

(&) If X =Y, we are done. If not, from the hypothesisY c (W — 2), [Z] N [X]
# @, [Z]N[Y] # D ando(X)Na(W) # B,0(Y)No(W) # @. By triangular inequality, the
minimum distance between a pointddW) and a point iro(Z) isr,, —rz. Thenr, —r; <
diam(X). Analogouslyr,, —r; < diam(Y). Assume ,, —r, < diam(X). FromZNX = @,
there exists a point iXX such that its distance fromis higher tharr,,, a contradiction.
Then,r,, —r; = diam(X). Analogouslyr,, — rz = diam(Y). Finally, diam(X) = diam(Y).

O

(A.2) Let X = Ball(cx, r), Y = Ball(cy, r’), X’ = Ball(cy, r’), and Y’ = Ball
(cy, r’) such that=-X C Y A=Y C X A =X C Y A=Y C X'. We have to prove
the following equivalence in all the domains:

dist(cx,cy) = dist(C;,cy) < IZ,W,cz,Cy 1 (Z = Ball(cz, ") A =Ball(cy, r'"”) A IntD(z,
X, Y) A IntD(w, X', y)).

(=) The minimum spheré containing X andY has diameter dist¢,cy) +r1 +r'.
Analogously, dismg(,cg,) +r +r’is the radius of the minimal sphe& containingX’ and
Y’. Thus,SandS are congruent. Also, by triangular inequality, the cente$ &f between
Cx,Cy, i.e., X andY are internally diametrical t&. Analogously forS'.

(&) SinceZ has X andY as internally diametrical spheres, then the centeZ a§
between the centers &f andY, sor” = dist(cx,cy) +r +r’. Analogously forW. Then,
dist(cx,cy) = dist(c;,cg,). O

(A.3) Assume [ESS](X) and [£SS](Y), then we have to prove the following equiva-
lence in all the domains:

Congr(X, Y) © VS([MSP] (S, X) —» IS([MSP] (S,Y) A CongrS, S))) A

VYH[[MSP](SY) — IS ([MSP] (S,X) A CongrS, S))) A

vSU,S,U([MSP](S,X) A [MSP](U,X) A [MSP] XS,Y) A [MSP](U",Y) A

Congr(S, S) A CongryJ,U")) — [EqD](S, U, S, U").

(=) Let f be an isometry such that = f(X) and putS = f(S) for Sin X, S =
f~1(S) for Sin Y. The conditions follow easily.

(<) We show that there exists an isometirysuch thaty = f (X). We writec; for the
center of spher& andc/ for the center of spher§. For each pail§, Sj of maximal
spheresSin X, letxij, xji be the points on the boundary &f, Sj, respectively, such that
dist(xjj ,xji) = diam@§U §j). Letg,...,Xmn,... be alist of all centers of maximal spheres
in X and of all points isolated above. We show that there exists an isonfietnch that
¢ = f(c) and distk,y) = dist(f (x), f (y)) for any pair of pointsx,y in the list and that
S = f(S) for each maximal spher8in X (and soS = f1(S) for Sin Y). From the
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first 2 conditions in the hypothesis, we can chodssuch that dist,y) = dist(f (x), f (y))

for x,y centers of maximal spheres K. Relation dist;j,x;i ) = dist(f (xij), f (xji)) can

also be satisfied because of the third constraint in the hypothesis. The other pairs follow
from triangular inequality. From Euclidean geometry, we know that this function can be
extended to an isometry on the whole space. Since the center of a maximal Sgkere
mapped to the center of its congruent sph®réand so the points in the boundary where

f is constrained, if any) and is an isometry, we also hav® = f(S). We conclude
thatY = f(X). O

(A) We have to prove the following equivalence in all the domains:
CongrX,Y) & VZ([£SS] Z2) — 3Z(CongrZ, Z') A

VS, S((IMSP](S, 2) A [MSP](S, Z') A Congr§, S)) —

((SCXeSCY)A(SCYSCX)A

(BNXALDBA-SCXA=XCY = (SNYADA-SCYA=YCS)A

(ESNX£LBA-SCXA=XCS) o (SNYADBA-SCYA=YCY)))))

(=) Let f be an isometry such that = f (X). Fix any Z such that [ESS] (Z) holds
and letZ’ = f(2). It is easy (although tedius) to verify the conditions sirfcés an
isometry.

(<) The proof splits into 4 cases. Letbe the dimension of the space.

Case (1): If X is the whole space, then so¥s If not, it suffices to take & that partially
overlapsY. Analogously ifY is the whole space.

Case (II): [£SS] (X) and the convex hull of the centers of the maximal spherésiga
region of dimensiom. PutZ = X and letZ’ be as in the hypothesis. Létbe the isometry
such thatz’ = f(Z). We show thatZ’ = Y. For this, it suffices to show thad’ # Y
leads to a contradiction. Choosenaximal spheres oX such that the convex hull of their
centers is a region of dimensionCall W the sum of these spheres. Mgt = f (W). Since
[ 2SS](X) and the hypothesis on the maximal sphereX pbne must hav&’ C Y. Let
Y —Z' # @. Since the region¥ andZ’ are regular and open, one can find a bHIIC Y —

Z’ such that no maximal sphere W’ has the diameter df’ and all maximal spheres of
W’ are maximal inW’ U U’ as well. Furthermore, we také’ such thatz’ N U’ = @ in
structures®d,, and ®g. In structuresb, and®s, we also add a new regid@’ C Y that
connectdV" andU’ (this condition is necessary to guarantee that regignwhich we are
going to construct, exists in these structures).

Let Z{, = Z' U U’ (we useU’ U C’ instead ofU’ in structures®, and ®;) and let
U=f"XU".FixZy =ZUU,ie.,Z{ = f(Zy). SinceZ’ c Z{, and f is an isometry,
Z C Zy. Thus,X c Zy. Now, apply the hypothesis td, to get a regionZ/}. Since
Z, C Y, one must have} € X. By construction and the choices éfandU, Z’ is
congruent toX and Z{; is congruent taZ}, thusZ{; is congruent taZ’ (or a part ofZ’).
But Z' c Z{,, a contradiction. We conclud®’ =Y, that is, CongrK, Y).

Case (ll): [ZSS] (X) and the convex hull of the centers of the maximal spheres in
is a region of dimension less than

We proceed as before, but this time regildhmust contain some sphere that is disjoint
from X. (Again, in structuresd, and®;, we also consider a regidd that connectsV’
andY in such a way that the maximal spheresyoandW’ do not change. One gets the
conclusion as in Case (ll) by considering the isomdtrgentified byZ’ = f (2).

Case (IV): Not [ZSS] (X).

SinceX is not the whole space, there exists a sequehicevith [ XSS] (Z;), X C Z;,
andUZj;1 C UZ;, that converges t. Let Z{ be the region satisfying the hypothesis
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when applied taZ; and letf; be the function for whictZ! = fi(Z;). Since [ESS](Z;),

fi must be an isometry. Furthermork,1(UZ; 1) C fij(UZp), fi(X) c fj(UZ;), and, for

i = 400, VOI(UZj) — VoI(X). From these, the sequenZgconverges to a region (call it
Z’) containingY. First, we show that CongX, Z’). Assume not, then there exists a bkt
of paints inX (or in Z’) such thatf (N) ¢ Z’ for all isometriesf (analogouslyf (N) ¢ X
for all isometriesf, if N in Z’). Note thatN ¢ X c Z; for alli. From f(N) ¢ Z’
and the fact thaZ’ is the limit of fj(Z;), there is an indexn such thatfm(N) ¢ Zj,.
Let m be the first index for which this happens. By constructifg,is an isometry and
fm(X) = Z},, contradictingfm(N) ¢ Z;,. We have seen that C Z’ and CongrK, Z).

It remains to show tha’ — Y # @ leads to a contradiction. This follows from considering
a new sequencd/, with [ XSS (W), W, c X, andW, c W1, that converges tX and
the sequence defined ByW;) = W/ for all i, since f (W) c Y foralli. O

10.2. Proof of Lemma 2. We prove that

(A1) [C5(X, V] a—s = (dist(X, Y) = 0);

(A.2) [SC5(X)] a—s = WWConx(X);

(A.3) [LEDiam2 (X, V)] a—s = WWConx(Y) A diam(X) < diam(Y);
(A.4) [SCDiamz (X, ¥)] a—s = WWConx(X) A diam(X) < diam(Y);
(A.5) [LDista (X, vy, X', Y] u—s = dist(X, Y) < dist(X’, Y');

(A) [CCona(c, X, Y)]a—s =dist(X, Y) < diam(C).

Proof. (A.1) We have to prove the following equivalence:

dist(X,Y) =0 VvVZ3Z(CongrZ’, ZYAZN X #£BAZ'NY # D).

(=) If dist(X, Y) = 0, then for eacld > O there exisix € X andy € Y such that
dist(x, y) < d. In particular, take a baBB C Z and considek andy such that dis, y) <
diam(B). From L.13, there exist, Z € B such that dis, Z') = dist(x, y). It suffices to
consider an isometry such thatZz’ = f(2), x = f(2), andy = f(Z).

(<) (By contradiction) Assume dis¥(, Y) = d > 0 and consideZ such thatdian{) <
d. Clearly, the hypothesis fails. O

(A.2) Directly from (A.1), Proposition 1, and the definition of WWConx.

(A.3) For everyw-weakly connected regio¥i, we have to prove the following equiva-
lence in all the domains:

diam(X) < diam(Y) © VAB((AC XAB C X) - AY'(CongrY', Y)Y AY N A# D
AY' N B # @)).

(=) Leta € Aandb € B be 2 points inX. Since diamK) < diam(Y) andY is w-weak
connected, from L.18 there exigty’ € Y such that distf, y') = dist(a, b). It is enough to
consider an isometry with a = f (y) andb = f (y") and to takeY’ = f(Y).

(<) (By contradiction) Let us assume diak) > diam(Y). It follows that there exist
a,b € X with dist(@, b) — diam(Y) =& > 0. Let A and B be 2 balls inX with diameter
smaller thans/2 (such A and B exist because&X is an open region). Clearly, we have
A C X, B C X, and dist@, B) > diam(Y), a contradiction.

(A.4) For everyw-weakly connect regioX, we have to prove the following equivalence
in all the domains:

diam(X) < diam(Y) © VZ((Y C Z A WWConx(Z)) — diam(X) < diam(2)).

(=) SinceY C Z, we have dian) < diam(Z), thus (from the hypothesis) diaXy <
diam(2).

(&) Let Z be theconvex hullof Y. By the definition of the convex huly C Z, and
by L.19, diamg) = diam(Y). By L.16, we have Conx{) and from L.1, WWConxZ). It
follows that diam¥) < diam(Y).
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(A.5) We have to prove the following equivalence in all the domains:

dist(X,Y) <dist(X’,Y") & IAWWConx(A)AANX # BAANY # BAVA (Congr®,
A= (ANX =@V ANY =02)).

(=) Itis enough to consider a baMl overlapping bothX andY with diameter equal to
dist(X, Y) + ¢, wheree < dist(X’, Y’) — dist(X, Y).

(<) (By contradiction) Let us assume dit(Y) > dist(X’, Y’). Let A be an arbitrary
open region such that WWConkf andx € {AN X}, y € {ANY}. Since dist, y) >
dist(X’, Y’), there arex’ € X', y' € Y’ such that dis¥’, y") < dist(x, y). From L.18,
there exisa,a’ € A such that dis, a’) = dist(x’, y’). We obtain a contradiction taking
A = f(A) with f anisometry such tha = f (x’) anda’ = f(y').

(A) We have to prove the following equivalence in all the domains:
dist(X, Y) < diam(C) < VA, B(dist(A, B) < dist(X,Y) — IZ(WConx(Z) A diam(Z) <
diamC)A ZNA# DB A ZNB #)).

(=) For C infinite, takeZ = R". Let nowC be finite, i.e., dianl{) < +oco. Let AandB
be such that disf, B) < dist(X, Y). From the proof of (A.5), we havéZ (WWConx(Z) A
ZNA#£OAZNBA£BAVZ(CongrZ’, Z2) » (ZNX=Bv Z' NnY = @))). Since
CongrZ’, Z) — diam(Z’) =diam(@2), fromvZ’(CongriZ’, Z) - (ZNnX=@vZ'NY =
@)), we have diamZ) < dist(X, Y), then, from the hypothesis, dia®) < diam(C). From
L.1 and diamC) < +oo0, WConx(Z).

(<) (By contradiction) Let us assume dixi(Y) > diam(C). LetAC X andB C Y be
2 open regions with disK, B) — diam(C) = ¢ > 0. From the definition of dist and diam,
if Z is such that diany) < diam(C), thenZ cannot overlap botl andB, a contradiction.

10.3. Proof of Lemma 4. Using (DP) in Proposition 1 and (DFD5) in Dispensable
Primitives section, we need to prove that

(A) [Conjs(x, Yy, X', Y)]a-s = [Conj(x, y, X', y)].
We start proving that:

(A1) [EA(z, X, Y)]a—s = (dist(Z, X) = dist(Z, Y));
(A.2) [EqD*(x, Y, X', Y)]a—s = (dist(X, Y) = dist(X’, Y')) A
diam(X) < 400 A diam(Y) < +o0 A diam(X’) < 400 A diam(Y’) < +oo.

Proof. (A.1) It holds because of the following (obvious) equivalence:

dist(Z, X) = dist(Z, Y) &= —dist(Z, X) < dist(Z, Y) A =dist(Z, Y) < dist(Z, X).
(A1)
m

RegardingA.2), the 2 alternative definitions (a) and (b)BfD* need to be considered.
(A.2.a) Following the definition (a) oEgD*, assumingX, Y, X’, Y’ of finite diameter,
we need to prove that i, and® for R andin®,_s; for R">1, the following equivalence
holds:
dist(X, Y) = dist(X’, Y) < 3Z,Z'(dist(X, Y) = dist(X, Z) A dist(X’, Y") = dist(X’,
Z") A dist(Z, X) =dist(Z, Z') A dist(Z’, X') =dist(Z’, Z)).

(=) (Sketch) Put dist, Y) = dist(X’, Y') = d.

(a) Assumal = 0. The thesis follows considering a bdll= Z’ containingX U X'.

(b) Assumed > 0 andn = 1. Suppose that there exigse 6(X) such that all the
points inX U X’ lie on the same side of Rwith respect top (a similar argument holds for
p’ € 6(X’) such that all the points iX U X’ lie on the same side of'Rwith respect top).
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Let Z be finite and connected such that distX) = d with Z on the opposite side of
with respect top. Let Z/ be finite and connected such that d&t(Z) = d with Z; on the
opposite side op with respect taZ. Let Z; be finite connected such that digf( X") = d
with Z/, on the opposite side gf with respect toX’. By construction, dis®;, Z/) > d.
Then, it suffices to puZ’ = Z; U Z;, (sinceZ’ is not connected, this proof holds only in
O, anddp).

(c) Assumed > 0 andn > 1. ConsideiX” = {x € R" | dist(x, X) < d}, X" ={x e R"|
dist(x, X’) < d}. X" andX" have finite diameter; therefore'R [X~ U X"] has at most one
connected component with infinite diameter. CaVWitLet p € 6(V) N 6(X") (otherwise
take p € o(V) No(X") and switchX”, X" in the rest of the proof). By construction, there
existsq e a(X") such thaty is path-connected tp in R"— X" and distf, q) > d. Let
Z’ be a connected region W such thatp € 6(Z’) and diamZ) < (d— dist(p, q))/2. Let
Z be a connected region in"R X" such thaig € 9(Z) and distg, Z’) = d (sinceq is
path-connected tp in R"— X" and distf, q) > d, this region exists always). Clearly, we
have distZ, X) = dist(Z, Z’) =dist(zZ’, X") =d.

(<) Trivial.

(A.2.b) In @, s for R, we use the definition (b) dEqD*. First, we prove that

(B.1) [CG3(x, W1, s = (diam(X) = diam(y) < +o00 A [X] N [Y]=D);
(B.2) [CG*(x,¥)],,5 = (diam(X) = diam(Y) < +00).

(B.1) Given 2 connected regions, Y with finite diameter (in®, s, all the regions are
Conx) such thatX] N [Y] = &, we need to prove the following equivalence:
diam(X) = diam(Y) < 3Z1,Z2,Z3([Z2] N[X] £ D A ZoN X =B A[Z2] N[Y]
ZONZoN Y =@ A[Z1]N[X]£D AZINX =B A[Z1] N [Z2] =D A [Z3]
NIY]#D AZ3NY =B A[Z3] N[Z2] =D A dist(Zy, Z1) = dist(Zz, Z3))

From the hypothesis{ andY are connected regions and are not connected to each other.
Let X = (X1, X2), Y = (Y1, Y2), and assume thab strictly precedey; (a similar argument
holds if we takey; precedes<;). SinceZ, needs to be externally connected to béth
andY and [X] N [Y] = @, thenZ, = (X2, y1). Z1(Z3) needs to be externally connected
to X(Y) and it does not overlaf,; therefore,Zy = (X1 — d1, X1) (Z3 = (Y2, Y2 + d2))
for somed; < +oo (d2 < +00). By construction, dis#,, Z;) =diam(X) and distgy,

Z3) =diam(Y). (B.1)

(B.2) Given 2 connected regionX, Y (in @, s, all the regions are Conx) with finite
diameter, we need to prove the following equivalence:
diam(X) = diam(Y) «—
(@ X=Yv
b) XNY#£B A-XCY A-Y CXATZy,Z(Z1=X—=[Y]AZy=Y—
[X] A[Z1] N [Z2] = @ A diam(Zy) = diam(Z2))) v
©) IXIN[Y]#BAXNY =B A—-3Z((Z c X Adiam(Z) =diam(Y) A [Z]
N[Y]1=0) v (Z c Y Adiam(Z) = diam(X) A[Z] N [X] = D))) v
(d) ((XIN[Y]=83 A diam(X) = diam(Y)))).
On the basis of th@arthoodand connectionrelations, there are a total of 8 distinct

cases to consider between 2 connected regions2(d) N a(Y) # P andX C Y, (2)
o(X)nae(Y) £ @andy c X, B)o(X)Nna(Y)=BandX c Y, @)a(X)na(Y) =B and
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Y c X, (5) X =Y, (6) X andY partially overlap, (7)X andY are externally connected,
and (8)X andY are not connected. In cases (1)—(4), the regions have necessarily different
diameters since we are intRin addition, conditions (a)—(d) correspond to cases (5)—(8);
thus, we can exclude cases (1)—(4) altogether.

Let X = (X1, X2), Y = (Y1, Y2).

Case (5): Both dianX) = diam(Y) and condition (a) follow.

Case (6): We havX NY £ @ -X C Y= A=Y C X, and sinceX andY are connected
and finite, then als@; = X— [Y] andZ; = Y — [ X] are connected and finite. In addition,
by definition, we haveZ1] N [Z2] = @. In this case, dianX) = diam(Z;) + diam(X N'Y)
and diamy) = diam(Zy) + diam(XNY), i.e., diam) = diam(Y) iff diam(Z1) = diam(Z>).

Case (7): We haveX] N [Y] # @ A X NY = @, therefore, there exists such that
[X] N [Y] = {x}. If diam(X) = diam(Y), condition (c) is easily verified. For the other
direction, condition (c) holds diard() <diam(Y) for all Z < X. Thus, diamK) <
diam(Y). Analogously, one shows diai) < diam(X).

Case (8): We haveX] N [Y] = &. Then, diamK) = diam(Y) and condition (d) are
equivalent(B.2)

Following the definition (b) ofEgD*, assumingX, Y, X', Y’ of finite diameter and
connected, we have now to prove thatiip s for RY, the following equivalence holds:

dist(X, Y) =distX’, Y) o ([(XIN[Y] £ DA [XT1N[Y]#£ D) vIZZ([Z] Nn[X]
ZOANZINX=@BA[Z]IN[Y]AZDBAZNY=@BA[Z]IN[XT£BAZNX =B A
[ZIN[Y]£BAZ NY =@ Adiam(Z) = diam(Z")).

(=) Let dist(X, Y) =dist(X’, Y/). If [X] N [Y] # @ and [X'] N [Y’] # @, we are done.
Assume K] N [Y] = @. From L.15, distk, Y) > 0 and so disiX’, Y') > 0, i.e., [X']
N[Y1=6@. LetZ ={z € RY|z ¢ [X U Y] and Btw(z, X, y) for somex € X,y € Y}
andZ’ = {Z € RYZ ¢ [X' U Y] and Btw(Z, x, y) for somex’ € X',y € Y'}. Thus,
diam(2) = dist(X, Y) = dist(X’, Y’) = diam(Z’), and the other conditions are satisfied by
construction.

(<) (By contradiction) Let distX, Y) > dist(X’, Y’) so that [X] N [Y] = @. If there
existZ andZ’ externally tangent t&X, Y and toX’, Y’ (respectively) such that diamdj =
diam(Z’), then, sinceZ is connected, dianZ) = dist(X, Y) and diamg’) = dist(X’, Y’).
But dist(X, Y) > dist(X’, Y’) and diamg) = diam(Z’), a contradiction(A.2.b)/(A.2)

We now prove that:

(A) |[C0nj5(X, Y, X/v y/)]la—é = |[C0nj(X, Y, X/, y/)]l

We begin with a lemma:

Lemma C.2.1. VX, Y, Z, W(([X]N[Y] #D A[Z]N[W] # D Adiam(X) < 400 A
diam(Z) < 4o0) = 3Ix,z(X € [XIN[Y] A z € [Z] N[W] A dist(X, z) = dist([X] N
[Y].[Z] N [WD))).

Proof. diam(X) < +oo implies diam(X] N [Y]) < +oo. Furthermore, K] N [Y] =[X]
N [Y]. Similarly for [Z] N [W]. The thesis follows from L.12Lemm3 O

(A) It remains to prove the following equivalence that we state somewhat informally in
the attempt to improve readability:

XYy X YXe[XIAaye[YIAX e[X]TAY e[Y] Adistx, y) =distx/, y)) <

There exist 4 finite and connected regioksB, A, B’ (the finiteness of the diameter
follows from theEqD* condition) with properties:

[A] N[X] # @, [BIN[Y] # 3, [A]N[X]# 3, [B]1N[Y] # @, dist(A, B) = dist
(A, BY;

and such that:
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1. VPA,Ps((Pan € AA Pg C BAdist(Pa, Pg) =dist(A, B)) > [PA] N [X] # D A
[Pe] N [Y] # D).

2. VPas, Pe/((Par C A APy C BA dist(Pa/, Pg/) = diSt(A/, B/))% [Pa] M [X/]
# D N [Pg] N[Y'] # D).

(=) Case n= 1: Without loss of generality, assume< y and fix a valug < +oc.
Consider the open ballsa = (x —r,x) andB = (y,y +r). Clearly,x € [A] N [X],y €
[B] N[Y], and condition 1 is satisfied sinacemust belong toPa] andy to [Pg]. We can
build A" and B’ analogously fronx’, y’. Then, dist@, B) = dist (&', B"), [A'] N [X]
# @, [B1N[Y'] # @, and condition 2 is satisfied as well.

Case n> 1: Letr be finite.

(a) Assumex = y (and sox’ = Y’), then it suffices to considek = ball(x,r) N X, B =
ball(x,r)NY, A’ =ball(x’,r) N X’, andB’ = ball (x’,r) N Y’ (or appropriate connected
subregions of these).

(b) Assumex # y (and sox’ # Y').

Fix the linel throughx andy and 2 finite ballsA and B with centers irl and such that
X € 0(A), y € x € 8(B), and dist@, B)= dist(x, y). Analogously, findA’ and B’ with
centers i’ (the line throughx’ andy’), x’ e [A'], ¥ € [B’], and dist@’, B") =dist (X, y).
By construction, we havef] N [X] # @, [B] N [Y] # @, [A] N [X] # @, [B] N [Y']
# @, and dist@, B)=dist(A’, B’). Regarding conditions 1 and 2, observe that only the 2
pairsx, y andx’, ¥, (in A, B and in A, B/, respectively) have distance equal to dist(
B). Thus, if PA C A A Pg C B A dist(Pa, Pg) = dist(A, B) andPa: € A’ A Pg C B'A
dist(Pa/, Pg/) = dist(A’, B"), we must havex € [Pa], ¥ € [Pg], X’ € [Pa’], andy’ € [ Pg/].
This guarantees that conditions 1 and 2 are satisfied.

(<) From the hypothesisA, B, A, and B’ have finite diameter. Also,A] N [X] #
@ and B] N [Y] # @. We show that dist@h] N [X], [B] N [Y]) = dist(A, B).
From the definition of dist, distff] N [X], [B] N [Y]) > dist(A, B). Suppose dist@] N
[X], [B] N [Y] > dist(A, B). From L.12, there exist € [ A] andb e [B] such that dist,
b) = dist(A, B). Letd = dist([A] N [X], [B] N [Y]) — dist(A, B), Sa = AN ball(a, d/3),
andSg = B N ball(b, d/3) (or appropriate connected subregions). Since digam(Sg) <
dist(A, B) + 2/3d <dist([A] N [X], [B] N [Y]), we have Ba] N[X]=D or [SS] N [Y] = 2.
This contradicts condition 1; thus, dist N [X], [B] N [Y]) = dist(A, B). Analogously,
we have dist(f'] N [X'], [B'] N [Y]) = dist(A’, B). From dist@, B) = dist(A’, B’), one
obtains dist(RA] N [X], [B] N [Y]) = dist([A'] N [X'], [B'] N [Y’]). From Lemma C.2.1,
there exis, y, X/, andy’ such thax e [A] N [X], y e [BIN[Y], X e [A]N[X], Y €
[B'] N [Y']and distk, y) = dist(x’, y) = dist(A, B).

10.4. Proof of Lemma 5. We start proving that
(A.1) [FD3(X)]4—s = diam(X) < 4o0.

(A) [C3(X, Y]a-s =[Cx, V)]

Proof. (A.1) First, we need to find the interpretation®€3. From the proof of Proposition
10 (see Appendix B.8), it follows thatz (X, y)] «—s = dist(X, Y) = 0. From Proposition 1
and the definition of WWConx, we directly obtain th&@¢3(x, y)]a—s = WWConx(X).
Thus, we need to prove the following formula in all the domains:

diam(X) < +o0 &

XY, Z(WWceonx(X) A X C X' A =3x Xy, z(x,X € [X]Ayel[YIAzel[Z] A
dist(x, x") = dist(y, 2))).

(=) If d =diam(X) < +o0, it is sufficient to consider 3 ballX’, Y, and Z of finite
diameterd’ > d such thatX € X’ and distl, Z) > d’.
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(&) (By contradiction) Let diamX) = +oo and WWconxK’) A X C X'. Clearly,
diam(X’) = +oo. From L.18, for alld € R, there existx,x’ € [X'] such that distX,
x') = d. FixanyY andZ. Then, for ally € [Y] andz € [Z], we can findx,x" € [ X’] such
that distk, x’) = dist(y, z), a contradiction. O

Proof. (A) Let us observe thatAD3(X)]4—s = [FDs5(X)]a—s, [Ps(X, Y)]a—s = [P(X,
VI [C3(X, Y)]a—s = [C5(X, Y)]«—s and that the definition of3 is analogous to the one
of Cs. It is possible to consider the same proof given @ar (see (DC5) in Dispensable
Primitives section) in Appendix B.9. O

RegardingS3, we use the results above and prove that

(B.1) [LEDiam3(X, y)]«-s = Conx(X) A Conx(Y) A diam(X) < diam(Y);
(B) [S3(X)]a—s =[S(X)] = Fc,r (X =Ball(c, r)).

Proof. (B.1) Given 2 connected open regiodXsandY, we have to prove the following
equivalence in all the domains:

diam(X) < diam(Y) © VAB((AC XABC X) > 3AB (A CYAB CYA
Jaba’ b (@ac[AlAbe[B]lAa e[A]Ab e[B] Adist, b) = dist@, b")))).

(=) Since A, B are subsets oK and A’, B’ are subsets oY, it is enough to show
thatva,b(a,b € [X] —» Fa' b'(@,b’ € [Y] A dist@, b) = dist@’, b’))). The latter is an
immediate consequence of the hypothesis, L.1, and L.13.

(<) (By contradiction) Assume that there exist 2 connected regkn¥ such that
diam(X) > diam(Y). By the definition of diam, there existb € [X] such that for all
a’\b’ e [Y], dist(@, b) > dist@’, b'). Let d < dist(@, b) — dist@’, b’), we reach a
contradiction considerinds = X N ball(a, d), B = X n ball@, d) (or some connected
parts of them in the case of domains with only connected regions). O

Proof. (B) We have to prove the following equivalence in all the domains:

Jer (X =Ball(c, r)) < diam(X) < 400 A Conx(X) A YA(Conx(A) A diam(A) <
diam(X) — IB(Conx(B) A diam(B) < diam(A) AB c XAVC,D([C]N[X]#DACN
X=@BADN[X]£ZBADNX =0) - IX,yX,y(xe[B]Aye[C]AX e[B]

A Y € [D] Adist(x, y) = dist(x’, y))).

(=) Given a regionA of diameter, it suffices to take a baB of diameted (or less)
concentric toX. Since the distance of the boundary®to a region externally connected
to X is alwaysr —I, the result follows for everg, D.

(<) We proceed by contradiction. L&t be connected with finite diameter. Recall that if
there exists a point equidistant to any pointia(X), X is a sphere with center. Assume
that X is not a sphere, i.e., for each pof X, there are at least 2 poinysz € 9(X)
such that dist(, y) = dist(x, z).

Let F(x) = max, ;e acx) (ldist(x, y)—dist(x, z)|) and fixa e X such thatF(a) is
minimum, i.e., for allx € X, F(a) < F(x). Of course,F(a) > 0 since [X] is compact
and is not a sphere. Also, letd € 6(X) be such that(a) = |dist(@, c)—dist(@, d)|.
(Again,c,d exist sinced (X) is compact.) Now, choose a regidnwith diam(A) < F(a)/2
and fix anyB < X as in the hypothesis. Fix in B. By construction, there exist 2
regionsC, D with ¢ € C, d € D that are externally connected % and such that
|dist(x,C)—dist(x,D)| > F(a). Since diamB) < F(a)/2, for any pointy € B, dist(x,
C)+F(a)/4 > dist(y, C) > dist(x, C)— F(a)/4. Then, for any,z € B, |dist(y, C)—dist(z,
D)| > F(a) — F(a)/2 > 0, a contradiction. 0(B)



ZU064-05-FPR rsl"8009 24 June 2008 21:23

FULL MEREOGEOMETRIES 41

10.5. Proof of Lemma 6. As before, we rely on Tarski (1956a) for the definition of the
between relation BTW. Note that we write Biwy( cp, c3) for ‘c; is betweerc, andcg’,
which corresponds to Btwf, ¢, c3) in Tarski's terminology. Using (DO), (D+), (DPP),
and the results in Verifying the Given Explicit Definitions and Dispensable Primitives
sections, it remains to prove that

(A1) [Conv(X)]sx—s = ConyX);
(A) [ConvH1(X, ¥)]a—s = [ConvH(X, y)] = ConMX) AY C X A =3Z(ConU2Z) A
YC ZAZCX).

Proof. (A.1) We prove the following equivalence f@onv(x):

vX,Y,2((X,y € X A Btw(z, X, ¥)) > z € X) & VS,$,5,C1,62,C3,r 1,72,/ 3(S. = ball(cy,
ri))AS =bhall(c, r2) A3 =ball(cs, r3) ASSUS C XA Btw(cs, €1, C2) > SN X # G;
the proof of (A) follows trivially.

(=) ConsiderS, = ball(cy, r1), S = ball(cg, r2), S3 = ball(cs, r3), S U S C X, and
Btw(cgs, c1, €2). SinceS U S C X, thency, ¢ € X and, from the hypothesisg € X.
Then,SN X £ @.

(<) (By contradiction) Suppose that there exist X,y € X, andz ¢ X such that
Btw(z, X, y). Thus,x # z # y # x. We show thaBx’,y’,Z(Btw(Z, X', yY) AX, ¥y € X
A Z ¢ [X]). From this, the contradiction follows taking the radius%fto be less than
dist(z, X).

The only case to considerise 0(X). SinceX is open, there exist 3 congruent balis
= ball(x, r), Sy = ball(y, r), andS, = ball(z, r) such thatS, € X, §;, € X, =S C [X],
SNS =0,SNS =03,andS, NS, = @. Fix a pointz' in S, — [X] and calll the line
throughx, y, zandl’ line throughz’ and parallel td. Considex’ € ScNl” andy’ € S Nl’.
Since S, Sy, and$; are disjoint congruent balls with aligned centers, from Biw( y)
we conclude Btwf, x’, y'). Finally, fix 3 ballsS, = ball(x’, r1), S = ball(y’, r2), andSs =
ball(Z,r3) suchthals C X, $ C X, =S C[X],and§ NS = @. This is possible since
Xis open and ¢ [X].

]
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Table of definitions.

C1(X, y) =def 3Z(S(2) A VZ(CNC(Z, 2) — (O(Z, x) A O(Z, ¥))))

Ca(x, ) =def 32(S3(2) AVZ(CNC(Z,2) — (O(Z,x) AO(Z,Y))))

C5(X, Y) =det VZ3Z(CG(Z, 2) AO(Z,x) A O(Z,Y))

C3(X, Y) =def 3z, w(FD3(2) A FD3(w) A P(z,X) A P(w, y) A C3(z, w))

C;(X, y) =def VZ(Conj(Z, Z, X, y))

CZ(X’ y) =def VZ(CCO”(Z, X, y))

Cs(X, y) =def 3z, w(FD5(2) A FDs(w) A P5(z, X) A Ps(w, y) A C5(z, w))

Cs(X, Y) =def —3z(Closer(x, z, y))

CConi(z, X, Y) =def 3Z(CG(Z, 2) A C1(Z, x) A C1(Z,Y))

CConaz(c, X, Y) =def Va, b(LDistz(a, b, X, y) — Fz(SCDiamy(z, c) A O(z, a) A
O(z, b))

CG1(X, Y) =def VZ(£SS(2) —» 3Z(XCG(z,Z) A Vs, S((MSP(s, z2) A MSP(s,Z) A
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SCG(s, 5)) = ((P(s, x) « P(s, y) A (P(s,y) & P(s, X)) A(PO(s, x) <
PO(s’, y)) A (PO(s, y) > PO(S', X))))))
CG*(X, y) =def FDs(x) A FD5(y) A
xX=yvV
(PO(X,y) ATz, z(DIF(z1, X, ¥) A DIF(z2, y, X) A CGS(z1, 22))) V
(EC(x,y) A—3z((PP(z, x) A CG3(z, ¥)) Vv (PP(z, y) A CG3(z, X)))) vV
(= C(x, y) A CGS(x, ¥)))
CG®(X, y) =def FDs(X) A FDs(y) A =C(X,y) A3z, 22, Z3(EC(22, X) A
EC(z2, y) A EC(z1,X) A—=C(z1,22) A
EC(z3, y) A —C(z3, 22) A EQ(z2, 21, 23))
Closers(z, X, y) =def 3a(CCon(a, z, X) A =CCon(a, z, y))
Complg(y, X) =et VZ(C(z, y) < —IP(z, X))
Conjs(x, Y, X', ¥) =def 3a, b, &, b’'(SR(a) A SR(b) A SR(&) A SR(b') A
C(a,x) AC(b,y) AC(a’, X)) AC(t/,y) A EqD*(a, b, @, b") A
VPa, Po((P(Pa, @) A P(pb, b) A EGD*(Pa, Po, &, b)) = (C(pa, X) A C(Pb, ¥)) A
V5 Pp((P(pa @) A C(py,, b) A EGD™(pj, pf,, &, b)) — (C(Pa X) A C(pp,, ¥)
Conv(x) =def Vs, S2, S3((P(s1, X) A P(s2, X) A BTW(s3, 81, S2)) — O(s, X))
ConvHi (X, Y) =def Conv(x) A P(y, X) A —3z(Conv(z) A P(y, 2) A PP(z, X))
DIF(Zv X, y) =def Vw(P(wr Z) & (P(w! X) A _'O(w1 y)))
EC(X, y) =def C(X, y) A—=O(X,Y)
Eq(z, X, Y) =def —Closer(z, x, y) A —Closer(z, y, X)
EaD(x, ¥, X', ¥') =def SCG(X, x') A SCG(y, y') A —=P(x, )
A=P(y,X) A=PX,Yy) A=P{,X) A
3z, w(ID(z, X, y) A ID(w, X', y') A SCG(z, w)))
EqQD*(X, ¥, X', ') =def FDs(X) A FDs(y) A FDs(x) A FDs(y’) A
3z, Z(Eq(x, ¥,2) AEqQ(X, Y, Z) AQ(z, X, 2)
A Eq(Z, X/, 2)) (in ®,—p for Rand in®d,_s for R™>1)
EaD™ (X, v, X', ¥) =def (C(X, y) A C(X', ¥)) v Tz, Z(EC(z, X) A
EC(Z,y) A CG*(z,2))) (in ®,_; for RY)
FD3(X) =def 3X’, ¥, Z(SC3(X") A P(X, X") A =Conj(X’, X, Y, 2))
FDs(X) =gef 32(VX’, X" ((P5(X’, X) A P5(x”, X)) — Closer(x’, X", 2)))
IP(X1 y) =def P(X1 y) A VZ(C(L X) - 0(21 y))
LDista(x, Yy, X', ¥') =det Ja(SC5(a) A O(a, x) A O(a, y)
AVA(CG(@,a) —» (—0(@@, x) v =0, ¥))))
LEDiama (X, Y) =det SC5(y) A Va, b((P(a, x) A P(b, x))
— Jy'(CG(Y', y) A O(y', @) A O(y', b)))
LEDiam3z(X, Y) =def SR(X) A SR(Y) A Va, b((P(a, X) A P(b, X))
— Ja/, b (P(@, y) A P(t, y) A Conj(a, b, @, b')))
MSP(X, ¥) =det S(X) A P(X,y) AVZ((S(2) A PP(X, 2)) > —P(zV))
O(X, y) =def 32(P(z, x) A P(z,y))
P*(X, y) =def Y (C(X, w) — C(y, w))
P3(X, ) =def VZ(C3(z, X) = C3(z, ¥))
P2(X, Y) =def VZ(C3(z, X) = Cy(z, ¥))
P (X, Y) =def V2, w(CCon(w, z, X) — CCon(w, z, y))
Ps(X, ¥) =def VZ(C5(z, X) = C5(z, Y))
P6(X, Y) =def ¥Z(C(z, X) = C(z, Y))
PO(X, y) =det O(X, y) A—=P(x,y) A=P(y,x)
PP(X, y) =def P(X, ¥) A —P(y, X)
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S5(X) =def SR(X) A VY, Z((CG(x, y) A PO(X, y) A DIF(z, X, y)) = SR(2))
S3(X) =gef FD3(X) A SR(X) A Va(LEDiams(a, X) —
Jb(LEDiam3(b, a) A P(b, X) A V¢, d(EC(c, X) A EC(d, X)) — (Conij(b, c, b, d)))
SC(X) =def VY, Z(SUM(Xv Y, Z) - C(yv Z))
SC;(X) =def VY, Z(SUM(X1 Y, Z) - C;(yv Z))
SC3(x) =def VY, Z(SUM(X, y, 2) = C3(y, 2))
SCDiamz(X, Y) =def SC5(X) A Vz((P(y, 2) A SC5(2)) — LEDiam;(x, 2))
SCG(X, Y) =def S(X) A S(Y) A (X =YV 3z, w(CNC(z, w) A EC(z,X) A
EC(z, y) A TPP(X, w) A TPP(y, w))
SR1(X) =def VY, Z(SUM(X, Y, 2) — 3s(S(s) A O(s, ¥) A O(s, 2) A P(s, X)))
SRe(X) =def VY, z, w((SUM(X, Y, z) A Complg(w, X)) —
Fo(SC(v) A O(v, ¥) A O(v,2) A—C(v, w))
SUM(Zv X, y) =def VU)(O(U), Z) e (O(w1 X) Vv O(w1 y)))
TPP(X, Y) =qef PP(X, ¥) A 32Z(EC(z, X) A EC(z, ¥))
Y CG(X, Y) =def ZSS(X) A X SS(y) A
Vs(MSP(s, x) — 3s'(MSP(s, y) A SCG(s, 5))) A
Vs(MSP(s, y) — 3s'(MSP(s, x) A SCG(s, 5))) A
Vs, u, s, u (MSP(s, X) A MSP(u, X) A MSP(s', y) A MSP(U, y)
A SCG(s, §') A SCG(u, U)) = EqD(s, u, 8/, U)
2SS(X) =def VY(P(Y, X) = IS(MSP(s, X) A O(S, ¥)) A
vu, w((MSP(u, X) A MSP(w, X) AU # w) —» =SCG(u, w))
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