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Abstract. We analyze and compare geometrical theories based on mereology (mereogeo-
metries). Most theories in this area lack in formalization, and this prevents any systematic logical
analysis. To overcome this problem, we concentrate on specific interpretations for the primitives and
use them to isolate comparable models for each theory. Relying on the chosen interpretations, we in-
troduce the notion of environment structure, that is, a minimal structure that contains a (sub)structure
for each theory. In particular, in the case of mereogeometries, the domain of an environment structure
is composed of particular subsets of Rn. The comparison of mereogeometrical theories within these
environment structures shows dependencies among primitives and provides (relative) definitional
equivalences. With one exception, we show that all the theories considered are equivalent in these
environment structures.

1. Introduction. At the time Lobachevskii (1835) published “New principles of ge-
ometry with complete theory of parallels,” the axiomatic foundation of geometry was
based on points. Such a formal system, calledEuclidean geometry, falls short of satisfying
cognitive concerns since it aims at modeling physical space relying on the abstract notion of
point. The matter in dispute is that human experience of space is experience in magnitude
and points cannot be empirically experienced. This simple observation makes evident the
need for cognitively and philosophically sound geometrical systems whose formal study
began in the 19th century (although it has received less emphasis with respect to the
contemporary and orthogonal research on the fifth Euclidean axiom).

Taking solidsas basic entities in his system, Lobachevskii revolutionizes the founda-
tions of geometry from the ontological viewpoint and shows how to fill the gap between
geometrical and spatial entities. As it happens often with revolutionary approaches, the
work of Lobachevskii is quite obscure, and it is presented only informally. One has to wait
almost a century to find a formal presentation of the new approach.

The theories developed by Whitehead (1929) (see also Biacino & Gerla, 1991, 1996, for
a formal characterization of the theory of Whitehead), De Laguna (1922), Nicod (1924),
Tarski (1956a), and Grzegorczyk (1960) aim at showing that the concept of point is not
necessary in the foundation of geometry and, consequently, that the conceptualization
of space can differ on several aspects: properties of the space (e.g., Euclidean vs. non-
Euclidean geometries), primitive relations (e.g., being aligned, equidistance), and ontolog-
ical nature of entities.1 From the viewpoint of geometrical construction, these approaches

Received xxxxx, 200x
1 Instead of talking ofsolids, these authors refer toregions, bodies, or volumes. In some cases,

these notions are not deeply characterized, thus it is difficult to understand if they presuppose a
different intuition about physical objects and their possible locations in space. In this paper,entity
and region are taken as generic and intuitive notions. In addition, some authors have recently
developed theories based on domains containing entities of different dimensions, e.g., points,
lines, and surfaces. See Gotts (1996) and Galton (1996, 2004).
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revolutionize the classical method of defining regions as sets of points. Indeed, here points
are treated as particular sets of regions.2 Since the new theories succeed in defining Eu-
clidean entities and relations within a different logical domain, one cannot rely on purely
formal arguments to establish which entities and relations deserve the role of geometrical
primitives. Euclidean geometry is now challenged at the level of the basic entities, and
external considerations start leaking into the geometry paradise.

The new geometries are justified by questions that arise outside the geometrical formal-
ism itself and provide formal theoriesadequatefor different tasks. In particular, region-
based geometries seem to be cognitively more sound than point-based geometries since
they make possible a direct mapping from empirical entities and laws to theoretical entities
and formulas. Several issues need to be considered: the consequences of choosing extended
regions as primitive entities, the meaning of experiencing empirically extended regions,
and the doubts about perfect regions.3 Following De Laguna, one wonders what it means
to consider points to be sets of solids. Does it follow that the concept of point is defined
in empirical terms? Idealized regions seem closer to empirical experience than Euclidean
points; still they already require a form of abstraction. Once we admit this, it is not clear
where to stop. Then, why should we reject the usual notion of point? De Laguna is aware of
this problem: “Although we perceive solids, we perceive no abstractive set of solids (. . .) In
accepting the abstractive set, we are as veritably going beyond experience as in accepting
the solid of zero-length” (De Laguna, 1922, p. 460).

Beginning with the work of Clarke (1981, 1985), theories based on extended entities
have attracted much interest for both their formal aspects4 and their applicative potentiali-
ties. The ontological clearness and the evident connection with physical entities justify the
philosophical interest in these theories. This approach receives particular emphasis in the
field of formal ontology. Here one assumes the relations ofparthoodandconnectionto
be basic notions that are exemplified by spatial or material entities like physical objects,
chunks of matter, holes, etc. (see Simons, 1987; Casati & Varzi, 1999; Smith, 1998).
Nowadays, one refers to these theories asmereotopologiessince they are characterized by
the combination of mereology (based on parthood) and topology (based on connection).
Following this terminology, we callmereogeometriesthe theories that aim to reconstruct
geometry extending mereotopological systems.

Mereogeometries are used in various areas. In Schmidt (1979),physicsis presented as
a theory based on extended entities. This theory allows to refer explicitly to the objects
involved in experiments. Generally speaking,cognitive scienceandcomputational linguis-
tics analyze the possibility of formalizing human learning, conceptualization, and catego-
rization of spatial entities and relations. In particular, Knauffet al. (1997) and Renzet al.
(2000) take into account the cognitive adequacy of topological relations, while Aurnague
et al. (1997) and Muller (1998a) show how mereogeometrical notions are central in the
semantics of natural language. Donnelly (2001) formalizes the theory of De Laguna in
the perspective ofcommon-sense analysisof spatial concepts. Incomputer scienceand

2 In particular, points are often defined as filters of regions. For a detailed discussion on the
construction of points in mereotopology, see Biacino & Gerla (1991).

3 Tarski defines points as classes of concentric spheres. However, in nature we do not find
perfectly spherical objects. One can argue similarly about fractal-shaped regions or regions with
an infinitely oscillating boundary (see Pratt-Hartmann & Schoop, 2000, for a discussion on
‘pathological’ regular regions).

4 See Gerla (1994) for a good survey of mathematical research in this area. An analysis in terms of
lattices is given in Stell (2000) and in terms of algebras in Düntschet al. (2001).
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more specifically inqualitative spatial representation and reasoning(see Cohn & Haz-
arika, 2001; Vieu, 1997, for good overviews), mereogeometries are applied for modeling
qualitative morphology and movement of physical bodies (Bennett, 2001; Bennettet al.,
2000a,b; Borgoet al., 1996; Cristaniet al., 2000; Dugatet al., 1999; Muller, 1998b;
Galton, 2000; Li & Ying, 2003; Randell & Cohn, 1989, 1992), for describing geographical
spaces and entities inGeographical Information Systems(Pratt-Hartmann & Lemon, 1997;
Pratt-Hartmann & Schoop, 2000; Stock, 1997), as well as for characterizingmedicaland
biological information(Schulz & Hahn, 2001; Cohn, 2001; Smith & Varzi, 1999; Donnelly,
2004).

In all these areas, specific foundational and applicative concerns affect the development
of the theories based on geometrically extended entities. Indeed, in the literature, there
are numerous mereogeometries that differ on primitive entities, formal properties, as well
as general principles. One surmises that this variety of systems has motivated a plethora
of results on their relative strengths and drawbacks. Surprisingly, reading the literature,
one cannot find an extended study of the relationships among these systems. Although
extensive discussions on the cognitive, linguistic, and philosophical motivations for a the-
ory are often undertaken, these are not accompanied by more formal considerations. The
few arguments brought forward to discuss the relative expressive power are limited to
antecedent versions of the presented theory and cannot be generalized to broader classes of
systems. Such a lack of comparative analysis has practical reasons, in particular the poor
axiomatization of most mereogeometries.

This being the situation, in the following sections, we try to fill the gap by presenting
a method to systematically compare classes of mereogeometries. In our intentions, this
method allows for a comparison of formal theories while concentrating on the meaning
of the primitives. We consider it as a first answer to the need of assessment in this area.
One can use this approach to state equivalences and similarities among the theories, in this
way facilitating both reuse and communication among different applications. Since this
task cannot be undertaken with the standard logical machinery (as mentioned above, most
of the mereogeometries available in literature are only weakly formalized), the method we
propose gives prominence to conceptual and ontological issues, issues that are at the center
of the systems we are interested in. The goal is to make explicit important differences like
description completeness and conceptual incompatibilities. Beside the direct advantage
provided by a reliable classification method, such a comparison would help in selecting
theories (perhaps according to the applicative or theoretical tasks one is facing), developing
new theories, and extending or modifying those already available.

2. Conceptual comparison. Generally speaking, logical theories are compared at the
syntactic or the semantic level. In the first case, one focuses on the interdefinability of
primitive relations assumed in the theories to prove the equivalence of their axiomatics,
while in the second case, one compares (classes of) models of these theories. Systematic
analyses of these kinds have been developed on mereotopologies: Casati & Varzi (1999),
Simons (1987), and Masolo & Vieu (1999) consider the syntactic level, while Biacino &
Gerla (1991, 1996), Asher & Vieu (1995), Pratt-Hartmann & Schoop (1998, 2002), Roeper
(1997), and Stell (2000) focus on the semantic level.

These kinds of comparison make sense if the theories are well characterized, i.e., the
given axiomatization captures theintended modelsand so theintended meaningsof the
primitives. In the case of mereogeometries, only 2 theories have been proved to be seman-
tically complete with respect to the models expressed in terms of Rn. Donnelly (2001)
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provided a full axiomatization for the theory of De Laguna (1922), which is based on
the primitivecan connect, whereas the theory of Tarski (1956a), based on the primitives
parthoodandbeing a sphere, is fully axiomatized by Bennett (2001).5 The other mereoge-
ometries available in the literature are only ‘partially’ axiomatized (they are not completely
characterized with respect to the intended models), see Aurnagueet al.(1997), Borgoet al.
(1996), and Cohn (1995), or are axiomatized only indirectly relying on point-based axioms
(Nicod, 1924).6

In order to overcome this lack of explicit or direct formalization and to carry out an
exhaustive and informative analysis of the links between the different theories, we follow
the approach delineated for the mereotopologies by Cohn & Varzi (2003) and compare
the mereogeometries on the basis of theirintended models. Cohn and Varzi take classical
topology as a unifying framework for the comparison. In the case of mereogeometries, we
rely on Rn since this system is generally used by the authors to describe the (intended)
models of their theories.7

Some authors describe the intended models in a formal way, while in other cases, the
models are only sketched. Therefore, our first task is to isolate interpretations in Rn that
conform with the formal and informal descriptions and that are compatible with the given
axiomatizations. We call any such interpretation anatural interpretation, and the underly-
ing models are dubbednatural modelsof the theory. These notions are discussed below.

Our second (and main) task is to compare these natural/intended models within the cho-
sen unifying framework, i.e., Rn. The analysis of the models (see The Theories and Their
Interpretations section) reveals that they differ significantly on the primitive predicates
adopted while the domains of interpretation, henceforth callednatural domains, are quite
similar. Indeed, all these domains are contained in the class of nonemptyregular regions.8

As a consequence, most of our work concentrates on the relationship among primitives.
Technically speaking, we will proceed as follows: first, we collect all the primitives, say
P1, . . . , Pn, in the systems we want to compare. Then, for each primitivePi , we fix an
interpretationRi in the classD of regular regions of Rm (for some fixedm). Keeping
the Ri ’s fixed, we define severalenvironment structures〈D j , Rj

1, . . . , Rj
n〉, where Rj

i
is the restriction ofRi to D j ⊆ D. We write 8 without indices for the most inclusive
environment structure, namely8 = 〈D, R1, . . . , Rn〉.

5 Tarski himself axiomatizes the primitives only indirectly. He first defines several relations among
spheres (e.g., concentricity), relying on the intended interpretation of the primitives, and provides
axioms only for parthood. Then, he introduces points as classes of concentric spheres. In this
way, he can define equidistance among points using properties of concentric spheres and adopt
the Euclidean axioms to constrain equidistance and, indirectly, the predicatebeing a sphere.

6 Nicod considers the primitivesparthood and conjugation(from which he defines points and
their standard relationships) and assumes all theorems of the point-based Euclidean geometry
as axioms to force the desired interpretation for the 2 primitives. He does not provide a direct set
of axioms for the chosen primitives. Nicod is aware of the formal drawbacks of this approach. His
main goal was to show that extended regions can be taken as the fundamental entities of geometry,
and the method he applied does the job. As a result, the system has no proper axiomatization.

7 This is not in contrast with the ontological nature of mereogeometries because Rn is used only
as an ‘environment’ for intended models. Indeed, these rely on regions in Rn and not on single
points. In addition, spatial theories adequate to cognitive or applicative tasks focus on qualitative
relations and do not aim at capturing ‘new’ notions of space.

8 A subsetA of Rn is said to be a regular region if (a) the closure ofA equals the set obtained by
the topological closure of the biggest open set inA and (b) the interior ofA equals the biggest
open set contained in the topological closure ofA itself, see Basic Notions in Rn section.
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Given an environment structure8 j = 〈D j , Rj
1, . . . , Rj

n〉 and a mereogeometryT, we
define thelocal structure8 j (T) to be the structure obtained from8 j by dropping the sets

Rj
i which are not the semantic counterpart of primitives inT, i.e.,8 j (T) is the ‘projection’

of 8 j on the primitives ofT. For example, ifP1 andP3 are the only primitives ofT, then

8 j (T) = 〈D j , Rj
1, Rj

3〉. Similarly, we write8 j (T+T′) for the structure obtained from8 j

by dropping the setsRj
i which are the semantic counterpart of primitives neither inT nor

in T′, i.e., the projection of8 j on the union of primitives ofT andT′. These local struc-
tures furnish the backbone of our comparison. As a consequence, our strategy is structure
dependent and constitutes a generalization of more traditional comparison methods.

Using environment structures, one can formalize the notion ofconceptually equivalent
theories. This is the motivation for the definitions below. LetT, T′ be 2 mereogeometries.

Definition 1. If P is a primitive ofT, we say that P isexplicitly 8 j -definablein T′ if there
exists an expressionϕ in the language ofT′ such that the interpretations of P andϕ are
equivalent in the local structure8 j (T + T′). Expressionϕ is called a8 j -definition of P
in T′.

Definition 2. A theoryT is a8 j -subtheoryof T′ if every primitive P ofT has an explicit
8 j -definition inT′.

Definition 3. Two theoriesT andT′ are 8 j -equivalentif T is a 8 j -subtheory ofT′ and
T′ is a8 j -subtheory ofT.

Definition 4. Let T and T′ be theories with natural domains Di and Dj , respectively.
We say thatT andT′ are conceptually equivalentif they are both8i -equivalent and8 j -
equivalent.

The notions of8 j -equivalent and conceptual equivalence call attention to the domains
of interpretation and to the expressive power of the systems. In our terminology, 2 theories
are8 j -equivalentif, roughly speaking, when interpreted in the domainD j their primitives
have the same expressive power. Now, assume that we have a first-order translation between
2 8 j -equivalent theories. Given a deductively complete axiomatization of the first theory
in D j , this furnishes a complete axiomatization of the second theory as well (of course,
such an axiomatization is relative to the given domainD j ).

In the case whereT has natural domainDi andT′ has natural domainD j , the fact that
they are8i -equivalent and8 j -equivalent tells us thatT is a trueconceptual counterpart
of T′ (and vice versa) since one theory captures the natural model(s) of the other when it
is interpreted over the corresponding domain. Finally, note that the notion of conceptual
equivalence is independent from the overall set of theories one is considering, that is, from
the overall environment structure. Indeed, the inclusion (or exclusion) of other theories
does not alter the results aboutT andT′.

Some mereogeometries already furnish definitions that aim to capture primitives of
other theories. In these cases, it is crucial to verify whether the defined relations really
correspond to those primitives. For example, the theory in Donnelly (2001) (theoryT4 of
Mereogeometries section), defines the relationconnection(C) in terms of the primitivecan
connect(CCon) as follows:

C(x, y) =def ∀z(CCon(z, x, y)). (2..1)

SinceC is a primitive in the theory of Cohn (1995) (theoryT6 of Mereogeometries sec-
tion), its interpretation must agree with the interpretation obtained by (2.1). In this case,
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one must verify that the interpretation of C defined as in (2.1), which depends on the
interpretation ofCCon, conforms with the natural interpretation ofC given by Cohn
(1995) in the domains associated to these theories. A crucial step in our comparison is
to provide this kind of analysis.

We hasten to point out that this method is not universal and not always straightforward.
Sometimes, it is hard to isolate a meaningful environment for comparison or it might turn
out that a complete comparative analysis is too complex to be carried out. Some issues
based on these considerations are discussed in Environment Structures section. Also, it
is important to take into account that existential axioms (taken to constrain the domain
of interpretation for a given theory) might fail in environment structures with restricted
domains.

In the next section, we give a description of the mereogeometries studied in this paper
together with their natural models expressed in Rn. In Environment Structures section, we
fix and justify our choice of environment structures, and in Translations Between Theories
section, we present the details of the comparison verifying the explicit syntactic translations
across the theories and introducing new or corrected translations whenever necessary.

3. Mereogeometries. In this section, we present the mereological systems considered
in this paper and fix their formal interpretations. Since Rn is the common underlying
framework, we begin by listing some standard relations of this system and then use them
to interpret the mereogeometrical vocabulary.

3.1. Basic notions in Rn. Here we recall some topological and geometrical relations
and functions on Rn; these are needed for interpreting mereogeometry:

• topological operators:closure([]), interior (◦);
• Euclidean distance, dist: Rn× Rn→ [0,+∞);
• standard operators, functions, and relations definable from these.

Also, recall that a subsetA of Rn is said to be aregular regionwhenever [A]◦ = A◦ and
[ A◦] = [ A].

In the following list of operators and relations, lowercase variables stand for points of
Rn and uppercase variables for regular regions in Rn.

Operators and functions in Rn (X andYnonempty):

ball(c, r ) = {x|dist(x, c) < r }, wherer > 0; (nonempty open ball of radiusr , centerc)
∂(X) = [X] − X◦; (boundary ofX)
diam(X) = sup{dist(x, y)|x, y ∈ X}; (diameter ofX)
dist(X, Y) = inf{dist(x, y)|x ∈ X ∧ y ∈ Y};9 (distance betweenX andY)

Relations Rn (X andY nonempty):

Btw(x, y, z) iff dist(y, x)+ dist(x, z) = dist(y, z); (x is betweeny andz)
Congr(X, Y) iff there exists an isometryf such that

f (X) = Y; (X is congruent toY)

9 Sometimes, we write dist(x, Y) for dist({x}, Y) and analogously for dist(X, y). Also, note that we
use the logical symbols∧, ∀,→, etc. both in the mereogeometrical languages and in the semantic
statements.
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Conv(X) iff ∀x,y,z((x,y ∈ X∧
Btw(z, x, y))→ z ∈ X); (X is a convex region)

Conx(X) iff ∀A,B((A◦ 6= Ø∧
B◦ 6= Ø∧ X◦ = A◦ ∪ B◦)→ A◦∩ B◦ 6= Ø); (X is a connected region)

WConx(X) iff ∀A,B((A◦ 6= Ø∧
B◦ 6= Ø∧ X◦ = A◦ ∪ B◦)→ [ A] ∩[B] 6= Ø); (X is a weakly connected region)

WWConx(X) iff ∀A,B((A◦ 6= Ø∧ B◦ 6=
Ø∧ X◦ = A◦ ∪ B◦)→ dist(A, B) = 0); (X is aw-weakly connected region).

From the definitions, for allX ⊆ Rn, we have Conx(X) → WConx(X) → WW-
Conx(X). The converse does not hold. However, we have (WWConx(X) ∧ diam(X) <
+∞) → WConx(X). These results are proven in Appendix A. Other topological and
geometrical lemmas based on the notions given above become handy in proving theorems
of later sections. These lemmas are collected in Appendix A as well.

3.2. The theories and their (natural) interpretations.As we have seen, the natural
interpretation of the nonlogical primitives is crucial for the comparison. Because of this,
we provide detailed notes with references to the literature and point out the cases where
the information available is not satisfactory.

In this section, we list the nonlogical vocabularyVj , the domainD j , and the (natural)
interpretation [[∙]] j of each mereogeometryTj we consider. Also, assume that an assignment
functionIn from the set of variables to regular regions in Rn has been fixed for each index
n. If D ⊆ ℘(Rn), then [[R(x, y)]] j and [[R]] j (X, Y) stand for [[R]] j(In(x), In(y)), where
In(x) = X (X ∈ D j ⊆ D). Finally, since there is no danger of confusion, throughout the
paper we write [[x]] j for In(x) whenever the indexn is fixed by the context.

T1 – Theory presented in Tarski (1956a) and further developed in Bennett (2001) and
Bennettet al. (2000b):

V1 = {P, S}, where
P(x, y) stands for ‘x is part ofy’ and
S(x) for ‘x is a sphere’;

D1 = {nonempty regular open subsets of Rn}
= {X ⊆ Rn|X 6= Ø∧ [X]◦ = X};

[[P(x, y)]] 1 = X ⊆ Y;
[[S(x)]] 1 = ∃c ∈ Rn, r ∈ R+ (X = ball(c, r )).

T2 – Theory presented in Borgoet al. (1996):10

V2 = {P, SR, CG}, where
P(x, y) stands for ‘x is part ofy’,
SR(x) for ‘x is a simple region’ (or ‘x is connected’), and
CG(x, y) for ‘x is congruent toy’;

D2 = {nonempty regular open subsets of Rn with finite diameter}
= {X ⊆ Rn|X 6= Ø∧ [X]◦ = X∧diam(X) < +∞};

[[P(x, y)]] 2 = X ⊆ Y;
[[SR(x)]] 2 = Conx(X);
[[CG(x, y)]] 2 = Congr(X, Y).

10 This theory is restricted to R3 since it was developed for the description of physical objects. One
can easily generalize it to Rn by varying the axioms on the space dimension.
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T3 – Theory given in Nicod (1924):11

V3 = {P, Conj}, where
P(x, y) stands for ‘x is part ofy’ and
Conj(x, y, x′, y′) for ‘x,y andx′,y′ are conjugates’;

D3 = {nonempty regular closed connected subsets of Rn}
= {X ⊆ Rn|X 6= Ø∧ [X

◦
] = X∧ Conx(X)};

[[P(x, y)]] 3 = X ⊆ Y;
[[Conj(x, y, x′, y′)]] 3 = ∃p, q, p′, q′(p ∈ X ∧ q ∈ Y ∧ p′ ∈ X′ ∧ q′ ∈ Y′∧ dist(p, q))
= dist(p′, q′)).

T4 – Theory introduced in De Laguna (1922) and further developed in Donnelly (2001):12

V4 = {CCon}, where
CCon(x, y, z) stands for ‘x can connect bothy andz’;

D4 = {nonempty regular closed connected subset of Rn with finite diameter}
= {X ⊆ Rn|X 6= Ø∧ [X◦] = X∧ Conx(X)∧ diam(X) < +∞};

[[CCon(x, y, z)]] 4 = dist(Y, Z) ≤ diam(X).

T5 – Theory first introduced in Van Benthem (1983) and further developed in Aurnague
et al.1997:13

V5 = {C, Closer}, where
C(x, y) stands for ‘x is connected toy’ and
Closer(x, y, z) for ‘x is closer toy than toz’;

D5 = {nonempty regular subsets of Rn}14

= {X ⊆ Rn|X 6= Ø ∧ ([X] = [ X◦] ∧ X◦ = [X]◦)};
[[C(x, y)]] 5 = X ∩ Y 6= Ø;
[[Closer(x, y, z)]] 6 = dist(X, Y) < dist(X, Z).

T6 – Theory given in Cohn (1995) and Cohnet al. (1997a,b):
V6 = {C, ConvH}, where

C(x, y) stands for ‘x is connected toy’ and
ConvH(x, y) for ‘x is the convex hull ofy’;

D6 = {nonempty regular open subsets of Rn}
= {X ⊆ Rn|X 6= Ø ∧ [X]◦ = X};

11 Nicod provides an informal description ofConj: “[D]eux volumesAA′, BB′ sontconjugúess’il
existe un point deA et un point deA′, un point deB et un point deB′, śepaŕes par la m̂eme
distance” (Nicod, 1924, pp. 27–28). He also characterizes the domain, see (Nicod, 1924, p. 27).

12 De Laguna provides an informal description ofCCon: “[T]o say that C can connectA
and B would be understood to mean that we could, if we wished, putC in simultaneous
contact with A and B” (De Laguna, 1922, p. 450), i.e., considering a domain of
closed regions, [[CCon(x,y, z)]] = ∃p, p′, q, r (p, p′ ∈ X ∧ q ∈ Y ∧ r ∈ Z∧ dist(p,
p′) = dist(q, r )). In Donnelly (2001), a different interpretation is given: [[CCon(x, y, z)]]4 =
dist(Y, Z) ≤ diam(X). This interpretation is equivalent to the one of De Laguna inD4, but,
as shown in Definitions inT1 section, in the domains containing nonconnected regions, it does
not satisfy all the axioms provided by De Laguna. Since we are working in domains containing
nonconnected regions as well, we consider the weaker one.

13 No intended interpretation for the relationCloser is provided. The interpretation we propose
seems self-evident and satisfies all the axioms. As far as we can tell, it is faithful to this approach.

14 Van Benthem (1983) considers only convex and bounded regions.
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[[C(x, y)]] 6 = [X] ∩ [Y] 6= Ø;
[[ConvH(x, y)]] 6 = Conv(X) ∧ Y ⊆ X ∧ ¬∃Z(Conv(Z) ∧ Y ⊆ Z ∧ Z ⊂ X).

4. Environment structures. Having listed all the systems and their (natural) inter-
pretations, the next issue is the definition of the environment structures for the comparison.
The key step in this part of our method is the choice of the structure domains.

As we have seen, all mereogeometries in the Mereogeometries section consider non-
empty regular regions and do not refer to lower dimension objects like points or boundaries.
Looking at the descriptions, we see that all the domains, with the only exception ofD5,
contain regular regions only, and these are either all open or all closed (perhaps with
additional constraints). In particular,D1 = D6 = {X ⊆ Rn|X 6= Ø ∧ X = [X]◦} is the
set of regular open regions. Let us call this domainDO. From the topological point of
view, DO is the counterpart ofDC = {X ⊆ Rn|X 6= Ø ∧ X = [X◦]}, the set of regular
closed regions, since there exists a bijectionf : DO→ DC given by f (X) = [X] such that
f −1(X) = X◦, f −1( f (X)) = X, and f ( f −1(X)) = X.

DomainD5 is the union ofDO andDC. In D5, set inclusion (⊆) is nonextensional: ifX
is a regular closed region inD5, thenX◦ ∈ D5 andX◦ ⊂ X, but there is nothing inD5 that
makes the difference between these regions. This is a major difference betweenT5 and
the other systems, and it has far-reaching consequences already at the mereotopological
level (Cohn & Varzi, 2003). In this paper, we concentrate on⊆-extensional systems; thus,
we leave out the domainD5. Indeed, set inclusion is extensional in all the other theories
of Mereogeometries section, and it is used extensively to prove the results of Translations
Between Theories section. This does not mean that we dismissT5 altogether. Instead, we
take the interpretations ofC andCloser provided by the authors ofT5 and apply these in
the other domains. Admittedly, this covers only one direction in the comparison ofT5 with
the other systems, but the analysis of theoriesT1–T6 in the natural domain ofT5 is quite
complex and we leave this subject for future work.

Focusing on the relationship betweenDO andDC, one wonders if it is possible to reduce
the comparison to domains containing open regions (or closed regions) only. Let us start
with a specific example. Two of our theories are interpreted in the class of closed regions,
namelyT3 (primitives P and Conj) and T4 (primitive CCon). From Lemma L.5 (see
Appendix A), we see that the interpretation of P, i.e.,⊆, is independent from the open–
closed distinction. The interpretation ofCCon behaves analogously since from Lemmas
L.8 and L.9, we have dist(X, Y) = dist([X], [Y]) = dist(X◦, Y◦) and diam(X) = diam([X◦])
= diam(X◦). The case of Conj is different. The natural interpretation (inDC) is given by
the formula

∃p, q, p′, q′(p ∈ X ∧ q ∈ Y ∧ p′ ∈ X′ ∧ q′ ∈ Y′ ∧ dist(p, q) = dist(p′, q′)). (4.1)

If we want to make justice of this interpretation in the domainDO, we should consider the
topological closures of the variable values, that is, the following formula:15

∃p, q, p′, q′(p ∈ [X]∧q ∈ [Y]∧ p′ ∈ [X′]∧q′ ∈ [Y′]∧dist(p, q) = dist(p′, q′)). (4.2)

However, formulas (4.1) and (4.2) are equivalent inDC only. For a counterexample inDO,
let n = 1 and takeX = (0, 1), Y = (4, 5), X′ = (1, 2), andY′ = (3, 4). Thus, in bothDO

15 Recall that, in a formula, the interpretation of the variables is restricted to the domain DO.
However, the formula itself may refer to regions outside DO, which justifies our use of [ ] in
the formula.
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andDC, formula (4.2) coincides with the (informal) interpretation provided by the authors,
while (4.1) is specialized toDC since it takes advantage of the properties of that domain. In
particular, taking (4.2) to be the interpretation forConj, our comparison can be carried out
in both the domainsDO andDC. This example suggests a way to reliably restrict our anal-
ysis to a subclass of regular regions, sayDO, by allowing us to ‘transfer’ the results to the
other,DC. Indeed, taking the closure of the values given by the assignment function, that is,
substituting [X] for any occurrence ofX in the interpretation of a formula, we can interpret
in DO also those primitives that are defined on the domain of regular closed regions.

Finally, since some primitives seem to occur in several systems, we need to verify that
the corresponding interpretations are compatible. If this is not the case, these have to be
taken as distinct primitives. In our case, 2 primitives occur in several theories:P is included
in T1, T2, andT3, andC is included inT5 andT6. P has the same interpretation in all
the theories; thus, we can identify the primitiveP in all these theories. RegardingC, its
interpretation differs in the 2 domainsD5 andD6. Since the interpretation inT5 is based
on a domain that we do not consider in this paper, we have to evaluate the adequacy of the
original interpretation in the actual domains we use for the comparison. In the domain of
open regions, the interpretation ofC given byT5 reducesC to standard overlap, a relation
that is weaker than any connection relation. This result seems in contrast with the goals of
the authors. In the case of closed regions, the interpretation ofC provided byT5 coincides
with that ofT6. These observations suggest that the interpretation ofC(x,y) as ‘the inter-
section of the closure of regionsX andY is nonempty’ is more reliable. Nonetheless, some
arbitrariness seems to be involved in this choice. We overcome this criticism by providing
a definition ofC in terms ofCloser (the only other primitive ofT5) that is compatible
with the chosen interpretation forC. That is, a deeper analysis shows that the relationC is
definable throughCloser in DO or DC (this definition is given in Dispensable Primitives
section). Furthermore, from this result and Proposition 1, one can see thatCloser can
defineC even if one decides to interpret it in the other way, i.e., as the standard overlap
relation. That is, the real interpretation ofC in the domains we consider is irrelevant since,
as we show, this relation is dispensable (see Dispensable Primitives section).

Putting things together, we end up with 8 distinct environment structures:8α–8θ . These
have fixed vocabularyV = {C, CCon, CG, Closer, Conj, ConvH, P, S, SR} and fixed
interpretation functions (Table 1) but different domains (Table 2). Recall that each theory is
associated with a specific domain, i.e., the domain of its natural model. As a consequence,
with the exception of theoryT5, we associate each theory with the structure isolated by its
natural domain and the interpretation functions given at the end of Environment Structures
section and call this thenatural environment structurefor that theory (Table 2).

Definition 5. Let T be a theory and D the domain of its natural model. The natural envi-
ronment structure ofT is the environment structure among the8α–8θ that has domain D.

From Conceptual Comparison section, given 2 theories and a domain, sayT1, T4 and
Dα, the theories are said to be8α-equivalent iff the relation dist(X, Y) ≤ diam(Z) can be
defined in the structure8α(T1) = 〈Dα, X ⊆ Y, ∃c,r (X◦ = ball (c, r )) with r ∈ R+〉, and
the relationsX ⊆ Y and∃c,r (X◦ = ball(c, r )) can be defined in the structure8α(T4) =
〈Dα, dist(X, Y) ≤ diam(Z)〉. In other terms, both the structures8α(T1) and8α(T4) can
bedefinitionally expandedto the structure〈Dα, dist(X, Y) ≤ diam(Z), X ⊆ Y, ∃c,r (X◦ =
ball(c, r )) with r ∈ R+〉, see Hodges (1997).

Before moving to the next section, we add a couple of words to motivate our choice
of CCon’s interpretation. TheCCon primitive is introduced in a domain of connected
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regions, and there are different ways to generalize it to the more comprehensive domain
we consider in this paper. At first sight, when working in the domain of all open regular
regions, one might want to impose that inCCon(x, y, z), variablex must range over
connected regions only. This constraint would capture the intuition that whenever a region
‘can connect’ 2 given regions, then it ‘can connect’ any 2 regions that are at closer distance.
However, this constraint is too strong with respect to the underlying intuition that in R1

accepts that the regionX = (0,1)∪ (2,3) ‘can connect’Y = (10,12) andZ = (13,15). From
a broader perspective, the problem is to understand which properties of the primitive that
are guaranteed by the peculiarity of the original domain should be explicitly enforced in
the more general interpretation. Our approach in these cases is to adopt the interpretation
that makes the primitive weaker. Such a choice allows us to better analyze the import
of the primitive. For the sake of completeness, note that one could informally interpret
CCon(x, y, z) as ‘there are 2 points ofx whose distance is equal to the distance between
a point ofy and a point ofz.’ This interpretation has been discharged for the simple reason
that it would makeCCon a subcase ofConj.

5. Translations between theories. In the previous sections, we have prepared the
elements for the formal comparison. The mereogeometries that we consider have been
presented in Mereogeometries section, and the environment structures have been chosen
and motivated in Environment Structures section. Now, we enter into the actual comparison
giving the formal results. In this section, we collect the theorems, while their proofs, which
are sometimes long and involved, are presented in the appendices.

Since in the previous section we have shown how to reduce the comparison to struc-
tures with domain inDO only, we abuse the above notation by using8α−8δ as natural
environment structures even for theories whose natural domainD is contained inDC.

5.1. Verifying the given explicit definitions. First, we prove that the explicit defini-
tions, provided by each theory and of interest for the comparison, are satisfied in the natural

Table 1. Interpretation of the vocabulary on nonempty regular regions of Rn.

[[C(x, y)]] = [ X] ∩ [Y] 6= Ø

[[CCon(z, x, y)]] = dist(X, Y) ≤ diam(Z)

[[CG(x, y)]] = Congr(X, Y)

[[Closer(z, x, y)]] = dist(Z, X) < dist(Z, Y)

[[Conj(x, y, x′, y′)]] = ∃x,y,x′,y′(x ∈[X] ∧ y ∈[Y] ∧ x′ ∈[X′] ∧ y′ ∈[Y′] ∧ dist(x, y)

= Cist(x′, y′))

[[ConvH(x, y)]] = Conv(X) ∧ Y ⊆ X ∧ ¬∃Z(Conv(Z) ∧ Y ⊆ Z ∧ Z ⊂ X)

[[P(x, y)]] = X ⊆ Y

[[S(x)]] = ∃c,r (X◦ = ball(c, r )) with r ∈ R+

[[SR(x)]] = Conx(X)

In this case, we indicate the interpretation function with the double brackets [[ ]] without indices.
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Table 2. Structures and theirdomains.

STRUCTURE DOMAIN DOMAIN DESCRIPTION NATURAL

Nonempty regular ENVIRONMENT

regions and . . . OF

8α Dα = DO = {X ⊆ Rn|X 6= Ø
∧ [X]◦ = X} open T1, T6

8β Dβ = {X ∈ DO| diam(X) < +∞} open and finite T2

8γ Dγ = {X ∈ DO| Conx(X)} open and connected

8δ Dδ = {X ∈ DO| Conx(X) open, finite,
∧ diam(X) < +∞} and connected

8ε Dε = DC = {X ⊆ Rn|X 6= Ø

∧ [X◦] = X} closed T3

8ζ Dζ = {X ∈ DC| diam(X) < +∞} closed and finite

8η Dη = {X ∈ DC| Conx(X)} closed and connected

8θ Dθ = {X ∈ DC| Conx(X) closed, finite,
∧ diam(X) < +∞} and connected T4

environment structure for that theory. We will see that there is one exception: the definition
proposed inT1 to capture the relationCCon yields an interpretation function that does not
satisfy the axiomatization of the primitiveCCon given inT4. We will show how to modify
such a definition to capture the correct meaning of the primitive. RegardingT5, we do not
take into account the definitions it provides because they are conceived for the domainD5.

First, we consider the (derived) interpretations of those mereotopological notions that
receive a common definition in the theoriesT1–T6. These notions are extensively used in
the rest of the paper.

Proposition 1. In all the structures8α−δ, the following holds:

(DP) LetP*(x,y) =def ∀w(C(x, w)
→ C(y, w)), then

[[P*(x, y)]]α−δ = X ⊆ Y;16 (x is a part ofy)
(DPP) LetPP(x,y) =def P(x, y) ∧ ¬P(y, x), then

[[PP (x,y)]]α−δ = X ⊂ Y; (x is a proper part ofy)
(DO) LetO(x,y) =def ∃z(P(z, x)∧ P(z, y)), then

[[O(x,y)]]α−δ = X ∩ Y 6= Ø; (x andy overlap)
(DPO) LetPO(x,y) =def O(x, y) ∧ ¬

P(x, y) ∧ ¬ P(y, x), then
[[PO(x, y)]]α−δ=X ∩ Y 6= Ø∧
¬X ⊆ Y ∧ ¬Y ⊆ X; (x andy partially overlap)

16 Note that the interpretation ofP* is identical to the interpretation fixed forP (Table 1). For this
reason, in the following we will identifyP* with P.
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(D+) Let SUM(z, x, y) =def ∀w(O(w, z)↔
(O(w, x)∨ O(w, y))), then

[[SUM(z, x, y)]]α−δ = (Z = [X ∪ Y]◦); (z is the sum ofx andy)
(D−) Let DIF(z, x, y) =def ∀w(P(w, z)↔

(P(w, x) ∧ ¬ O(w, y))), then
[[DIF(z, x, y)]]α−δ = (Z = X− [Y]); (z is x minusy)

(DEC) LetEC(x, y) =def C(x, y) ∧ ¬ O(x,y), then
[[EC(x, y)]]α−δ = [X] ∩ [Y] 6=

Ø∧X ∩ Y = Ø. (x andy are externally connected)
(DIP) Let IP(x,y) =def P(x, y) ∧

∀z(C(z, x)→ O(z, y)), then
[[ IP(x, y)]]α−δ = [X] ⊆ Y; (x is an interior part ofy)

(DTPP) LetTPP(x, y) =def PP(x, y)
∧∃z(EC(z, x) ∧ EC(z, y)), then

[[TPP(x,y)]]α−δ = X ⊂ Y ∧
∂(X) ∩ ∂(Y) 6= Ø; (x is an tangential proper part ofy)

(DSC) LetSC(x) =def ∀y,z(SUM(x, y, z)
→ C(y, z)), then

[[SC(x)]]α−δ = WConx(X); (x is weakly connected).

Proof. See Appendix B.1. �

We are now ready to analyze the definitions provided in some theories, namelyT1, T2,
T4, andT6. The goal here is to ensure that these definitions capture correctly the intended
notions, to provide counterexamples where they do not, and to propose a corrected version
when needed. To distinguish the vocabulary of the environment structures in Environment
Structures section from the relation symbols within a theory, we label those in the latter
group with the index of the theory where they occur. For instance,C1(x,y) is the connec-
tion relationship defined in theoryT1, while C(x,y) is the connection relationship with
interpretation as in Table 1.

5.1.1. Definitions in T1. Primitives ofT1: P, S. The explicit definitions provided in
this theory involve 2 relationships that we do not discuss directly. The first,CNC, is the
relationship that holds between 2 concentric spheres and is introduced and defined by
Tarski (1956a). More precisely, in this paper Tarski proves [[CNC(x, y)]] = ∃c ∈ Rn, r ,r ′ ∈
Rr (X = ball(c, r ) ∧ Y = ball(c, r ′)). We do not repeat the argument and refer the reader to
that paper on this topic.CNC is adopted inT1 without changes, and it is used to define the
connection relation as shown in definition (DC1) below. The other isCG, which is needed
to captureCCon. The definition ofCG given in the language ofT1 is quite complex. In
FromT1 to T2 section, we provide an improved definition ofCG (within theoryT1) that
works in all the domains. There we also prove that its interpretation corresponds to that of
Environment Structures section. For the time being, we show that the existing definition of
CCon given in Bennett (2001) and Bennettet al. (2000b) must be corrected.

Explicit definitions furnished inT1:

(DC1) C1(x, y) =def ∃z(S(z) ∧ ∀z′(CNC(z′, z)→(O(z′, x) ∧ O(z′, y))));
(DSR1) SR1(x) =def ∀y, z(SUM (x, y, z)→ ∃s(S(s) ∧ O(s, y) ∧O(s, z)∧ P(s, x)));
(DCC1) CCon1(z, x, y) =def ∃z′(CG(z′, z) ∧ C1(z′, x) ∧ C1(z′, y)).

Proposition 2. [[C1(x, y)]]α−δ = [[C(x, y)]] and[[SR1(x)]]α−δ = [[SR(x)]] .
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Proof. See Appendix B.2. �

Proposition 3. Let [[CG(x, y)]] = Congr(X, Y), then
[[CCon1(z, x, y)]]α = ∃z, z′, x, y(z, z′ ∈ [Z] ∧ x ∈ [X] ∧ y ∈ [Y] ∧ dist(x, y) =
dist(z, z′)).

Proof. See Appendix B.3. �

In Dα (i.e., the natural domain ofT1), the interpretation ofCCon1 is not equivalent to
the interpretation ofCCon given in Table 1. For example, letn = 1 and takeX = (2, 3),
Y = (5, 6), andZ = (0, 1) ∪ (7, 8). Then, dist(X, Y) ≤ diam(Z), but¬∃z, z′, x, y(z, z′ ∈
Z ∧ x ∈ X ∧ y ∈ Y∧ dist(x, y) = dist(z, z′)). In addition, while the interpretation in
Table 1 satisfies all the axioms given by De Laguna on thecan connectprimitive in all the
structures, the interpretation ofCCon1 does not satisfy (in8α) the following De Laguna
axiom:
∃x, y(CCon(a, x, y) ∧ ¬CCon(b, x, y))→ ¬∃z, v(CCon(b, z, v) ∧ ¬CCon(a, z, v)).

A counterexample inDα (for n = 1) is obtained by takingA =(3, 5), B =(0, 1)∪ (7,
8), X = (2, 3),Y = (5, 6),Z = (−1, 0), andV = (8, 9).

We conclude that (DCC1) does not capture the De Laguna’scan connectprimitive, and
therefore, in our conceptual comparison, we will not make use of this definition.

5.1.2. Definitions in T2. Primitives ofT2: P, SR, CG. The definition (DC2), given
below, uses the relationshipCNC. This has been discussed in Definitions inT1 section and
is adopted inT2 without changes with respect to Tarski’s work. Of course, the correctness
of CNC in this theory depends on the correctness of definition (DS2), which establishes
what counts as a sphere in this theory.

Explicit definitions furnished inT2:
(DS2) S∗2(x) =def SR(x) ∧ ∀y, z((CG(x, y) ∧ PO(x, y) ∧ DIF(z, x, y)) → SR(z));
(DC2) C2(x, y) =def ∃z(S

∗
2(z) ∧ ∀z′(CNC(z′, z)→ (O(z′, x) ∧O(z′, y)))).

Proposition 4. [[S∗2(x)]]β = [[S(x)]] (8β is the natural environment structure ofT2) and
[[S∗2(x)]]α,γ,δ 6= [[S(x)]].

Proof. See Appendix B.4. �

Proposition 5. [[C2(x, y)]] = [[C(x, y)]] provided[[S∗2(x)]] = S(x).

Proof. It follows from the proof of Proposition 2. �

Bennettet al. (2000a) propose a definition ofS based onP andCG together with an
attempt to provide semantic equivalence in the domain of open regular regions. We are
not going to consider this definition in our comparison because, unfortunately, it fails to
capture the notion of sphere. The interested reader can easily verify that the definition in
that paper does not rule out nonspherical regions like Reuleaux polytopes.17

5.1.3. Definitions in T4. Primitive ofT4: CCon. Explicit definitions furnished inT4:
(DC4*) C∗4(x, y) =def ∀z(CCon (z, x, y));

17 A Reuleaux polytope in R2 is the region obtained by intersecting the 3 discs centered at the
vertices of an equilateral triangle with radius (of length) equal to (the length of) the side of the
triangle itself.
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(DP4*) P∗4(x, y) =def ∀z(C
∗
4(z, x)→ C∗4(z, y));

(DP4+) P+4 (x, y) =def ∀z, w(CCon(w, z, x)→ CCon(w, z, y));
(DCl4) Closer4(z, x, y) =def ∃a(CCon(a, z, x) ∧ ¬CCon(a, z, y)).

Proposition 6. [[C∗4(x, y)]]β,δ = [[C(x, y)]] (8δ is the open counterpart of8θ, i.e., of the
natural environment structure ofT4) and [[C∗4(x, y)]]α,γ 6= [[C(x, y)]] .

Proof. See Appendix B.5. �

Proposition 7. [[C∗4(x, y)]]α−δ = [[P(x, y)]] , [[P+4 (x, y)]]α−δ = [[P(x, y)]] , and
[[Closer4(z, x, y)]]α−δ = [[Closer(z, x, y)]] .

Proof. See Appendix B.6. �

5.1.4. Definitions in T6. Primitives ofT6: C, ConvH.
Explicit definitions furnished inT6:18

(DP6) P4(x, y) =def ∀z(C(z, x)→ C(z, y));
(DCM6) Compl6(y, x) =def ∀z(C(z, y)↔ ¬IP(z, x));19

(DSR6) SR6(x) =def ∀y, z, w((SUM(x, y, z) ∧ Compl6(w, x)) → ∃v(SC(v) ∧
O(v, y)

∧ O(v, z) ∧ ¬C(v,w))).20

Proposition 8. [[P6(x, y)]]Pα−δ = [[P(x, y)]] and[[SR6(x)]]SRα−δ = [[SR(x)]] .

Proof. See Appendix B.7. �

5.2. Dispensable primitives.Using extensively the definitions and results of the pre-
vious sections, we now investigate if some primitives of a theoryTi can be defined (in all
8α−δ) on the basis of the other primitives of the same theoryTi . This ‘internal reduction’
points out redundancies and reduces the steps needed to compare the theories.

Proposition 9. In T2, we can use(DSR6) to define the relationSR.

Proof. Directly from Proposition 8 and the fact that all the predicates used in (DSR6) are
definable inT2 with the same interpretation. �

In T3, on the basis of the primitiveConj, we can define the parthood relation:
(DC3*) C∗3(x, y) =def ∀z(Conj(z, z, x, y));
(DP3) P3(x, y) =def ∀z(C

∗
3(z, x)→ C∗3(z, y)).

Proposition 10. [[P3(x, y)]]α−δ = [[P(x, y)]] .

Proof. See Appendix B.8. �

18 The predicatesO, IP, SUM, andSC in the definitions (DCM6) and (DSR6) are defined usingP6.
Because of Propositions 1 and 8, their definitions coincide with the original ones. For this reason,
we do not introduce new symbols for these predicates.

19 In the original papers, the complement is introduced as a primitive function. Here we adopt the
standard formulation of the complement as a relation.

20 This predicate is called ‘manifold’ in Cohn (1995).
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Fig. 1. Definitional links between mereogeometries (we report the primitives of each thoery).
Here ‘Ti → Tj ’ means ‘theoryTj is a8α−θ -subtheory ofTi ,’ i.e., in 8α−θ , all the primitivesTj
can be defined on the basis of the primitives ofTi (the labels indicate the section in which the proof is
given).

In T5, on the basis of the primitiveCloser, we can define the connection relation:
(DC5*) C∗5(x, y) =def ¬∃Closer(x, z, y));
(DP5) P5(x, y) =def ∀z(C

∗
5(z, x)→ C∗5(z, y));

(DFD5) FD5(x) =def ∃z(∀x′, x′′((P5(x′, x) ∧ P5(x′′, x))→ Closer(x′, x′′, z)));
(x has finite diameter)

(DC5) C5(x, y) =def ∃z, w(FD5(z) ∧ FD5(w) ∧ P5(z, x) ∧ P5(w, y) ∧ C∗5(z, w)).

Proposition 11. [[C5(x, y)]]α−δ = [[C(x, y)]] .

Proof. See Appendix B.9. �

5.3. Linking via explicit definitions. In this section, we show how the mereogeome-
triesT1–T6 are related in the structures8α−θ . The connections are illustrated in Figure 1,
which shows our main result. At the end of this section, we will be able to conclude that
these mereogeometries, with the exception ofT6, are actually8α−θ -equivalent.

5.3.1. From T1 to T2. By Proposition 2, inT1, (DC1) definesC in all the structures;
therefore, we can use all the relations defined in Proposition 1. We use the additional
relationsID(z, x, y) (x and y are internally diametrical with respect toz) andCNC(x,
y) (x is concentric withy), which were introduced by Tarski (1956a). As done before, we
report only the interpretations. A full description and the related proof of correctness can
be found in Tarski (1956a).

[[ ID(z,x, y)]]α−δ = IntD(Z, X, Y)

(the centers ofz, x, y are aligned andz is the minimum sphere containingx, y)

[[CNC(x, y)]]α−δ = ∃c,r1,r2 (X1 = ball(c, r1) ∧ X2 = ball(c, r2)).
Using all these relations, we can define when 2 regions are congruent:
CG1(x, y) =def ∀z(6 SS(z) → ∃z′(6CG(z, z′) ∧ ∀s,s′((MSP(s, z) ∧ MSP(s′, z′) ∧
SCG(s, s′))→

((P(s, x)↔ P(s′, y)) ∧ P(s, y)↔ P(s′, x)) ∧ PO(s, x)↔ PO(s′, y)) ∧ PO(s, y)↔
PO(s′, x))))))

(x andy are congruent regions),
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where

SCG(x, y) =def S(x) ∧ S(y) ∧ (x = y ∨ ∃z,w(CNC(z, w) ∧ EC(z, x) ∧ EC(z, y) ∧
TPP(x, w) ∧ TPP(y, w)))

(x andy are congruent spheres)
EqD(x, y, x′, y′) =def SCG(x, x′ ) ∧ SCG(y, y′)∧¬P(x, y)∧¬ P(y, x)∧¬ P(x′, y′)∧¬
P(y′, x′) ∧ ∃z,w(ID(z, x, y) ∧ ID(w, x′, y′) ∧ SCG(z, w))

(x, x′ are congruent spheres and so arey, y′; x andy are not one part of the
other, analogouslyx′ andy′; the centers ofx, y and those of

x′, y′ are equidistant)
MSP(x, y) =def S(x) ∧ P(x, y) ∧ ∀z((S(z) ∧ PP(x, z))→ ¬P(z, y)) (x is a maximal
sphere contained iny)
6SS(x) =def ∀y(P(y, x)→ ∃s(MSP(s, x) ∧ O(s, y))) ∧

∀u,w((MSP(u, x) ∧ MSP(w, x) ∧ u 6= w)→ ¬SCG(u, w))
(x is the sum of a set of pairwise noncongruent spheres)

6CG(x, y) =def 6SS(x) ∧6SS(y) ∧
∀s(MSP(s, x)→ ∃s′(MSP(s′, y) ∧ SCG(s, s′))) ∧
∀s(MSP(s, y)→ ∃s′(MSP(s′, x) ∧ SCG(s, s′))) ∧
∀s,u,s′,u (MSP(s, x) ∧ MSP(u, x) ∧ MSP(s′, y) ∧ MSP(u′, y) ∧ SCG(s, s′)
∧ SCG(u, u′))

→ EqD(s, u, s′, u′)
(regionsx andy are congruent and they are the sum of 2 equivalent sets of

pairwise noncongruent spheres).

Lemma 1. T2 is a8α−δ-subtheory ofT1.

Proof. We need to prove that [[CG1(x, y)]]α−δ = [[CG(x, y)]]. See Appendix C.1. �

5.3.2. From T2 to T4. In Appendix C.2, we show that [[C∗2(x,y)]]α−δ = (dist(X, Y) =
0). From this, we can define parthood byP2(x,y) =def ∀z(C∗2(z, x) → C∗2(z, y)). The
proof that this definition is correct is as the proof of Proposition 10. Then, Proposition 1
gives us all the mereological relations used in the following definitions.

CCon2(c, x, y) =def ∀a,b(LDist2(a, b, x, y)→ ∃z(SCDiam2(z, c) ∧ O(z, a) ∧ O(z,
b))),

where:

C∗2(x, y) =def ∀z∃z′(CG(z′, z) ∧ O(z′, x) ∧ O(z′, y));
SC∗2(x) =def ∀y,z(SUM(x, y, z)→ C∗2(y, z)); (x is w-weakly connected)
LEDiam2(x, y) =def SC∗2(y) ∧ ∀a,b((P(a, x) ∧ P(b, x))→ ∃y′(CG(y′, y) ∧ O(y′, a) ∧
O(y′, b)));

(the diameter ofx is less than or equal to the diameter ofy and
y is w-weakly connected)

SCDiam2(x, y) =def SC∗2(x) ∧ ∀z((P(y, z) ∧ SC∗2(z))→ LEDiam2(x, z));
(the diameter ofx is less than or equal to the diameter ofy andx

is w-weakly connected)
LDist2(x, y, x′, y′) =def ∃a(SC∗2(a) ∧ O(a, x) ∧ O(a, y) ∧ ∀a′(CG(a′, a) → (¬O(a′,
x′) ∨ ¬O(a′, y′))))

(the distance ofx from y is strictly smaller than the distance ofx′ from y′).

Lemma 2. T4 is a8α−δ-subtheory ofT2.
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Proof. We need to prove that [[CCon2(c, x, y)]]α−δ = [[CCon(c, x, y)]]. See Appendix
C.2. �

5.3.3. From T4 to T5. In T5, the relationC is dispensable (see Proposition 11); there-
fore, it is sufficient to provide an explicit definition ofCloser in terms ofCCon. For this,
we use the definition (DCl4) of Definitions inT4 section:

(DCl4) Closer4(z, x, y) =def ∃a(CCon(a, z, x) ∧ ¬CCon(a,z,y)).

Lemma 3. T5 is a8α−δ-subtheory ofT4.

Proof. We need to prove that [[Closer4(z, x, y)]]α−δ = [[Closer(z, x, y)]]. This follows
from Proposition 7. �

5.3.4. From T5 to T3. Here the explicit definitions we need are more complex. The
main reason is that we cannot find a way to split the definitions in pieces, which correspond
to intuitive or already known notions. So, we end up with a relatively long set of conditions
that, taken together, provide the correct constraints, although from such a set of conditions
one has little hope to recover the intuition about the defined notion.

In the specific case we deal with in this section, we further split the definition of equidis-
tance (EqD∗) in 2 cases depending on the dimension of the domain. This is needed for
domains of finite regions, like8γ and8δ. Thus, we provide 2 definitions ofEqD∗: one
for the 1-dimensional domains and one for the others.

Since inT3 the relationP is dispensable (Proposition 10) and inT5 both C and P
are definable fromCloser (Proposition 11 and the definition (DP) of Proposition 1), the
following turns out to be an explicit definition ofConj in terms ofCloser:

Conj5(x, y, x′, y′) =def ∃a,b,a′,b′(SR(a) ∧ SR(b) ∧ SR(a′) ∧ SR(b′) ∧
C(a, x) ∧ C(b, y) ∧ C(a′, x′) ∧ C(b′, y′) ∧ EqD∗(a, b, a′, b′) ∧
∀pa, pb((P(pa, a) ∧ P(pb, b) ∧ EqD∗(pa, pb, a, b))→ (C(pa, x) ∧ C(pb, y)) ∧
∀p′a, p′b((P(p′a, a′) ∧ P(p′b, b′) ∧ EqD∗(p′a, p′b, a′,b′))→ (C(p′a, x′) ∧ C(p′b, y′)),

where:

SR, given by (DSR6) in Definitions inT6 section, is defined usingC andP only;

FD5 is defined in terms ofCloser by (DFD5) in Dispensable Primitives section;

Eq(z, x, y) =def ¬Closer(z, x, y) ∧ ¬Closer(z,y,x); (z is equidistant fromx andy)

andEqD∗ has different definitions in different domains. Then, in8α−β for R1 and in8α−δ

for Rn>1, we take

(a) EqD∗(x, y, x′, y′) =def FD5(x) ∧ FD5(y) ∧ FD5(x′) ∧ FD5(y′) ∧
∃z,z′(Eq(x, y, z) ∧ Eq(x′, y′, z′) ∧ Eq(z, x, z′) ∧ Eq(z′, x′, z))

(x is as close toy asx′ is to y′).

In 8γ−δ for R1, we take

(b) EqD∗(x, y, x′, y′) =def (C(x, y) ∧ C(x′, y′)) ∨ ∃z,z′(EC(z, x) ∧ EC(z, y)
∧ EC(z′, x′) ∧
EC(z′, y′) ∧ CG∗(z, z′)),

where
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CGs(x, y) =def FD5(x) ∧ FD5(y) ∧ ¬C(x, y) ∧ ∃z1,z2,z3(EC(z2, x) ∧ EC(z2, y) ∧
EC(z1, x) ∧ ¬ C(z1, z2) ∧ EC(z3, y) ∧ ¬ C(z3, z2) ∧ Eq(z2, z1, z3));
CG∗(x, y) =def FD5(x) ∧ FD5(y) ∧

(x = y ∨
(PO(x, y) ∧ ∃z1,z2(DIF(z1, x, y) ∧ DIF(z2, y, x) ∧ CGs(z1, z2))) ∨
(EC(x, y) ∧ ¬∃z((PP(z, x) ∧ CGs(z, y)) ∨ (PP(z, y) ∧ CGs(z, x)))) ∨
(¬C(x, y) ∧ CGs(x, y))).21

Lemma 4. T3 is a8α−δ-subtheory ofT5.

Proof. We need to prove that [[Conj5(x, y, x′, y′)]]α−δ = [[Conj(x, y, x′, y′)]]. See Ap-
pendix C.3. �

5.3.5. From T3 to T1. Recall from Dispensable Primitives section thatC∗3(x,y) is
defined usingConj via (DC3∗), i.e.,

(DC3∗) C∗3(x,y) =def ∀z(Conj(z, z, x, y)).

P (and therefore alsoSUM) is definable usingC∗3 (see Proposition 10) and
[[C3(x,y)]]α−δ = [[C(x,y)]] (see Appendix C.4). Therefore, we can rely on several def-
initions introduced in Proposition 1 (e.g.,SC and TPP) and on the definition ofSR
introduced in Proposition 8.

Using these relations, we can give an explicit definition of sphere in terms ofConj:

S3(x) =def FD3(x) ∧ SR(x) ∧ ∀a(LEDiam3(a, x)→
∃b(LEDiam3(b, a) ∧ P(b, x) ∧ ∀c,d(EC(c, x) ∧ EC(d, x))→ (Conj(b, c, b, d))),

where
SC∗3(x) =def ∀y, z(SUM(x, y, z)→ C∗3(y, z));

(x is w-weakly connected)
FD3(x) =def ∃x′, y, z(SC∗3(x′) ∧ P(x, x′) ∧ ¬Conj(x′, x′, y, z));

(x has finite diameter)
C3(x, y) =def ∃z, w(FD3(z) ∧ FD3(w) ∧ P(z, x) ∧ P(w, y) ∧ C∗3(z, w))
LEDiam3(x,y) =def SR(x) ∧ SR(y) ∧ ∀a,b((P(a,x) ∧ P(b,x)) → ∃a′,b′(P(a′,y) ∧
P(b′,y) ∧ Conj(a,b,a′,b′)))

(the diameter ofx is less than or equal to the diameter ofy, andx and
y are connected)

Lemma 5. T1 is a8α−δ-subtheory ofT3.

Proof. We need to prove that [[S3(x)]]α−δ = [[S(x)]]. See Appendix C.4. �

5.3.6. From T1 to T6. By Proposition 2, inT1, (DC1) definesC for all the structures.
Therefore, it is sufficient to provide an explicit definition ofConvH in terms ofP andS. We
use the additional relationBTW, which was introduced by Tarski (1956a). As done before,
we report only the interpretation. A full description and the related proof of correctness
can be found in Tarski (1956a).

21 In this definition, some conditions are redundant like¬C(x, y). We include them in the attempt
to improve the readability of the formula.
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[[BTW(x1, x2, x3)]]α−δ = ∃c1,c2,c3,r1,r2,r3(Btw(c1, c2, c3) ∧ X1 = ball(c1, r1) ∧ X2 =
ball(c2, r2) ∧ X3 = ball(c3, r3)).

Using the above BTW, we can define

ConvH1(x, y) =def Conv(x) ∧ P(y, x) ∧ ¬∃z(Conv(z) ∧ P(y, z) ∧ PP(z, x)),

where
Conv(x) =def ∀s1,s2,s3((P(s1, x) ∧ P(s2, x) ∧ BTW(s3, s1, s2))→ O(s3, x)).

Lemma 6. T6 is a8α−δ-subtheory ofT1.

Proof. [[ConvH1(x, y)]]α−δ = [[ConvH(x, y)]]. See Appendix C.5. �

5.3.7. The main theorem.Now, we can state the main result of this paper:

Main theorem

(a) T1–T5 are8α−θ -equivalent;
(b) T6 is a8α−θ -subtheory ofT1–T5;
(c) T1–T4 are conceptually equivalent.

Proof.

(a) For8α−δ, the thesis follows from Lemmas 1–5. For the structures8ε−θ , it follows
from our argument in Environment Structures section together with the results of
Lemmas 1–5.

(b) From Lemma 6 and (a).
(c) From (a) and Definition 4. �

Note that we do not put constraints on the dimension of the space. Indeed, the result
is valid in Rn for any positiven. On the other hand, the result relies on the properties
of the considered domains, and it might be hard, if possible at all, to extend it to other
domains. For example, it is known thatP cannot be defined fromC using the definition
(DP) in Verifying the Given Explicit Definitions section when dealing with atomic theories
(Masolo & Vieu, 1999; Randell & Cohn, 1992). A similar result holds betweenC andSR
as given inT2.

6. Final comments. As we have pointed out in the introduction, a major motivation
for this comparison of mereogeometries is the need of evaluating the strength of the mere-
ogeometrical systems in the literature. It is known from the work of Tarski that system
T1 can be used to capture the full system of Euclidean geometry by defining, in second-
order logic, points to be collections of concentric spheres. This result suggests that theory
T1 is perhaps the strongest system we can look for while remaining within the realm of
(region-based) geometry. The most relevant systems in the literature that we have analyzed
are formally equivalent toT1 in the sense of Conceptual Comparison section. We take this
fact as evidence that all these theories capture the ‘same’ notion of (mereo)geometry and
that the strength of other systems should be measured with respect to these.

Definition 6. A full mereogeometryis a theory that is conceptually equivalent toT1.

Here is an immediate consequence of the main theorem

Corollary 1. T1–T4 are full mereogeometries.
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Our comparison does not establish the exact relationship between a full mereogeometry
and theoryT6. It has been argued in Cohn (1995) that the predicatesC andConvH do
not suffice to obtain what we call here a full mereogeometry. Furthermore, the primitive
ConvH, at least when interpreted in Rn, seems to be naturally related to a (restricted)
application of the Btw relation (see Basic Notions in Rn section), that is, to a relation
that alone is too weak to capture Euclidean geometry (Tarski, 1956b). These observations
make us to believe thatT6 cannot be as strong asT1. This is consistent with the results in
Davis (2006) and Daviset al. (1999) and matches the conjecture ‘Mereology + Convexity
= Affine Geometry’ in Pratt-Hartmann (1999). However, we have no direct proof of this
and leave the issue as an open question.

Conjecture. T6 is not a full mereogeometry.

We think that the conceptual analysis of mereogeometries presented in this work, even
with the limits discussed in Environment Structures section, puts order on the relationship
among important theories in the literature. In particular, the main theorem states thatin the
given environment structures, the theoriesT1–T5 have the same expressive power. This
means that, leaving aside computational issues, there is no real difference among these
theories and that, for applicative concerns, the choice of which system to adopt can be
safely based on nonlogical issues like, for instance, cognitive and modeling adequacy.

We remark here once more why our analysis is not conclusive about the classification
of theoryT5 as a full mereogeometry. We have seen that this theory is formally equivalent
to T1–T4 in the frameworks we considered. Nonetheless, our analysis also considers
nonformal aspects among which there is the natural domain of interpretation for the theory.
TheoryT5 is introduced with a natural domain that we have not considered, and we have
no proof that this theory is equivalent to the others in an environment with such a domain.
Thus, as of now, we cannot claim thatT5 itself is a full mereogeometry. What we can
say is that if someone wants to use the formal systemT5 within one of the domains we
considered, call this theoryT5′, then from our result it follows that theoryT5′ is a full
mereogeometry to all effects.

It is important to note that the definitions we have studied in this paper are all stated in a
first-order language. Therefore, they can be applied to furnish explicit definitions between
(fragments of) the theories. As we have seen, in some cases, these definitions are quite
complex. The complexity may increase even further if we look for a direct connection
between those theories that we did not link explicitly. For example, the definition of the
primitives of T1 in terms of the primitives ofT5 is given indirectly: in the first step, we
define the primitives ofT3 in T5, and then, we use these to define those ofT1. A complete
analysis of these definitions focusing on the complexity of the formulas could highlight
important aspects from both the conceptual and the applicative points of view.

Finally, sinceT1 is semantically complete with respect to its natural model with domain
Dα, our explicit definitions in the subsections FromT1 to T2, FromT2 to T4, FromT4
to T5, FromT5 to T3, and FromT3 to T1 provide a simple way to obtain a semantically
complete axiomatization of all the theoriesT2–T5 in the domainDα. This result is partic-
ularly relevant since, as we have seen, many systems are presented in the literature with a
partial axiomatization only.

7. Acknowledgments. We thank Carola Eschenbach, Nicola Guarino, and Laure Vieu
for their comments. This work has been partially funded by the Provincia Autonoma di
Trento through the projects MOSTRO and ‘Logical instruments for ontology analysis’.
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8. Appendix A.

8.1. Basic topological and geometrical lemmas.

Lemma L.1. Given a regular set X inRn, then Conx(X)→ WConx(X)→WWConx(X),
while none of the converse implications hold in general. Furthermore, (WWConx(X)∧
diam(X) < +∞)→WConx(X).

Proof. For X empty, there is nothing to prove. Otherwise, the first claim holds from the
definitions sinceA ˚∩ B ˚ 6= Ø implies [A] ∩ [B] 6= Ø and the latter implies dist(A, B) = 0.

WConx(X)→ Conx(X) fails. For a counterexample in R2, takeX = A∪ B, whereA =
{(x, −y)|y > 0, x > 0} andB = {(x, y)|y > 0, x > 0}. WWConx(X)→WConx(X) fails
as well. For a counterexample in R2, takeX = A ∪ B, whereA = {(x, y)|y > 1/x > 0}
andB = {(x, y) |x > 0, y < 0}.

Finally, let WWConx(X) with diam(X) < +∞. Fix any pairA, B satisfying the defini-
tion for WWConx(X) and consider a sequence (ai ) in A and a sequence (bi ) in B such that
lim i→∞ dist(ai , bi ) = 0 (such sequences exist since dist(A, B) = 0). Since diam(X) < +∞,
there exista,b ∈Rn and subsequences (aj ) and (bj ) of (ai ) and (bi ), respectively, such that
a = lim j→∞ aj andb = lim j→∞ bj . Clearly,a ∈ [ A] andb ∈ [B], and from dist(a, b) =
lim j→∞ dist(aj , bj ) = 0, we concludea = b, that is, [A] ∩ [B] 6= Ø �

Lemmas L.2–L.6.Let X and Y be arbitrary sets in a topological space, then:
L.2 X◦ ⊆ X ⊆ [X].
L.3 [X ∪ Y] = [ X] ∪ [Y] and[X ∩ Y] ⊆ [X] ∩ [Y].
L.4 (X ∩ Y)◦ = X◦ ∩ Y◦ and X◦∪ Y◦ ⊆ (X ∪ Y)◦.
L.5 If X ⊆ Y, then X◦ ⊆ Y◦ and[X] ⊆ [Y].
L.6 If [ X] ∩ [Y] = Ø, then(X ∪ Y)◦ = X◦ ∪ Y◦.

Proof. Lemmas L.2–L.5 are basic topological results (see for instance Munkres, 2000).

Regarding L.6: from L.4, we knowX◦∪Y◦ ⊆ (X ∪ Y)◦; we need to showX◦∪Y◦ ⊇ (X ∪
Y)◦. If X or Y is empty, there is nothing to prove. Assume that they are both nonempty
andx ∈ (X ∪ Y)◦, thenx ∈ X ∪ Y. Supposex ∈ X. If x /∈ X◦, thenx ∈ X◦ ∪ Y◦, and
we are done. Ifx /∈ X◦, i.e., x ∈ ∂(X), thenx /∈ [Y] since [X] ∩ [Y] = Ø. Thus, there
exists a neighborhood ofx, say I (x), such thatI (x) ∩ Y = Ø. Fromx ∈ ∂(X) andx /∈
[Y], I (x) ∩ (X ∪Y) 6= Ø andI (x)∩ ∼ (X ∪Y) 6= Ø. This happens for any neighborhood
of x contained inI (x), thusx ∈ ∂(X ∪ Y), contradicting the hypothesisx ∈ (X ∪ Y)◦.
Finally, we havex /∈ ∂(X). Thus,x ∈ X impliesx ∈ X◦. One can prove analogously that
x ∈ Y impliesx ∈ Y◦. From these results,x ∈ (X ∪ Y)◦ impliesx ∈ X◦ ∪ Y◦, and we are
done. �

Lemma L.7. Let X and Y be open regular sets in a topological space T , then X∩ Y ,
[X ∪ Y]◦, and∼ [X] are open regular sets. Let X and Y be closed regular sets in a
topological space T , then[(X ∩ Y)◦], X ∪ Y , and∼ (X◦) are closed regular sets.

Proof. Directly from the fact that regular open sets form a Boolean algebra with
1 = T, 0 = Ø, X ∙ Y = X ∩ Y, X + Y = [X ∪ Y]◦, and−X =∼ [X] (Biacino &
Gerla, 1991). Analogously for the regular closed sets. �

Lemma L.8. Given 2 nonempty regular sets X and Y inRn:
dist(X◦, Y◦) = dist(X, Y) = dist([X], [Y]).
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Proof. From L.2 and from the definition of distance, we have dist([X], [Y]) ≤ dist(X,
Y) ≤ dist(X◦, Y◦). For the other direction, suppose (by contradiction) that dist([X], [Y]) <
dist(X◦, Y◦), i.e.,i = inf{dist(x, y)| x ∈ [X] ∧ y ∈ [Y]}< inf{dist(x, y)|x ∈ X◦ ∧ y ∈ Y◦}
= i ′. Then, there existsd > 0 such thati ′ = i + d. From the definition of distance between
sets, for allε > 0 there existx ∈ [X] andy ∈ [Y] such that dist(x, y) < i + ε, fix ε = d/3,
then dist(x, y) < i ′. Thus, ball(x, ε) ∩ X◦ = Ø or ball(y,ε) ∩ Y◦ = Ø (otherwise, we
could find pointsx′ ∈ X◦ and y′ ∈ Y◦ with dist(x′, y′) < i′). From this result,x /∈ [X]
or y /∈ [Y], a contradiction. Then, dist([X], [Y]) ≥ dist(X◦, Y◦), from which the thesis
follows. �

Lemma L.9. Given a nonempty regular set X in Rn:
diam(X◦) = diam(X) = diam([X]).

Proof. From L.2 and from the definition of diameter, diam(X◦) ≤ diam(X) ≤ diam([X]).
For the other direction, suppose (by contradiction) that diam([X]) > diam(X◦), i.e., s =
sup{dist(x, y)|x,y ∈ [X]} > sup{dist(x, y)|x,y ∈ X◦} = s′. Then, there existsd > 0 such
thats− d = s′. Since for allε > 0, there existx,y ∈ [X] such that dist(x, y) > s− ε, fix
ε = d/3, then dist(x, y) > s′ and so ball(x, ε)∩ X◦ = Ø or ball(y, ε)∩ X◦ = Ø. From this
result,x /∈ [X] or y /∈ [X], a contradiction. Thus, diam([X]) ≤ diam(X◦) from which the
thesis follows. �

Lemma L.10. Given 2 nonempty regular sets X and Y inRn:
diam(X ∪ Y) ≤ dist(X, Y)+ diam(X)+ diam(Y).

Proof. This result follows easily from the triangular inequality. �

Lemma L.11. Given 2 open regular sets X and Y in Rn. If X and Y have finite diameter,
then X∩ Y and[X ∪ Y]◦ are open regular sets with finite diameters.

Proof. From L.7,X ∩Y and [X ∪Y]◦ are open regular sets. In the first case, the condition
on the diameter follows from (X ∩ Y) ⊆ X while in the second case from L.8, L.9, and
L.10. �

Lemma L.12. Given 2 nonempty regular sets X,Y⊆ Rn with at least 1 of finite diameter:
∃x,y(x ∈ ∂(X) ∧ y ∈ ∂(Y)∧ dist(x, y) = dist(X, Y)).

Proof. First, we show∃x,y(x ∈ [X] ∧ y ∈ [Y] ∧ dist(x, y) = dist(X, Y)).
Assume that bothX andY have finite diameter. By definition of dist(X, Y), one can find

a sequence (ai ) in X and a sequence (bi ) in Y such that limi→∞ dist(ai , bi ) = dist(X, Y).
Since diam(X), diam(Y) < +∞, there exista, b ∈ Rn and subsequences (aj ) and (bj ) of
(ai ) and (bi ), respectively, such thata = lim j→∞aj andb = lim j→∞bj . Clearly,a ∈ [X],
b ∈ [Y], and dist(a, b) = lim j→∞ dist(aj ,bj ) = dist(X, Y).

If diam(Y) = +∞, we proceed as before to isolatea ∈ [X], since [X] is compact. Then,
we consider sequence (bi ) in Y such that limi→∞ dist(a, bi ) = dist(X, Y). For any positive
r , (bi ) ∩ {y ∈ [Y] | dist(y, a) < dist(X, Y) + r } contains an infinite subsequence of (bi ),
call it (ci ). Then, there existsc = lim j→∞cj for some subsequence (cj ) of (ci ). Clearly,
c ∈ [Y] and dist(a,c) = dist(X, Y).

Now, assume that we isolatedx andy satisfying∃x,y(x ∈ [X] ∧ y ∈ [Y] ∧ dist(x, y) =
dist(X, Y)). It is easy to see that ifx ∈ X◦, in Rn one can findx′ ∈ [X] such that dist(x′,
y) < dist(x, y). Thus,x ∈ ∂(X). Similarly for y. �
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Lemma L.13. Given a nonempty regular set X inRn :
WConx(X)→ ∀d(0≤ d < diam(X)→ ∃x,y(x,y ∈ X ∧ dist(x, y) = d)).
If X has finite diameter:
∃x,y(x,y ∈ [X] ∧ dist(x, y) = diam(X)).

Proof. The result is trivial ford = 0. Ford > 0, let X be open (forX closed, it follows
from this). Fixd ∈ (0, diam(X)) and fixx,z ∈ X such that dist(x, z) = d′ with d < d′ <
diam(X) (these points exist from the definition of diam). LetA = {y ∈ X| dist(x, y) ≤ d}
and B = {y ∈ X | dist(x, y) > d}. Clearly, X = A ∪ B and bothA and B are nonempty
sincex ∈ A and z ∈ B. If there existsu ∈ A such that dist(x, u) = d, we are done.
Otherwise, we have thatA is open in Rn sinceA is open inX andX is open in Rn. Also,
note thatB is open since, from the definition,B is open inX. From WConx(X), there
existsv ∈ [ A] ∩ [B]. Thus, dist(x, v) = d.

Let Ox = ball(x, δ), for someδ, such that [Ox] ⊂ X and fix y ∈ B such that dist(y, v)
< δ/2 (this point exists sincev ∈ ∂(B)). Fix the line throughy andx, call it L. Let {x1,
x2} = ∂(L ∩ [Ox]) with d1 = dist(y, x1) < d2 = dist(y, x2). Then,d1 < d < d2. Since [y,
x2] ⊂ L is compact, the function dist on [y, x2] × {y} assumes all values in [0,d2]. Since
dist, on [y, x1] × {y}, assumes all values in [0,d1] and it is strictly increasing, there exists
x∗ ∈ [x1, x2] ⊂ (L ∩ [Ox]) such that dist(x∗, y) = d. Sincex∗, y ∈ X, we are done.

For the second claim. By definition of diam(X), one can find 2 sequences (ai ) and (bi )
in X such that limi→∞ dist(ai , bi ) = diam(X). Since diam(X) < +∞, there exista,b ∈
Rn and subsequences (aj ) and (bj ) of (ai ) and (bi ), respectively, such thata = lim j→∞aj

andb = lim j→∞bj . Clearly,a ∈ [X], b ∈ [X], and dist(a, b) = lim j→∞ dist(aj , bj ) =
diam(X). �

Lemma L.14. Given 2 nonempty regular sets X, Y⊆ Rn with finite diameter:
(WConx(X) ∧WConx(Y) ∧ dist(X, Y) = 0)→WConx(X ∪ Y).

Proof. If not, then there existA◦ and B◦ nonempty such that (X ∪ Y)◦ = A◦ ∪ B◦ and
[ A] ∩ [B] = Ø. If A◦ ∩ X◦ 6= Ø andB◦ ∩ X◦ 6= Ø, thenA◦ ∩ X◦ andB◦ ∩ X◦ contradict
WConx(X). Thus, eitherX◦ ⊆ A◦ or X◦ ⊆ B◦. Similarly for Y. Thus, we haveX◦ = A◦

or X◦ = B◦ andY◦ = A◦ or Y◦ = B◦.
Among the 2 cases (1)X◦ = Y◦ = A◦ (or X◦ = Y◦ = B◦) and (2)X◦ = A◦ andY◦ =

B◦ (or vice versa), the first contradicts the assumption that bothA◦ andB◦ are nonempty.
For case (2), assumeX◦ = A◦ andY◦ = B◦ (the other option is similar). From dist(X, Y)
= 0 and L.8, we have dist(A, B) = 0. From L.1, for any regular setZ, if WConx(Z), then
WWConx(Z). In particular, WWConx(X) and WWConx(Y). Our argument above applies
to all possible pairs of nonempty setsA◦ andB◦ such that (X∪Y)◦ = A◦∪B◦. This proves
that WWConx(X ∪ Y) holds. Since L.10 implies that diam(X ∪ Y) is finite, it suffices to
recall L.1 to conclude WConx(X ∪ Y). �

Lemma L.15. Given 2 nonempty regular sets X, Y⊆ Rn with finite diameter:22

[X] ∩ [Y] 6= Ø↔ dist(X, Y) = 0.

Proof. From L.12 and the definition of dist. �

22 Note that this result provides an indirect proof of (WWConx(X)∧ diam(X) < +∞) →
WConx(X).
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Lemma L.16. Given an open regular set X inRn, Conv(X)→Conx(X).

Proof. If X is empty, there is nothing to prove. IfX is nonempty, we proceed by contradic-
tion. Let X◦ = A◦ ∪ B◦ with A◦, B◦ both nonempty andA∩ B = Ø. SinceX is convex,
for anya ∈ A andb ∈ B the segment (a, b) should be contained inA∪ B. But (a, b) ∩ A
and (a, b) ∩ B are open nonoverlapping segments, and an open segment cannot be split
into 2 open nonoverlapping subsegments. This implies that (a, b) 6⊂ X and contradicts the
assumptionConv(X). �

Lemma L.17. Given a regular connected (Conx) region X inRn and a point p∈ [X], there
exists Y⊆ X such that Conx(Y), diam(Y) < +∞, and p∈ [Y].

Proof. If X is with finite diameter, there is nothing to show. Let diam(X) = +∞ andX open
(if X is closed, considerX◦). If p ∈ X, there existsCr = ball(p, r ) ⊆
X for somer , and we are done. Ifp ∈ ∂(X), letCr = ball(p, r ) and considerZr = Cr ∩ X.
We show that, for somer , Zr is connected. By contradiction, let us assume that, for allr , Zr

is not connected. SinceZ1 is open, given a pointq ∈ Z1, it is possible to find a (connected)
neighborhoodQ of q contained inZ1. Fix q and letA1 be the maximal connected part of
Z1 that containsq. Build 2 sequences of regionsA1, A2, . . . andB1, B2, . . . , such that
An is the maximal connected open region part ofZn = ball(p, n), An ⊆ An+1, andBn =
Zn − An. SinceZn is not connected by hypothesis andAn is a maximal connected region,
we have thatAn andBn are open,Zn = An ∪ Bn, andAn ∩ Bn = Ø. Since forn→ +∞,
Zn = X, we have thatX = (∪An) ∪ (∪Bn). Since, for eachn, An and Bn are open and
An ∩ Bn = Ø, we get (∪An)∩ (∪Bn) = Ø, i.e.,X is not connected, a contradiction. �

Lemma L.18. Given a regular set X inRn:
WWConx(X)→ ∀d(0≤ d < diam(X)→ ∃x,y(x,y ∈ X ∧ dist(x, y) = d)).

Proof. If WConx(X), then this claim reduces to L.13. IfX is finite, then it follows from
L.1 and L.13. Now, assume thatX is infinite, WWConx(X) and not WConx(X). We prove
something even stronger, that is, we show that each regular setX with infinite diameter
contains a regular setY ⊆ X whose diameter is also infinite and such that WConx(Y).
From this, applying L.13 toY, we conclude.

Fix a rational23 y0 ∈ X◦ and letZ0 = ∪C, whereC ⊆ X, WConx(C) and y0 ∈ C◦.
First, sincey0 is internal, there existsD ⊆ X open ball centered iny0, and from L.16,
WConx(D), thus Z0 6= Ø. We show that WConx(Z0). Suppose WConx(Z0) fails, then
there existA◦ and B◦ nonempty such thatZ◦0 = A◦ ∪ B◦ and [A] ∩ [B] = Ø. Since
WConx(C) andC◦ ⊆ Z◦0 = A◦ ∪ B◦, for all C in ∪C, we have eitherA◦ ∩ C◦ = Ø or
B◦ ∩C◦ = Ø. Then,C◦ ⊆ A◦ or C◦ ⊆ B◦. However,y0 ∈ C for all suchC, thus either for
all C, C◦ ⊆ A◦ or for all C, C◦ ⊆ B◦. That is, eitherA◦ = Ø or B◦ = Ø, a contradiction.
This proves WConx(Z0). Note thatZ0 is closed inX. Indeed, ifx ∈ X ∩ ∂(Z0), then
WConx(Z◦0 ∪ {x}) holds since the only hope to find a counterexample is by splitting (Z◦0 ∪
{x})◦ into Z◦0 and{x}◦, but the latter set is empty. Thus,Z◦0 ∪ {x} itself is one of theCs
considered in the construction ofZ0. This impliesx ∈ Z0 and soZ0 is closed inX.

If diam(Z0) = +∞, we are done. Otherwise, considerX − Z0 and lety1 be a rational
in (X − Z0)

◦. We repeat the construction above to findZ1 maximal in X − Z0 such that
WConx(Z1). If diam(Z1) = +∞, we are done. Otherwise, considerX − (Z0 ∪ Z1) and let

23 A point in Rn is rational if all its coordinates are rational numbers.
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y2 be a rational point in set (X − (Z0 ∪ Z1))
◦. Again, we repeat the construction above to

find Z2 maximal inX − (Z0 ∪ Z1) such that WConx(Z2). We proceed in this way till we
find a setZi with WConx(Zi ) and diam(Zi ) = +∞ or till we cover all of X◦. In the first
case, we are done because of L.13. We show that the latter case cannot happen. Indeed,
in the latter case we obtain a sequence of countably many regular setsZi (coveringX◦

since the rationals are dense in Rn) such that, for alli , WConx(Zi ) and diam(Zi ) < +∞.
Fix Z0. If dist(Z0, Zi ) 6= 0 for all Zi 6= Z0, it suffices to putZ0 = A and∪i >0Zi = B
to find a contradiction to WWConx(X). Let Zi 1 be such that dist(Z0, Zi 1) = 0 and let
Z0 ∪ Zi 1 = U1. By L.14, WConx(U1). As before, there existsZi 2 such that dist(U1, Zi 2)
= 0. LetU1 ∪ Zi 2 = U2. By L.14, WConx(U2). We proceed in this way constructing sets
Ur = Ur−1 ∪ Zir . Let U∞ = ∪Ui . First, note that if there existsi such thatZi 6⊂ U∞,
then we can reapply the argument above to get a contradiction to WWConx(X). Thus,
U∞ = ∪Zi . By construction, we have WConx(U∞). However,U ◦∞ = ∪Z◦i = X◦, and
since eachZi is closed inX, we actually haveU∞ = ∪Zi = X. This contradicts the
assumption that WConx(X) fails. Thus, either that assumption is wrong (i.e., WConx(X)
holds) or for somei , WConx(Zi ) and diam(Zi ) = +∞, which is what we needed to
prove. �

Lemma L.19. Given a set X inRn, if Y is the smallest convex set containing X (the convex
hull of X), then diam(X) =diam(Y).

Proof. If X is empty, there is nothing to prove. IfX is nonempty, we proceed by con-
tradiction. SinceX ⊆ Y, we need to consider only case: diam(X) < diam(Y). From this
assumption, there existx ∈ Y − X and y ∈ Y such that dist(x,y) > diam(X). By the
definition of Y, sincex ∈ Y − X, there exista,b ∈ X such thatx is betweena andb.
Consider the ballB of radiusr = dist(x,y) centered aty and the linel througha, x, and
b. Sincex ∈ l , there are only 2 cases to consider:l is tangent toB or l intersectsB. In
the first case, dist(a,y) > r = dist(x,y), contradicting the assumption. In the latter case, by
the so-called Pasch axiom of Euclidean geometry, at least one betweena andb has to lie
outsideC. Thus, we reached a contradiction again. �

9. Appendix B.
9.1. Proof of Proposition 1. (DP) P∗(x,y) =def ∀w(C(x, w) → C(y, w)) and

[[P∗(x,y)]]α−δ = X ⊆ Y.

Proof. We have to prove that in all the domains,
X ⊆ Y⇔ ∀W([W] ∩ [X] 6= Ø→ [W] ∩ [Y] 6= Ø).

(⇒) Trivial.
(⇐) (By contradiction) Assume¬(X ⊆ Y). SinceX andY are both open, then¬(X ⊆

[Y]) by L.2 and L.5. It suffices to fix an open ballW contained inX− [Y]. Such aW exists
becauseX − [Y] is open and nonempty. �

(DPP)PP(x,y) =def P(x, y) ∧ ¬P(y, x) and [[PP(x,y)]]α−δ = X ⊂ Y.

Proof. This follows from the obvious equivalence: (X ⊆ Y ∧ ¬(Y ⊆ X))⇐⇒ X ⊂ Y.�

(DO) O(x,y) =def ∃z(P(z, x) ∧ P(z, y)) and [[O(x,y)]]α−δ = X ∩ Y 6= Ø.
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Proof. We have to prove that in all the domains:
∃Z(Z ⊆ X ∧ Z ⊆ Y)⇔ X ∩ Y 6= Ø.
(⇒) From the hypothesisZ ⊆ (X ∩ Y). SinceZ is nonempty in all domains, one has

X ∩ Y 6= Ø.
(⇐) It suffices to fixZ open ball contained inA = X ∩ Y. (Such a ball exists because,

by L.7, A is an open set of Rn.) �

(DPO) PO(x,y) =def O(x, y) ∧ ¬P(x, y) ∧ ¬ P(y, x) and
[[PO(x,y)]]α−δ = X ∩ Y 6= Ø∧ ¬(X ⊆ Y) ∧ ¬(Y ⊆ X).

Proof. Trivial. �

(D+) SUM(z, x, y) =def ∀w(O(w, z) ↔ (O(w, x) ∨ O(w, y))) and [[SUM(z, x, y)]]α−δ

= (Z = [X ∪ Y]◦).

Proof. We have to prove that in all the domains,

∀W(W ∩ Z 6= Ø↔ (W ∩ X 6= Ø∨W ∩ Y 6= Ø))⇔ Z = [X ∪Y]◦.

(⇒) Since for all nonemptyW ⊆ X we haveW ∩ X 6= Ø, thenW ∩ Z 6= Ø. Thus,
X ⊆ Z. Analogously, we concludeY ⊆ Z. Thus,X ∪ Y ⊆ Z. But Z is a regular open
region, then [X ∪ Y]◦ ⊆ Z. If W ∩ Z = Ø, thenW ∩ X = Ø andW ∩ Y = Ø. Thus,Z is
contained in the smallest regular open region that contains bothX andY, i.e., [X ∪ Y]◦.

(⇐) Substitute [X ∪ Y]◦ for Z in the left-hand side. Then,
(→) From L.2, W∩ [X ∪ Y]◦ 6= Ø implies thatW∩ [X ∪ Y] 6= Ø. From L.3,

[X∪ Y] =X] ∪ [Y] and thenW∩ [X] 6= Ø or W∩ [Y] 6= Ø. SinceW, X, Y are open
and regular, we haveW ∩ X 6= Ø or W ∩ Y 6= Ø.

(←) X ∪ Y is open and then (X ∪ Y) ⊆ [X ∪ Y]◦ (from the definition of the interior
operator). Since (W∩X 6= Ø∨W∩Y 6= Ø)↔ W∩ (X∪Y) 6= Ø and (X∪Y) ⊆ [X∪Y]◦,
thenW∩ [X∪ Y]◦ 6= Ø. �

(D−) DIF(z, x, y) =def ∀w(P(w, z)↔ (P(w, x) ∧ ¬ O(w, y))) and [[DIF(z, x, y)]]α−δ =
(Z = X− [Y]);

Proof. We have to prove that in all the domains,

∀W(W ⊆ Z ↔ (W ⊆ X ∧W∩ Y = Ø))⇔ Z = X− [Y].

(⇒) Let W = X− [Y]. Then,W ⊆ X andW ∩ Y = Ø. Thus,X− [Y] ⊆ Z. For the
other inclusion, letW ∩ (X− [Y])= Ø. Then,W ⊆ X or W ∩ Y = Ø fails. Thus,W ⊆ Z
fails as well. Since this happens for allW satisfying this property, we concludeZ ⊆ X−
[Y].

(⇐) SubstituteX− [Y] for Z in the left-hand side. SinceW, X, Y are all open and
regular,W ∩ Y = Ø iff W ∩ [Y] = Ø. The equivalence follows. �

(DIP) IP(x,y) =def P(x, y) ∧ ∀z(C(z, x)→ O(z, y)) and [[IP(x,y)]]α−δ= [X] ⊆ Y.

Proof. We have to prove that in all the domains,
(X ⊆ Y ∧ ∀Z([Z] ∩ [X] 6= Ø→ Z ∩ Y 6= Ø))⇐⇒ [X] ⊆ Y.

(⇒) (By contradiction) Suppose¬([X] ⊆ Y). If ¬(X ⊆ Y), we are done. Otherwise,
note thatY 6= Rn. From L.7,A =∼[Y] is a regular nonempty open set. From¬([X] ⊆ Y)
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andX ⊆ Y, there exists a pointx ∈ ∂(X) andx /∈ Y. Sincex /∈ Y, x ∈ [ A]. Fix a positive
numberr and letZ = Ball(x,r )∩ A. Then,Z∩Y = Ø. From L.7,Z is regular open. Also,Z
is nonempty sincex ∈ ∂(X), x /∈ Y, andY is regular. From L.4,x ∈ [Z]. Then,Z∩Y = Ø
and [Z] ∩ [X] 6= Ø, a contradiction.

(⇐) From L.2, [X] ⊆ Y implies X ⊆ Y. Now suppose [Z] ∩ [X] 6= Ø and [X] ⊆ Y,
then we have [Z] ∩ Y 6= Ø, i.e., ∃p(p ∈ [Z] ∧ p ∈ Y). If p ∈ Z, then Z ∩ Y 6=
Ø. If p ∈ ∂(Z), then there exists a neighborhood ofp, say I (p), such thatI (p) ⊆ Y
and I (p) ∩ Z 6= Ø. This means that there exists a pointp′ ∈ I (p) ∩ Z and soZ ∩
Y 6= Ø. �

(DTPP) TPP(x, y) =def PP(x, y) ∧ ∃z(EC(z,x) ∧ EC(z,y)) and [[PP(x,y)]]α−δ = X ⊂
Y∧ ∂(X) ∩ ∂(Y) 6= Ø.

Proof. We have to prove that in all the domains,
X ⊂ Y ∧ ∂(X) ∩ ∂(Y) 6= Ø⇔ X ⊂ Y ∧ ∃Z([Z] ∩ [X] 6= Ø∧ Z ∩ X = Ø ∧ [Z] ∩ [Y]
6= Ø∧ Z ∩ Y = Ø).

(⇒) Let p ∈ {∂(X) ∩ ∂(Y)}. The thesis follows considering an open ballZ such that
p ∈ [Z], andZ ∩ Y = Ø.

(⇐) From the hypothesis, we have that∂(Z) ∩ ∂(X) 6= Ø and∂(Z) ∩ ∂(Y) 6= Ø. From
L.5 andX ⊂ Y, it follows that [X] ⊂ [Y], therefore∂(X) ∩ ∂(Y) 6= Ø. �

(DSC)SC(x) =def ∀y,z(SUM(x, y, z)→ C(y, z)) and [[SC(x)]]α−δ = WConx(X).

Proof. From the definition of WConx and considering the given domains, WConx(X)
stands for∀Y,Z(X = Y ∪ Z→ [Y] ∩ [Z] 6= Ø), thus we prove that

∀Y,Z(X = [Y ∪ Z]◦ → [Y] ∩ [Z] 6= Ø)⇔ ∀Y′,Z′(X = Y′ ∪ Z′ → [Y′] ∩ [Z′] 6= Ø).

From the fact thatX is a nonempty open regular set, we haveY′ ∪ Z′ = [Y′ ∪ Z′]◦. The
equivalence follows consideringY = Y′ andZ = Z′. �

(DEC) EC(x, y) =def C(x, y) ∧ ¬O(x,y) and [[EC(x, y)]]α−δ = [X] ∩ [Y] 6= Ø∧ X ∩ Y
= Ø.

Proof. Trivial. �

9.2. Proof of Proposition 2. (DC1) C1(x,y) =def ∃z(S(z) ∧ ∀z′(CNC(z′, z) →
(O(z′, x)∧ O(z′, y)))) and

[[C1(x, y)]]α−δ = [[C(x, y)]] = [ X] ∩ [Y] 6= Ø.

Proof. We have to prove that in all the domains,
[X] ∩ [Y] 6= Ø⇔ ∃Z,c,r (Z = ball(c, r )∧∀Z′,r ′(Z′ = ball(c, r ′)→ (Z′ ∩ X 6=Ø∧ Z′ ∩Y
6= Ø))).

(⇒) It is sufficient to considerc ∈ [X] ∩ [Y] andr > 0.
(⇐) (By contradiction) Suppose [X] ∩ [Y] = Ø andZ = ball(c, r ). If c /∈ ∂(X) ∪ ∂(Y),

then it is sufficient to considerr ′ small enough such thatZ′ = ball(c, r ′) ⊆ X (if c ∈ X) or
Z′ = ball(c, r ′) ⊆ Y (if c ∈ Y) or Z′ = ball(c, r ′) ⊆ Rn− ([X] ∪ [Y]) (if c /∈ [X] ∪ [Y]). If
c ∈ ∂(X) andc /∈ [Y], i.e., dist(c, Y) > 0, it suffices to considerr ′ small enough such that
Z′ = ball(c, r ′) ∩ [Y] = Ø. Analogously forc ∈ ∂(Y), a contradiction. �

(DSR1)SR1(x) =def ∀y,z(SUM(x, y, z)→ ∃s(S(s)∧ O(s, y)∧ O(s, z)∧ P(s, x))) and
[[SR1(x)]]α−δ = [[SR(x)]] = Conx(X).
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Proof. We have to prove that in all the domains,
Conx(X) ⇔ ∀Y,Z(X = [Y ∪ Z]◦ → ∃S,c,r (S = ball(c, r ) ∧ S∩ Y 6= Ø ∧ S∩ Z
6= Ø∧ S⊆ X)).

(⇒) SinceY andZ are regular open, from L.3 and L.4 we haveX = [Y ∪ Z]◦ ⊇ Y ∪ Z.
From the definition of Conx, ifX = [Y ∪ Z]◦ = Y ∪ Z, thenY ∩ Z 6= Ø and, by L.7,Y ∩ Z
is open. Then, there exists a ballS such thatS⊆ Y ∩ Z. If X = [Y ∪ Z]◦ ⊃ Y ∪ Z, then
there existsx such thatx ∈ ∂(Y) ∩ ∂(Z) andx ∈ X. X is open; thus, there exists a ballS
centered atx such thatS⊆ X, S∩ Y 6= Ø, andS∩ Z 6= Ø.

(⇐) (By contradiction) Assume that there existY, Z such thatX = Y∪ Z andY∩ Z =
Ø. SinceX is regular,X = [Y ∪ Z]◦. But Y, Z are open and disjoint; thus, any ballS
intersecting bothY andZ intersects Rn − X also, then¬S⊆ X, a contradiction. �

9.3. Proof of Proposition 3. (DCC1) CCon1(z, x, y) =def ∃z′(CG(z′, z)∧ C1(z′, x)
∧ C1(z′, y)) and

[[CCon1(z, x, y)]]α = ∃r ,r ′,p,q(r ,r ′ ∈ [Z] ∧ p ∈ [X] ∧ q ∈ [Y] ∧ dist(p, q) =
dist(r , r ′)).

Proof. From Proposition 2 and the assumption that [[CG(x, y)]] = Congr(X, Y), we have
to prove that in8α,
∃r ,r ′,p,q(r ,r ′ ∈ [Z] ∧p ∈ [X] ∧q ∈ [Y] ∧ dist(p, q) = dist(r , r ′)) ⇔ ∃Z′(Congr

(Z′, Z)∧ [Z′] ∩ [X] 6= Ø∧ [Z′] ∩ [Y] 6= Ø).
(⇒) It is sufficient to considerZ′ = f (Z), where f is an isometry in Rn with f (r ) = p

and f (r ′) = q.
(⇐) From the fact that the congruence relation preserves distance. �

9.4. Proof of Proposition 4. (DS2)S∗2(x) =def SR(x)∧∀y,z((CG(x, y)∧ PO(x, y)∧
DIF(z, x, y))→ SR(z)) and [[S∗2(x)]]β = [[S(x)]] and [[S∗2(x)]]α,γ,δ 6= [[(x)]].

Proof. A counterexample inDα is given by a region equal to Rn minus a closed ball. This
region satisfies the definition but is not a sphere in Rn. The definition does not work for
Dγ and Dδ because in these domains, a regionz satisfyingDIF(z, x, y) must be already
a connected region. Our direct proof that the definition above is correct inDβ is quite
complicated, and it is not reported here. However, note that [[S∗2(x)]]β = [[S(x)]] follows
indirectly from the results in Linking Via Explicit Definitions section. �

9.5. Proof of Proposition 6. (DC4∗) C4∗(x,y) =def ∀z(CCon(z, x, y)) and
[[C∗4(x,y)]]β,δ = [[C(x,y)]]= [ X] ∩ [Y] 6= and [[C∗4(x,y)]]α,γ 6= [[(x,y)]].

Proof. First, we show that the following equivalence holds in8β and8δ:
[X] ∩ [Y] 6= Ø⇔ ∀Z(dist(X, Y) ≤ diam(Z)).
Since we restrict ourselves to domains with finite regions, we can apply L.15 to get [X]
∩ [Y] 6= Ø iff dist(X, Y) = 0. Note that for allε > 0, there existsZ nonempty such that
diam(Z) < ε, then dist(X, Y) = 0 iff ∀Z (dist(X, Y) ≤ diam(Z)).

In Dα and Dγ , the interpretation [X] ∩ [Y] 6= fails. Consider, for example, regions
X= {(a, b) ∈ R2 |a > 0 andb ≥ 1/a} andY= {(a, b) ∈ R2|b ≤ 0}; it is easy to verify that
all the constraints on the domains are satisfied and that dist(X, Y) = 0 although [X] ∩ [Y]
= Ø. �

9.6. Proof of Proposition 7. (DP4∗) P∗4(x,y) =def ∀z(C∗4(z, x)→ C∗4(z, y)) and
[[P∗4(x,y)]]α−δ = [[P(x,y)]] = X ⊆ Y.
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Proof. First, note that in all the domains, the interpretation of relationC∗4(x,y) as defined
in (DC4∗) is dist(X, Y) = 0. This follows from the proof of B.5 dropping the first step
through L.15. Thus, we have to prove that in all the domains,

X ⊆ Y⇔ ∀Z(dist(Z, X) = 0→ dist(Z, Y) = 0).

(⇒) Trivial.
(⇐) (By contradiction) Suppose¬X ⊆ Y. SinceX andY are both open, there exists a
nonempty regular open setV such thatV ⊂ X andV ∩Y = Ø. Let Z be a nonempty open
ball contained inV such that∂(Z) ∩ ∂(V) = Ø. We have dist(Z, X) = 0 and dist(Z, Y) 6=
0, a contradiction. �

(DP4+) P+4 (x,y) =def ∀z,w(CCon(w, z, x)→ CCon(w, z, y)) and
[[P+4 (x,y)]]α−δ = [[P(x,y)]] = X ⊆ Y.

Proof. It suffices to prove that in all the domains,
X ⊆ Y⇔ ∀Z,W(dist(Z, X) ≤ diam(W)→ dist(Z, Y) ≤ diam(W)).
(⇒) Directly from the definition of distance.
(⇐) (By contradiction) Suppose¬(X ⊆ Y). SinceX andY are both open, there exists a

nonempty finite open ballZ ⊂ X such that dist(Z, Y) > 0, thusZ nontangential toX−Y.
Clearly, dist(Z, X) = 0, and we can always findW such that 0< diam(W) < dist(Z, Y),
a contradiction. �

(DCl4) Closer4(z, x, y) =def ∃a(CCon(a, z, x)∧ ¬ CCon(a,z,y)) and
[[Closer4(z, x, y)]]α−δ = [[Closer(z, x, y)]] = dist(Z, X) < dist(Z, Y).

Proof. It suffices to prove that in all the domains,
dist(Z, X) < dist(Z, Y)⇔ ∃A(dist(X, Z) ≤ diam(A) ∧ ¬dist(Z, Y) ≤ diam(A)).

This follows from the fact that∃A(dist(X, Z) ≤ diam(A)∧ ¬dist(Z, Y) ≤ diam(A)) is
equivalent to∃A(dist(X, Z) ≤ diam(A) <dist(Z, Y)) and that for allε > 0, we can find a
nonempty open ballA such that 0< diam(A) < ε. �

9.7. Proof of Proposition 8. (DP6) P6(x,y) =def ∀z(C(z, x) → C(z, y)) and
[[P6(x,y)]]α−δ = [[C(x,y)]] = X ⊆ Y.

Proof. From the proof of case (DP) in Proposition 1. �

(DCM6) Compl6(y, x) =def ∀z(C(z, y) ↔ ¬ IP(z, x)) and [[Compl6(y, x)]]α−δ =
(Y = (Rn− X)◦).

Proof. Using the results of Proposition 1, we have to prove that in all the domains,
Y = (Rn − X)◦ ⇔ ∀Z([Z] ∩ [Y] 6= Ø↔ ¬([Z] ⊆ X)).
(⇒) If Y = (Rn − X)◦, then [Z] ∩ [Y] 6= Ø↔ [Z] ∩ (Rn− X) 6= Ø↔ ¬[Z] ⊆ X.
(⇐) (By contradiction) AssumeY 6= (Rn − X)◦. We have to prove that (i)∃Z([Z] ∩

[Y] 6= Ø∧ [Z] ⊆ X) or (ii) ∃Z([Z] ∩ [Y] = Ø ∧ ¬([Z] ⊆ X)). If X ∩ Y 6= Ø, to verify
(i) it is sufficient to consider [Z] ⊆ X ∩Y (Z exists sinceX andY are regular open). If
X∩Y = Ø, thenY ⊂ (Rn−X)◦ and since both these sets are open, there exists a nonempty
open ballZ such thatZ ⊂ (Rn− X)◦ andZ ∩ Y = Ø. Thus, takingZ small enough, we
have [Z] ⊂ (Rn − X)◦ − Y. Then, condition (ii) is verified. �

(DSR6)SR6(x) =def ∀y,z,w((SUM(x,y,z) ∧ Compl6(w, x))→ ∃v(SC(v) ∧ O(v, y) ∧
O(v, z) ∧¬ C(v, w))).
[[SR6(x)]]α−δ = [[SR(x)]] = Conx(X).
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Proof. (Recall definition (DSC) from Proposition 1.) We have to prove that in all the
domains,

Conx(X)⇔ ∀Y,Z,W (X = [Y ∪ Z]◦∧W = (Rn − X)◦)→ ∃V(WConx(V)∧ V ∩ Y 6=
Ø∧ V ∩ Z 6= Ø∧ [V ] ∩ [W] = Ø).

First, sinceX is open, we have [V ] ∩ [W] = Ø↔ [V ] ∩ (Rn − X) = Ø↔ [V ] ⊆ X.
(⇒) SupposeX = [Y∪Z]◦. From L.3 and L.4, since these are all open nonempty regions,

we haveY ∪ Z ⊆ X.

(a) If Y∪ Z = X, then (from the definition of Conx(X) and L.7) setA = Y∩ Z is open,
nonempty, and regular. The thesis follows sinceA ⊆ X and we can always find a
nonempty open ballV in A (so that WConx(V) by L.16, the definition of WConx
and L.2) such that [V ] ⊆ A.

(b) If X = [Y ∪ Z]◦ andY∪ Z ⊂ X, then∂(Y) ∩ ∂(Z) ∩ X 6= Ø. SinceX is open, fix
a nonempty open ballV centered inp ∈ ∂(Y) ∩ ∂(Z) ∩ X with [V ] ⊆ X. From the
definition of boundary, we have thatV ∩ Y 6= Ø∧ V ∩ Z 6= Ø.

(⇐) (By contradiction) Suppose there exist nonempty open regionsY and Z such that
X = Y ∪ Z andY ∩ Z = Ø. From the regularity ofX, X = Y ∪ Z = [Y ∪ Z]◦. Fix V such
that WConx(V) ∧ V ∩ Y 6= Ø∧ V ∩ Z 6= Ø, we prove that¬([V ] ⊆ X). Let us consider
VY =V ∩Y, VZ =V ∩ Z, andU = VY∪ VZ (note thatVY andVZ not necessarily belong to
a domainD amongDα−δ, but this does not invalidate our inference because these regions
are not used as values of some variable). Clearly,U is in V .

(a) If U ⊂ V , then∃p(p ∈ V ∧ p /∈ VY ∧p /∈ VZ). But X = Y ∪ Z and sop /∈ X.
From this,V ⊆ X is false, and by L.2, it follows that¬([V ] ⊆ X).

(b) If U = V , from the definition of WConx(V), it follows that [VY] ∩ [VZ] 6= Ø. But
from Y∩ Z = Ø, we getVY⊆ Y andVZ⊆ Z so thatVY∩ VZ = Ø. This means that
∃p ∈ ∂(VY) ∩ ∂(VZ). Given a neighborhoodI (p) of p, we haveI (p) ∩ VY 6= Ø
and I (p) ∩ VZ 6= Ø and soI (p) ∩ Y 6= Ø andI (p) ∩ Z 6= Ø. Thus,p ∈ ∂(Y) ∩
∂(Z). SinceY andZ are open,p /∈ Y ∪ Z and, in particular,p /∈ X. Finally, from
(VY ∪ VZ) = V and L.3, it follows thatp ∈ [V ] and p /∈ X, i.e.,¬[V ] ⊆ X, a
contradiction. �

9.8. Proof of Proposition 10. (DC3∗) C∗3(x,y) =def ∀z(Conj(z, z, x, y)) and
[[C∗3(x,y)]]α−δ = (dist(X, Y) = 0).

Proof. We have to prove that in all the domains,
dist(X, Y) = 0⇔ ∀Z∃z,z′,x,y(z, z′ ∈ [Z] ∧ x ∈ [X] ∧ y ∈ [Y] ∧ dist(z, z′) = dist

(x, y)).
(⇒) If dist(X, Y) = 0, then for eachd > 0, there existx ∈ X andy ∈ Y such that dist(x,

y) < d. In particular, take a nonempty open ballB ⊆ Z and considerx ∈ X andy ∈ Y
such that dist(x, y) < diam(B). From L.13 and L.16, there existz, z′ ∈ B such that dist(z,
z′) = dist(x, y).

(⇐) (By contradiction) Let dist(X, Y) = d > 0. It is sufficient to considerZ such that
diam(Z) < d to get a contradiction. �

(DP3) P3(x,y) =def ∀z(C∗3(z, x) → C∗3(z, y)) and [[P3(x,y)]]α−δ = [[P(x,y)]]
= X ⊆ Y.

Proof. This equivalence follows from above and B.6. �
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9.9. Proof of Proposition 11. (DC5∗) C∗5(x,y) =def ¬∃z(Closer(x, z, y)) and
[[C∗5(x,y)]]α−δ = (dist(X, Y) = 0).

Proof. We have to prove that in all the domains,
dist(X, Y) = 0⇔ ¬∃Z(dist(X, Z) < dist(X, Y)).

(⇒) Trivial.
(⇐) (By contradiction) Let dist(X, Y) > 0. It suffices to putZ = X to reach a contradic-
tion. �

(DP5)P5(x, y) =def ∀z (C∗5(z,x)→ C∗5(z,y)) and [[P5(x, y)]]α−δ = [[C(x,y)]] = X ⊆ Y.

Proof. It follows from B.6. �

(DFD5) FD5(x) =def ∃z(∀x′,x′′((P5(x′, x) ∧ P5(x′′, x))→ Closer(x′, x′′, z))) and
[[FD5(x)]]α−δ = diam(X) < +∞.

Proof. It suffices to prove the following for allX:
diam(X) < +∞⇔ ∃Z(∀X′,X′′((X′ ⊆ X ∧ X′′ ⊆ X)→ dist(X′, X′′) < dist(X′, Z))).
(⇒) If diam(X) < +∞, then consider a nonempty open ballZ such that

dist(Z, X) > diam(X). (Clearly, such a ball exists in Rn.)
(⇐) (By contradiction) Assume diam(X) = +∞ and let dist(X, Z) = d. Since diam(X)
= +∞, we can choose a real numberr and 2 pointsx,y ∈ X such that dist(x, y) > d+ 2r
and dist(x, Z) ≤ d+ r . Let X′ ⊆ X be a ball centered atx with diameter less than or equal
to r and X′′ ⊆ X a ball centered aty with diameter less than or equal tor as well (these
balls exist becauseX is open). Then, dist(X′, X′′) > dist(X′, Z), a contradiction. �

(DC5) C5(x, y) =def ∃z, w(FD5(z) ∧ FD5(w) ∧ P5(z, x) ∧ P5(w, y) ∧ C∗5(z, w)) and
[[C5(x,y)]]α−δ = [[(x,y)]] = [ X] ∩ [Y] 6= Ø.

Proof. We have to prove the following equivalence in all the domains:
[X] ∩ [Y] 6= Ø⇔ ∃Z,W(diam(Z) < +∞ ∧ diam(W) < +∞ ∧ Z ⊆ X ∧W ⊆ Y∧

dist(Z, W) = 0).
(⇒) Fix p ∈ [X] ∩ [Y]. In 8α,β , a regionZ with finite diameter such thatZ ⊆ X and

p ∈ [Z] is given by ball(p, r ) ∩ X. Analogously forW. In 8γ,δ, by L.17, there exists
Z ⊆ X such that diam(Z) < +∞ and p ∈ [Z]. Analogously, forW ⊆ Y. Sincep ∈ [Z]
∩ [W], we have dist(Z, W) = 0.

(⇐) From the hypothesis, we have that diam(Z) < +∞ ∧ diam(W) < +∞ ∧ dist(Z,
W) = 0. From L.15, we have [Z] ∩ [W] 6= Ø. But Z ⊆ X andW ⊆ Y, thus [X] ∩ [Y]
6= Ø. �

10. Appendix C.
10.1. Proof of Lemma 1. The interpretations ofMSP and6SS are obtained by sub-

stituting the interpretations of the components in the definition. For this reason, there is
nothing to prove, and in the attempt to improve readability, we simply write [[MSP]](X,
Y) and [[6SS]](X) for the interpretations ofMSP(x, y) and6SS(x), respectively. Given
this premise, we prove that
(A.1) [[SCG(x, y)]]α−δ = ∃cx,cy,r (X = Ball(cx, r ) ∧ Y = Ball(cy, r ));

(A.2) [[EqD(x, y, x′, y′)]]α−δ = ∃cx,cy,c′x,c′y,r ,r ′(X = Ball(cx, r ) ∧ Y = Ball(cy, r ′) ∧
X′ = Ball(c′x, r ) ∧ Y′ = Ball(c′y, r ′)∧¬X ⊆ Y∧¬Y ⊆ X∧¬X′ ⊆ Y′∧¬Y′ ⊆ X′ ∧
dist(cx,cy) = dist(c′x,c′y));
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(A.3) [[SCG(x, y)]]α−δ = Congr(X, Y) ∧ [[6SS]](X) ∧ [[6SS]](Y);

(A) [[ CG1(x, y)]]α−δ = Congr(X, Y).

Proof. (A.1) Let X = Ball(cx, rx) andY = Ball(cy, r y). We have to prove the following
equivalence in all the domains:

Congr(X, Y) ⇔ X = Y ∨ ∃Z,W,c,rz,rw (Z = Ball(c, rz) ∧ = Ball(c, rw)∧ [Z] ∩ [X]
6= Ø∧ Z ∩ X = Ø∧ [Z] ∩ [Y] 6= Ø∧ Z ∩ Y = Ø∧ X ⊂ W ∧ ∂(X) ∩ ∂(W) 6= Ø∧ Y ⊂
W ∧ ∂(Y) ∩ ∂(W) 6= Ø.

(⇒) From rx = r y, one has diam(X) = diam(Y). If X = Y, we are done. Otherwise,
cx 6= cy andX, Y properly overlap or are disjoint. Fixc /∈ [X ∪ Y] such that dist(cx, c) =
dist(cy, c) = r , and letZ = Ball(c, r −rx). By construction, [Z] ∩ [X] 6= Ø∧Z∩X = Ø∧
[Z] ∩ [Y] 6= Ø∧ Z ∩ Y = Ø. Let W = Ball(c, r + rx). By construction,X,Y ⊂ W and
∂(X) ∩ ∂(W) 6= Ø, ∂(Y) ∩ ∂(W) 6= Ø.

(⇐) If X = Y, we are done. If not, from the hypothesisX,Y ⊂ (W − Z), [Z] ∩ [X]
6= Ø, [Z]∩ [Y] 6= Ø and∂(X)∩∂(W) 6= Ø,∂(Y)∩∂(W) 6= Ø. By triangular inequality, the
minimum distance between a point in∂(W) and a point in∂(Z) is rw−rz. Then,rw−rz ≤
diam(X). Analogously,rw−rz ≤ diam(Y). Assumerw−rz < diam(X). FromZ∩X = Ø,
there exists a point inX such that its distance fromc is higher thanrw, a contradiction.
Then,rw − rz = diam(X). Analogously,rw − rz = diam(Y). Finally, diam(X) = diam(Y).

�

(A.2) Let X = Ball(cx, r ), Y = Ball(cy, r ′), X′ = Ball(c′x, r ′), and Y′ = Ball
(c′y, r ′) such that¬X ⊆ Y ∧ ¬Y ⊆ X ∧ ¬X′ ⊆ Y′ ∧ ¬Y′ ⊆ X′. We have to prove
the following equivalence in all the domains:

dist(cx,cy) = dist(c′x,c′y)⇔ ∃Z,W,cz,cw,r ′′ (Z = Ball(cz, r ′′) ∧ = Ball(cw, r ′′) ∧ IntD(z,
x, y) ∧ IntD(w, x′, y′)).

(⇒) The minimum sphereS containingX and Y has diameter dist(cx,cy) + r + r ′.
Analogously, dist(c′x,c′y)+ r + r ′ is the radius of the minimal sphereS′ containingX′ and
Y′. Thus,SandS′ are congruent. Also, by triangular inequality, the center ofS is between
cx,cy, i.e., X andY are internally diametrical toS. Analogously forS′.

(⇐) Since Z has X and Y as internally diametrical spheres, then the center ofZ is
between the centers ofX andY, sor ′′ = dist(cx,cy) + r + r ′. Analogously forW. Then,
dist(cx,cy) = dist(c′x,c′y).

(A.3) Assume [[6SS]](X) and [[6SS]](Y), then we have to prove the following equiva-
lence in all the domains:

Congr(X, Y)⇔ ∀S([[MSP]](S,X)→ ∃S′([[MSP]] ( S′,Y) ∧ Congr(S, S′))) ∧
∀S([[MSP]](S,Y)→ ∃S′([[MSP]] ( S′,X) ∧ Congr(S, S′))) ∧
∀S,U ,S′,U ([[MSP]](S,X) ∧ [[MSP]](U ,X) ∧ [[MSP]] X S′,Y) ∧ [[MSP]](U ′,Y) ∧
Congr(S, S′) ∧ Congr(U , U ′))→ [[EqD]](S, U , S′, U ′).
(⇒) Let f be an isometry such thatY = f (X) and putS′ = f (S) for S in X, S′ =

f −1(S) for S in Y. The conditions follow easily.
(⇐) We show that there exists an isometryf such thatY = f (X). We writeci for the

center of sphereSi andc′i for the center of sphereS′i . For each pairSi , Sj of maximal
spheresS in X, let xi j , xji be the points on the boundary ofSi , Sj , respectively, such that
dist(xi j ,xji ) = diam(Si∪ Sj ). Let ci ,. . . , xmn,. . . be a list of all centers of maximal spheres
in X and of all points isolated above. We show that there exists an isometryf such that
c′i = f (ci ) and dist(x,y) = dist( f (x), f (y)) for any pair of pointsx,y in the list and that
S′ = f (S) for each maximal sphereS in X (and soS′ = f 1(S) for S in Y). From the
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first 2 conditions in the hypothesis, we can choosef such that dist(x,y) = dist( f (x), f (y))
for x,y centers of maximal spheres inX. Relation dist(xi j ,xji ) = dist( f (xi j ), f (xji )) can
also be satisfied because of the third constraint in the hypothesis. The other pairs follow
from triangular inequality. From Euclidean geometry, we know that this function can be
extended to an isometry on the whole space. Since the center of a maximal sphereS is
mapped to the center of its congruent sphereS′ (and so the points in the boundary where
f is constrained, if any) andf is an isometry, we also haveS′ = f (S). We conclude
thatY = f (X).

(A) We have to prove the following equivalence in all the domains:
Congr(X, Y)⇔ ∀Z([[6SS]] Z)→ ∃Z′(Congr(Z, Z′) ∧
∀S,S′(([[MSP]](S, Z) ∧ [[MSP]](S′, Z′) ∧ Congr(S, S′))→
((S⊆ X ↔ S′ ⊆ Y) ∧ (S⊆ Y↔ S′ ⊆ X) ∧
((S∩ X 6= Ø∧ ¬S⊆ X ∧ ¬X ⊆ S)↔ (S′ ∩ Y 6= Ø∧ ¬S′ ⊆ Y ∧ ¬Y ⊆ S′)) ∧
(S′ ∩ X 6= Ø∧ ¬S′ ⊆ X ∧ ¬X ⊆ S′)↔ (S∩ Y 6= Ø∧ ¬S⊆ Y ∧ ¬Y ⊆ S))))))
(⇒) Let f be an isometry such thatY = f (X). Fix any Z such that [[6SS]] ( Z) holds

and let Z′ = f (Z). It is easy (although tedius) to verify the conditions sincef is an
isometry.

(⇐) The proof splits into 4 cases. Letn be the dimension of the space.

Case (I): IfX is the whole space, then so isY. If not, it suffices to take aZ that partially
overlapsY. Analogously ifY is the whole space.

Case (II): [[6SS]](X) and the convex hull of the centers of the maximal spheres inX is a
region of dimensionn. PutZ = X and letZ′ be as in the hypothesis. Letf be the isometry
such thatZ′ = f (Z). We show thatZ′ = Y. For this, it suffices to show thatZ′ 6= Y
leads to a contradiction. Choosen maximal spheres ofX such that the convex hull of their
centers is a region of dimensionn. Call W the sum of these spheres. LetW′ = f (W). Since
[[6SS]](X) and the hypothesis on the maximal spheres ofX, one must haveZ′ ⊆ Y. Let
Y− Z′ 6= Ø. Since the regionsY andZ′ are regular and open, one can find a ballU ′ ⊆ Y−
Z′ such that no maximal sphere inW′ has the diameter ofU ′ and all maximal spheres of
W′ are maximal inW′ ∪ U ′ as well. Furthermore, we takeU ′ such thatZ′ ∩ U ′ = Ø in
structures8α and8β . In structures8γ and8δ, we also add a new regionC′ ⊆ Y that
connectsW′ andU ′ (this condition is necessary to guarantee that regionZ′U , which we are
going to construct, exists in these structures).

Let Z′U = Z′ ∪ U ′ (we useU ′ ∪ C′ instead ofU ′ in structures8γ and8δ) and let
U = f −1(U ′). Fix ZU = Z ∪U , i.e., Z′U = f (ZU ). SinceZ′ ⊂ Z′U and f is an isometry,
Z ⊂ ZU . Thus, X ⊂ ZU . Now, apply the hypothesis toZ′U to get a regionZ′′U . Since
Z′U ⊆ Y, one must haveZ′′U ⊆ X. By construction and the choices ofZ andU , Z′ is
congruent toX andZ′U is congruent toZ′′U , thusZ′U is congruent toZ′ (or a part ofZ′).
But Z′ ⊂ Z′U , a contradiction. We concludeZ′ = Y, that is, Congr(X, Y).

Case (III): [[6SS]](X) and the convex hull of the centers of the maximal spheres inX
is a region of dimension less thann.

We proceed as before, but this time regionW must contain some sphere that is disjoint
from X. (Again, in structures8γ and8δ, we also consider a regionC that connectsW′

andY in such a way that the maximal spheres ofY andW′ do not change. One gets the
conclusion as in Case (II) by considering the isometryf identified byZ′ = f (Z).

Case (IV): Not [[6SS]](X).
SinceX is not the whole space, there exists a sequenceZi , with [[6SS]](Zi ), X ⊂ Zi ,

and∪Zi+1 ⊂ ∪Zi , that converges toX. Let Z′i be the region satisfying the hypothesis
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when applied toZi and let fi be the function for whichZ′i = fi (Zi ). Since [[6SS]](Zi ),
fi must be an isometry. Furthermore,fi+1(∪Zi+1) ⊂ fi (∪Zi ), fi (X) ⊂ fi (∪Zi ), and, for
i →+∞, Vol(∪Zi )→ Vol(X). From these, the sequenceZ′i converges to a region (call it
Z′) containingY. First, we show that Congr(X, Z′). Assume not, then there exists a setN
of points inX (or in Z′) such thatf (N) 6⊂ Z′ for all isometriesf (analogouslyf (N) 6⊂ X
for all isometries f , if N in Z′). Note thatN ⊂ X ⊂ Zi for all i . From f (N) 6⊂ Z′

and the fact thatZ′ is the limit of fi (Zi ), there is an indexm such that fm(N) 6⊂ Z′m.
Let m be the first index for which this happens. By construction,fm is an isometry and
fm(X) = Z′m, contradictingfm(N) 6⊂ Z′m. We have seen thatY ⊆ Z′ and Congr(X, Z′).
It remains to show thatZ′ −Y 6= Ø leads to a contradiction. This follows from considering
a new sequenceWi , with [[6SS]](Wi ), Wi ⊂ X, andWi ⊂ Wi+1, that converges toX and
the sequence defined byf (Wi ) = W′i for all i , since f (Wi ) ⊂ Y for all i .

10.2. Proof of Lemma 2. We prove that
(A.1) [[C∗2(x, y)]]α−δ = (dist(X, Y) = 0);
(A.2) [[SC∗2(x)]]α−δ = WWConx(X);
(A.3) [[LEDiam2(x, y)]]α−δ = WWConx(Y) ∧ diam(X) ≤ diam(Y);
(A.4) [[SCDiam2(x, y)]]α−δ = WWConx(X) ∧ diam(X) ≤ diam(Y);
(A.5) [[LDist2(x, y, x′, y′)]]α−δ = dist(X, Y) < dist(X′, Y′);
(A) [[ CCon2(c, x, y)]]α−δ = dist(X, Y) ≤ diam(C).

Proof. (A.1) We have to prove the following equivalence:
dist(X, Y) = 0⇔ ∀Z∃Z′(Congr(Z′, Z) ∧ Z′ ∩ X 6= Ø∧ Z′ ∩ Y 6= Ø).
(⇒) If dist(X, Y) = 0, then for eachd > 0 there existx ∈ X and y ∈ Y such that

dist(x, y) < d. In particular, take a ballB ⊆ Z and considerx andy such that dist(x, y) <
diam(B). From L.13, there existz, z′ ∈ B such that dist(z, z′) = dist(x, y). It suffices to
consider an isometryf such thatZ′ = f (Z), x = f (z), andy = f (z′).

(⇐) (By contradiction) Assume dist(X, Y) = d > 0 and considerZ such that diam(Z) <
d. Clearly, the hypothesis fails. �

(A.2) Directly from (A.1), Proposition 1, and the definition of WWConx.
(A.3) For everyw-weakly connected regionY, we have to prove the following equiva-

lence in all the domains:
diam(X) ≤ diam(Y)⇔ ∀A,B((A ⊆ X∧ B ⊆ X)→ ∃Y′(Congr(Y′, Y) ∧ Y′ ∩ A 6= Ø
∧Y′ ∩ B 6= Ø)).

(⇒) Let a ∈ A andb ∈ B be 2 points inX. Since diam(X) ≤ diam(Y) andY is w-weak
connected, from L.18 there existy,y′ ∈ Y such that dist(y, y′) = dist(a, b). It is enough to
consider an isometryf with a = f (y) andb = f (y′) and to takeY′ = f (Y).

(⇐) (By contradiction) Let us assume diam(X) > diam(Y). It follows that there exist
a,b ∈ X with dist(a, b) − diam(Y) = ε > 0. Let A and B be 2 balls inX with diameter
smaller thanε/2 (such A and B exist becauseX is an open region). Clearly, we have
A ⊆ X, B ⊆ X, and dist(A, B) > diam(Y), a contradiction.

(A.4) For everyw-weakly connect regionX, we have to prove the following equivalence
in all the domains:

diam(X) ≤ diam(Y)⇔ ∀Z((Y ⊆ Z ∧WWConx(Z))→ diam(X) ≤ diam(Z)).
(⇒) SinceY ⊆ Z, we have diam(Y) ≤ diam(Z), thus (from the hypothesis) diam(X) ≤

diam(Z).
(⇐) Let Z be theconvex hullof Y. By the definition of the convex hull,Y ⊆ Z, and

by L.19, diam(Z) = diam(Y). By L.16, we have Conx(Z) and from L.1, WWConx(Z). It
follows that diam(X) ≤ diam(Y).
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(A.5) We have to prove the following equivalence in all the domains:
dist(X, Y) < dist(X′, Y′)⇔∃A(WWConx(A)∧A∩X 6= Ø∧A∩Y 6= Ø∧∀A′(Congr(A′,

A)→ (A′ ∩ X′ = Ø∨ A′ ∩ Y′ = Ø))).
(⇒) It is enough to consider a ballA overlapping bothX andY with diameter equal to

dist(X, Y)+ ε, whereε < dist(X′, Y′) − dist(X, Y).
(⇐) (By contradiction) Let us assume dist(X, Y) ≥ dist(X′, Y′). Let A be an arbitrary

open region such that WWConx(A) andx ∈ {A ∩ X}, y ∈ {A ∩ Y}. Since dist(x, y) ≥
dist(X′, Y′), there arex′ ∈ X′, y′ ∈ Y′ such that dist(x′, y′) ≤ dist(x, y). From L.18,
there exista,a′ ∈ A such that dist(a, a′) = dist(x′, y′). We obtain a contradiction taking
A′ = f (A) with f an isometry such thata = f (x′) anda′ = f (y′).
(A) We have to prove the following equivalence in all the domains:
dist(X, Y) ≤ diam(C)⇔∀A, B(dist(A, B) < dist(X, Y)→ ∃Z(WConx(Z)∧ diam(Z) ≤
diam(C) ∧ Z ∩ A 6= Ø∧ Z ∩ B 6= Ø)).

(⇒) ForC infinite, takeZ = Rn. Let nowC be finite, i.e., diam(C) < +∞. Let A andB
be such that dist(A, B) < dist(X, Y). From the proof of (A.5), we have∃Z(WWConx(Z)∧
Z ∩ A 6= Ø∧ Z ∩ B 6= Ø∧ ∀Z′(Congr(Z′, Z)→ (Z′ ∩ X = Ø∨ Z′ ∩ Y = Ø))). Since
Congr(Z′, Z)→ diam(Z′) = diam(Z), from∀Z′(Congr(Z′, Z)→ (Z′ ∩X = Ø∨Z′ ∩ Y =
Ø)), we have diam(Z) ≤ dist(X, Y), then, from the hypothesis, diam(Z) ≤ diam(C). From
L.1 and diam(C) < +∞, WConx(Z).

(⇐) (By contradiction) Let us assume dist(X, Y) > diam(C). Let A ⊆ X andB ⊆ Y be
2 open regions with dist(A, B) − diam(C) = ε > 0. From the definition of dist and diam,
if Z is such that diam(Z) ≤ diam(C), thenZ cannot overlap bothA andB, a contradiction.

10.3. Proof of Lemma 4. Using (DP) in Proposition 1 and (DFD5) in Dispensable
Primitives section, we need to prove that

(A) [[ Conj5(x, y, x′, y′)]]α−δ = [[Conj(x, y, x′, y′)]].

We start proving that:

(A.1) [[Eq(z, x, y)]]α−δ = (dist(Z, X) = dist(Z, Y));

(A.2) [[EqD∗(x, y, x′, y′)]]α−δ = (dist(X, Y) = dist(X′, Y′)) ∧
diam(X) < +∞ ∧ diam(Y) < +∞ ∧ diam(X′) < +∞∧ diam(Y′) < +∞.

Proof. (A.1) It holds because of the following (obvious) equivalence:

dist(Z, X) = dist(Z, Y)⇐⇒ ¬dist(Z, X) < dist(Z, Y) ∧ ¬dist(Z, Y) < dist(Z, X).
(A.1)
�

Regarding(A.2), the 2 alternative definitions (a) and (b) ofEqD∗ need to be considered.
(A.2.a) Following the definition (a) ofEqD∗, assumingX, Y, X′, Y′ of finite diameter,

we need to prove that in8α and8β for R1 and in8α−δ for Rn>1, the following equivalence
holds:

dist(X, Y) = dist(X′, Y′) ⇐⇒ ∃Z,Z′(dist(X, Y) = dist(X, Z) ∧ dist(X′, Y′) = dist(X′,
Z′) ∧ dist(Z, X) = dist(Z, Z′) ∧ dist(Z′, X′) = dist(Z′, Z)).

(⇒) (Sketch) Put dist(X, Y) = dist(X′, Y′) = d.
(a) Assumed = 0. The thesis follows considering a ballZ = Z′ containingX ∪ X′.
(b) Assumed > 0 andn = 1. Suppose that there existsp ∈ ∂(X) such that all the

points inX ∪ X′ lie on the same side of R1 with respect top (a similar argument holds for
p′ ∈ ∂(X′) such that all the points inX ∪ X′ lie on the same side of R1 with respect top).
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Let Z be finite and connected such that dist(Z, X) = d with Z on the opposite side ofX
with respect top. Let Z′1 be finite and connected such that dist(Z′1, Z) = d with Z′1 on the
opposite side ofp with respect toZ. Let Z′2 be finite connected such that dist(Z′2, X′) = d
with Z′2 on the opposite side ofp with respect toX′. By construction, dist(Z′1, Z′2) ≥ d.
Then, it suffices to putZ′ = Z′1 ∪ Z′2 (sinceZ′ is not connected, this proof holds only in
8α and8β).

(c) Assumed > 0 andn > 1. ConsiderXˆ = {x ∈ Rn | dist(x, X) < d}, X′ˆ = {x ∈ Rn|
dist(x, X′) < d}. Xˆ andX′̂ have finite diameter; therefore, Rn− [X′ˆ ∪ X′̂ ] has at most one
connected component with infinite diameter. Call itV . Let p ∈ ∂(V) ∩ ∂(X′̂ ) (otherwise
take p ∈ ∂(V) ∩∂(Xˆ) and switchX′̂ , Xˆ in the rest of the proof). By construction, there
existsq ∈ ∂(Xˆ) such thatq is path-connected top in Rn− Xˆ and dist(p, q) > d. Let
Z′ be a connected region inV such thatp ∈ ∂(Z′) and diam(Z) < (d− dist(p, q))/2. Let
Z be a connected region in Rn− Xˆ such thatq ∈ ∂(Z) and dist(Z, Z′) = d (sinceq is
path-connected top in Rn− Xˆ and dist(p, q) > d, this region exists always). Clearly, we
have dist(Z, X) = dist(Z, Z′) =dist(Z′, X′) = d.

(⇐) Trivial.

(A.2.b) In 8γ,δ for R1, we use the definition (b) ofEqD∗. First, we prove that

(B.1) [[CGs(x, y)]]γ,δ = (diam(X) = diam(Y) < +∞∧ [X] ∩ [Y] = Ø);

(B.2) [[CG∗(x,y)]]γ,δ = (diam(X) = diam(Y) < +∞).

(B.1) Given 2 connected regionsX, Y with finite diameter (in8γ,δ, all the regions are
Conx) such that [X] ∩ [Y] = Ø, we need to prove the following equivalence:
diam(X) = diam(Y) ⇔ ∃Z1,Z2,Z3([Z2] ∩ [X] 6= Ø ∧ Z2 ∩ X = Ø ∧ [Z2] ∩ [Y]
6= Ø∧ Z2 ∩ Y = Ø ∧ [Z1] ∩ [X] 6= Ø ∧ Z1 ∩ X = Ø ∧ [Z1] ∩ [Z2] = Ø ∧ [Z3]
∩ [Y] 6= Ø ∧ Z3 ∩ Y = Ø∧ [Z3] ∩ [Z2] = Ø ∧ dist(Z2, Z1) = dist(Z2, Z3))

From the hypothesis,X andY are connected regions and are not connected to each other.
Let X = (x1, x2), Y = (y1, y2), and assume thatx2 strictly precedesy1 (a similar argument
holds if we takey2 precedesx1). SinceZ2 needs to be externally connected to bothX
andY and [X] ∩ [Y] = Ø, thenZ2 = (x2, y1). Z1(Z3) needs to be externally connected
to X(Y) and it does not overlapZ2; therefore,Z1 = (x1 − d1, x1) (Z3 = (y2, y2 + d2))
for somed1 < +∞ (d2 < +∞). By construction, dist(Z2, Z1) =diam(X) and dist(Z2,
Z3) =diam(Y). (B.1)

(B.2) Given 2 connected regionsX, Y (in 8γ,δ, all the regions are Conx) with finite
diameter, we need to prove the following equivalence:
diam(X) = diam(Y)⇐⇒

(a) X = Y ∨
(b) (X ∩ Y 6= Ø ∧ ¬X ⊆ Y ∧¬Y ⊆ X ∧ ∃Z1, Z2(Z1 = X− [Y] ∧ Z2 = Y−

[X] ∧ [Z1] ∩ [Z2] = Ø ∧ diam(Z1) = diam(Z2))) ∨
(c) ([X] ∩ [Y] 6= Ø∧ X ∩Y = Ø∧¬∃Z((Z ⊂ X ∧ diam(Z) = diam(Y) ∧ [Z]
∩ [Y] = Ø) ∨ (Z ⊂ Y∧ diam(Z) = diam(X) ∧ [Z] ∩ [X] = Ø))) ∨

(d) ([X] ∩ [Y] = Ø ∧ diam(X) = diam(Y)))).

On the basis of theparthoodand connectionrelations, there are a total of 8 distinct
cases to consider between 2 connected regions: (1)∂(X) ∩ ∂(Y) 6= Ø andX ⊂ Y, (2)
∂(X)∩∂(Y) 6= Ø andY ⊂ X, (3)∂(X) ∩ ∂(Y) = Ø andX ⊂ Y, (4)∂(X) ∩ ∂(Y) = Ø and
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Y ⊂ X, (5) X = Y, (6) X andY partially overlap, (7)X andY are externally connected,
and (8)X andY are not connected. In cases (1)–(4), the regions have necessarily different
diameters since we are in R1. In addition, conditions (a)–(d) correspond to cases (5)–(8);
thus, we can exclude cases (1)–(4) altogether.

Let X = (x1, x2), Y = (y1, y2).
Case (5): Both diam(X) = diam(Y) and condition (a) follow.
Case (6): We haveX ∩ Y 6= Ø ¬X ⊆ Y¬∧¬Y ⊆ X, and sinceX andY are connected

and finite, then alsoZ1 = X− [Y] and Z2 = Y− [X] are connected and finite. In addition,
by definition, we have [Z1] ∩ [Z2] = Ø. In this case, diam(X) = diam(Z1) + diam(X ∩ Y)
and diam(Y) = diam(Z2) + diam(X∩Y), i.e., diam(X) = diam(Y) iff diam(Z1) = diam(Z2).

Case (7): We have [X] ∩ [Y] 6= Ø ∧ X ∩ Y = Ø; therefore, there existsx such that
[X] ∩ [Y] = {x}. If diam(X) = diam(Y), condition (c) is easily verified. For the other
direction, condition (c) holds diam(Z) <diam(Y) for all Z ⊂ X. Thus, diam(X) ≤
diam(Y). Analogously, one shows diam(Y) ≤ diam(X).

Case (8): We have [X] ∩ [Y] = Ø. Then, diam(X) = diam(Y) and condition (d) are
equivalent.(B.2)

Following the definition (b) ofEqD∗, assumingX, Y, X′, Y′ of finite diameter and
connected, we have now to prove that in8γ,δ for R1, the following equivalence holds:

dist(X, Y) = dist(X′, Y′) ⇔ ([X] ∩ [Y] 6= Ø ∧ [X′] ∩ [Y′] 6= Ø) ∨ ∃Z,Z′([Z] ∩ [X]
6= Ø∧ Z ∩ X = Ø ∧ [Z] ∩ [Y] 6= Ø∧ Z ∩ Y = Ø ∧ [Z′] ∩ [X′] 6= Ø∧ Z′ ∩ X′ = Ø ∧
[Z′] ∩ [Y′] 6= Ø∧ Z′ ∩ Y′ = Ø ∧ diam(Z) = diam(Z′)).

(⇒) Let dist(X, Y) = dist(X′, Y′). If [ X] ∩ [Y] 6= Ø and [X′] ∩ [Y′] 6= Ø, we are done.
Assume [X] ∩ [Y] = Ø. From L.15, dist(X, Y) > 0 and so dist(X′, Y′) > 0, i.e., [X′]
∩ [Y′] = Ø. Let Z = {z ∈ R1|z /∈ [X ∪ Y] and Btw(z, x, y) for somex ∈ X, y ∈ Y}
and Z′ = {z′ ∈ R1|z′ /∈ [X′ ∪ Y′] and Btw(z′, x′, y′) for somex′ ∈ X′, y′ ∈ Y′}. Thus,
diam(Z) = dist(X, Y) = dist(X′, Y′) = diam(Z′), and the other conditions are satisfied by
construction.

(⇐) (By contradiction) Let dist(X, Y) > dist(X′, Y′) so that [X] ∩ [Y] = Ø. If there
exist Z andZ′ externally tangent toX, Y and toX′, Y′ (respectively) such that diam(Z) =
diam(Z′), then, sinceZ is connected, diam(Z) = dist(X, Y) and diam(Z′) = dist(X′, Y′).
But dist(X, Y) > dist(X′, Y′) and diam(Z) = diam(Z′), a contradiction.(A.2.b)/(A.2)

We now prove that:
(A) [[Conj5(x, y, x′, y′)]]α−δ = [[Conj(x, y, x′, y′)]].

We begin with a lemma:

Lemma C.2.1. ∀X, Y, Z, W(([X] ∩ [Y] 6= Ø ∧ [Z] ∩ [W] 6= Ø ∧ diam(X) < +∞ ∧
diam(Z) < +∞) → ∃x, z(x ∈ [X] ∩ [Y] ∧ z ∈ [Z] ∩ [W] ∧ dist(x, z) = dist([X] ∩
[Y], [Z] ∩ [W]))).

Proof. diam(X) < +∞ implies diam([X] ∩ [Y]) < +∞. Furthermore, [[X] ∩ [Y]] = [ X]
∩ [Y]. Similarly for [Z] ∩ [W]. The thesis follows from L.12.(Lemma) �

(A) It remains to prove the following equivalence that we state somewhat informally in
the attempt to improve readability:
∃x,y,x′,y′(x ∈ [X] ∧ y ∈ [Y] ∧ x′ ∈ [X′] ∧ y′ ∈ [Y′] ∧ dist(x, y) = dist(x′, y′))⇐⇒
There exist 4 finite and connected regionsA, B, A′, B′ (the finiteness of the diameter

follows from theEqD∗ condition) with properties:
[ A] ∩ [X] 6= Ø, [B] ∩ [Y] 6= Ø, [A′] ∩ [X′] 6= Ø, [B′] ∩ [Y′] 6= Ø, dist(A, B) = dist

(A′, B′);
and such that:
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1. ∀PA,PB((PA ⊆ A ∧ PB ⊆ B∧ dist(PA, PB) = dist(A, B))→ [ PA] ∩ [X] 6= Ø ∧
[ PB] ∩ [Y] 6= Ø).

2. ∀PA′ , PB′ ((PA′ ⊆ A′ ∧ PB′ ⊆ B′∧ dist(PA′ , PB′) = dist(A′, B′))→ [ PA′ ] ∩ [X′]
6= Ø ∧ [ PB′ ] ∩ [Y′] 6= Ø).

(⇒) Case n= 1: Without loss of generality, assumex ≤ y and fix a valuer < +∞.
Consider the open ballsA = (x − r, x) andB = (y, y + r ). Clearly,x ∈ [ A] ∩ [X], y ∈
[B] ∩ [Y], and condition 1 is satisfied sincex must belong to [PA] and y to [PB]. We can
build A′ and B′ analogously fromx′, y′. Then, dist(A, B) = dist (A′, B′), [A′] ∩ [X′]
6= Ø, [B′] ∩ [Y′] 6= Ø, and condition 2 is satisfied as well.

Case n> 1: Let r be finite.
(a) Assumex = y (and sox′ = y′), then it suffices to considerA = ball(x, r ) ∩ X, B =

ball(x, r ) ∩ Y, A′ = ball(x′, r ) ∩ X′, andB′ = ball (x′, r ) ∩ Y′ (or appropriate connected
subregions of these).

(b) Assumex 6= y (and sox′ 6= y′).
Fix the linel throughx andy and 2 finite ballsA andB with centers inl and such that

x ∈ ∂(A), y ∈ x ∈ ∂(B), and dist(A, B)= dist(x, y). Analogously, findA′ and B′ with
centers inl ′ (the line throughx′ andy′), x′ ∈ [ A′], y′ ∈ [B′], and dist(A′, B′) = dist (x′, y′).
By construction, we have [A] ∩ [X] 6= Ø, [B] ∩ [Y] 6= Ø, [A′] ∩ [X′] 6= Ø, [B′] ∩ [Y′]
6= Ø, and dist(A, B)=dist(A′, B′). Regarding conditions 1 and 2, observe that only the 2
pairsx, y andx′, y′, (in A, B and in A′, B′, respectively) have distance equal to dist(A,
B). Thus, if PA ⊆ A ∧ PB ⊆ B ∧ dist(PA, PB) = dist(A, B) andPA′ ⊆ A′ ∧ PB′ ⊆ B′∧
dist(PA′ , PB′) = dist(A′, B′), we must havex ∈ [ PA], y ∈ [ PB], x′ ∈ [ PA′ ], andy′ ∈ [ PB′ ].
This guarantees that conditions 1 and 2 are satisfied.

(⇐) From the hypothesis,A, B, A′, and B′ have finite diameter. Also, [A] ∩ [X] 6=
Ø and [B] ∩ [Y] 6= Ø. We show that dist([A] ∩ [X], [ B] ∩ [Y]) = dist(A, B).
From the definition of dist, dist([A] ∩ [X], [ B] ∩ [Y]) ≥ dist(A, B). Suppose dist([A] ∩
[X], [ B] ∩ [Y]) > dist(A, B). From L.12, there exista ∈ [ A] andb ∈ [B] such that dist(a,
b) = dist(A, B). Let d = dist([A] ∩ [X], [ B] ∩ [Y]) − dist(A, B), SA = A ∩ ball(a, d/3),
andSB = B ∩ ball(b, d/3) (or appropriate connected subregions). Since diam(SA ∪ SB) ≤
dist(A, B) + 2/3d <dist([A] ∩ [X], [ B] ∩ [Y]), we have [SA] ∩ [X] = Ø or [SB] ∩ [Y] = Ø.
This contradicts condition 1; thus, dist([A] ∩ [X], [ B] ∩ [Y]) = dist(A, B). Analogously,
we have dist([A′] ∩ [X′], [ B′] ∩ [Y′]) = dist(A′, B′). From dist(A, B) = dist(A′, B′), one
obtains dist([A] ∩ [X], [ B] ∩ [Y]) = dist([A′] ∩ [X′], [ B′] ∩ [Y′]). From Lemma C.2.1,
there existx, y, x′, andy′ such thatx ∈ [ A] ∩ [X], y ∈ [B] ∩ [Y], x′ ∈ [ A′] ∩ [X′], y′ ∈
[B′] ∩ [Y′] and dist(x, y) = dist(x′, y′) = dist(A, B).

10.4. Proof of Lemma 5. We start proving that

(A.1) [[FD3(x)]]α−δ = diam(X) < +∞.

(A) [[ C3(x, y)]]α−δ = [[C(x, y)]].

Proof. (A.1) First, we need to find the interpretation ofSC∗3. From the proof of Proposition
10 (see Appendix B.8), it follows that [[C∗3(x, y)]]α−δ = dist(X, Y) = 0. From Proposition 1
and the definition of WWConx, we directly obtain that [[SC∗3(x, y)]]α−δ = WWConx(X).
Thus, we need to prove the following formula in all the domains:

diam(X) < +∞⇔
∃X′,Y,Z(WWconx(X′) ∧ X ⊆ X′ ∧ ¬∃x,x′,y,z(x,x′ ∈ [X′] ∧ y ∈ [Y] ∧ z ∈ [Z] ∧

dist(x, x′) = dist(y, z))).
(⇒) If d = diam(X) < +∞, it is sufficient to consider 3 ballsX′, Y, and Z of finite

diameterd′ ≥ d such thatX ⊆ X′ and dist(Y, Z) > d′.
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(⇐) (By contradiction) Let diam(X) = +∞ and WWconx(X′) ∧ X ⊆ X′. Clearly,
diam(X′) = +∞. From L.18, for alld ∈ R, there existx,x′ ∈ [X′] such that dist(x,
x′) = d. Fix anyY andZ. Then, for ally ∈ [Y] andz ∈ [Z], we can findx,x′ ∈ [X′] such
that dist(x, x′) = dist(y, z), a contradiction. �

Proof. (A) Let us observe that [[FD3(x)]]α−δ = [[FD5(x)]]α−δ, [[P5(x, y)]]α−δ = [[P(x,
y)]] [[ C∗3(x, y)]]α−δ = [[C∗5(x, y)]]α−δ and that the definition ofC3 is analogous to the one
of C5. It is possible to consider the same proof given forC5 (see (DC5) in Dispensable
Primitives section) in Appendix B.9. �

RegardingS3, we use the results above and prove that

(B.1) [[LEDiam3(x, y)]]α−δ = Conx(X) ∧ Conx(Y) ∧ diam(X) ≤ diam(Y);

(B) [[S3(x)]]α−δ = [[S(x)]] = ∃c,r (X = Ball(c, r )).

Proof. (B.1) Given 2 connected open regionsX andY, we have to prove the following
equivalence in all the domains:

diam(X) ≤ diam(Y) ⇔ ∀A,B((A ⊆ X ∧ B ⊆ X) → ∃A′,B′(A′ ⊆ Y ∧ B′ ⊆ Y ∧
∃a,b,a′,b′(a ∈ [ A] ∧ b ∈ [B] ∧ a′ ∈ [ A′] ∧ b′ ∈ [B′] ∧ dist(a, b) = dist(a′, b′)))).

(⇒) Since A, B are subsets ofX and A′, B′ are subsets ofY, it is enough to show
that ∀a,b(a,b ∈ [X] → ∃a′,b′(a′,b′ ∈ [Y] ∧ dist(a, b) = dist(a′, b′))). The latter is an
immediate consequence of the hypothesis, L.1, and L.13.

(⇐) (By contradiction) Assume that there exist 2 connected regionsX, Y such that
diam(X) > diam(Y). By the definition of diam, there exista,b ∈ [X] such that for all
a′,b′ ∈ [Y], dist(a, b) > dist(a′, b′). Let 3d < dist(a, b) − dist(a′, b′), we reach a
contradiction consideringA = X ∩ ball(a, d), B = X ∩ ball(a′, d) (or some connected
parts of them in the case of domains with only connected regions). �

Proof. (B) We have to prove the following equivalence in all the domains:
∃c,r (X = Ball(c, r ))⇐⇒ diam(X) < +∞ ∧ Conx(X) ∧ ∀A(Conx(A) ∧ diam(A) ≤

diam(X)→ ∃B(Conx(B) ∧ diam(B) ≤ diam(A)∧ B ⊂ X∧∀C,D([C] ∩ [X] 6= Ø∧C∩
X = Ø ∧ [D] ∩ [X] 6= Ø∧ D ∩ X = Ø) → ∃x,y,x′,y′(x ∈ [B] ∧ y ∈ [C] ∧ x′ ∈ [B]
∧ y′ ∈ [D] ∧ dist(x, y) = dist(x′, y′))).

(⇒) Given a regionA of diameterl , it suffices to take a ballB of diameterl (or less)
concentric toX. Since the distance of the boundary ofB to a region externally connected
to X is alwaysr – l , the result follows for everyC, D.

(⇐) We proceed by contradiction. LetX be connected with finite diameter. Recall that if
there exists a pointx equidistant to any point in∂(X), X is a sphere with centerx. Assume
that X is not a sphere, i.e., for each pointx of X, there are at least 2 pointsy,z ∈ ∂(X)
such that dist(x, y) 6= dist(x, z).

Let F(x) = maxy,z ∈ ∂(X) (|dist(x, y)−dist(x, z)|) and fix a ∈ X such thatF(a) is
minimum, i.e., for allx ∈ X, F(a) ≤ F(x). Of course,F(a) > 0 since [X] is compact
and is not a sphere. Also, letc,d ∈ ∂(X) be such thatF(a) = |dist(a, c)−dist(a, d)|.
(Again,c,d exist since∂(X) is compact.) Now, choose a regionA with diam(A) < F(a)/2
and fix any B ⊂ X as in the hypothesis. Fixx in B. By construction, there exist 2
regionsC, D with c ∈ C, d ∈ D that are externally connected toX and such that
|dist(x,C)−dist(x,D)| ≥ F(a). Since diam(B) < F(a)/2, for any pointy ∈ B, dist(x,
C)+F(a)/4≥ dist(y, C) ≥ dist(x, C)−F(a)/4. Then, for anyy,z ∈ B, |dist(y, C)−dist(z,
D)| ≥ F(a)− F(a)/2 > 0, a contradiction. �(B)



ZU064-05-FPR rsl˙8009 24 June 2008 21:23

FULL MEREOGEOMETRIES 41

10.5. Proof of Lemma 6. As before, we rely on Tarski (1956a) for the definition of the
between relation BTW. Note that we write Btw(c1, c2, c3) for ‘c1 is betweenc2 andc3’,
which corresponds to Btw(c2, c1, c3) in Tarski’s terminology. Using (DO), (D+), (DPP),
and the results in Verifying the Given Explicit Definitions and Dispensable Primitives
sections, it remains to prove that

(A.1) [[Conv(x)]]α−δ = Conv(X);

(A) [[ ConvH1(x, y)]]α−δ = [[ConvH(x, y)]] = Conv(X) ∧ Y ⊆ X ∧ ¬∃Z(Conv(Z) ∧
Y ⊆ Z ∧ Z ⊂ X).

Proof. (A.1) We prove the following equivalence forConv(x):
∀x,y,z((x,y ∈ X ∧ Btw(z, x, y))→ z ∈ X)⇔ ∀S1,S2,S3,c1,c2,c3,r1,r2,r3(S1 = ball(c1,

r1)∧ S2 = ball(c2, r2)∧ S3 = ball(c3, r3)∧ S1∪ S2 ⊆ X∧ Btw(c3, c1, c2))→ S3∩ X 6= Ø;
the proof of (A) follows trivially.

(⇒) ConsiderS1 = ball(c1, r1), S2 = ball(c2, r2), S3 = ball(c3, r3), S1 ∪ S2 ⊆ X, and
Btw(c3, c1, c2). SinceS1 ∪ S2 ⊆ X, thenc1, c2 ∈ X and, from the hypothesis,c3 ∈ X.
Then,S3 ∩ X 6= Ø.

(⇐) (By contradiction) Suppose that there existx ∈ X, y ∈ X, andz /∈ X such that
Btw(z, x, y). Thus,x 6= z 6= y 6= x. We show that∃x′,y′,z′(Btw(z′, x′, y′) ∧ x′, y′ ∈ X
∧ z′ /∈ [X]). From this, the contradiction follows taking the radius ofS3 to be less than
dist(z′, X).

The only case to consider isz ∈ ∂(X). SinceX is open, there exist 3 congruent ballsSx

= ball(x, r ), Sy = ball(y, r ), andSz = ball(z, r ) such thatSx ⊆ X, Sy ⊆ X, ¬Sz ⊆ [X],
Sx ∩ Sy = Ø, Sx∩ Sz = Ø, andSy ∩ Sz = Ø. Fix a pointz′ in Sz− [X] and calll the line
throughx, y, z andl ′ line throughz′ and parallel tol . Considerx′ ∈ Sx∩ l ′ andy′ ∈ Sy∩ l ′.
SinceSx, Sy, andSz are disjoint congruent balls with aligned centers, from Btw(z, x, y)
we conclude Btw(z′, x′, y′). Finally, fix 3 ballsS1 = ball(x′, r1), S2 = ball(y′, r2), andS3 =
ball(z′, r3) such thatS1 ⊆ X, S2 ⊆ X,¬S3 ⊆ [X], andS1∩ S2 = Ø. This is possible since
X is open andz /∈ [X].

�
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Table of definitions.

C1(x, y) =def ∃z(S(z) ∧ ∀z′(CNC(z′, z)→ (O(z′, x) ∧ O(z′, y))))
C2(x, y) =def ∃z(S∗2(z) ∧ ∀z′(CNC(z′, z)→ (O(z′, x) ∧ O(z′, y))))
C∗2(x, y) =def ∀z∃z′(CG(z′, z) ∧ O(z′, x) ∧ O(z′, y))
C3(x, y) =def ∃z, w(FD3(z) ∧ FD3(w) ∧ P(z, x) ∧ P(w, y) ∧ C∗3(z, w))
C∗3(x, y) =def ∀z(Conj(z, z, x, y))
C∗4(x, y) =def ∀z(CCon(z, x, y))
C5(x, y) =def ∃z, w(FD5(z) ∧ FD5(w) ∧ P5(z, x) ∧ P5(w, y) ∧ C∗5(z, w))
C∗5(x, y) =def ¬∃z(Closer(x, z, y))
CCon1(z, x, y) =def ∃z′(CG(z′, z) ∧ C1(z′, x) ∧ C1(z′, y))
CCon2(c, x, y) =def ∀a, b(LDist2(a, b, x, y)→ ∃z(SCDiam2(z, c) ∧ O(z, a) ∧

O(z, b)))
CG1(x, y) =def ∀z(6SS(z)→ ∃z′(6CG(z, z′) ∧ ∀s, s′((MSP(s, z) ∧ MSP(s′, z′) ∧
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SCG(s, s′))→ ((P(s, x)↔ P(s′, y)) ∧ (P(s, y)↔ P(s′, x)) ∧ (PO(s, x)↔
PO(s′, y)) ∧ (PO(s, y)↔ PO(s′, x))))))

CG∗(x, y) =def FD5(x) ∧ FD5(y) ∧
(x = y ∨
(PO(x, y) ∧ ∃z1, z2(DIF(z1, x, y) ∧ DIF(z2, y, x) ∧ CGs(z1, z2))) ∨
(EC(x, y) ∧ ¬∃z((PP(z, x) ∧ CGs(z, y)) ∨ (PP(z, y) ∧ CGs(z, x)))) ∨
(¬ C(x, y) ∧ CGs(x, y)))

CGs(x, y) =def FD5(x) ∧ FD5(y) ∧ ¬C(x, y) ∧ ∃z1, z2, z3(EC(z2, x) ∧
EC(z2, y) ∧ EC(z1, x) ∧ ¬C(z1, z2) ∧
EC(z3, y) ∧ ¬C(z3, z2) ∧ Eq(z2, z1, z3))

Closer4(z, x, y) =def ∃a(CCon(a, z, x) ∧ ¬CCon(a, z, y))
Compl6(y, x) =def ∀z(C(z, y)↔ ¬IP(z, x))
Conj5(x, y, x′, y′) =def ∃a, b, a′, b′(SR(a) ∧ SR(b) ∧ SR(a′) ∧ SR(b′) ∧

C(a, x) ∧ C(b, y) ∧ C(a′, x′) ∧ C(b′, y′) ∧ EqD∗(a, b, a′, b′) ∧
∀pa, pb((P(pa, a) ∧ P(pb, b) ∧ EqD∗(pa, pb, a, b))→ (C(pa, x) ∧ C(pb, y)) ∧
∀p′a, p′b((P(p′a, a′) ∧ C(p′b, b′) ∧ EqD∗(p′a, p′b, a′, b′))→ (C(p′a, x′) ∧ C(p′b, y′))

Conv(x) =def ∀s1, s2, s3((P(s1, x) ∧ P(s2, x) ∧ BTW(s3, s1, s2))→ O(s3, x))
ConvH1(x, y) =def Conv(x) ∧ P(y, x) ∧ ¬∃z(Conv(z) ∧ P(y, z) ∧ PP(z, x))
DIF(z, x, y) =def ∀w(P(w, z)↔ (P(w, x) ∧ ¬O(w, y)))
EC(x, y) =def C(x, y) ∧ ¬O(x, y)
Eq(z, x, y) =def ¬Closer(z, x, y) ∧ ¬Closer(z, y, x)
EqD(x, y, x′, y′) =def SCG(x, x′) ∧ SCG(y, y′) ∧ ¬P(x, y)
∧ ¬P(y, x) ∧ ¬P(x′, y′) ∧ ¬P(y′, x′) ∧
∃z, w(ID(z, x, y) ∧ ID(w, x′, y′) ∧ SCG(z, w)))

EqD∗(x, y, x′, y′) =def FD5(x) ∧ FD5(y) ∧ FD5(x′) ∧ FD5(y′) ∧
∃z, z′(Eq(x, y, z) ∧ Eq(x′, y′, z′) ∧ q(z, x, z′)
∧ Eq(z′, x′, z)) (in 8α−β for R1and in8α−δ for Rn>1)

EqD∗(x, y, x′, y′) =def (C(x, y) ∧ C(x′, y′)) ∨ ∃z, z′(EC(z, x) ∧
EC(z′, y′) ∧ CG∗(z, z′))) (in 8γ−δ for R1)

FD3(x) =def ∃x′, y, z(SC∗3(x′) ∧ P(x, x′) ∧ ¬Conj(x′, x′, y, z))
FD5(x) =def ∃z(∀x′, x′′((P5(x′, x) ∧ P5(x′′, x))→ Closer(x′, x′′, z)))
IP(x, y) =def P(x, y) ∧ ∀z(C(z, x)→ O(z, y))
LDist2(x, y, x′, y′) =def ∃a(SC∗2(a) ∧ O(a, x) ∧ O(a, y)
∧ ∀a′(CG(a′, a)→ (¬O(a′, x′) ∨ ¬O(a′, y′))))

LEDiam2(x, y) =def SC∗2(y) ∧ ∀a, b((P(a, x) ∧ P(b, x))
→ ∃y′(CG(y′, y) ∧ O(y′, a) ∧ O(y′, b)))

LEDiam3(x, y) =def SR(x) ∧ SR(y) ∧ ∀a, b((P(a, x) ∧ P(b, x))
→ ∃a′, b′(P(a′, y) ∧ P(b′, y) ∧ Conj(a, b, a′, b′)))

MSP(x, y) =def S(x) ∧ P(x, y) ∧ ∀z((S(z) ∧ PP(x, z))→ ¬P(z, y))
O(x, y) =def ∃z(P(z, x) ∧ P(z, y))
P∗(x, y) =def ∀w(C(x, w)→ C(y, w))
P3(x, y) =def ∀z(C∗3(z, x)→ C∗3(z, y))
P∗4(x, y) =def ∀z(C∗3(z, x)→ C∗4(z, y))

P+4 (x, y) =def ∀z, w(CCon(w, z, x)→ CCon(w, z, y))
P5(x, y) =def ∀z(C∗5(z, x)→ C∗5(z, y))
P6(x, y) =def ∀z(C(z, x)→ C(z, y))
PO(x, y) =def O(x, y) ∧ ¬P(x, y) ∧ ¬P(y, x)
PP(x, y) =def P(x, y) ∧ ¬P(y, x)
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S∗2(x) =def SR(x) ∧ ∀y, z((CG(x, y) ∧ PO(x, y) ∧ DIF(z, x, y))→ SR(z))
S3(x) =def FD3(x) ∧ SR(x) ∧ ∀a(LEDiam3(a, x)→
∃b(LEDiam3(b, a) ∧ P(b, x) ∧ ∀c, d(EC(c, x) ∧ EC(d, x))→ (Conj(b, c, b, d)))

SC(x) =def ∀y, z(SUM(x, y, z)→ C(y, z))
SC∗2(x) =def ∀y, z(SUM(x, y, z)→ C∗2(y, z))
SC∗3(x) =def ∀y, z(SUM(x, y, z)→ C∗3(y, z))
SCDiam2(x, y) =def SC∗2(x) ∧ ∀z((P(y, z) ∧ SC∗2(z))→ LEDiam2(x, z))
SCG(x, y) =def S(x) ∧ S(y) ∧ (x = y ∨ ∃z, w(CNC(z, w) ∧ EC(z, x) ∧

EC(z, y) ∧ TPP(x, w) ∧ TPP(y, w))
SR1(x) =def ∀y, z(SUM(x, y, z)→ ∃s(S(s) ∧ O(s, y) ∧ O(s, z) ∧ P(s, x)))
SR6(x) =def ∀y, z, w((SUM(x, y, z) ∧ Compl6(w, x))→
∃v(SC(v) ∧ O(v, y) ∧ O(v, z) ∧ ¬C(v, w))

SUM(z, x, y) =def ∀w(O(w, z)↔ (O(w, x) ∨ O(w, y)))
TPP(x, y) =def PP(x, y) ∧ ∃z(EC(z, x) ∧ EC(z, y))
6CG(x, y) =def 6SS(x) ∧6 SS(y) ∧
∀s(MSP(s, x)→ ∃s′(MSP(s′, y) ∧ SCG(s, s′))) ∧
∀s(MSP(s, y)→ ∃s′(MSP(s′, x) ∧ SCG(s, s′))) ∧
∀s, u, s′, u (MSP(s, x) ∧ MSP(u, x) ∧ MSP(s′, y) ∧ MSP(u′, y)
∧ SCG(s, s′) ∧ SCG(u, u′))→ EqD(s, u, s′, u′)

6SS(x) =def ∀y(P(y, x)→ ∃s(MSP(s, x) ∧ O(s, y)) ∧
∀u, w((MSP(u, x) ∧ MSP(w, x) ∧ u 6= w)→ ¬SCG(u, w))
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