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Abstract

We discuss an approach to a theory of physical
objects and present a logical theory based on a
fundamental distinction between objects and their
substrates, i.e. chunks of matter and regions of
space . The purpose is to establish the basis of a
general ontology of space, matter and physical
objects for the domain of mechanical artifacts. An
extensional mereological framework is assumed
for substrates, whereas physical objects are allowed
to change their spatial and material substrate while
keeping their identity. Besides the parthood
relation, simple self-connected region and
congruence (or sphere) are adopted as primitives
for the description of space. Only three-
dimensional regions are assumed in the domain.
This paper is a revision and slight modification of
[Borgo et al. 1996].

1. Introduction

Many knowledge based systems applied in
the automation of engineering tasks are based on
qualitative models of mechanical artifacts. Such
models are often developed with a specific task in
mind, and therefore only the relevant knowledge
is represented. However, the high costs associated
their development motivate the introduction of
general, task-independent ontologies, suitable to
supporting very basic kinds of reasoning like
those related to space, matter, and time [Neches et
al. 1991]. In this case, it is important to consider a
few simple and intuitive primitives with a good
characterisation of their properties. Following this
approach, we make explicit the ontological
assumptions underlying the primitives and we can
restrict the possible interpretations in such a way
to exclude (some) non-intended models [Guarino
et al. 1994]. The aim of this paper is to introduce
and characterise, by means of logical axioms, the
basic ontological distinctions needed to reason on

physical objects. In our opinion, such distinctions
should account for the following intuitions:

• Physical objects are located in space, can
move across space; when an object moves, it
occupies a different region of space. So the
space occupied by an object is different from
the object itself.

• Most physical objects are made of matter, but
this matter is different from the object itself:
when a gold ring is melted to form a kettle, a
new object is created out of the same matter,
and the previous object is destroyed.

• Some physical objects are immaterial (like a
hole), but still they do not coincide with the
space they occupy [Casati and Varzi 1994].

Our main claim regards the distinction
between objects and their substrates, i.e. the space
they occupy and the matter they are made of. The
reason of this distinction lies in the different
identity criteria of the entities involved. Consider
for instance the gold ring in the example above:
we recognise its concrete existence in a given
situation on the basis of certain properties, like
having a certain form and size, being made of a
certain material, and so on. By verifying the
satisfaction of these properties we are also able to
recognise the same ring  in another situation,
where maybe its spatial location has changed or
even a tiny piece has been lost (Fig 1). On the
other hand, when focusing our attention on the
matter the ring is made of, we shall use different
criteria to recognise the existence of that
particular amount of matter, which will be the
same as long as no piece of it is removed,
independently of any properties regarding shape,
physical integrity and so on.

We are not attempting here a formal
characterisation of identity criteria, which is
notoriously a very difficult problem (see [Wiggins
1980, Simons 1987]) and, due to the general task
we are pursuing, we don’t assume any functional
property. Therefore, in the following we limit
ourselves to the definition of a framework in terms
of admittable spatial-material configurations: that



 is, we describe the mereo-topological and
morphological properties of regions, the
mereological properties of matter and the relations
between regions, matter and objects. This
framework is conceived as a general system where
peculiar identity criteria can be added for specific
demands.

The above examples indicate fundamental
properties of the world that our theory should be
able to deal with, therefore we distinguish our
entities in objects , chunks of matter and regions of
space . These are disjointed sets of entities in our
domain and their relations are characterised by a
set of logical axioms. The result is a rich theory in
terms of axioms and definitions (in the spirit of
[Hayes 1985]), since the main purpose is to
convey meaning; the theory is not therefore
intended to be directly implemented in a
reasoning system.

Considering the problems that a researcher
has to face in finding qualitative models of
mechanical artifacts and the common properties
of space, matter and objects, we sustain that a
general and clear theory of these properties can
constitute a good basis to develop and improve
knowledge representation and reasoning. At the
same time, working in a task-independent theory
can help in comparing and joining different
approaches. This is actually an interesting aim and
it is not clear in general how to face it, if this is
even possible.

In the section 2 we discuss the general
assumptions underlying this theory; in Section 3
we give the mereological framework adopted for
substrates, while in Section 4 we present a set of
axioms for the topology and morphology of
regions; in section 5 we consider the domain of
objects, and discuss the various relations holding
between objects, matter, and space; finally, in the
last section we show some (ontological)
distinctions among physical objects that can be
taken in this framework.

2. General Assumptions

First of all, we clearly distinguish between
physical objects and their substrates.

In the case of physical objects, we limit
ourselves to their properties bound to the spatial-
material configuration, assuming that an object
can be described by the set of its admittable
spatial-material configurations. A particular solid
cube, for instance, may be described by the class
of all (roughly) cube-shaped configurations that
involve the same amount of matter; it is a question
of the particular identity criteria we are interested

in, and so it is outside our present task to state if in
this class of admitted configurations we include
the case where the cube has “lost” a piece,
however thin, and still it is considered to be the
same cube (Fig. 1).

Fig 1. Still the same cube?

To concentrate on the fundamental
ontological properties of substrates, we consider a
simplified world where the classical properties of
space hold but the space itself is not considered as
a set of points. We have in mind a Newtonian
notion of space where regions of space are fixed
entities and they are used to recognise when a
specific chunk of matter has changed its position.
A reason for this distinction between space and
objects comes from the desire to represent
movement: in order to say that something has
moved across space, it is natural to look for
different regions of space occupied by the same
object. Indeed, current AI approaches dealing with
the representation of movement, like [Shanahan
1995] or [Randell and Cohn 1992, Davis 1993]
postulate an ontological distinction between
objects and regions for this purpose.

Our second claim regards a further distinction
between objects and chunks of matter. In space,
there exists a certain quantity of incompressible
matter and this matter is all of one kind.
Moreover, matter can assume different
configurations within space. As explained above,
the reason of this choice lies in the different
identity criteria of the entities involved. Taking
matter into account is a natural way to distinguish
between a material body and a hole, or between an
imaginary boundary dividing two adjacent parts
of a body and a physical boundary marked by
matter discontinuity. As we shall see, we use the
possible spatial configurations of matter to
determine the range of possible states of the sys-
tem: the properties of objects, such as rigidity and
integrity, can be expressed with reference to such
a set of states.

What we propose is to carefully distinguish
among four different subdomains: a set R of
regions of space, a set M of chunks of matter, a set
S of system states, intended as global spatial con-
figurations of the elements of M, and a set OB of
physical objects.



Regions of space can be intended as either
regular self-connected three-dimensional set of
points in a Euclidean space or mereological sums
of a finite number  of such regions. Following
[Randell and Cohn 1992], we do not distinguish
between open and closed regions. A pointless
theory of space is adopted based on the primitives
of parthood, strong connection and either
congruence, taken from [Borgo et al. 1996]. We
will discuss this in sections 3 and 4.

Chunks of matter are either single integral
pieces of matter or finite mereological sums of
such pieces. Only one kind of (incompressible)
material is assumed. The set M of all chunks of
matter is called material system.

Following [Borgo et al. 1996], we assume two
primitive parthood relations for matter and space
respectively, generating two separate mereological
non-complete lattices. A state is seen as a
parthood-preserving homomorphism, which
establishes a relation between the lattices of space
and matter by taking chunks of matter and retur-
ning the region they occupy. Such a
homomorphism represents a possible spatial
configuration of our material system. States are
included in the domain, as current practice in
situation calculus [McCarthy 1968].

Physical objects (or simply objects) are seen
as entities related to space and matter by means of
dependence relations, whose identity criteria are
different from those of space and matter. In fact,
the latter are considered substrates, in the sense
that they have to exist (at least space, usually
matter, too) in order to make possible the
existence of a physical object. Moreover, the
existence of substrates does not depend on the
particular state we consider, while this is the case
of physical objects: for example, if s is the state
corresponding to a (completely) broken glass, it is
plausible to assume that the glass doesn’t exist in
that state, while (its) matter does.

Now we will describe briefly the relations we
assume in our language.

The primitive ternary predicate ‘LOC’ holds
between spatial location, chunk of matter (or
object) and state, the proposition LOCxyz is to be
read “x is the location of y (which is a chunk of
matter or an object) in the state z”. This relation is
extended to allow spatial location as the second
element. Moreover, a similar relation ‘MAT’ is
introduced, which gives the chunk of matter
constituting an object in a particular state, the
proposition MATxyz is to be read “x is the chunk
of matter of the object y in the state z”. Together,
the two relations ‘LOC’ and ‘MAT’ completely
specify the spatio-material behaviour of physical
objects, by giving all their admittable spatial and
material extensions. Once these two relations are

given, then a physical object can be recognised, in
the sense that a particular spatial pattern assumed
by a particular amount of matter can be ascribed
to a particular object. Notice that a given physical
object may have no matter associated in a
particular state. In particular, we define an immate-
rial object as a physical object which never has
matter associated: holes and boundaries are of this
kind (in qualitative models of mechanical artifacts
this variety of combinations is sometimes very
useful).

An important difference between substrates
and physical objects regards their mereological
properties. An extensional parthood relation is
assumed both for regions of space and chunks of
matter, such that they are always identical to the
sum of their parts independently of the particular
state.

For physical objects, on the other hand, the
very notion of “part” becomes more problematic,
since they can lose or acquire parts when the state
of the system changes. We introduce therefore a
notion of contingent part of a physical object
relative to a particular state. Two distinct objects
may happen to have the same contingent parts in a
particular state and therefore coincide in that state,
without being identical.

In conclusion, we model physical objects as
entities depending on spatial and material
substrates, these objects may or may not maintain
their identity when their spatio-material properties
change: our goal is to establish a logical
framework able to state precisely the behaviour of
such properties within a particular qualitative
model.

3. Mereological Framework

We adopt in the following a standard first-
order language with identity. In order to
distinguish the entities of the domain  we assume
four unary predicates R, M, OB and S representing
respectively the subdomains of regions of space,
chunks of matter, physical objects and states.
These are assumed as being mutually exclusive
and covering the whole universe1:

A1. Rx  ∨ Mx  ∨ OBx  ∨ Sx

The two parthood relations for space and
matter postulated in our notion of a material

                                                
1 The symbol     ∨     stands for exclusive disjunction. In the
whole paper, free variables are assumed to be universally
quantified.



system are represented in a rather standard way,
by means of a single binary primitive predicate
‘P’ restricted to hold only between substrates of
the same kind (Pxy means “x is part of y”) :

A2. Pxy → (Mx ∧ My) ∨ (Rx ∧ Ry)
The following axioms A3-A7, equivalent to

Closed Extensional Mereology [Simons 1987,
Varzi 1996], are assumed for ‘P’.

A3. Pxx

A4. Pxy ∧ Pyx → x=y

A5. Pxy ∧ Pyz → Pxz
In the two following axioms we assume that

the variables x, y and z vary on an homogeneous
range:

A6. ((Mx ∧ My) ∨ (Rx ∧ Ry)) → ∃z(z=x+y)

A7. ((Mx ∨ Rx) ∧ ¬Pxy) → ∃z(z=x-y)
where the following definitions hold:

D1. PPxy =df Pxy ∧ ¬x=y (Proper part)

D2. Oxy =df ∃z(Pzx ∧ Pzy) (Overlap)

D3. x+y =df ιz∀w(Owz ↔ (Owx ∨ Owy)) (Sum)2

D4. x–y =df ιz∀w(Pwz ↔ (Pwx ∧ ¬Owy))
(Difference)

D5. x×y =df ιz∀w(Pwz ↔ (Pwx ∧ Pwy)) (Product)

Notice that, due to A2, the parthood relation
is only defined for substrates. In section 5 we shall
see how the notion of contingent parthood is
defined for physical objects.

It is easy to prove the followings:

T1. (¬Pxy ∧ (Mx ∨ Rx)) → ∃z(Pzx ∧ ¬Ozy)
(A2; A3; A7; D4)

(strong remainder principle)

T2. Oxy → ∃z(z=x×y) (A2; A6; A7; D5)
(existence of product)

4. Topology and Morphology
of Space

                                                
2 The ‘ι’ operator appearing in D3-D5 may be assumed as
part of the logical vocabulary or defined contextually à la
Russel: ψ(ιxφ) =df ∃y(∀x(φ  ↔ x=y) ∧ ψ(y))

4.1 Topological Level

We introduce the primitive of simple region
(s-region), or region "all in one piece", defined
only for regions of space and denoted by the
predicate ‘SR’, to account for topological
properties. We could introduce the common
relation of (point-)connection instead of ‘SR’ but
we follow this approach to make possible a simple
and natural interpretation of our primitives, and at
the same time to characterise our intended models
as best as possible in order to avoid ambiguous
interpretations. In particular, if we consider the
case of the RCC approach [Randell and Cohn
1992], where point-connection (‘C’) is taken as
the only primitive relation, the interpretation of
the theory is not clear because the authors avoid
constraining some fundamental properties of their
models, like the dimension of space, and there is
no unique intended interpretation for their ‘C’
primitive.

The intuition underlying the choice of ‘SR’
as primitive is bound to the notion of surface
connection, and it is aimed at “explaining”
connection in common-sense terms. Roughly, we
want to capture the property of an object which is
not made out of separated parts. We can state this
considering only locations. For instance consider
the (location of the) top part and the (location of
the) bottom part of a piece of wood. There is a
surface “in the middle” corresponding to the
hypothetical cut of the wood. In this case, we say
that the two parts are surface-connected. When this
happens, for every hypothetical or real separation
of the region considered, we say that that region is
a simple region. Generally speaking, a simple
region can be, in everyday intuition, the location
of a single thing. This does not seem the case of
line-connected or point-connected regions, since
no "drop" of matter would keep the corresponding
material object together. The notion of surface-
connection is therefore bound to that of physical
connection. Then, within this structure, it is easy to
make a distinction between the case of two objects
touching each other and the very same objects
glued together.

After this informal introduction, we briefly
present in the following the axioms and
definitions characterising the topological level of
our theory.

Let us first introduce some preliminary
definitions:
D6. POxy =df Oxy ∧ ¬Pxy ∧ ¬Pyx

(proper overlap)



D7. IPxy =df Rx ∧ PPxy ∧ ∀z ((SRz ∧ POzx) →
Oz(y-x))  (interior part)

D8. MCPxy =df Pxy ∧ SRx ∧ ¬∃z (SRz ∧ PPxz ∧
Pzy) (maximally connected part)

Notice that, according to D7, a region being l-
or p-connected with a region external to x must be
considered as an interior part of x. ‘IP’ is
therefore different from the relation ‘NTPP’
(non-tangential proper part) defined in the RCC
theory. The following axioms are assumed:

A8. SRx → Rx

A9. (SRx ∧ x=y+z) → ∃u (SRu  ∧ Ouy  ∧ Ouz  ∧
IPux)

A10. Rx → ∃y MCPyx

A11. Rx → ∃y (SRy ∧ IPxy)
A8 constrains SR to regions of space. A9

captures the idea of intimate  connection between
two arbitrary halves of an s-region (Fig. 2 shows
that point-connection is not enough to obtain a
simple region). A10 and A11 make some minimal
assumptions regarding the structure of space:
every region of space has a maximally connected
part and, given a region of space, there always
exists a simple region of whose the first is an
interior part.

y        

u

z

w

Fig 2. Why y+z cannot be an s-region.

By means of SR, the relation of strong
connection between spatial regions can be defined
as follows:

D9.  SCxy =df ∃uv (Pux ∧ Pvy ∧ SR(u+v))
(strong connection)

Due to space limitations, we do not discuss
here the consequences of the axioms presented
above (for a detailed discussion of the
axiomatization of space see [Borgo et al. 1996]);
it will suffice to remark that the notion of s-con-

nection turns out to be quite well characterised.
However, we are currently not able to define l-
connection and p-connection at the topological
level in a satisfactory way, that is, in such a way
that some unpleasant non-intended models are
excluded.

Here we list some theorems which follow
from the axiomatization:

T3. IPxy ∧ Pyz → IPxz (A5; D7)

T4. Pxy ∧ IPyz → IPxz (A5; D7)

T5. IPxy ∧ IPxz → IPx(y×z) (D5; D7)

T6. IPxz ∧ IPyz → IP(x+y)z (D3; D7)

T7. SRx ↔ MCPxx (D8)

T8. (Rx ∧ ¬SRx) → ∃y(MCPyx ∧ PPyx)
(A11; T7; D8)

T9. Rx → ∃y(SRy ∧ IPyx) (A10; T3; T8; D8)

T10. IPxy → ∃z(IPzy ∧ PPxz)
(A6; A7; T3; T6; T9)

T11. SRx → ∀yz(y+z=x → SCyz) (A10; D9)

T12. Rx → (Pxy ↔ ∀z(SCzx → SCzy))
(A5; A7; T1; T3; T9)

T13. Rx → (x=y ↔ ∀z(SCzx ↔ SCzy)) (A4; T12)

4.2 Morphological Level
The expressivity problems bound to the use

of mereological and topological primitives alone
is overcome by the introduction of a
morphological primitive. We are forced to adopt it
in any case if we want to speak of shapes, holes,
edges and various morphological features. A
“convex hull” primitive has been used with some
success within the RCC theory, but it is probably
too weak a notion for our task. A ternary
alignment relation has been used in [Aurnague
and Vieu 1993], but it commits to the notion of
point.

Our approach makes use of simple intuition
but it requires a rather new geometrical account of
space. We have tried a couple of different
axiomatizations: in the first case we assume a
congruence relation  between regions, denoted
with ‘CG’, as primitive relation; in the latter we
assume a primitive predicate, denoted with ‘SPH’,
holding for spherical regions. In both cases the
primitives are very intuitive and clear, but their
expressivity seems different and we are presently
comparing the two sets of axioms to make clear
the advantages and drawbacks of the resulting



systems. We show here only the general guidelines
we followed to axiomatize this primitives because
the full comparison of the axiomatizations would
take too much space to fit in this paper.

In the case of classical geometry based on the
notions of points, segments and angles, the
congruent relation was first axiomatized by Hil-
bert [Hilbert 1902], with various simplifications
thereafter. In order to take advantage from such
work, we need an analogous of points in terms of
regions. This analogy has been brilliantly pursued
in [Tarski 1929], where a (second order)
axiomatic theory taking spheres and parts as
primitives was shown to be equivalent to classical
geometry. Our strategy to axiomatize ‘CG’ is
therefore the following: i) define a sphere in terms
of ‘P’, ‘SR’ and ‘CG’; ii) adopt Tarski’s defi-
nitions related to spheres; iii) reconstruct standard
axioms for congruence by exploiting the analogy
between: a) points and spheres; b) segments and
sums of two non-concentric spheres; c) triangles
and sums of three non-concentric, non-aligned
spheres. The result will be a first order theory of
congruence between regions.

The crucial step here is the definition of a
sphere in terms of ‘P’, ‘SR’ and ‘CG’, that makes
it possible to link Tarski’s mereo-morphological
theory with our mereo-topological theory.

Fig 3. These regions are not spheres

D10. SPHx =df SRx ∧ ∀y(CGxy ∧ POxy →
SR(x-y)) (sphere)

It is easy to see that only spherical regions
satisfy D10 (Fig. 3), provided that enough regions

congruent to the given one exist. We force this
condition through the axiomatization.

It seems to us that the notion of sphere is
itself very clear and natural from an intuitive point
of view. There are some advantages considering
‘SPH’ as a primitive predicate and it is even
possible to define ‘SR’ using only ‘P’ and
‘SPH’. Within this second approach our strategy
to axiomatize ‘SPH’ is the following: i) adopt
Tarski’s definitions related to spheres; ii) define a
notion of alignment for three spheres;  iii) give a
set of axioms to constrain the interpretations of all
these definitions; iv) reconstruct the Euclidean
axiomatization  of three-dimensional space based
on points using axioms based on spheres.

In both cases, the system is enriched with the
predicates  ‘CG’ and ‘SPH’. We are now in the
position to define l- and p-connection with the
help of spheres, and then the usual notion of
connection (note that SPHx implies Rx):

D11. LCxy =df  ¬SCxy ∧ ∃z(SPHz ∧ Ozx ∧ Ozy ∧
SR(z-x) ∧ SR(z-y) ∧ ¬SR(z-(x+y)))

(l-connection)
In the following we use the binary relation

‘CNC’ which is defined and holds between
concentric spheres:

D12. PCxy =df ¬SCxy ∧ ¬LCxy ∧ ∃z(SPHz ∧
∀u(CNCuz  → (Oux ∧ Ouy))) (p-connection)

D13. Cxy =df SCxy ∨ LCxy ∨ PCxy (connection)

We can easily state when a region is convex.
Note that the ternary relation BTWxyz is defined
and holds when x, y, z are spheres and (the center
of) x is between (the centers of) y and z.

D14. CONVx =df  (P(u+v)x ∧ CGuv ∧ CGuw ∧
BTWwuv) → Pwx (convex region)

5. Matter and Physical Objects

Having stated the general characterisation of
our space, we go on to the axioms for chunks of
matter and physical objects. Two primitives are
introduced: ‘LOC’ gives the spatial extension
(exact location) of an individual at a particular
state, ‘MAT’ gives its material extension at the
state specified. The domain of ‘LOC’ is extended
to include also regions, assuming that, for any
state, the location of a region coincides with the
region itself [Casati and Varzi 1996]. The
following axioms clarify the domain of these
relations:

A12. LOCrxs → Rr ∧ (OBx ∨ Mx ∨ Rx) ∧ Ss



A13. MATmxs → Mm ∧ (OBx ∨ Mx) ∧ Ss

A14. Rx ↔ LOCxxs

A15. Mx ↔ MATxxs

As discussed in Section 2, we assume that an
individual exists (in the ontological sense) in a
state if it has a location in that state (D15). A14
and A16 make sure that regions and pieces of
matter always exist; A17 states that given an object
there is at least a state in which that object exists.
Moreover, A16 and A17 express, respectively, the
ontological dependence between matter and space
and between physical objects and space.

D15. EXxs =df ∃r LOCrxs

A16. (Mx ∧ Ss) → EXxs

A17. OBx → ∃s EXxs

The following axioms guarantee that: i)
‘LOC’ denotes a function from M to R with
respect to the parameter s (A18); ii) such a
function is injective (A19); and iii) it is an
homomorphism between M and R preserving the
parthood relation ‘P’ (A20). A21 shows how the
notion of state is bound to such homomorphism.

A18. LOCr1xs ∧ LOCr2xs → r1=r2

A19. Mx1 ∧ Mx2 ∧ LOCrx1s ∧ LOCrx2s
→ x1=x2

A20. Mx1 ∧ Mx2 ∧ LOCr1x1s ∧ LOCr2x2s
→ (Px1x2 ↔ Pr1r2)

A21. (LOCrms1 ∧ LOCrms2) → s1=s2

Note that for regions of space it is possible to
infer a proposition corresponding to A19, but this
is not possible for objects since two different
objects can be colocalized (for instance a nail and
the hole where it is driven).

A22 states that, analogously to ‘LOC’,
‘MAT’ denotes a function from OB to R  with
respect to the parameter s. We also assume that, in
the case of physical objects, their spatial location
coincides with the location of the matter they are

made of (A23). This last assumption may be
removed if we allow for "mixed" objects (i.e., both
material and immaterial), such that the region they
occupy is larger than the region occupied by their
matter; we shall not consider such cases here,
however they could be interesting in a qualitative
model of mechanical artifacts.

A22. MATm1xs ∧ MATm2xs → m1=m2

A23. LOCrxs ∧ MATmxs → LOCrms

6. Ontological Distinctions Among
Physical Objects

The ontological theory developed so far turns
out to be quite powerful, allowing us to establish –
in a rigorous way – useful distinctions within our
domain. We give here a preliminary account of
some of these distinctions.

6.1 General Properties
First, it is useful to distinguish between

material and immaterial objects (denoted
respectively with ‘MO’ and ‘IO’) on the basis of
the presence or absence of a material substrate in
any state where the object exists:

D16. MOx =df OBx ∧ (EXxs → ∃m MATmxs )
(material object)

D17. IOx =df OBx ∧ (EXxs → ¬∃m MATmxs )
(immaterial object)

We define then the notion of contingent part
for an object in a particular state as follows. Notice
that, due to A23, we exclude the case of an
immaterial object being part of a material object,
and vice-versa. Objects being contingent parts of
another object in any state are called essential
parts of that object.

D18. CPxys =df ((IOx ∧ IOy) ∨ (MOx ∧ MOy)) ∧
LOCuxs ∧ LOCvys ∧ Puv

(contingent part)

D19. ESPxy =df (IOy ∨ MOy) ∧ EXys →  CPxys 
(essential part)

We say that two objects coincide in a state if
they have the same contingent parts in that state.
Notice that two objects can be constantly



 coincident in all states without being identical:

D20. CCDxys =df ∀z (CPzxs ↔ CPzys)
(coincidence)

Finally, the notion of rigidity for physical
objects can be easily defined as follows:

D21. RIGx =df (IOx ∨ MOx) ∧ (LOCuxs1 ∧
LOCvxs2 → CGuv) (x is a rigid object)

6.2 Boundaries and Granularity
Boundaries are introduced in our framework

in such a way to avoid relying on their classical
mathematical definition. We adopt a definition
more akin to common-sense intuition, where
surfaces and edges are thought of as concrete
entities, and granularity considerations are
invoked. We can easily introduce a notion of
granularity within our system by fixing a
particular sphere g, and defining a granule of
granularity g as follows:

D22. Gxg =df SPHg ∧ CGxg (x is a granule)

PHYSICAL BOUNDARY SURFACEPHYSICAL BODY

granularity

Fig 4. Boundary and surface of a physical body.

Now we can "approximate" the mathematical
notion of the boundary of a region by means of a
suitably thin region overlapping the "real"
boundary (Fig. 4)

 D23. SBxyg =df Rx ∧ Ry ∧ ∀z (Pzx ↔ ∀w (Pwz
→ ∃u (Gug   ∧ Ouw ∧ POuy)))

(x is the spatial boundary of y wrt g)
In the case of physical objects, boundaries are

not intended as regions, but as immaterial objects
always overlapping the "real boundary" as the state
changes. They are called in this case physical
boundaries.

D24. PBxyg =df ∀s(EXys ↔ EXxs) ∧ IOx ∧ OBy
∧ ((LOCuxs ∧ LOCvys) → SBuvg)

(x is the physical boundary of y wrt g)
Now the notion of the surface  (or "skin") of a

physical object can be defined as follows:

D25. SURFxyg =df ∀s(EXys ↔ EXxs) ∧ ESPxy ∧
((LOCuxs ∧ LOCvys ∧ SBwvg) → u=v×w)

(x is the surface of y wrt g)

Many other useful distinctions can be made,
in particular we are able to distinguish between so-
called "fiat" and "bona-fide" boundaries
depending on the presence of matter discontinuity
[Smith 1994], and between contact and material
connection among physical bodies on the basis of
the morphological properties of the boundary
between them, at a given granularity.

7. Conclusion

We have presented a general axiomatic system
in first order logic aimed to give a framework to
develop qualitative models of mechanical artifacts.
The system is adapted to describe a good variety
of objects and at the same time it constrains the
properties of the substrate, namely space and
matter.

Further developments can be made to enrich
the theory so that it can deal with compressible
matter and with matter of different kinds. We
would like to improve the temporal aspects of this
approach and generalise the notion of object to
include mixed objects, i.e. objects which have both
material and immaterial parts such as the sum of a
glass and its hole (the part which can be filled up).
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