MODAL LOGIC 2.2 — SENTENTIAL MODAL LOGIC: APPLICATIONS LOA 12/5/3

Achille C. Varzi

1. Introduction

• Three interpretations of \Box (and consequently of \diamondsuit):				
— Deontic				
$\Box A = $ It ought to be the case that A	(often written OA)			
— Epistemic				
$\Box A =$ The agent, <i>x</i> , believes that <i>A</i>	(often written BA)			
$\Box A =$ The agent, <i>x</i> , knows that <i>A</i>	(often written KA)			
— Temporal				
$\Box A =$ It will always be the case that A	(often written GA)			
$\Box A =$ It has always been the case that A	(often written HA)			

2. Deontic interpretation of modalities

• Basic normal system of deontic logic is KD (also known as D^*)

D $\Box A \diamond A$ (*'Ought' implies 'can'*)

• \Box is often written O (for <u>O</u>bligatory) and \Diamond (i.e., $\neg \Box \neg$) is written P (for <u>P</u>ermissible). So:

D OA PA (*'Ought' implies 'can'*)

Of course we don't want

T OA A ('Ought' implies 'is')

• FACT: the following are equivalent to **D** in any K-system:

OD	¬O(A	¬A)	(No impossible obligation)
OD*	¬(OA	$O \neg A)$	(No incompatible obligations)

Intuitively, these principles express different thoughts, so their equivalence is a <u>defect</u> of any K-system, hence of any modal logic which admits of a Kripke-style semantics.

— In other words, to avoid this result we must go "below *K*", hence work with a weaker Montague-style semantics.

3. Deontic semantics à la Kripke

•	Intuitive	interpretation	of the	accessibility	relation:
---	-----------	----------------	--------	---------------	-----------

R is <u>deontically admissible</u> from the point of view of

Thus:

 $\stackrel{\#}{\models} OA \qquad \stackrel{\#}{\models} A \text{ for every such that } R$ A is true in every deontically admissible world It ought to be the case that A

• Equivalently:

 $\{: R\}$ = the proposition that represents the standards of obligation for the world.

Thus:

 $\stackrel{\text{\tiny def}}{\models} OA \qquad \stackrel{\text{\tiny def}}{\models} A \text{ for every such that } R$ $\{ : R \} \{ : \stackrel{\text{\tiny def}}{\models} A \}$ $\{ : R \} ||A||^{\mathcal{M}}$

the proposition expressed by A is entailed by the standard of obligation for .

- Recall that **D** corresponds to the conditio0n that R be <u>serial</u>: (R).
 - Obligations should be <u>non-vacuous</u>. [If $R=\emptyset$, then $\models^{\mathscr{U}} OA$ vacuously.]
 - There may be more than one deontically accessible world, due to <u>non-deontic facts</u>.
 - If R , then need not be <u>perfect</u>: there may be such that R (i.e., the standards of obligation for may be different from those of):

4. Looking for extensions (*KD* systems)

5. Problems with these theories (all KD systems)

- There are two sorts of problems:
 - Correctness
 - Adequacy
- <u>Correctness</u>: two problems
 - 1) Obligations always exist (however trivial they may be)

 $\vdash_{KD} O(A \neg A)$

Thus: There exists no world where we are absolutely free

2) Two important principles become indistinguishable

 $\begin{array}{c|c} & & & & \\ &$

Adequacy:

- Cannot express conditional obligations

If <u>you cough</u>, then <u>you ought to apologize</u> | | | A B

= conditional obligation of B given A, written O(B/A).

Two only options:

(<i>a</i>)	O(B/A)	= _{df}	A OB	This is T whenever A is F If <u>the earth is flat</u> , then you ought to apologize.
(b)	O(B/A)	= _{df}	O(A B)	This is T whenever $O \neg A$ or OB is also T If <u>you steal books</u> , then you ought to eat pizza. If you cough, then <u>you ought to pay taxes</u> .

— Other problem: Chisholm's paradox:

- (i) John ought to go to help his neighbors
- (ii) If John is going to help his neighbors, he ought to tell them he is going.
- (iii) If John is not going to help his neighbors, he ought not to tell them he is going.
- (iv) John does not go to help his neighbors.

(i)–(iii) seem a reasonable and consistent set of requirements. Yet the fact that John does not go to help his neighbors, i.e., (iv), is enough to yield a contradiction. Formally:

(1)	OH	given
(2)	O(H T)	given
(3)	- O-	given
(4)	¬	given
(5)	O(H T) (OH OT)	Κ
(6)	OT	(1'), (2'), (5), RPL
(7)	0¬	(3'), (4'), RPL
(8)	$OT O \neg$	(6), (7), RPL
(9)	$\neg (OT O\neg T)$	Equivalent to D
(10)		(8), (9), RPL

— The alternative symbolization of (ii) following (*a*):

(2') *H* O*T*

avoids the problem, but at the price of making (ii) a logical consequence of (iv) (by RPL).

— Similarly, the alternative symbolization of (iii) following (b)

(3') O(¬ ¬)

avoids the problem, but at the price of making (iii) a logical consequence of (i) via the theorems

(5')	H (_ _)	PL
(6')	OH	O(¬	¬)	(5'), RE

— So:

either O(/) must be assumed as a primitive or O(/) is definable in terms of some other kind of conditional

6. A weaker system

• *KD* could also be axiomatized as:

$$\mathbf{RM} \quad \frac{\mathbf{A} \quad \mathbf{B}}{\mathbf{OA} \quad \mathbf{OB}}$$
$$\mathbf{OD} \quad \neg \mathbf{O}(\mathbf{A} \quad \neg \mathbf{A})$$
$$\mathbf{N} \quad \mathbf{O}(\mathbf{A} \quad \neg \mathbf{A})$$
$$\mathbf{C} \quad (\mathbf{OA} \quad \mathbf{OB}) \quad \mathbf{O}(\mathbf{A} \quad \mathbf{B})$$

- By correctness problem 1) ("obligations always exist"), we want to get rid of N
 - But this is a K- theorem.
 - This means we need a system weaker than K, hence not complete with respect to Kripke models.
 - We need minimal models
- By correctness problem 2), we must also get rid of the equivalence

 $\neg O(A \neg A) - \neg (OA O \neg A)$

— But this is provable even without N

1.	$(OA O \neg A) O(A \neg A)$	С
2.	$\neg O(A \neg A)$	D
3.	$\neg (OA O \neg A)$	1,2 PL

- So we must also get rid of **C** or **OD**.
- But **OD** is OK, so it is **C** that must go.
- The resulting system $D = \mathbf{RM} + \mathbf{D}$ is <u>not</u> normal (= not a *K* system).
- \bullet *D* is determined by the class of minimal models such that
 - 1) if X Y N, then X N and Y N (supplemented)
 - 2) Ø N

7. Even weaker?

- There are problems with *D*, too.
- <u>Ross paradox</u> (from Alf Ross, 1941).
 - **RM** implies that

 $\vdash_{D} PA = P(A B).$

1.	$\neg (A B) \neg A$	PL
2.	$O \neg (A B) O \neg A$	1, RM
3.	$\neg O \neg A \neg O \neg (A \ B)$	2, PL
4.	PA P(A B).	DfP

But this is counterintuitive:

Peter may drink water / Peter may drink either water or whiskey

— In fact, it seems natural to suppose that

Peter may drink either water or whiskeyPeter may drink water and he may drink whiskeyThis corresponds to the following, which is not a theorem of D:

P(A B) (PA PB)

- Åkvist puzzle.
 - Consider the epistemic operator Peter knows that, written K. Since knowledge implies truth,
 - ⊢ KA

RM implies that

 $\vdash_D OKA O$

— But this is counterintuitive:

Peter ought to know that there is a fire / There ought to be a fire

• Conclusion: *D* is also too strong...

8. Epistemic interpretation of modalities

• Starting point:

- \Box as a belief operator, written **B**

BA $=_{df}$ the agent, x, believes that A

- Alternative notation: B(A,x), convenient for first-order or multi-agent extensions (where we may want to quantify over agents)
- A lot depends on what we mean by "believes"
 - implicit vs explicit
 - persuasion vs opinion
 - etc.
- **KD45** = the logic of <u>full belief</u>

D	BA	$\neg B \neg A$	(coherence)
4	BA	BBA	(positive introspection)
5	$\neg BA$	$B \neg BA$	(negative introspection)

• <u>Semantics</u>

- possible worlds = possible representations (consistent and complete) of reality
- R iff is epistemically possible (= conceivable) for the agent in
- $\models BA$ x thinks that is <u>ungiven ungiven by</u> (=a constant element of all of representations)
- Determination
 - R is serial, transitive, euclidean. So, standard situation looks like this:

- Note:

not ⊨ BA	А	so \mathbf{T} fails: beliefs need not be true
⊨ B(BA	A)	so U holds: beliefs are believed to be true

- <u>Problems</u>
 - **RK** implies closure of beliefs under logical implication full (<u>implicit?</u>) belief
 To avoid this, one must go for <u>minimal</u> models (<u>non-normal</u> systems)
 - Then we have the following:

^ℳ ¬B(¬ A)	whenever	Ν
^ℳ B(¬A)	whenever	ØN

3. Adding Knowledge

• Notation:

KA $=_{df}$ the agent, x, knows that A

• This can be defined in terms of B if we accept the principle that *knowledge is true belief*:

DfK KA BA A.

- But one might prefer to have DfK as a <u>theorem</u>.
 - This can be obtained in the mixed system **Kmix** defined by:

D	$BA \neg B \neg A$	(coherence)
ТК	KA A	
?1	KA BA	
4K	KA KKA	(introspection)
?2	BA KBA	(introspection)
?3	$\neg BA K \neg BA$	(introspection)
?4	(BA A) KA	

• Note: the rule **RN** for K is derivable in **Kmix**:

$$\mathbf{RN} \quad \underbrace{\models_{\mathrm{Kmix}}}_{\mathsf{Kmix}} A$$
$$\models_{\mathrm{Kmix}} \mathsf{K}A$$

- This means omniscience
- Again, to avoid it one must go for <u>minimal</u> models (<u>non-normal</u> systems)
- ♦ Theorems:

 $\begin{matrix} \vdash_{\mathrm{Kmix}} \mathrm{K}A & \mathrm{B}A & A & (=\mathrm{DfK}) \\ \vdash_{\mathrm{Kmix}} \mathrm{B}A & \mathrm{BK}A & \\ \vdash_{\mathrm{Kmix}} \mathrm{B}A & \neg \mathrm{K} \neg \mathrm{K}A & \end{matrix}$

- So, the belief operator B is also definable in terms of K.
 - Axiomatization using only K?
 - option 1 is simply to replace B by $\neg K \neg K$ in **Kmix**
 - option 2 is to give a better axiomatization of K:

TKAA4KAKKA5⁻(BAA)KAA(BAKA)A(
$$\neg$$
K \neg KAKA)A(\Diamond \Box A \Box A)

◆ <u>Fact</u>: **KD45** is equivalent to **KT45**⁻ upon the obvious translations:

 $BA \neg K \neg KA$ or KA BA A

• Other theories

 KT4G is the same as KT4 + D-for-belief Proof:

1.	$\neg K \neg F$	KA	$K \neg K \neg A$	axiom G
2.	$\neg K \neg F$	KA	$\neg \neg K \neg K \neg A$	DN
3.	BA	¬ B-	$\neg A$	subst.

— Note: **KT4G** is the same system as **Kmix**, but with **?4** replaced by

BA BKA Clearly, **KT45**⁻ | **KT4G** But also, **KT4G** | **KT45**⁻ | | S4.2 S4.4

2. **KT5** is not good if BA $\neg K \neg KA$

For otherwise

1.	$\neg K \neg \underline{\neg}$	$\underline{A} \mathbf{K} \neg \mathbf{K} \neg \underline{\neg A}$	axiom 5	
2.	$\neg KA$	$K \neg KA$	DN	
3.	$\neg KA$	$\neg \neg K \neg KA$	DN	
4.	$\neg KA$	$\neg BA$	DfB	
5.	BA	KA	PL	unacceptable

10. Temporal logic

٠	Modalities:				
			FA	Α	
	FA	it will sometime be the case that A			
	GA	it will always be the case that A			
		$= \neg F \neg A$			
			Α	PA	
	PA	it <u>has sometime</u> be the case that A			
	HA	it <u>has always</u> be the case that A			
		$= \neg P \neg A$			

• Minimal tense logic \mathbf{K}_{t}

— Axioms:

	Sys	tem K for G
+	Sys	tem K for H
+	А	GPA
+	А	HFA

— Theorems:

F	PGA	А	
F	FHA	А	

1.	$\neg A GP \neg A$	ax
2.	$\neg GP \neg A = A$	PL
3.	$F \neg P \neg A = A$	dfF
4.	FHA A	dfH

- More generally:

⊦_{kt} A ⊦_{kt} A*, where A* is the mirror image of A (replace G/H and F/P)

- This means symmetry past/future

• Semantics:

- Note: a <u>multimodal</u> system
- in general: one R for each modality

• Determination: <u>all standard models</u>

- provided R_{G} $R_{\rm H}$
- alternatively: same *R* in two directions (the direction of time)

11. Temporal logic (linear extensions)

• Basic linear system **CL** (Cocchiarella):

$\mathbf{K}_{\mathbf{t}} + 4 \diamondsuit$	FFA FA ⊢PPA PA	future transitivity past transitivity		
RL	(FA FB) (F(A B) F(A FB) F(FA))	right linearity		
LL	(PA PB) (P(A B) P(A PB) P(PA))	left linearity		
 Semantics: <i>R</i> m transitive 	ust be:			
— right linear:	R & R = or R or R			
— left linear:	R & R = or R or R			
• System SL: nor	n-ending time (Dana Scott)			
$\mathbf{CL} + \mathbf{D}$	GA FA	seriality		
	HA PA	"		
◆ System PL : <u>dense</u> time (Prior)				
$SL + 4 \diamondsuit_{c}$	FA FFA R	(R & R)		
	⊢ PA PPA			
• System \mathbf{PC}_k : <u>circular</u> time (Prior)				
$\mathbf{K}_{\mathbf{t}} + 4$	FFA FA			
	GA A			
	GA HA			

12. Temporal logic (branching extensions)

• System **CR** (Cocchiarella)

 $\mathbf{K}_{\mathbf{t}} + \mathbf{4}$ (= **CL** minus linearity)

- System $\mathbf{K}_{\mathbf{b}}$ (Rescher + Urquhart)
 - **CR** + **LL** (= branching admitted only in the future) symmetry P/F fails