1. Introduction

- Three interpretations of \square (and consequently of \diamond):
- Deontic
$\square \mathrm{A}=\mathrm{It}$ ought to be the case that $A \quad$ (often written OA)
- Epistemic
$\square \mathrm{A}=$ The agent, x, believes that A
(often written BA)
$\square \mathrm{A}=$ The agent, x, knows that A
(often written KA)
- Temporal
$\square \mathrm{A}=\mathrm{It}$ will always be the case that A
$\square \mathrm{A}=\mathrm{It}$ has always been the case that A
(often written GA)
(often written HA)

2. Deontic interpretation of modalities

- Basic normal system of deontic logic is $K D$ (also known as D^{*})

D
$\square \mathrm{A} \rightarrow \diamond \mathrm{A}$
('Ought' implies 'can')

- \square is often written O (for Obligatory) and \diamond (i.e., $\neg \square \neg$) is written P (for Permissible). So:
D
$\mathrm{OA} \rightarrow \mathrm{PA}$
('Ought' implies 'can')

Of course we don't want
T OA $\rightarrow \mathrm{A} \quad$ ('Ought' implies 'is')

- FACT: the following are equivalent to \mathbf{D} in any K-system:

OD $\quad \neg \mathrm{O}(\mathrm{A} \wedge \neg \mathrm{A}) \quad$ (No impossible obligation)
OD* $\quad \neg(\mathrm{OA} \wedge \mathrm{O} \neg \mathrm{A}) \quad$ (No incompatible obligations)

- Intuitively, these principles express different thoughts, so their equivalence is a defect of any Ksystem, hence of any modal logic which admits of a Kripke-style semantics.
- In other words, to avoid this result we must go "below K ", hence work with a weaker Montague-style semantics.

3. Deontic semantics à la Kripke

- Intuitive interpretation of the accessibility relation:
$\alpha \mathrm{R} \beta \quad \Leftrightarrow \quad \beta$ is deontically admissible from the point of view of α
Thus:

$$
\begin{aligned}
\bar{F}_{\alpha}^{\prime \prime} O A & \Leftrightarrow \frac{\bar{K}_{\beta}^{\prime \prime}}{} \mathrm{A} \text { for every } \beta \text { such that } \alpha \mathrm{R} \beta \\
& \Leftrightarrow \mathrm{~A} \text { is true in every deontically admissible world } \\
& \Leftrightarrow \text { It ought to be the case that } \mathrm{A}
\end{aligned}
$$

- Equivalently:
$\{\beta: \alpha R \beta\}=$ the proposition that represents the standards of obligation for the world α.
Thus:

$$
\begin{aligned}
\stackrel{F}{\alpha}_{\prime \prime \prime} O A & \Leftrightarrow \frac{\mathscr{M}_{\bar{\beta}}^{\prime \prime}}{} A \text { for every } \beta \text { such that } \alpha \mathrm{R} \beta \\
& \Leftrightarrow\{\beta: \alpha \mathrm{R} \beta\} \subseteq\left\{\beta: \mathscr{\mu}_{\beta}^{\prime \prime} \mathrm{A}\right\} \\
& \Leftrightarrow\{\beta: \alpha \mathrm{R} \beta\} \subseteq\|\mathrm{A}\|^{\prime \prime \prime} \\
& \Leftrightarrow \text { the proposition expressed by } A \text { is entailed by the standard of obligation for } \alpha .
\end{aligned}
$$

- Recall that \mathbf{D} corresponds to the conditio0n that R be serial: $\forall \alpha \exists \beta(\alpha \mathrm{R} \beta)$.
- Obligations should be non-vacuous. [If $\mathrm{R}=\varnothing$, then $\stackrel{\mu}{\alpha}_{\stackrel{\prime \prime}{\prime}} \mathrm{OA}$ vacuously.]
- There may be more than one deontically accessible world, due to non-deontic facts.
- If $\alpha R \beta$, then β need not be perfect: there may be $\gamma \neq \beta$ such that $\beta \mathrm{R} \gamma$ (i.e., the standards of obligation for β may be different from those of α):

4. Looking for extensions (KD systems)

T $\quad \mathrm{OA} \rightarrow \mathrm{A}$
Every obligation is realized
\mathbf{x} inacceptable
B $\quad \mathrm{A} \rightarrow$ OPA
$4 \quad \mathrm{OA} \rightarrow \mathrm{OOA}$
$5 \quad \mathrm{PA} \rightarrow \mathrm{OPA}$

What is the case is obligatorily permissible \boldsymbol{x} inacceptable

Obligations remain such in every deontic alternative
= Standards of obligations do not decrease
= No fewer obligations
? acceptable?

Permissions remain such in every deontic alternative
= standards of obligations do not increase
$=\underline{\text { no more obligations }}$
? acceptable?
$\mathbf{U} \quad \mathrm{O}(\mathrm{OA} \rightarrow \mathrm{A})$
Obligations ought to be realized
(one of the few unconditional O-principles)
$\Rightarrow R$ must be secondarily reflexive: $\alpha R \beta \rightarrow \beta R \beta$
? acceptable? Note: this means that
if ${ }_{=}^{\prime \prime} \mathrm{OA}$ and $\mathscr{F}_{\overline{\prime \prime}} \neg \mathrm{A}$, then $\beta \mathrm{R} \alpha$ for no $\beta \in W$
i.e., α is one of the worst possible worlds
4. $\mathrm{OOA} \rightarrow \mathrm{OA}$
$\neg \mathrm{OA} \rightarrow \neg \mathrm{OOA}$
What is not obligatory is not obligatorily obligatory
$R=\underline{\text { density }}: \alpha \mathrm{R} \beta \rightarrow \exists \gamma(\alpha \mathrm{R} \gamma \wedge \gamma \mathrm{R} \beta)$
sounds good

5. Problems with these theories (all $K D$ systems)

- There are two sorts of problems:
- Correctness
- Adequacy
- Correctness: two problems

1) Obligations always exist (however trivial they may be)

$$
\vdash_{K D} O(\mathrm{~A} \vee \neg \mathrm{~A})
$$

Thus: There exists no world where we are absolutely free
2) Two important principles become indistinguishable

- Adequacy:
- Cannot express conditional obligations

$=$ conditional obligation of B given A, written $O(B / A)$.

Two only options:
(a) $\bigcirc(\mathrm{B} / \mathrm{A}) \quad=_{\mathrm{df}} \quad \mathrm{A} \rightarrow \mathrm{OB} \quad$ This is T whenever A is F If the earth is flat, then you ought to apologize.
(b) $\bigcirc(\mathrm{B} / \mathrm{A})==_{\mathrm{df}} \quad \bigcirc(\mathrm{A} \rightarrow \mathrm{B})$

This is T whenever $\bigcirc \neg \mathrm{A}$ or $\bigcirc \mathrm{OB}$ is also T If you steal books, then you ought to eat pizza. If you cough, then you ought to pay taxes.

- Other problem: Chisholm's paradox:
(i) John ought to go to help his neighbors
(ii) If John is going to help his neighbors, he ought to tell them he is going.
(iii) If John is not going to help his neighbors, he ought not to tell them he is going.
(iv) John does not go to help his neighbors.
(i)-(iii) seem a reasonable and consistent set of requirements. Yet the fact that John does not go to help his neighbors, i.e., (iv), is enough to yield a contradiction. Formally:

(1)	$\mathrm{O} H$	given
(2)	$\mathrm{O}(H \rightarrow T)$	given
(3)	$\neg \mathrm{H} \rightarrow \mathrm{O} \neg \mathrm{T}$	given
(4)	$\neg \mathrm{H}$	given
(5)	$\mathrm{O}(H \rightarrow T) \rightarrow(\mathrm{OH} \rightarrow \mathrm{O} T)$	K
(6)	$\bigcirc T$	$\left(1^{\prime}\right),\left(2^{\prime}\right),(5), \mathrm{RPL}$
(7)	$\bigcirc \neg \mathrm{T}$	$\left(3^{\prime}\right),\left(4^{\prime}\right), \mathrm{RPL}$
(8)	$\bigcirc T \wedge \bigcirc \neg \mathrm{~T}$	(6), (7), RPL
(9)	$\neg(\mathrm{O} T \wedge \bigcirc \neg T)$	Equivalent to D
(10)	\perp	(8), (9), RPL

- The alternative symbolization of (ii) following (a):
(2') $\quad H \rightarrow O T$
avoids the problem, but at the price of making (ii) a logical consequence of (iv) (by RPL).
- Similarly, the alternative symbolization of (iii) following (b)

$$
\begin{equation*}
\mathrm{O}(\neg \mathrm{H} \rightarrow \neg \mathrm{~T}) \tag{3'}
\end{equation*}
$$

avoids the problem, but at the price of making (iii) a logical consequence of (i) via the theorems
$H \rightarrow(\neg \mathrm{H} \rightarrow \neg \mathrm{T})$
PL
(6') $\quad \mathrm{OH} \rightarrow \mathrm{O}(\neg \mathrm{H} \rightarrow \neg \mathrm{T})$
(5'), RE

- So:
either $O(/)$ must be assumed as a primitive
or $\mathrm{O}(/)$ is definable in terms of some other kind of conditional

6. A weaker system

- KD could also be axiomatized as:

	$\mathrm{A} \rightarrow \mathrm{B}$
$\mathbf{R M}$	$\mathrm{OA} \rightarrow \mathrm{OB}$
	O
$\mathbf{O D}$	$\neg \mathrm{O}(\mathrm{A} \wedge \neg \mathrm{A})$
\mathbf{N}	$\mathrm{O}(\mathrm{A} \vee \neg \mathrm{A})$
\mathbf{C}	$(\mathrm{OA} \wedge \mathrm{OB}) \rightarrow \mathrm{O}(\mathrm{A} \wedge \mathrm{B})$

- By correctness problem 1) ("obligations always exist"), we want to get rid of \mathbf{N}
- But this is a K - theorem.
- This means we need a system weaker than K, hence not complete with respect to Kripke models.
- We need minimal models
- By correctness problem 2), we must also get rid of the equivalence

$$
\neg \mathrm{O}(\mathrm{~A} \wedge \neg \mathrm{~A}) \leftrightarrow \neg(\mathrm{OA} \wedge \mathrm{O} \neg \mathrm{~A})
$$

- But this is provable even without \mathbf{N}

1. $\quad(\mathrm{OA} \wedge \mathrm{O} \neg \mathrm{A}) \rightarrow \mathrm{O}(\mathrm{A} \wedge \neg \mathrm{A})$
C
2. $\neg \mathrm{O}(\mathrm{A} \wedge \neg \mathrm{A})$ OD
3. $\neg(\mathrm{OA} \wedge \mathrm{O} \neg \mathrm{A})$ 1,2 PL

- So we must also get rid of C or OD.
- But OD is OK, so it is \mathbf{C} that must go.
- The resulting system $D=\mathbf{R M}+\mathbf{D}$ is not normal (= not a K system).
- D is determined by the class of minimal models such that

1) if $\mathrm{X} \cap \mathrm{Y} \in N_{\alpha}$, then $\mathrm{X} \in N_{\alpha}$ and $\mathrm{Y} \in N_{\alpha} \quad$ (supplemented)
2) $\emptyset \notin N_{\alpha}$
7. Even weaker?

- There are problems with D, too.
- Ross paradox (from Alf Ross, 1941).
- RM implies that

$$
\vdash_{D} \mathrm{PA} \rightarrow \mathrm{P}(\mathrm{~A} \vee \mathrm{~B}) .
$$

1.	$\neg(\mathrm{A} \vee \mathrm{B}) \rightarrow \neg \mathrm{A}$	PL
2.	$\mathrm{O} \neg(\mathrm{A} \vee \mathrm{B}) \rightarrow \mathrm{O} \neg \mathrm{A}$	$1, \mathrm{RM}$
3.	$\neg \mathrm{O} \neg \mathrm{A} \rightarrow \neg \mathrm{O} \neg(\mathrm{A} \vee \mathrm{B})$	$2, \mathrm{PL}$
4.	$\mathrm{PA} \rightarrow \mathrm{P}(\mathrm{A} \vee \mathrm{B})$.	DfP

But this is counterintuitive:
Peter may drink water \rightarrow Peter may drink either water or whiskey

- In fact, it seems natural to suppose that

Peter may drink either water or whiskey \rightarrow Peter may drink water and he may drink whiskey
This corresponds to the following, which is not a theorem of D :

$$
P(A \vee B) \rightarrow(P A \wedge P B)
$$

- Åkvist puzzle.

- Consider the epistemic operator Peter knows that, written K. Since knowledge implies truth,

$$
\vdash \mathrm{KA} \rightarrow \mathrm{~A}
$$

$\mathbf{R M}$ implies that

$$
\vdash_{D} \mathrm{OKA} \rightarrow \mathrm{OA}
$$

- But this is counterintuitive:

Peter ought to know that there is a fire \nrightarrow There ought to be a fire

- Conclusion: D is also too strong...

8. Epistemic interpretation of modalities

- Starting point:
-as a belief operator, written \mathbf{B}

BA $\quad=_{\mathrm{df}}$ the agent, x, believes that A

- Alternative notation: $\mathrm{B}(A, x)$, convenient for first-order or multi-agent extensions (where we may want to quantify over agents)
- A lot depends on what we mean by "believes"
- implicit vs explicit
- persuasion vs opinion
- etc.
- KD45 = the logic of full belief

D $\mathrm{B} A \rightarrow \neg \mathrm{~B} \neg \mathrm{~A} \quad$ (coherence)
$4 \mathrm{~B} A \rightarrow \mathrm{BBA}$ (positive introspection)
$5 \neg \mathrm{~B} A \rightarrow \mathrm{~B} \neg \mathrm{~B} A \quad$ (negative introspection)

- Semantics
- possible worlds $=$ possible representations (consistent and complete) of reality
$-\alpha \mathrm{R} \beta$ iff β is epistemically possible (= conceivable) for the agent in α
- $\stackrel{\prime}{\alpha}_{\bar{\alpha}}^{\prime \prime} \mathrm{BA} \Leftrightarrow \mathrm{x}$ thinks that A is ungiveupable (=a constant element of all of representations)
- Determination
- R is serial, transitive, euclidean. So, standard situation looks like this:

- Note:

$$
\begin{array}{ll}
\text { not } \stackrel{\varkappa}{\alpha}_{\prime \prime \prime} \mathrm{BA} \rightarrow \mathrm{~A} & \text { so } \mathbf{T} \text { fails: beliefs need not be true } \\
\stackrel{H}{\alpha}_{\prime \prime} \mathrm{B}(\mathrm{BA} \rightarrow \mathrm{~A}) & \text { so } \mathbf{U} \text { holds: beliefs are believed to be true }
\end{array}
$$

- Problems

- RK implies closure of beliefs under logical implication \Rightarrow full (implicit?) belief To avoid this, one must go for minimal models (non-normal systems)
- Then we have the following:

$$
\begin{array}{lll}
\stackrel{\prime \prime}{\prime \prime} \neg \mathrm{B}(\mathrm{~A} \vee \neg \mathrm{~A}) & \text { whenever } & \alpha \notin \mathrm{N}_{\alpha} \\
\stackrel{H}{\alpha}_{\prime \prime \prime} \mathrm{B}(\mathrm{~A} \wedge \neg \mathrm{~A}) & \text { whenever } & \emptyset \in \mathrm{N}_{\alpha}
\end{array}
$$

3. Adding Knowledge

- Notation:

KA $=_{\mathrm{df}}$ the agent, x, knows that A

- This can be defined in terms of B if we accept the principle that knowledge is true belief:

DfK $\quad \mathrm{K} A \leftrightarrow \mathrm{~B} A \wedge A$.

- But one might prefer to have DfK as a theorem.
- This can be obtained in the mixed system Kmix defined by:

\mathbf{D}	$\mathrm{B} A \rightarrow \neg \mathrm{~B} \neg A$	(coherence)
$\mathbf{T K}$	$\mathrm{K} A \rightarrow A$	
$\mathbf{? 1}$	$\mathrm{~K} A \rightarrow \mathrm{~B} A$	
$\mathbf{4 K}$	$\mathrm{~K} A \rightarrow \mathrm{KK} A$	(introspection)
$\mathbf{9 2}$	$\mathrm{B} A \rightarrow \mathrm{~KB} A$	(introspection)
$\mathbf{9 3}$	$\neg \mathrm{B} A \rightarrow \mathrm{~K} \neg \mathrm{~B} A$	(introspection)
$\mathbf{9 4}$	$(\mathrm{B} A \wedge A) \rightarrow \mathrm{K} A$	

- Note: the rule $\mathbf{R N}$ for K is derivable in Kmix:

$$
\begin{array}{ll}
\mathbf{R N} & \frac{\bar{K}_{\text {Kix }}}{} A \\
& \stackrel{N}{\mathrm{~K} \text { mix }}^{\prime} \mathrm{K} A
\end{array}
$$

- This means omniscience
- Again, to avoid it one must go for minimal models (non-normal systems)
- Theorems:

$$
\begin{aligned}
& \vdash_{\text {Kmix }} \mathrm{K} A \leftrightarrow \mathrm{~B} A \wedge A \\
& \vdash_{\mathrm{Kmix}} \mathrm{~B} A \leftrightarrow \mathrm{BK} A \\
& \vdash_{\text {Kmix }} \mathrm{B} A \leftrightarrow \neg \mathrm{~K} \neg \mathrm{~K} A
\end{aligned}
$$

So, the belief operator B is also definable in terms of K .

- Axiomatization using only K?
— option 1 is simply to replace B by $\neg \mathrm{K} \neg \mathrm{K}$ in $\mathbf{K m i x}$
- option 2 is to give a better axiomatization of K :

T

$$
\begin{aligned}
& \mathrm{K} A \rightarrow A \\
& \mathrm{~K} A \rightarrow \mathrm{KK} A \\
& (\mathrm{~B} A \wedge A) \rightarrow \mathrm{K} A \\
& A \rightarrow(\mathrm{~B} A \rightarrow \mathrm{~K} A) \\
& A \rightarrow(\neg \mathrm{~K} \neg \mathrm{~K} A \rightarrow \mathrm{~K} A) \\
& \mathrm{A} \rightarrow(\diamond \square A \wedge \square A)
\end{aligned}
$$

- Fact: KD45 is equivalent to KT45 ${ }^{-}$upon the obvious translations:

$$
\mathrm{B} A \leftrightarrow \neg \mathrm{~K} \neg \mathrm{~K} A \quad \text { or } \quad \mathrm{K} A \leftrightarrow \mathrm{~B} A \wedge A
$$

- Other theories

1. KT4G is the same as KT4 + D-for-belief

Proof:

1. $\neg \mathrm{K} \neg \mathrm{K} A \rightarrow \mathrm{~K} \neg \mathrm{~K} \neg A \quad$ axiom \mathbf{G}
2. $\neg \mathrm{K} \neg \mathrm{K} A \rightarrow \neg \neg \mathrm{~K} \neg \mathrm{~K} \neg A \quad \mathrm{DN}$
3. $\mathrm{B} A \leftrightarrow \neg \mathrm{~B} \neg A$ subst.

- Note: KT4G is the same system as Kmix, but with $\mathbf{? 4}$ replaced by

$$
\mathrm{B} A \leftrightarrow \mathrm{BK} A
$$

Clearly, KT45 \ddagger KT4G
But also, KT4G $\ddagger \mathbf{K T 4 5}^{-}$

S4.2 S4.4
2. KT5 is not good if $\mathrm{B} A \leftrightarrow \neg \mathrm{~K} \neg \mathrm{~K} A$

For otherwise

1. $\quad \neg \mathrm{K} \neg \neg A \leftrightarrow \mathrm{~K} \neg \mathrm{~K} \neg \neg A$
axiom 5
2. $\neg \mathrm{K} A \leftrightarrow \mathrm{~K} \neg \mathrm{~K} A \quad \mathrm{DN}$
3. $\neg \mathrm{K} A \leftrightarrow \neg \neg \mathrm{~K} \neg \mathrm{~K} A \quad \mathrm{DN}$
4. $\neg \mathrm{K} A \leftrightarrow \neg \mathrm{~B} A \quad \mathrm{DfB}$
5. $\mathrm{B} A \leftrightarrow \mathrm{~K} A \quad \mathrm{PL} \Leftarrow$ unacceptable

10. Temporal logic

- Modalities:

FA it will sometime be the case that A
GA it will always be the case that A

$$
=\neg \mathrm{F} \neg A
$$

PA it has sometime be the case that A

HA it has always be the case that A

$$
=\neg \mathrm{P} \neg A
$$

- Minimal tense logic $\mathbf{K}_{\mathbf{t}}$
- Axioms:

$$
\begin{array}{ll}
& \text { System } \mathbf{K} \text { for } \mathrm{G} \\
+ & \text { System } \mathbf{K} \text { for } \mathrm{H} \\
+ & \mathrm{A} \rightarrow \mathrm{GPA} \\
+ & \mathrm{A} \rightarrow \text { HFA }
\end{array}
$$

— Theorems:

$$
\begin{array}{ll}
\vdash & \mathrm{PGA} \rightarrow \mathrm{~A} \\
\vdash & \mathrm{FHA} \rightarrow \mathrm{~A}
\end{array}
$$

1.	$\neg \mathrm{A} \rightarrow \mathrm{GP} \neg \mathrm{A}$	ax
2.	$\neg \mathrm{GP} \neg \mathrm{A} \rightarrow \mathrm{A}$	PL
3.	$\mathrm{F} \neg \mathrm{P} \neg \mathrm{A} \rightarrow \mathrm{A}$	dfF
4.	$\mathrm{FHA} \rightarrow \mathrm{A}$	dfH

- More generally:

$$
\vdash_{\mathrm{kt}} \mathrm{~A} \Leftrightarrow \vdash_{\mathrm{kt}} \mathrm{~A}^{*}, \quad \text { where } \mathrm{A}^{*} \text { is the mirror image of } \mathrm{A}
$$ (replace G/H and F/P)

- This means symmetry past/future
- Semantics:
- Note: a multimodal system
- in general: one R for each modality
- Determination: all standard models
- provided $\alpha \mathrm{R}_{\mathrm{G}} \beta \Leftrightarrow \alpha \mathrm{R}_{\mathrm{H}} \beta$
- alternatively: same R in two directions (the direction of time)

11. Temporal logic (linear extensions)

- Two main possibilities:
linear:

- Basic linear system CL (Cocchiarella):
$\mathrm{K}_{\mathbf{t}}+\mathbf{4} \diamond \quad$ FFA \rightarrow FA
future transitivity

$$
\vdash \mathrm{PPA} \rightarrow \mathrm{PA}
$$

past transitivity
RL $\quad(F A \wedge F B) \rightarrow(F(A \wedge B) \vee F(A \wedge F B) \vee F(F A \wedge B))$
right linearity
LL $\quad(\mathrm{PA} \wedge \mathrm{PB}) \rightarrow(\mathrm{P}(\mathrm{A} \wedge \mathrm{B}) \vee \mathrm{P}(\mathrm{A} \wedge \mathrm{PB}) \vee \mathrm{P}(\mathrm{PA} \wedge \mathrm{B}))$ left linearity

- Semantics: R must be:
— transitive
- right linear: $\alpha \mathrm{R} \beta$ \& $\alpha \mathrm{R} \gamma \Rightarrow \alpha=\beta$ or $\beta \mathrm{R} \gamma$ or $\gamma \mathrm{R} \beta$
- left linear: $\quad \beta \mathrm{R} \alpha \& \gamma \mathrm{R} \alpha \Rightarrow \beta=\gamma$ or $\beta \mathrm{R} \gamma$ or $\gamma \mathrm{R} \beta$
- System SL: non-ending time (Dana Scott)
$\mathbf{C L}+\mathbf{D}$

$$
\begin{aligned}
& \mathrm{GA} \rightarrow \mathrm{FA} \\
& \mathrm{HA} \rightarrow \mathrm{PA}
\end{aligned}
$$

seriality
"

- System PL: dense time (Prior)
$\mathrm{SL}+4 \diamond_{\mathrm{c}}$
$\mathrm{FA} \rightarrow$ FFA $\alpha \mathrm{R} \beta \Rightarrow \exists \gamma(\alpha \mathrm{R} \gamma \& \gamma \mathrm{R} \beta)$

$$
\vdash \mathrm{PA} \rightarrow \mathrm{PPA}
$$

- System $\mathbf{P C}_{\mathbf{k}}$: circular time (Prior)
$K_{t}+4$
FFA \rightarrow FA
GA \rightarrow A
$\mathrm{GA} \rightarrow \mathrm{HA}$

12. Temporal logic (branching extensions)

- System CR (Cocchiarella)
$K_{t}+4 \diamond \quad(=$ CL minus linearity $)$
- System $\mathbf{K}_{\mathbf{b}}$ (Rescher + Urquhart)
$\mathbf{C R}+\mathbf{L L} \quad$ (= branching admitted only in the future)
symmetry P/F fails

