MODAL LOGIC 2.1 — SENTENTIAL MODAL LOGIC: DEVELOPMENTS LOA 12/5/3

Achille C. Varzi

1. Generalizations of the G schema

• DEFINIT	ION:	Where	any mo	dality (¬,	\diamond , or \Box):	
if <i>n</i> = if <i>n</i> =	=0 = <i>k</i> +1	1	$^{n}A =$ $^{n}A =$	A ^k A		
FACT: $\mathbf{G}^{k,l}$	Consi	der the $= \diamondsuit^k$	schema $\Box^l A$	$\square^m \diamond^n A$		
Then:						
G	=	$\Box A$	$\Box \Diamond A$		is just	$G^{1,1,1,1}$
D	=	$\Box A$	$\diamond A$		is just	$G^{0,1,0,1}$
Т	=	$\Box A$	Α		is just	$G^{0,1,0,0}$
В	=	A	$\Box \diamondsuit A$		is just	$G^{0,0,1,1}$
4	=	$\Box A$	$\Box\Box A$		is just	$G^{0,1,2,0}$
5	=	$\diamond A$	$\Box \diamondsuit A$		is just	$G^{1,0,1,1}$
• DEFINIT	ION					

if <i>n</i> =0	R ⁿ	=	
if $n = k + 1$	R ⁿ	R for some	W such that R^k

♦ DEFINITION

A standard model $\mathcal{M} = W, R, P$, is k,l,m,n-incestual iff $\mathbb{R}^k \& \mathbb{R}^m$ ($\mathbb{R}^l \& \mathbb{R}^n$)

So in particular:

\mathcal{M} is incestual	iff	\mathcal{M} is 1111-incestual
\mathcal{M} is serial	iff	\mathcal{M} is 0101-incestual
$\mathcal M$ is reflexive	iff	\mathcal{M} is 0100-incestual
\mathcal{M} is symmetric	iff	\mathcal{M} is 0011-incestual
\mathcal{M} is transitive	iff	\mathcal{M} is 0120-incestual
\mathcal{M} is euclidean	iff	\mathcal{M} is 1011-incestual

(The proofs of these equivalences se are just derivations in first order logic with identity.)

• EXAMPLE: \mathcal{M} is serial iff \mathcal{M} is 0101-incestual

Proof:	k m l n	
\mathcal{M} is 0101-incestual	$[R^{0} \& R^{0} (R^{1} \& R^{1})]$	def.
	[= & = (R & R)]	def.
	= & = (R & R)	elim
	= (R)	& idem
	(R)	since =
	(R)	intro
	\mathcal{M} is serial	def.
\mathcal{M} is serial	(R)	def.
	(R)	elim
	(R & R)	& idem
	= & = (R & R)	= laws
	[= & = (R & R)]	intro
	$[R^{0} \& R^{0} (R^{1} \& R^{1})]$	def.
	\mathcal{M} is 0101-incestual	def.

◆ FACT

The schema $\mathbf{G}^{k,l,m,n}$ is valid in the class of all *k,l,m,n*-incestual standard models

♦ COROLLARY

The schema	G	is valid in the class of all	incestual	standard models
The schema	D	is valid in the class of all	serial	standard models
The schema	Т	is valid in the class of all	reflexive	standard models
The schema	B	is valid in the class of all	symmetric	standard models
The schema	4	is valid in the class of all	transitive	standard models
The schema	5	is valid in the class of all	euclidean	standard models

• $\mathbf{G}^{k,l,m,n}$ is not the most general schema.

For instance, the following are <u>not</u> instances of $\mathbf{G}^{k,l,m,n}$:

G _c	$\Box \diamond A$	$\Diamond \Box$	4
Gr	$\Box (\Box A$	A)	$\Box A$

◆ Indeed there are more general schemes with interesting properties—e.g.

Sahl \square^{n} (*A B*) (with restrictions on the form of A and B)

But Gr and Gc are still not covered by such a schema.

2. Characterizability (for Kripkean modal logics)

◆ QUESTION 1:

Does every modal formula correspond to some <u>first-order definable</u> R? i.e., given a formula A, is there always a first-order sentence so that, for every $\mathcal{M} = W, R, P$

ANSWER IS NO

$- \mathbf{G}^{k,l,m,n}$	YES	[Rk & Rm (Rl & Rn)]
— Sahl	YES	complicated condition
— Gr	NO	there is a condition on R (see test), but not first-order definable
— G _c	NO	not first-order definable (though G_c 4 is)

• QUESTION 2:

What about the other way around? Does every R correspond to a modal formula?

ANSWER IS NO

— E.g. <i>Reflexivity</i>	(R)	$\Box A = A$
Irreflexivity	(¬ R)	no characteristic wff
		i.e., if a wff is true in every irreflexive model, then it
		is true in every model

— Ditto for

Asymmetry	(R	7	R)	
Antisymmetry	(R	&	R	=)
Intransitivity	(R	&	R	٦	R)

3. Axiomatic systems (for Kripkean modal logics)

• A system of modal logic is <u>normal</u> iff it contains every instance of

and is closed under the rule

RN \underline{A} $\Box A$

• Theorem: Every normal system of modal logic satisfies the *Principle of Duality*:

where and are any modalities (sequences of \neg , \Box and \diamond) and * and * are obtained from by interchanging \Box and \diamond .

*

- Main normal systems:
 - K = the smallest system
 - The main extensions are obtained by adding one or more of the following:

D	$\Box A$	$\diamond A$
Т	$\Box A$	A
В	Α	$\Box \diamondsuit A$
4	$\Box A$	$\Box A$
5	$\diamond A$	$\Box \diamondsuit A$

— Naming conventions:

 $KS_1 \dots S_n$

is the (smallest) extension of K obtained by taking the schemas $S_1 \dots S_n$ as axioms. (The order of the S_i does not matter.)

— E.g., *KT5* is the smallest system of modal logic obtained by adding T and 5—etc.

- ♦ Facts:
 - There are $2^5 = 32$ possible combinations
 - Only 15 of these are distinct
 - General picture: Chellas <u>figure 4.1</u> on p. 132.

• Example:

KTD = KT

Proof: Obviously

KT KTD.

So we only show that

KTD KT.

To this end it is sufficient to show that every instance of D is a theorem of KT

1.	$\vdash_{KT} \Box A$	A	Т
2.	$\vdash_{KT} A$	$\Diamond A$	duality principle
3.	$\vdash_{\scriptscriptstyle KT} \Box A$	$\diamond A$	1,4 PL

• Other examples:

$$KT5 = KTD5 = KTB5 = KT45 = KTDB5 = KTD45 = KTB45 = KTDB45$$
 (This is S5)

— Every instance of *D* is a theorem of *KT5*: obvious from above

— Every instance of *B* is a theorem of *KT5*:

1.	$\vdash_{KT5} \diamondsuit A$	$\Box \diamondsuit A$	5
2.	$\vdash_{_{KT5}} A$	$\Diamond A$	dual of T
3.	$\vdash_{KT} A$	$\Box \diamondsuit A$	1,2 PL

— Every instance of 4 is a theorem of *KT5*:

1.	$\vdash_{_{KT5}} \Diamond A \Box \Diamond A$	5
2.	$\vdash_{_{KT5}} \Diamond \Box A \qquad \Box A$	5 (duality principle)
3.	$\vdash_{KT5} \Box \diamondsuit \Box A \qquad \Box \Box A$	2, RM
4.	$\vdash_{KT5} \Box A \qquad \Box \diamondsuit \Box A$	B (which is a theorem of KT5)
5.	$\vdash_{KT5} \Box A \Box \Box A$	3,4, PL

4. Reduction laws for modalities

• Definition: two modalities and are <u>equivalent</u> (in system) iff for all sentences

⊢ A A

• Example: in *KT5* there are <u>at most</u> 6 distinct modalities: A, $\Diamond A$, $\Box A$, $\neg A$, $\neg \Diamond A$, $\neg \Box A$.

<i>a</i>)	$\vdash_{KT5} \Box \Box A$	$\Box A$	1. 2.	$ F_{KT5} \square \square A \\ F_{KT5} \square A $	$\Box A$	T 4		
			3.	$\vdash_{KT5} \Box A$	$\Box\Box A$	1,2, PL		
b)	$\vdash_{{}_{KT5}} \Diamond \Diamond A$	$\diamond A$	1.	$\vdash_{{}_{KT5}} \diamondsuit \diamondsuit A$	$\diamond A$	4♦		
			2.	$\vdash_{KT5} \diamondsuit A$	$\diamond \diamond A$	T♦		
			3.	$\vdash_{KT5} \diamondsuit \diamondsuit A$	$\diamond A$	1,2, PL		
c)	$\vdash_{{}_{KT5}} \Box \diamondsuit A$	$\diamond A$	1.	$\vdash_{_{KT5}} \Box \diamondsuit A$	$\diamond A$	Т		
			2.	$\vdash_{_{KT5}} \diamondsuit A$	$\Box \diamondsuit A$	5		
			3.	$\vdash_{KT5} \Box \diamondsuit A$	$\diamond A$	1,2, PL		
d)	$\vdash_{_{KT5}} \Diamond \Box A$	$\Box A$	1.	$\vdash_{KT5} \Box A$	$\Box A$	T◊		
			2.	$\vdash_{{}_{KT5}} \Diamond \Box A$	$\Box A$	5�		
			3.	$\vdash_{KT5} \Diamond \Box A$	$\Box A$	1,2, PL		
Example:								
F_{KT5}	$\bigcirc \Box \Box \neg \Box \diamondsuit \neg$	$\Box \Diamond \Box A$		$\vdash_{KT5} \Diamond \Box \Box$	$\neg \Box \neg \Box \neg \neg \Box \Diamond \Box A$	Df◊		
				$\vdash_{KT5} \Diamond \Box \Box$	$\neg \Box \neg \Box \Box \Diamond \Box A$	PL + REP		
			$\vdash_{KT5} \Diamond \Box \Box$	$\Diamond \Box \Box \Diamond \Box A$	Df◊			
			$\vdash_{KT5} \Box \Box \diamondsuit$	$\Box \Box \diamondsuit \Box A$	<i>d</i>) above			
			$\vdash_{_{KT5}} \Box \diamondsuit \Box \Box \diamondsuit \Box \blacktriangle \Box A$		<i>a</i>) above			
			$\vdash_{KT5} \Diamond \Box \Box \Diamond \Box A$		c) above			
			$\vdash_{KT5} \Box \Box \diamondsuit \Box A$		d) above			
\vdash_{KT}			$\vdash_{KT5} \Box \Diamond \Box$	A	a) above			
			$\vdash_{KT5} \heartsuit \sqcup A$		c) above			
				$\vdash_{KT5} \Box A$		d) above		

- In fact, you can just drop all modalities except for the last (plus negation, if necessary)
- Remarks:
 - 1) These reduction laws fix an <u>upper bound</u>; a <u>lower bound</u> (to the effect that there are no further reduction laws) follows from completeness.
 - 2) Only 7 of the 15 basic systems in the picture have <u>finitely many</u> distinct modalities:

KT4 K5 KD5 K45 KB4 KD45 KT5

- **3)** Two systems may have the same modalities, but differ with respect to the patterns of implication among them (though not the other way around).
 - e.g. KT5 and KD45 have the same six modalities, but T is only provable in KT5.