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MODAL LOGIC 1.2 — SENTENTIAL MODAL LOGIC LOA 28/4/3

Achille C. Varzi

1. Syntactic Preliminaries: the Modal Language

◆ Vocabulary:

— atomic formulas: P0, P1, P2, . . .
— connectives: ⊥, T, ¬, ∧, ∨, →, ↔, , .
— metavariables: A, B, C, .....

◆ Grammar:

— Straightforward.
— Only be careful to distinguish necessity of the consequence vs necessity of the consequent.

1) (A→Β)

2) A→ Β

Obviously different:

(P→P) (P→P  is a tautology)

P→ P

Often ambiguous in English

If I have no money, then I can't buy a new computer           this probably corresponds to 1)
If I am a man, then I can't be a number           this probably corresponds to 2)

2. Semantics

◆ Extensional models are (intuitively) possible worlds

— Each model α is a way of partitioning the atomic sentences into true and false:

α(P i)∈{T,F} for all i

or simply

α ⊆ {P0, P1, P2, . . .}
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— This induces an corresponding assignment of values to all sentences—a valuation:

Vα (A) → {T,F} for all sentences A

or equivalently

= α A iff A is true (holds, etc.) relative to α.

— This is done recursively:

= α P i iff P i ∈α
= α ¬A iff not = α Α
= α A ∧ B iff = α A and = α B

 M  M M

◆ How do we specify truth conditions for modal formulas (given that ,  are not truth-functional)?

1) Carnap in Meaning and Necessity:

= α A iff = β  Α for every model β
= α A iff = β  Α for some model β

— This is too strict: it equates worlds with models, hence necessity and logical validity.

 2) Leibniz (on modern readings):

— A model is not just a possible world, but a collection of possible worlds.

— Hence a model is a collection of extensional models.

 = {α, β, γ, ....}

— Then we could say e.g.

=  α P i iff P i ∈α
=  α ¬A iff not =  α Α
=  α A ∧ B iff =  α A and =  α B .

=  α A iff =  β  A for every β∈
=  α A iff =  β  A for some β∈

— This account still requires that we specify what possible worlds are (functions or sets of
sentences, etc.), but otherwise OK. It can be generalized as follows:

◆ First idea (Leibniz’s simplified models)

— Instead of a set of functions, a model becomes a set with a function

• take worlds as unanalyzed entities (points)
• ask the model to associate each sentence with the worlds in which it is true
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— Formally:  = 〈W ,P〉, where

• W ≠ Ø (the possible worlds)
• P a sequence P0, P1, P2, . . . ⊆ W   associating with each i a set of worlds (those in

which P i holds)
• Intuitively: Pi = the proposition expressed by P i

— Truth conditions:

=  α  P i iff α∈Pi

 M  M  M
=  α A iff =  β  A for every β∈W

=  α A iff =  β  A for some β∈W

— Notes:
• Pi may be empty
• i Pi may not add up to W

◆ Second idea  (Kripke’s standard models): generalize Leibnizian models by adding an accessibility
relation:

— Model  = 〈W , R, P〉, where

• W and P as before 
• R ⊆ W × W  

— Truth conditions:

=  α  P i iff α∈Pi

 M  M  M
=  α A iff =  β  A for all β∈W  such that αRβ
=  α A iff =  β  A for some β∈W such that αRβ

— NB: If R is an equivalence relation, this is equivalent to the first account.

◆ Third idea (Montague’s minimal models): Modal notions should not be understood in terms of
truth in every/some world, but treated as primitive: some sentences express necessay/possible
propositions, others do not.

— Model  = 〈W , N, P〉, where

• N : W → ℘℘W  associates each world with the propositions that are necessary at that world

℘W = sets of worlds = propositions
℘℘W= set of propositions
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• Intuitively: Nα = the propositions that are necessary at α

— Truth conditions:

=  α  P i iff α∈Pi

 M M M
=  α A iff  {β∈W : =  β  A} ∈ Nα = iff A expresses a necessary proposition at α
=  α A iff {β∈W : not =  β  A} ∉ Nα = iff A does not express an impossible proposition at α

— Notation: || A ||  for {β∈W : =  β  A} (the proposition expressed by A in )

3. Examples

◆ Definitions

— A is valid/true in =  A  iff =  α A for every α∈W

— A is valid in C = C A iff =  A for every  ∈C

— A is valid = A iff = C A for very C

◆ Some principles that are valid in the semantics based on Leibnizian models:

D A → A
T A → A
B A → A
4 A → A
5 A → A
G A → A

K (A → B) → ( A → B)
Df A ↔ ¬ ¬A 
Df A ↔ ¬ ¬A

RN = C A____

= C A

RE = C A ↔ B __________

= C A ↔ B

RK = C (A1 ∧ ... ∧ An) → A_____________________

 = C ( A1 ∧ ... ∧ An) → A
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◆ Comparison with the other semantics:

schema standard models     minimal models

T A → A valid iff reflexive:  αRα

¬  P
P

■  P

α β

valid iff α ∈ ||A ||
whenever ||A||  ∈ Nα

D A → A valid iff serial:  ∀α∃β(αRβ)

¬  P
■  P

α

¬   ◆  P

valid iff –||A||  ∉ Nα

whenever ||A||  ∈ Nα

B A → A valid iff symmetric:  αRβ ⇒ βRα

P ¬ P

¬  ■ ◆  P

α β

¬  ◆   P

(b) p. 224 Chellas

4 A → A valid iff transitive:  αRβ and βRγ ⇒ αRγ

α β γ

¬ P
P

¬ ■  P

P
■  P

¬  ■ ■  P

(iv) p. 224

5 A → A valid iff euclidean:  αRβ and αRγ ⇒ βRγ

α

β
P

◆   P
¬ ■ ◆  P

γ

P
¬ ◆   P

P
¬ ◆  P

(v) p. 224

G A → A valid iff incestual: αRβ & αRγ ⇒ ∃δ(βRδ & γRδ)

α

β◆ ■  P

γ

δ

P

■   P

¬ ◆ P

¬ ■ ◆  P

(g) p. 225
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schema standard models     minimal models

K (A → B) → ( A → B) valid valid iff

||B || ∈Nα whenever

||A → B|| , ||A||  ∈Nα

Df A ↔ ¬ ¬Α valid valid

Df A ↔ ¬ ¬Α valid valid

RN = 
C
 A

 _____

   = 
C
 A

valid valid iff W ∈Nα

(for all α in all   in C  )

RE = 
C
 A ↔ B

 __________
= 
C
 A ↔ B

valid valid

RK = C (A1 ∧ ... ∧ An) → A_____________________

 = C ( A1 ∧ ... ∧ An) → A

valid valid iff

||A || ∈Nα whenever

||A1|| , ..., ||An||  ∈ Nα

◆ Example of proof for the “if” part: Scheme 5 is valid in the class of all euclidean standard models:

1. Assume =  α A

2. Then =  β  A for some β∈W such that αRβ
3. Suppose αRγ
4. Then γRβ by euclideanness

5. So, for any γ such that αRγ there exists β such that γRβ and =  β  A

6. So, for any γ such that αRγ, =  γ  A

7. Thus =  α A

8. By 1–7, if =  α A then =  α A

9. Hence =  α A → A

4. General comparison

◆ DEFINITION: Two structures  = 〈W , ..., P〉 and ' = 〈W', ..., P'〉 are pointwise equivalent iff 
there is a one-one map ƒ:W → W' such that, for every sentence A and every α ∈ W

=  α  A    iff     =
 '

 ƒ(α)  A
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◆ Fact 1: Every simplified model = 〈W , P〉 is pointwise equivalent to a standard model, namely 
to the model ' = 〈W , R, P〉 where R =W × W .

Proof: straightforward inductive argument, taking ƒ(α) = α. 

1. Base:      =  α Ïi iff α∈Pi

iff =
 '

 α Ïi

i.e. =
 '

 ƒ(α) Ïi

2. Truth-functional connectives: obvious

3. Modal connectives:

     =  α A iff =  β  A for all β∈W

    iff =
 '

 β  A for all β∈W (by I.H.)

    iff =
 '

 β  A for all β∈W such that αRβ
iff =

 '
 α A

i.e. =
 '

 ƒ(α) A

◆ Fact 2: Every standard model  
s = 〈W s, R, Ps〉 is pointwise equivalent to a minimal model

  
m = 〈Wm, N, Pm〉, where X∈Nα iff X contains all R-accessible worlds, i.e., iff {β∈W : αRβ} ⊆ X.

(Intuitively: the propositions necessary at α are those that include the set of all worlds accessible
from α)

Proof: we set ƒ(α) = α and prove by induction that, for every sentence A:

for every α∈W : =  
s

 α  A    iff    =  
m

 α  A

Again, the only interesting case is modal sentences:

=  
s

 α  A iff =  
s

 β A for all β∈W  s.t. αRβ
    iff {β∈W : αRβ} ⊆ {β∈W : =  

s

 β A}

    iff {β∈W : αRβ} ⊆ {β∈W : =  
m

 β A} by I.H.

    iff {β∈W : =  
m

 β A} ∈ Nα by def. of   
m

iff =  
m

 α  A by recursive clause for 


