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Abstract. We present a general conceptualization of causal relations that pivots on the
distinction betweencausality, a law-like relation between types of events, andcausa-
tion, the actual causal relation that holds between individual events. This distinction
finds its formal characterization and embedding withinDOLCE, in terms of a num-
ber of dependences between (types of)quality changes. Finally an application of the
presented theory to the classical example of “the broken window” is provided.1

1 Introduction

The definition of sufficiently general theories of causal relations is among the toughest prob-
lems faced by most philosophical and scientific communities. The bulk of the problem lies in
defining a theory that captures enough causal phenomena without, though, making causal re-
lations too pervasive. Finding this balance is necessary for generating correct, yet non redun-
dant explanations and/or predictions. In this paper we present a framework for representing
causal relations between (types of) events inDOLCE, the Descriptive Ontology for Linguistic
and Cognitive Engineering defined in [1]. The general conceptualization of causal relations
presented in sections 2 and 3 is based on a reworking of [2, 3], and it pivots on the distinc-
tion betweencausality, a law-like relation between types of events, andcausation, the actual
causal relation that holds between individual events. In section 4, this distinction finds its
formal characterization and embedding withinDOLCE, in terms of a number of dependences
between (types of)quality changes. Section 5 we show how theory applies to the canonical
example of this paper: the broken window. Finally, in section 6 we draw some conclusions.

2 Existing approaches and their limitations

The starting point of our presentation of existing approaches is the following rephrasing of
an example deviced by Ducasse in [4].

Example 1 (The Broken Window). Whilst a canary sings in the immediate proximity of a
window of a house, a brick is thrown at the glass of the window, which breaks down.

Readers intuition mostly seems to suggest that the question “What did cause the window
glass to break down?” should be answered by indicating the brick and/or the event undergone
by the brick as the cause. There are a number of approaches to the problem of defining the
(general) theory of causal relations underlying causal assessments such as the one just given.
In the following, we briefly discuss these approaches and highlight their limitations.

1Work partially supported by the EU projects IST-2001-33052 (WonderWeb), FP6-507164 (Metokis) and
the research grant “Logical Instruments for Ontology Analysis” of the Provincia Autonoma di Trento.



First, we note that, depending on the approach, the main variables C (for cause) and E
(for effect) range over different “things”. In the case of logical approaches, the variables ob-
viously range over propositions. It should be noted that different sets of propositions may
intuitively be considered as specifying Example 1 in different degrees. For instance, we con-
sider M2 below to be more specific than M1, in the sense that propositiona intuitively implies
propositionα, b intuitively impliesβ and so on2. In the case of singularistic approaches, the
main variables C and E are meant to range over untyped events. In this case, the members
of M1 are types of events while the members of M2 are individual events. Analogously for
probabilistic approaches, even though these approaches may also be used on propositions.

1. M1 consists of:α = an object vibrates,β = an object moves,γ = an object collapses.

2. M2 consists of:a = the canary sings,b = the brick is thrown,c = the glass breaks down.

Taking these as legitimate specifications, in what follows, we use them for highlighting our
evaluation of existing approaches relative to the task of stating and justifying part of the
preferred causal interpretion of Example 1. According to such interpretation, a causal relation
should be inferred betweenβ andγ in M1 and betweenb andc in M2.

Secondly, given the scope of Example 1, we clearly evaluate the considered approaches
only relative to their adequacy in capturing causal relations of aphysicalnature. It is reason-
able to expect, though, that the limitations pointed out in the following hold also when the
evaluated approaches are applied to the assessment of causal relations of a different nature,
like agentiveor negative.

Thirdly, reasoning about Example 1 at the level of M1 can be seen as relevant to M2 too:
causal relations in M1 are usually calledlaw-like causal relations. A relation of this kind
between members of M1 can constrain the actual causal relations between the members of
M2. The converse does not hold, though: if, according to a theory defined on M2, an actual
causal relation holds between, say,b andc, then no law-like causal relation should be inferred.
This is to say that reasoning about Example 1 at the level of abstraction of M2 may be correct
but irrelevant for (theories defined on) M1.

Logical approaches. The traditional definition of causal relations is in terms of logical con-
ditions [5]. According to logical reductionism, the sentenceC is the cause of Eis equivalent
to either of the following logical statements:C is a necessary condition of E(E → C); C is
a sufficient condition of E(C→ E); C is a necessary and sufficient condition of E(C↔ E);
C is an INUS condition of E((C ∧ X) ∨ Y ↔ E, where X is the causal context of the cause,
Y is a series of alternative sets of causes and causal contexts, and the acronym INUS means
Insufficient but Non redundant part of an Unnecessary but Sufficientcondition, [6]). Limita-
tion: these approaches, which are suited for defining theories of law-like causal relations (at
the level of M1), fail to capture the intuitive distinction between simple causal conditions and
causes, when applied to the level of spefication of M2. The approach based on INUS condi-
tions, for instance, that is geared to the solution of this problem, provides no clear indications
of how to solve it in a principled way. For C and E ranging over M2, given E=c, it is unclear
how to choose between the two admissible cases:(i) C = a, X = b, (ii) C = b, X = a. In other
words, no criterion is provided for distinguishing between causes and contexts.

2If the (formal) language is fixed, this intuition may be brought to its extreme and M1 may be taken as
a minimal specificationof Example 1 and M2 as amaximalspefication of Example 1, that is meant to more
adherently model theactualandunrepeatable(causal) sequence described in Example 1.



Probabilistic approaches. According to probabilistic approaches the sentenceC is the cause
of E is equivalent to the statement:the conditional probability of E given C is higher than the
conditional probability of E given not C(p(E|C)> p(E| ¬C)). Limitation: also this approach
is more suited for defining theories of law-like causal relations (at the level of M1). Still,
for C and E ranging over M1, it is extremely difficult to fill in a frequency table containing
statistics about a significant number of cases that are truly comparable to each other. And even
when this is possible, Probability Theory, similarly to Logic, provides no principled way for
distinguishing between genuine causes and mere co-occurrences (a well known problem, see
[7]). This limitation is even stronger in probabilistic approaches than it is in logical ones, as
it concerns both levels (M1 and M2).

Singularistic approaches.According to singularism the sentenceC is the cause of Eis
equivalent to either of the following statements:C is a counterfactual condition of E(C
� E) [8]; the cause of a particular change E is such particular change C as alone occurred
immediately before in the immediate environment of E[4]; C has transfered some energy or
momentum to E[9, 10, 11, 12]. Limitations: these approaches, whichby definitionare meant
for theories of actual causal relations (at the level of M2), fail in various ways. Counterfactuals
fails in so-called cases of overdetermination, like, for instance, a modified version of Example
1, where, instead of a singing canary, there is a baseball moving at the same time of b, towards
the window, with the same momentum (i.e., in M2, instead ofa takea∗: a∗= the baseball
moves). Given E=c, neither of the intuitive conclusions C=a∗ or C=b can be implied through
counterfactual test. On the other hand, the notions of change, uniqueness, temporal and spatial
immediacy, energy need to be further constrained in order to capture actual causal relations.

3 The contribution of Formal Ontology

None of these approaches presents a deep logical/ontological analysis of the propositions or
of the (types of) events over which C and E should range. In our view, formal ontology pro-
vides the tools for overcoming this impasse as it will become clear below. First, we informally
illustrate some of the notions and philosophical assumptions behind our formalism.

According to the ontological framework we propose, causal relations relate events and
event types, rather than (more or less specific) propositions. As often indicated in the litera-
ture, events have a strong causal flavour, due to their tight relationships with the notions of
change and time, and this makes them intuitively appealing causal relata. Furthermore, in our
vision, causal relations relate very simple (types of) events that changeone singleaspect of
one singleobject. The main rationale behind such a restrictive definition of event is method-
ological. The formal characterization of causal relations betweensimpleevents presents two
main advantages: firstly, it provides valuable insight on dealing with the intricate problem of
defining causal relations between complex events; secondly, it helps in assessing the ontolog-
ical correctness of models such as M1 and M2, because it forces the modeler to disentangle
relevant ontological issues, while refining the model. For instance, when giving the ontolog-
ical specification ofα, β andγ, one is forced to make explicit and/or to choose between a
series of ontological assumptions like: what changes in an object that vibrates? Its shape, its
volume, its location? Which of these is primary, if any? If all of these aspects of the object
change, which kind of relationships hold among them?

These are crucial questions that we believe must be answered to establish causal relation-
ships between events and, thus, our first goal is to isolate types of dependence relations that
one can embrace to answer these questions. We find three types of existential dependences
that are formally defined in section 4.4: structural dependences, causality dependences and



circumstantial dependences. Stating these dependences between sets of simple events allows
us to introduce the causal constraints we need in order to express causation.

Structural constraints. These hold between a specific kind ofsimpleevents and a number
of other kinds ofsimpleevents thatsynchronicallychangethe sameobject with respect to
different aspects. For instance, a structural constraint may impose that if an object changes
shape, then it changes (simultaneously) its location as well. Analogously, one may constrain
changes in mass and changes in volume of an object. Such constraints are structural in the
sense that, based on the structure (thus, the ontological characteristics) of the objects, they
define clusters of types that arenecessarilyassociated with a given type of change. Notice
that structural constraints do not depend on the degree of the considered change, they do not
depend on measuring - we might even have no measure at all. No specific information on the
event is needed beside the fact that the object is changed in the given aspect (say, shape), this
alone allows us to infer that the object also changed in other aspect(s) (say, location).

Causality constraints. These hold between a specific kind ofsimpleevents and a number of
other kinds ofsimpleevents thatdiachronicallychangedistinctobjects. The changes may be
on different aspects of the objects. For instance, a causality constraint may impose a depen-
dence between the change in location of an object (like inβ) and a later (or earlier) change
in shape of another object (like inγ). A similar dependence may be stated between changes
in shape of an object (like inα) and changes in shape of another object (like inγ). We
call these causality constraints because they state very general assertions between qualities
of (different) objects taking into account the (admittedly weak) temporal relation between
events. Even causality constraints define clusters of types of changes. By means of causal-
ity constraints one can say that, for instance, the movement of an object may be caused by
the movement of another object and, at the same time, implicitly exclude that the change in
shape of an object is caused by the change in color of another object. Similarly to structural
constraints, causality constraints do not depend on the degree of the considered change: they
do not depend on measuring - again, one might have no measure at all. It suffices to know
that a change has modified the object with respect to, say, its location, to infer that another
object has changed (or will change) in some aspect(s), like its location or its shape or both.

Circumstantial constraints. These bind event types taking into account the degree of the
change they bring about as well as the types of objects they change. In this sense circumstan-
tial costraints are very different from the types of constraints presented above; they depend
on how refined our measures are - i.e. one needs to measure the changes to verify if these
constraints are satisfied.

There are two main groups of circumstantial constraints:

1. Intrinsic constraintsconstrain two specific kinds ofsimpleevents to comply with restric-
tions either on the way the change is brought about or on the type of objects that are
changed. For instance, in M2, for a causal relation to hold betweenb andc, on the one
hand,b should involve a translation and, on the other hand,c should be the change of a
frangible glass;

2. Relational constraintsconstrain the relations between two specific kinds ofsimpleevents
and/or the objects they change. For example, in M2, for a causal relation to hold between
b andc, b should temporally precedec and the location of the brick at the end ofb should
be the location of the glass at the beginning ofc.



Causation. Causation is the relation that holds between two individual events that satisfy
the causality and circumstantial constraints introduced on their types. Furthermore, the appli-
cations of our framework to the assessment of causation is sensitive to the adopted structural
constraints, which filter out spurious causal relationships between a candidate effect and the
events that are synchronically dependent on the candidate cause (see section 4.5).

4 The proposed formalization

In this section we formally introduce the distinctions between the three types of depen-
dences/constraints that have been discussed above. Then, we use them to define causation.

4.1 Basic Notions fromDOLCE

First, we informally present the predicates ofDOLCE (the foundational ontology we take as
underlying paradigm) used in our theory of causal relations (see [1] for the formal character-
ization of these predicates and more details onDOLCE).3

• PED(x) stands for “x is a physical endurant”, i.e., an entity located in space and time
that iswhollypresent at any time it is present, e.g., a car, George Bush, the K2, an amount
of gold, etc.

• PD(x) stands for “x is a perdurant/event”4, i.e., an entity that is only partially present
at any time it is present, in the sense that some of its temporal parts may not be present,
e.g., reaching the summit of the K2, a conference, eating, being open, etc. In particular
we focus on perdurants with physical participants.

• PQ(x), TQ(x) stand for “x is a physical quality”, “ x is a temporal quality”, respectively.
Qualities are basic ‘aspects’ of entities that can be perceived and measured like shapes,
colors, lengths, speeds, energies. In this sense, they represent partial characterizations of
an entity and depend existentially on it: every endurant (perdurant) comes with its physical
(temporal) qualities, which exist as long as the endurant (perdurant) exists. InDOLCE the
physical and temporal qualities are partitioned into a finite-set ofquality types. We write
PQ1, . . . , PQn (n ≥ 1) for the physical quality types andTQ1, . . . , TQm (m ≥ 1) for
the temporal quality types. From (Ad50), inDOLCE, the spatial locations (SL) of physical
endurants are qualities (thereforeSL is one of thePQi), and from (Ad49), the temporal
locations of perdurants (TL) are temporal qualities (thereforeTL is one of theTQi).

• PR(x), TR(x) stand for “x is a physical region/quale”, “ x is a temporal region/quale”,
respectively. Regions/qualia describe how a quality is ‘classified’ (positioned) within a
specific space of regions called thequality space. A specific shade of red can be a quale
for different color qualities inhering to different objects: the fact that two roses have the
same color is represented by introducing two distinct color qualities (one for each rose),
that have (at a certain time) the same position in the quality space of color, that is, at
that time they have the samecolor quale. Quality types are in a one-to-one correspon-
dence with quality spaces, therefore let us writePR1, . . . , PRn for the physical qual-
ity spacescorresponding toPQ1, . . . , PQn andTR1, . . . , TRm for the temporal quality
spacescorresponding toTQ1, . . . , TQm. In particular,space region(S) corresponds to
spatial locationandtemporal interval(T ) to temporal location(see [1]).

3When referring toDOLCE’s axioms and definitions, we use the notation introduced in [1], where (Dd#)
indicates a definition and (Ad#) an axiom.

4In this paper, the terms ‘perdurant’ and ‘event’ are used as synomyn.



• PP(x, y) stands for “x is a proper part ofy” for perdurants and physical/temporal regions
(see (Dd14) in [1]).

• PC(x, y, t), PCC(x, y) respectively stand for “the endurantx participates to the perdurant
y during the timet”, “ the endurantx participates to the perduranty during the whole
duration ofy” (see (Dd63) in [1]).

• INT (x, y), CNT (x, y) respectively stand for “x is temporally included iny” (see (Dd42)
in [1]), “x is temporally coincident withy” (see (Dd48) in [1]).

• qt(q, x) stands for “q is a quality ofx” . With this relation we can say that the above physi-
cal and temporal quality types cover all the possible qualities of endurants and perdurants:

(A1) qt(q, x) → ((PED(x) ↔ (PQ1(q) ∨ · · · ∨ PQn(q))) ∧
(PD(x) ↔ (TQ1(q) ∨ · · · ∨ TQm(q))))

• ql(r, q), ql(r, q, t) respectively stand for “r is the quale/region of the perdurant’s quality
q”, “ r is the quale/region of the endurant’s qualityq during the timet”. The one-to-one
correspondence between quality types and quality spaces is captured by these axioms:

(A2) ql(r, q) → (TQi(q) ↔ TRi(r))

(A3) ql(r, q, t) → (PQi(q) ↔ PRi(r))

For notation conciseness we introduce the following relation stating that the quality of
typePQi of x has qualer at timet:

(D1) ql(PQi, r, x, t) , ∃q(qt(q, x) ∧ PQi(q) ∧ ql(r, q, t))

4.2 Theory of Time

DOLCE is not committed to a particular theory of time. As this is necessary to express tem-
poral constraints in causal relations, we adopt Allen and Hayes’s theory [13], which is well
known and expressive enough to capture the temporal constraints we need. However, our
approach is not bound to this theory and it can be easily reformulated in terms other theories.

Allen and Hayes’s theory formalizes a discrete and linear time using the binary primitive
meets(‖) between convex and extended intervals. The intended interpretation of this primitive
is: t1‖t2 if and only if the right extreme of the closure oft1 coincides with the left extreme of
the closure oft2. Considering their temporal extensions, this relation is naturally extended to
perdurants and to pairs formed by a time interval and a perdurant. On the basis ofmeets, the
temporal precedence relation can be defined in the classical way:

(D2) e1 <T e2 , ∃t1, t2(t1‖e1 ∧ t1‖t2‖e2).

4.3 Basic Quality Changes

Informally, abasic quality change5 is a perdurant capturing the change of an endurant along
just one aspect/quality type. Complex perdurants can be decomposed into quality changes
by fixing: (i) one specific participant; (ii) one physical quality type along which the partici-
pant changes. Therefore, basic quality changes can be further decomposed only considering

5In the following we use the expressions “basic quality change” and “quality change” as synonyms.



shorter temporal extensions or proper parts of their participants. Consider, for example, the si-
multaneous change of thecolor andshapeof an objectx. This perdurant can be decomposed
into two basic quality changes: the change of the color ofx and the change of the shape ofx.
These quality changes can be further decomposed by considering, say, the first 3 seconds of
the change of the shape ofx or the change of the color of the right part ofx, but they do not
have proper parts with the same temporal extension and the same participant (the wholex).6

Following this informal description, given an endurantx and a physical quality typePQi,
we define a basic quality changee in the following way:

(D3) BQC(e, x,PQi) , BQC∗(e, x,PQi)∧
n∧

j=1

¬∃e′(PP(e′, e)∧CNT (e′, e)∧BQC∗(e′, x,PQj))

(Basic Quality Change)

where:

(D4) BQC∗(e, x, PQi) , UPCC(x, e)∧∃t, t′, r, r′(INT (t, e) ∧ INT (t′, e) ∧
ql(PQi, r, x, t) ∧ ql(PQi, r

′, x, t′) ∧ r 6= r′)

(D5) UPCC(x, e) , PCC(x, e) ∧ ∀y, t, t′((PC(x, e, t) ∧ PC(y, e, t′)) → x = y)

For each quality typePQi, we define a predicatePQC
i (calledchange type) that individ-

uates the set of basic quality changes with respect toPQi. These definitions are given by the
following schema:

(D6) PQC
i (e) , ∃x(BQC(e, x, PQi))

For example, given the quality typeColor, ColorC(e) holds if and only ife is a basic
quality change with respect to theColor quality type, that is, duringe, the color quality of its
(unique) participantx assumes different positions in the color space.

4.4 Quality Dependences

Specific quality changes can be existentially dependent on others. Intuitively this reflects the
fact that some quality changes can affect (or be affected by) other changing aspects of that
or other endurants. Consider again the case of quality typesShape andSpatialLocation.
It can be the case that, when an endurant changes itsShape necessarily it changes also its
SpatialLocation, but not vicecersa. Thus, a change inShape induces a simultaneous change
in the other aspect of the same endurant. On the other hand, one can assume that a change
in Shape is necessarily associated with a change inSpatialLocation of a different endurant
(occurring in an immediate spatio-temporal proximity) .

On the basis of the temporal relations between quality changes and of the identity rela-
tions between their participants, we distinguish three different kinds ofgeneric existential
dependence7 between unary predicates (α andβ in the following formulas) that individuate
sets of quality changes:

(D7) sQD(α, β) , ∃x(α(x)) ∧ ∀x(α(x) → ∃y(β(y) ∧ CNT (x, y) ∧ pc(x) = pc(y)))8

(Synchronic Dependence)

6Note that the uniqueness of qualities of a specific type inherent to an endurant (see (Ad44)) guarantees that
it is not possible to have different simultaneous basic quality changes of one endurant both relative to the same
quality type.

7Note that these dependences are more general than thegeneric constant dependenceintroduced inDOLCE

(see (Dd71)) because the last one presupposes the temporal inclusion of the instances ofα andβ.
8It is easy to prove that:sQD(PQC

i , PQC
i ).



(D8) bQD(α, β) , ∃x(α(x)) ∧ ∀x(α(x) → ∃y(β(y) ∧ y <T x ∧ pc(x) 6= pc(y) ∧ φ1))
(Backward Dependence)

(D9) fQD(α, β) , ∃x(α(x)) ∧ ∀x(α(x) → ∃y(β(y) ∧ x <T y ∧ pc(x) 6= pc(y) ∧ φ2))
(Forward Dependence)

wherepc(x) is the participant to a basic quality change, i.e.pc(x) , ιy(UPCC(y, x))9, and
φj is a formula. In the case above,ShapeC is synchronously dependent onSpatialLocationC

but not viceversa. In addition,ShapeC is backwardly dependent onSpatialLocationC , but
SpatialLocationC is not forwardly dependent onShapeC .

The simple binary dependences are not enough to express complex cases where a quality
change depends (backwardly or forwardly) on different simultaneous quality changes of the
same endurant. For this cases, we need a notion ofmultiple dependence. Here we introduce
only the definition ofmultiple backward dependence, the definitions of the forward and mixed
back/forward dependences are similar:

(D10) bQD(α|β1, . . . , βn) , ∃x(α(x)) ∧ ∀x(α(x) →
∃y1, . . . , yn(β1(y1) ∧ ... ∧ βn(yn) ∧ pc(y1) = ... = pc(yn) ∧
pc(x) 6= pc(y1) ∧ CNT (y1, y2) ∧ ... ∧ CNT (y1, yn) ∧ y1 <T x))

(Multiple Backward Dependence)

At this point, we have all the notions necessary to introduce complex dependences corre-
sponding to logical ‘or’ (∨) of multiple dependences. Intuitively, the logical ‘or’ represents
the fact that the same quality change can ‘cause’ (or be ‘caused’ by) other quality changes
of a different type. Syntactically, we use a semicolon for the logical ‘or’, and symbolsb
(backward) andf (forward) for the kind of multiple dependence. For example, the formula

(D11) QD(α|b〈βa〉; b〈βb1 , β
C
b2
〉f〈βC

b3
〉) , bQD(α, βa) ∨ (bQD(α|βb1 , βb2) ∧ fQD(α, βb3))

states thatα is backwardly dependent onβa or it is multiple bidirectionally dependent on:
βb1 , βb2 (backwardly) andβb3 (forwardly).

In order to specify the ‘ontological structure’ of qualities and the causal knowledge that
we use to definecausation, we further specialize the previous kind of dependences on the
basis of the ‘logical/ontological nature’ ofα, β, andφ as discussed in section 3.10

Structural dependence.The structural dependence is a synchronic dependence between
change types. Structural dependences express very general laws which are not considered
causal. They cluster types of changes that arenecessarilyandsynchronouslyassociated with
a given change type involving an object because of its structure (ontological characteristics).
In definingcausation, aspecificsynchronic dependence between quality changes is used:11

(D12) sQD(x, y) , ∃α, β(sQD(α, β) ∧ α(x) ∧ β(y) ∧ CNT (x, y))

Causality dependence.The causality dependences are backward and/or forward depen-
dences between change types whereφj is the propositiontrue. These dependences associate
a given type of quality change, occurring to a given object, with quality changesnecessar-
ily but non synchronouslyoccurring tootherobjects (i.e., independently of their ontological
characteristics).

9Note that this definition makes sense only in the case of basic quality changes because, in this case, the
existence of an unique participant is guaranteed by (D3).

10Generally speaking, we assume the set of dependences in the theory is minimal in the sense that, given
α 6= α′ and/orβ 6= β′, formulabQD(α, β) → bQD(α′, β′) fails. Similarly for fQD(α, β) → fQD(α′, β′).

11Note that, once the finite set of synchronic dependences is fixed, this is a first-order formula.



Circumstantial dependence.The circumstantial dependences are backward and/or forward
dependences between sets of quality changes in which the formulaφ takes into account the
qualia of the temporal qualities of quality changes and/or the qualia of the physical qualities
of their participants. It is possible to distinguish two types of circumstantial dependences.

• Intrinsic dependence. Intrinsic dependences are forward and/or backward dependences
between subsets of change types. They capturehow the participant changes its physical
qualities, e.g., “temperature increasing backwardly depends on temperature increasing”.

• Relational dependence. The relational dependences are forward and/or backward depen-
dences between sets of quality changes in which the formulaφ compares the qualia of the
events’ qualities and/or the qualia of the participants’ qualities. Without discussing their
logical forms in detail, here we consider two basic subtypes of relational dependence:

– dependence involving the qualia of temporal qualities of quality changes (e.g., “the
energy of the quality changex must be greater than that of the quality changey”);

– dependence involving the qualia of physical qualities of the participants (e.g., “the
final spatial-location of the participant tox must coincide with the initial spatial-
location of the participant toy”).

4.5 Causation

So far, we have listed several types of dependences. Among these, causality dependences
isolate the notion of causality embedded in the overall systems. These dependences, together
with the circumstantial ones, allow us to define a notion of (relative) causation, which is a
binary relation on events as anticipated in section 3.

First of all, we clarify in which sense the notion of causation we capture is relative. Gen-
erally speaking, causation is defined on pairs of events and, as such, its domain is the set of
all events in the ontology. In everyday practice instead, causation is a relation applied only to
those events that the user considers relevant. That is, one fixes a set of events (perhaps like
M1 orM2 of section 2) and looks for causation relationships within this set only. Should one
define causation relation for any set of events? We know that to establish causation between
eventsa andb, one often has to look for a chain of (pairs of) events that satisfies the causation
relationship. This is a crucial issue. Indeed, if one can establish causation between eventsa
andb only through a third eventc, the ability to conclude thata, b are in causation relation
depends on the presence ofc in the given set of events. Thus, the conclusion depends on the
given set. One could claim that the given set of events provides all the information one is
allowed to use, thus it is from this information only that a conclusion has to be reached. On
the other hand, one can sustain that, once other events are known to exist, one has no right to
leave them out. This is primarily a modeling decision and one can find real applications, like
in legal trials and natural physics, to defend its position. In this paper, we do not take a stand
on this issue and leave room for the different approaches. However, in order to show how the
theory can deal with this issue, below we apply the causation relationship to sets of events
that are closed with respect to the class ofstructuraldependences. A generalization to other
dependences is easily obtained while it is obvious how to drop this closure restriction.

Let us callstructurally closedany set of events that satisfies the structural constraints of
the system. For the time being, assume that the system includes just one structural constraint
which states that for every eventa corresponding to a change of shape, there must be a
concurrent eventa′ corresponding to a change of location of the same endurant. IfE be an
arbitrary set of events, then we can obtain a structurally closed set fromE as follows. For



each event inE corresponding to a change of shape, add a concurrent event that is a change
of location of the same endurant. CallE∗ the set thus constructed. Clearly,E ⊆ E∗ andE∗

is structurally close. We now provide a definition of causation for this kind of sets.
Let E be a structurally closed set. We say that a pair of events(a, b) in E, satisfies the

causation relation, i.e.,CSE(a, b) holds, when at least one of the following occurs:

(i) If a andb are quality changes of typeα andβ, respectively, i.e.α(a) ∧ β(b), then

- a backward or a forward dependence of the formbQD(ψ, φ) and fQD(φ, ψ), where
α(x) → φ(x) ∧ β(x) → ψ(x), is satisfied, or
- there existz1, . . . , zn in E of typesγ1, . . . , γn, respectively, such thatsQD(z1, a) ∧
... ∧ sQD(zn, a) and a constraintbQD(ψ|φ, χ1, . . . , χn) (or a multiplefQD) is satisfied
(where for allx, α(x) → φ(x), β(x) → ψ(x), γ1(x) → χ1(x), . . . , γn(x) → χn(x)), or
- one of the remaining constraints expressed following the schema (D11) is satisfied;

(ii) there exist eventsa′ andb′ in E such thatsQD(a, a′), sQD(b, b′), and(a′, b′) satisfies
condition (i) above (a = a′ or b = b′ is allowed);

(iii) there exists eventc in E such thatCSE(a, c) andCSE(c, b).

From our description, an explicit definition ofCSE can be easily obtained, although the
logical formula is a bit complex. In particular, note that our definition is intrinsically re-
cursive. Since in general one cannot bound the number of events inE, it is possible that
causation between two eventsa, b in E can be established only considering a sequence of
pairs(a, e1), (e1, e2), . . . , (en, b) whose maximal length depends onE itself.

Note that from this definition (see condition (i)) it follows thatCSE(a, b) → a <T b.

5 What broke the window?

In this section we show how to use our framework to establish causation relationships among
events. For this we go back to Example 1 (The Broken Window, see section 2) and provide
our analysis of this problem.

The reader has noticed that we have hardly characterized causality and related notions in
a normative sense. After all, leaving aside our treatment of causation in the last section, we
limited our work to the classification of sets of constraints (structural, causal, circumstantial)
and their motivations within theDOLCE ontology. It is the specific choice of constraints that
one assumes that isolates the notion of causality and causation one is using and, indeed, we
know that there is no unique characterization of these notions people like to use in their
everyday work. Thus, in facing a specific example, the initial step is to provide a set of
constraints corresponding to (and isolating) the notions of causality and causation that we
want to use. Since Example 1 is an example of causation among physical events, we look
at classical physics as a source of inspiration and proceed by adopting those physical laws
that fit our knowledge about the world. In other terms, in this example we use the laws of
physics to relate the qualities available in the system and to add specific constraints to the
overall ontology. In addition remember that from (i) of section 4.5, the following is valid:
CSE(a, b) → a <T b. Here, we focus on the study of different possible representations of
the situation of thebroken windowinformally described in section 2, and analyze how the
causality and circumstantial constraints affect the causation relations between specific events
inthe universe of discourse.

Our first modeling exercise considers a quite poor ontology, call itO1, in which just a
few quality types are available, namely: spatial location (SL), shape (ShL), and temporal



location (TL).The first two,SL andShL, are physical quality types andTL is a temporal
quality type. Using the limited language ofO1, we represent the broken window example
introducing three quality changes:a = the canary moves from locationlai to laf (aSL change);
b = the brick moves from locationlbi to lbf (anotherSL change); andc = the windows changes
shape fromsc

i to sc
f (a ShL change). In addition we assumea <T c, b <T c, anda ≈T b.

This is a very stripped down description of the original problem, however the reader should
recognize that, from the point of view ofO1, a, b, c describe ‘correctly’ the example (in what
follows, we considerW = {a, b, c}). What are the constraints we use inO1? We want to keep
our example simple so let us assume just one constraint in addition to the temporal constraint:
since in Newtonian physics a change of shape can be caused by a movement, we state this as
abackward causality dependencein the theoryO1: bQD(ShL, SL).

Having specified whatO1 is, we can check which pairs of events fall in the causation
relation. The main question is: which event (if any) is the cause ofc? First, we must verify
whetherW is a structurally closed set. Since inO1 there are no structural constraints,W is
closed in this sense and we can apply our definition of causation.Only two pairs of events
in W respect the temporal condition. These pairs are:(a, c) and (b, c). Since botha and
b are movements andc is a change of shape, then they both satisfy the backward quality
dependence and we conclude that botha andb are, independently, cause of the latter event,
that is, inO1 we haveCSW (a, c) andCSW (b, c).

Of course, one may want to add other constraints to the ontology. Following classical
physics, one could assume that, in order to exist a causation relationship in the case of move-
ment, the final location of the object in the cause event has to be in contact with the initial
location of the object in the effect event. This is abackward circumstantial(relational) depen-
dence according to our classification in section 4.4. Let us callO2 the ontology that assumes
the temporal constraints and the latter one. SinceO2 does not include structural constraints,
we can apply our causation definition to setW . Because of the temporal constraints, we need
to consider pairs(a, c) and(b, c) only. Note that now we must consider the location of the
window glass, which is given since it is a quality of the participant toc. Let us calllxi andlxf
the initial and final locations of the participant to the eventx and suppose thatlbf = lci and
laf 6= lci .The new constraint is satisfied only by(b, c) and thus, inO2, we conclude that onlyb
causes the braking of the window, i.e., in this theory we haveCSW (b, c) but notCSW (a, c).

Instead of the new constraint on locations, used to obtainO2, one could consider a new
quality type, for example a quality type providing the energy of an event. From classical
physics, we know that an event can cause another only if the first can deploy at least as
much energy as needed by the latter.12 Let us add this constraint toO1 and call the resulting
ontologyO3. As before, we need to check pairs(a, c) and (b, c) only. This time we must
include in our analysis the energy of each event, energy that here we indicate withεa, εb, and
εc. To establish which event(s) is cause ofc in O3, if any, we need to check ifεa ≥ εc, for
(a, c), and if εb ≥ εc, for (b, c). The result will establish which ofCSW (a, c) andCSW (b, c),
if any, is true in this ontology.

Another interesting case is obtained by changing the universe of discourse. Let us sub-
stitute eventa by a∗ = the canary changes shape. Also, this time we include astructural
constraint stating that in order to have a change in shape a movement must occur. What is the
causation relation in the resulting ontology? From our discussion in section 4.5, one cannot
consider the set of eventsW ∗ = {a∗, b, c} since it does not satisfy the structurally closure
constraint. One must look at the richer setW+ = {a∗, b, c, d, e} that includes the new events
d = the canary moves ande = the window glass moves. The reader should note thatW+ is
uniquely identified byW ∗ and the structural constraints we have adopted. At this point, ac-

12The case of concurrent events that are co-cause is captured by considering their mereological sum.



cording to the remaining constraints in the ontology here considered, one can apply the given
definition of causation (now with respect to the new setW+) and argue as in the previous
cases to concludeCSW+(d, c) and, from this,CSW+(a∗, c) or, alternatively, notCSW+(d, c)
and notCSW+(a∗, c).

At this point, it should be clear how different ontologies isolate different notions of causal-
ity and causation in our framework.

6 Conclusions

We have discussed the definitions of causality and causation relations and their formal and
applicative drawbacks described in the literature. Recognizing the validity of such criticisms,
we have begun to study how constraints of different nature (structural, causality, and cir-
cumstantial) intervene in shaping causal relations. We proposed to look at these constraints
as forms of dependences among event types that capture general laws (at different levels of
abstractions) or present orthogonal aspects of these relationships. This study allowed us to
propose different definitions of causality and causation which depend on several parameters
like the adopted ontology (in particular the qualities it includes), the set of events taken into
consideration as well as special dependences among events and their types.

We remark that our proposal is admittedly incomplete. For instance, it does not make
justice of the intuitive notion of causation in the case of static events: the pen on the table
does not fall “because” of the presence of the table. Many argue that this case involves a truly
causal relationship. This is not clear to us. Anyway, the approach presented in this paper is
not applicable to such cases. Also, our work does not explain how to extend the proposed
framework to complex events. Although one can consider complicated sets of events by ap-
plying the theory to their mereological sum, the effectiveness and clearness of the resulting
causality and causation relations need to be investigated further.
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