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Abstract

We present a logical theory of space where only
tridimensional regions are assumed in the
domain. Three distinct primitives are used to
describe their mereological, topological and
morphological properties: mereology is described
by a parthood relation satisfying the axioms of
Closed Extensional Mereology; topology is
described by means of a "simple region"
predicate, by which a relation of “strong
connection”  between regions having at least a
surface in common is defined; morphology is
described by means of a "congruence" primitive,
whose axioms exploit Tarski's analogy between
points and spheres.

1  INTRODUCTION

Various logical theories aimed at the representation of
commonsense spatial knowledge have been proposed in
the AI community in recent years. In the spirit of (Hayes
1985a), the goal has been that of establishing the logical
basis of a “geometry of commonsense”, intended to be
used for tasks as disparate as robot navigation or natural
language understanding. Besides specific proposals focused
on particular aspects, like (Hayes 1985b, Davis 1993,
Shanahan 1995), the most general frameworks have been
perhaps those based on a combination of mereological and
topological notions, which appeared in AI after the
publication of Clarke’s mereotopological theory (Clarke
1981). Among these, particular relevance for AI purposes
has the so-called RCC theory (Randell and Cohn 1992,
Gotts 1994, Bennett 1995, Gotts et al. 1996), which  has
been recently joined by other proposals originating in the
area of philosophy and linguistics (Aurnague and Vieu
1993, Asher and Vieu 1995, Eschenbach and Heydrich
1995, Casati and Varzi 1996, Smith 1996). These
approaches differ in the primitives adopted and in the
ontological assumptions about the domain. They all have
in common however the use of the tools of so-called

“formal ontology” (Guarino 1995) for the representation of
commonsense reality: specifically, mereology and
topology. Readers can refer to (Simons 1987) for a general
overview of mereology, and to (Varzi 1994, Varzi 1996b)
for a systematic account of the subtle relations between
mereology and topology.

We can distinguish four main aspects which are useful to
compare and evaluate ontological theories of space,
namely: i) the assumptions related to the ontological
status of spatial entities (conceived of as existing either
only on its own or rather only relative to physical
objects); ii) the presence/absence of lower dimension
entities like boundaries (surfaces, lines or points) in the
domain; iii) the primitives used to express the relevant
relations; iv) the degree of characterization of the intended
models. In this paper, we are presenting a logical theory
whose main contributions are discussed and motivated in
the light of these points.

In section 2 we address the first two points, discussing our
basic ontological assumptions about space. We adopt the
classical conception of absolute space, excluding lower
dimension entities from the domain; our individuals are
therefore three-dimensional regions.

The discussion of points iii and iv represents the body of
the paper. We assume three distinct levels of description of
space: the mereological level, the topological level, and
the morphological level. A specific primitive is adopted
for each of these levels.

In fact, since our domain is limited to spatial entities
only, we could use the connection (‘C’) primitive to define
parthood (as done by Clarke), eliminating of a primitive.
We prefer however to keep the mereological and
topological levels separate because of reasons of cognitive
clarity and immediateness, adopting a general parthood
primitive supplemented with a specific topological
primitive. Our choice differs therefore from the approaches
inspired by Clarke's work, since we don't take connection
(‘C’) as a primitive: rather, we introduce a unary simple
region (‘SR’) primitive, where a simple region (shortly, s-
region), is a region "all in one piece", i.e. a strongly self-
connected region, such that any two halves of it always



have a surface in common (strong connection or surface
connection, briefly s-connection). In other words, an s-
region, in everyday intuition, can be occupied by a single
thing. The reasons of this choice come from the desire to
make possible a simple and natural interpretation of the
very notion of (external) connection, which is far from
being totally clear, especially for what concerns the
distinctions between point-, line- and surface-connection.

A distinguishing feature of the theory presented here is the
emphasis given to the morphological level. We take the
congruence relation between regions as a primitive,
proposing an axiomatization which is constructed upon
the reconstruction of Euclidean geometry in terms of
spheres developed by Tarski (Tarski 1956). Spheres, in
turn, are defined in terms of parthood, s-regions and
congruence. The resulting theory turns out to be extremely
powerful, allowing us to rigorously distinguish between
point-, line-, and surface-connection, and to define notions
such as convexity and granularity, which we plan to
exploit in a research project aimed at the logical modelling
of mechanical assemblies (Borgo et al. 1996).

For each of the three levels introduced above, we propose
an axiomatization aimed at achieving a good
characterization of our intended models. This last point
marks a major feature of our approach: our theory is an
ontological theory, in the sense discussed in (Guarino and
Giaretta 1995). It is a rich theory in terms of axioms and
definitions (in the spirit of (Hayes 1985)), since its main
purpose is to convey meaning, in such a way as to
characterize more precisely the ontological assumptions
underlying the primitives adopted, restricting their
possible interpretations. The high expressiveness of the
language (full first order logic) makes the theory not
suitable for direct implementation in a reasoning system,
while making it possible however to adopt its primitives
and definitions as the basis of a logical vocabulary suitable
to be shared among different applications (Guarino et al.
1994).

The rest of this paper develops as follows. In section 2 we
introduce in more detail our basic ontological
assumptions; sections 3, 4 and 5 are devoted to the
presentation of our mereological, topological and
morphological axioms, respectively; finally, in section 6
we make an overall assessment of the theory with respect
to the current literature, and we briefly discuss its potential
applications.

2  BASIC ONTOLOGICAL ASSUMPTIONS

We have adopted here the classical Newtonian conception
of space, according to which space exists independently of
the entities that can occupy it. In this view, space is like a
container where physical objects can be located and can
move. In other words, space is intended as a substrate,
since its existence is a necessary condition for physical
objects to exist (Borgo et al. 1996). Other proposals more
oriented towards natural language applications, like
(Aurnague and Vieu 1993), adopt the Leibnizian

conception, assuming space to be strictly dependent on the
relations holding between physical objects. In this second
view, it is not necessary to admit the existence of spatial
entities like regions, and, in any case, the existence of
such entities depends directly on the objects themselves.
Although both of these claims are tenable, the first
position seems to be much easier for practical
applications. For instance, in the absolute conception, the
movement of an object could be described quite simply as
the sequence of regions where the object is located,
whereas otherwise we would have to consider the changes
of the relevant relations between our object and the other
objects in the system.

A further crucial assumption is related to the exclusion of
spatial entities like surfaces, lines, and points from our
domain. They are basic ingredients of ordinary geometry,
but their ontological status in our everyday interaction
with the world is debatable. In fact, our experience of
space is strictly related to physical three-dimensional
objects (our human body is one of them). We move these
objects around to perceive space and to recognise the
“outside” world. From this naive position, points are not
considered as inhabitants of this world, but rather results
of complex abstract reasonings, so they could be defined,
if really necessary, as higher-order entities. In this spirit,
various proposals for an axiomatization of pointless
geometry have been made in the past (Lobachevskij 1835,
Whitehead 1929, Grzegorczyk 1960) (see (Gerla 1994) for
an overview). Approaches based on Clarke’s
axiomatization, like (Asher and Vieu 1995, Gotts et al.
1996), don’t admit points in their domain1. The RCC
theory moves further, getting rid of the topological
distinction between open and closed regions to avoid a
number of problems related to the boundaries of physical
objects. We have adopted this latter choice, assuming
regular three-dimensional regions in a 3D Euclidean space
as elements of our domain. The peculiar property exhibited
by these regions is that they can be occupied by concrete
physical objects. Indeed, although the domain assumed in
the formalization below is limited to spatial regions only,
all the ontological choices made in this paper are
motivated by a more general view where space, matter and
physical objects are considered (Borgo et al. 1996).

3  MEREOLOGICAL LEVEL

Let us present the axioms assumed for our primitive
parthood relation, represented by means of the binary
predicate ‘P’. It is important to stress that our domain is
limited here to spatial regions; in this restricted domain,
parthood can be taken as equivalent to spatial inclusion,
since the various problems bound to the ontological nature
of the entities involved disappear: for instance, it makes
no sense to distinguish an object in a hole (which is not
part of the hole) from the region it occupies (which is part

                                                
1 See however (Varzi 1996a) and (Smith 1996) for a different

strategy, where the peculiar ontological status of boundaries is
defended.



of the region occupied by the hole) (Casati and Varzi
1995).

We have adopted in the following a standard first-order
language with identity. Throughout the paper, free
variables appearing in formulas are intended to be
universally quantified. The following definitions are built
upon the parthood relation1:

D1. PPxy=df Pxy ∧  ¬ x=y (Proper part)

D2. Oxy =df ∃ z(Pzx ∧  Pzy) (Overlap)

D3. POxy =df Oxy ∧ ¬ Pxy ∧ ¬ Pyx (Proper  overlap)

D4. x+y =df ι z∀ w(Owz ↔ (Owx ∨ Owy)) (Sum)

D5. x-y = df ιz∀ w(Pwz ↔ (Pwx ∧  ¬ Owy)) (Difference)

D6. x×y =df ι z∀ w(Pwz ↔ (Pwx ∧  Pwy)) (Product)   

The ι  operator appearing above is defined contextually à la
Russel:

D7. ψ[ι xφ] =df ∃ y(∀ x(φ ↔  x=y) ∧ ψ [y])

The following axioms – equivalent to those of Closed
Extensional Mereology (Simons 1987, Varzi 1996b) – are
introduced:

A1. Pxx

A2. Pxy ∧  Pyx → x=y

A3. Pxy ∧ Pyz → Pxz

A4. ∃ z(z=x+y)

A5. ¬ Pxy → ∃ z(z=x-y)

Notice that the so-called “fusion axiom” (allowing for
infinite sums) typical of General Extensional Mereology
is not assumed, since it would lead to inconsistencies in
our mereo-topological framework (see below). Some
simple theorems deriving from the axioms above are the
following:

T1. ¬ Pxy → ∃ z(Pzx ∧ ¬ Ozy) (A1; A5; D5)
(strong remainder principle)

T2. Oxy → ∃ z(z=x×y) (A4; A5; D6)
(existence of product)

4  TOPOLOGICAL LEVEL

As mentioned in the introduction, we have decided to adopt
a unary primitive ‘SR’ instead of ‘C’. To make clear this
choice it is important to analize the relation between
mereology and topology a little more. In the past, various
attempts have been made to define topological notions in
terms of parthood. In fact, the overlap relation defined by
D2:

Oxy =df ∃ z(Pzx ∧  Pzy)

                                                
1 Throughout the paper, we mark definitions with ‘D’, axioms with

‘A’ and theorems with ‘T’

seems to resemble a notion akin to that of connection.
The crucial point here is the ontological nature of the
elements involved in the above definition. As pointed out
in (Eschenbach and Heydrich 1995), if we have both
points and regions in the domain we can restrict the
arguments of the “overlap” relation to hold only for
regions, by means of a primitive predicate ‘R’, which
selects (regular) regions. Topological connection can be
therefore defined as follows:

Cxy =df Rx ∧  Ry ∧  Oxy (connection)

In the case of external connection, this means that x  and y
have a part in common (i.e., they overlap), but this part is
not a region (assuming regions as three-dimensional, it
may be a point, a line, or a surface).

Notice that the primitive ‘R’ above isolates some entities
in the domain which have a peculiar “topological”
meaning. In our case, since the domain is already limited
to regions, the definition above would collapse to ordinary
overlap. We must then resort to some other strategy. An
attempt in this sense has been made by Whitehead
(Whitehead 1929), who tried to define connection as
follows, by means of mereology only:

Cxy =df ∃ z(Ozx ∧  Ozy ∧  ∀ w(Pwz → (Owx ∨  Owy)))

As shown in (Varzi 1994), it is easy to see however that
the above definition fails if we allow z to be a
disconnected region (Figure 1).

x yz

Figure 1. Whitehead’s problem: x and y are not connected
unless the overlaying piece z is itself connected.

 From (Casati and Varzi 1995).

In other words, we face here the main problem of
mereology, namely the impossibility of characterizing the
notion of a whole. The move we have made to solve this
problem is simply the introduction of this notion at the
topological level by means of the primitive ‘SR’ which
denotes  a self-connected regular region. This will allow us
to define “connection” in terms of ‘P’ and ‘SR’ by means
of a simple specialization of Whitehead’s definition:

Cxy =df ∃ z(SRz ∧  Ozx ∧  Ozy ∧
∀ w(Pwz → (Owx ∨  Owy)))

We see therefore that an extra primitive besides parthood is
necessary to define connection. The meaning of the
connection relation, however, remains still obscure unless
the ‘SR’ primitive is suitably characterized. Our choice



has been to interpret ‘SR’ in a strong sense, as denoting s-
regions rather than generic self-connected regions. Under
this interpretation, the definition above refers to strong
connection (s-connection). In our intuition, such a notion
is bound to that of physical connection.. For an example
of a non s-connected region, think of two spheres (say,
two apples) touching each other in a point: no physical
object (like a worm for instance, however thin) can pass
from one to the other without exposing itself to the
outside space (Figure 2). We shall say in this case that the
two spheres are connected but not s-connected. Later, with
the help of morphology, we will be able to distinguish
also between point- and line-connection (p-connection and
l-connection).

Figure 2. The regions occupied by the two apples are not
s-connected. Their sum is not an s-region.

After this discussion of our desiderata, let us introduce the
axioms and definitions which characterize our topological
level, together with some interesting theorems.

Definitions:

D8. IPxy =df PPxy ∧ ∀ z((SRz ∧  POzx) → Oz(y-x))
(interior part)

D9. MCPxy =df Pxy ∧  SRx ∧ ¬∃ z(Pzy ∧  SRz ∧  PPxz)
(maximally connected  part)

D10. SCxy =df ∃ uv(Pux ∧  Pvy ∧  SR(u+v))
(strong connection)

Axioms:

A6. (SRx ∧ x=y+z)→ ∃ u(SRu ∧  Ouy ∧  Ouz ∧  IPux)

A7. ∃ y MCPyx

A8. ∃ y (SRy ∧  IPxy)

Definition D8 deserves some comments. Notice first that,
in our interpretation, the relation 'IP' turns out to be
different from the usual relation 'NTPP' (non-tangential
proper part), since a region x being l- or p-connected with
a region external to y must be considered as an interior
part of y (Figure 3). A further observation is related to the
possibility of allowing the infinite mereological sum of
the interior parts of a given region. This would lead to
inconsistencies, since such a sum would coincide with the

maximal interior part, while no maximal interior part can
be admitted by T10 (see below). For this reason we have
excluded infinite sums from our mereological framework.
A similar problem has been noticed in (Randell and Cohn
1992).

x
y zx

y zx
y z

IPxy IPxy ¬ IPxy

Figure 3. No external region can be strongly connected to
interior parts.

Definition D9 introduces the notion of maximally
connected part, and definition D10 is a compact rewriting
of Whitehad’s amended definition reported above.

Axiom A6 refines the idea of strong connection between
two halves of a s-region by adding the further requirement
that the “connecting” region be an interior part of the
resulting sum; in this way, it excludes regions which are
not manifolds, like the sum of two tangent spheres, to be
considered as a s-region. To see this, suppose per
absurdum that the sum x of two p-connected regions y and
z is a simple region (Figure 4). According to A6, we must
find a “connecting” s-region u overlapping both y and z,
which is at the same time an interior part of x. Now, the
only possible candidates for u must be regions p-connected
in the same point which connects y and z, but these can’t
be interior parts of x since there will be other regions (like
w) external to x touching u in the same point. An
analogous argument applies to the case of l-connected
regions.

y      

u

z

w

Figure 4. Why y+z cannot be an s-region.

Axioms A7 and A8 further determine the structure of our
spatial domain. Through A7, every region has some



maximally connected part;  A8 states that any region is
part of some simple region, and therefore the notions of
universe and complement are not defined. Among other
things, this axiom prevents ‘SR’ from being interpreted as
a “local” property, like  for example ‘being red’.

Let us now present some theorems which follow from our
axiomatization:

T3. IPxy ∧  Pyz → IPxz (A3; D8)

T4. Pxy ∧  IPyz → IPxz (A3; D8)

T5. IPxy ∧  IPxz → IPx(y×z) (D6; D8)

T6. IPxz ∧  IPyz → IP(x+y)z (D4; D8)

T7. SRx ↔ MCPxx (D9)

T8. ¬ SRx → ∃ y(MCPyx ∧  PPyx) (A7; T7; D9)

T9. ∃ y(SRy ∧  IPyx) (A6; T3; T8; D9)

T10. IPxy → ∃ z(IPzy ∧  PPxz) (A4; A5; T3; T6; T9)

T11. SRx → ∀ yz(y+z=x → SCyz) (A6; D10)

T12. ∃ y(SCxy ∧  ¬ Oxy) (A5; A8)

T13. SCxx (A8; D10)

T14. SCxy → SCyx (D10)

T15. Pxy ↔  ∀ z(SCzx → SCzy) (A3; A5; T1; T3; T9)

T16. x=y ↔ ∀ z(SCzx ↔  SCzy) (A2; T15)

Theorems T3-T6 establish some desirable properties of the
relation ‘IP’ with respect to mereology, which are actually
taken as axioms in (Smith 1996), where the ‘IP’ relation
is adopted as a primitive; T7 shows that an s-region is
maximally self-connected, while T8 shows that given a
non-simple region it has a maximally connected proper
part. T9 shows that our theory is not atomic, and that any
region has an interior part which is an s-region. T10
shows that our space is dense, in the sense that, given a
region x internal to y, there always exists another region z
properly including x and still internal to y1. T11 shows
that two halves of an s-region are always s-connected,
while T12 shows that our notion of strong connection is
actually different from overlap. Finally, T13-T14 show the
reflexivity and the symmetry of s-connection, while T15-
T16 establish the relationship of s-connection with
parthood and identity, respectively.

5  MORPHOLOGICAL LEVEL

Besides mereological and topological relations, the
possibility of expressing morphological features is a
crucial aspect for  any commonsense theory of space. A
“convex hull” primitive has been used with some success
within the RCC theory, but it seems too weak for our
purpose. A ternary alignment relation has been used in

                                                
1 This is a weak notion of density. We cannot prove a stronger notion

as: IPxy → ∃ z(IPzy ∧  IPxz)

(Aurnague and Vieu 1993), but it commits to a (higher-
order) notion of point. We have opted here for a different
morphological primitive, the most intuitive we can think
of: the congruence relation  between regions, designated by
‘CG’, meaning that CGxy holds if x and y have the same
shape and size. In the case of classical geometry based on
points, segments and angles, this relation was first
axiomatized in (Hilbert 1902), with various
simplifications thereafter. In our restricted domain, a
“direct” axiomatization of the notion of congruence
between regions seemed to be quite complicated to us,
since we are not aware of any similar approach. We have
chosen therefore to take advantage of Hilbert’s work, by
exploiting a correpondence between points and spheres.
This correspondence has been brilliantly pursued in (Tarski
1956), where a (second order) axiomatic theory taking
spheres and parts as primitives has been shown as
equivalent to classical geometry. Our strategy to
axiomatize ‘CG’ is the following:

1. define a sphere in terms of ‘P’, ‘SR’ and ‘CG’;

2. adopt Tarski’s definitions related to spheres;

3. define a notion of alignment for three spheres;

4. formulate axioms for the congruence between binary
sums of spheres (s-segments) by mimicking the standard
axioms for congruence between segments, exploiting the
analogy between points and spheres and the above
definition of alignement for spheres

5. constrain the congruence between arbitrary regions in
terms of congruence between binary sums of spheres.

6. add further axioms in order to constrain the congruence
between spheres, and introduce suitable existential
assumptions.

The result will be a first order theory of congruence
between regions: with respect to Tarski’s work, we
reconstruct the congruence axioms in terms of spheres,
rather than establishing a formal connection between
points and classes of concentrical spheres (going therefore
to second order). Moreover, we do not take spheres as a
primitive, since we define them in terms of general
mereological, topological, and morphological primitives.

5.1  DEFINING SPHERES

The crucial step in our axiomatization of congruence is the
definition of a sphere, that makes it possible to embed
Tarski’s mereo-morphological theory within our
framework:

D11. SPHx =df SRx ∧  ∀ y(CGxy ∧  POxy → SR(x-y))

A region x is a spere if and only if it is a simple region
and it cannot be disconnected by another congruent sphere.
It is easy to see that only spherical regions satisfy the
above definition, which reflects the intrinsic symmetry of
spheres (Figure 5), provided that enough regions congruent
to the one given exist.



Figure 5. These regions are not spheres.

5.2  TARSKI’S DEFINITIONS

Let us now introduce Tarski's definitions regarding
spheres. For the sake of conciseness, we assume that all
variables appearing in D12-D21 below are restricted to the
class of spheres.

D12. ETxy =df ¬Oxy ∧  
((¬ Ouy ∧  ¬ Ovy ∧  Pxu ∧  Pxv) → (Puv ∨  Pvu))

 (x is externally tangent to y)

D13. ITxy =df PPxy ∧
((Puy ∧  Pvy ∧  Pxu ∧  Pxv) → (Puv ∨  Pvu))

(x is internally tangent to y)

D14. EDxyz =df ETxz ∧  ETyz ∧
(¬ Ouz ∧  ¬ Ovz ∧  Pxu ∧  Pyv → ¬ Ouv)
(x and y are externally diametrical wrt z)

y

u

x zx y

u v

ETxy EDxyz

v

Figure 6. Externally tangent and
externally diametrical spheres (D12, D14).

D15. IDxyz =df ITxz ∧  ITyz ∧
(¬ Ouz ∧  ¬ Ovz ∧  ETxu ∧  ETyv → ¬ Ouv)
(x and y are  internally  diametrical  wrt z)

D16. CNCxy =df x = y ∨
(PPxy ∧  (EDuvx ∧  ITuy ∧  ITvy → IDuvy)) ∨

(PPyx ∧  (EDuvy ∧  ITux ∧  ITvx → IDuvx))
(x is concentric with y)

5.3  ALIGNMENT OF SPHERES

We can now easily exploit Tarski's definitions to define
the notion of alignment among spheres, and to establish
notions analogous to those of segments and triangles in
terms of spheres (s-segments and s-triangles):

x

y

z
y'

x'
z'

x'y

y'
z'

z

BTWxyz

x

Figure 7. x is between y and z (D17).

D17. BTWxyz =df ∃ x'y'z’(CNCxx’ ∧  CNCyy’ ∧  
CNCzz’ ∧  EDy’z’x’)

(x is between y and z)

D18. LINxyz =df BTWxyz ∨  BTWyxz ∨  BTWzxy
(x is aligned wrt y and z)

D19. SSDxyz =df BTWxyz ∨  BTWyxz ∨  CNCxy
(x and y are on the same side wrt z)

zx yxy z x

y

z

SSDxyz

Figure 8. x is on the same side of y with respect to z
(D19)

D20. SEGxy =df ¬CNCxy (x and y form an s-segment)

D21. TRIxyz  =df ¬ CNCxy ∧  ¬ CNCyz ∧  ¬ CNCxz ∧
¬ LINxyz

(x, y and z form an s-triangle)



We restrict now the notions of s-segment and s-triangle in
order to exclude the case where one of the spheres is part
of some other one.

D22. PNP2xy =df ¬ Pxy ∧ ¬ Pyx

D23. PNP3xyz =df PNP2xy  ∧ PNP2xz
∧  PNP2yz

(pairwise not part)

D24. PBTWxyz =df BTWxyz ∧  PNP3xyz
(proper between)

D25. PSEGxy =df SEGxy ∧  PNP2xy (proper s-segment)

D26. PTRIxyz =df TRIxyz ∧  PNP3xyz (proper s-triangle)

5 . 4 RECONSTRUCTING STANDARD
AXIOMS FOR CONGRUENCE

We can now introduce the proper axioms of congruence,
modifying the formulation presented in (Coxeter 1989),
which is a variation of Hilbert’s system, by exploiting the
parallelism between points and spheres.

A9. CGxy ∧  CGzy → CGxz

A10. PSEGxy ∧ SEGzw →∃! x’y’'(CG(x+y)(x'+y') ∧
CNCzx’ ∧  CGxx’ ∧  SSDwy’x’)

(Transportability of s-segments)

y
x

x' y'
w

z

Figure 9. Transportability of s-segments (A10). Given a
proper s-segment xy and an arbitrary segment zw, there
exists a unique  s-segment x’y’ congruent to xy such that
x’ is concentrical to z and congruent to x, while y’ is on
the same side of w with respect to x’.

A11.PBTWyxz ∧  BTWy’x’z’ ∧  CGxx' ∧  CG(x+y)(x'+y')
∧  CG(y+z)(y'+z') → CG(x+z)(x'+z')

(Congruence of s-segments)

x'

y'
z'

x
y z

Figure 10. Congruence of s-segments (A11). If xy and yz
are respectively congruent to x’y’ and y’z’, then xz is
congruent to x’z’ provided that xyz and x’y’z’ are aligned.

A12. PTRIxyz ∧  TRIx’y’z’ ∧ PBTWyxv ∧ BTWy’x’v’ ∧
CGxx’ ∧  CGyy’ ∧  CGzz’ ∧  CGvv’ ∧
CG(x+y)(x'+y') ∧  CG(x+z)(x'+z') ∧

CG(y+z)(y'+z') ∧  CG(x+v)(x'+v') →
CG(z+v)(z'+v')

(Congruence in s-triangles)

y'

z'

x'

v'

y

v

z

x

Figure 11. Congruence in s-triangles (A12). The s-
segment vz is congruent to v’ z’ if the s-triangle xyz is
congruent to the s-triangle x’y’z’ and xv is congruent to
x’v’.

The axiom A9, together with suitable existential
assumptions, implies that ‘CG’ is an equivalence relation.
Axioms A10-A12 are described by Figures 9-11.

The axioms above constrain the congruence between
binary sums of spheres (s-segments).

5 . 5 CONGRUENCE BETWEEN ARBITRARY
REGIONS

In the following, we first establish a notion of congruence
between (suitable) sums of spheres, and then we use such
a notion to constrain the congruence between arbitrary
regions.

When considering the congruence between sums of
spheres, we could follow the reasoning used by Hilbert in
order to establish the congruence between sums of points
(figures); to do that, we need to establish a suitable
bijection between the two sums of spheres such that the
corresponding s-segments are congruent. In order to avoid
looking at all possible bijections (which would require a
second-order axiomatization), we define an ad hoc
congruence relation holding for scalene sums of spheres
(sums of not s-connected spheres such that all of them are
of different sizes). This means that, with respect to the
size of the spheres, only one bijection exists. Once we



have congruence between scalene sums of spheres, we use
it to constrain congruence between arbitrary regions.

D27. ΣSSx =df ∀ y(MCPyx → (SPHy ∧  ¬∃ z (MCPzx ∧
¬  y=z ∧  CGzy))) (scalene sum of spheres)

D28. ΣCGxy =df ΣSSx ∧  ΣSSy ∧

∀ z(MCPzx → ∃ w(MCPwy ∧  CGzw)) ∧
∀ z(MCPzy → ∃ w(MCPwx ∧  CGzw)) ∧
∀ uv(MCPux ∧  MCPvx ∧  SEGuv) →
∃ u’v’(MCPu’y ∧  MCPv’y ∧ CG(u+v)(u’+v’))

(congruent scalene sums of spheres)

A13. CGxy ↔
(∀ z(ΣSSz ∧  Pzx → ∃ w(ΣCGzw ∧  Pwy))
∧ ∀ z(ΣSSz ∧  Pzy → ∃ w(ΣCGzw ∧  Pwx)))

(congruence of arbitrary regions)

Notice that the second and third lines in D28 constrain the
two sums to have the same number of spheres. By means
of A13 we can conclude that ΣCGxy  → CGxy.

5.6  FURTHER CONSTRAINTS

We need now to add some further axioms constraining the
congruence between single spheres. Hilbert’s axioms are
of no help here, since he obviously assumes that all
points are congruent to each other. Things are of course
different in the case of spheres. A preliminary list of
axioms is reported below.

A14. CGxy → ¬ PPxy

A15. SPHx ∧  CGxy → SPHy

A16. (CGxy ∧  IDxyz ∧  EDxyw) → CNCzw

A14 excludes the congruence of two spheres being one
internal to the other; A15 states that congruence preserves
the property of being a sphere, while A16 allows us to
establish the concentricity of two spheres (Figure 12).

x
z

w

y

Figure 12. if x and y are congruent then z and w are
concentric spheres (A16)

We must now add some existential axioms, which are
necessary to ensure that enough spheres exist:

A17. (SEGxy ∧  ¬ Oxy ∧  ¬ ETxy) → ∃ z (EDxyz)

A18. ETxy → ∃ z (IDxyz)

A19. SPHx → ∃ yz (IDyzx ∧  ETyz ∧  CGyz)

A17 guarantees that, given two not connected spheres, a
third sphere always exists between them; A18 states that
the minimum sphere including two tangent spheres always
exists. A19 states that two congruent tangent spheres,



internally diametrical to a given one, always exist.
Finally, two last axioms guarantee that our space is
tridimensional, by stating that four mutually tangent
spheres exist, while five mutually tangent spheres do not
exist.

A20.
∃ xyzw (CGxy ∧  CGxz ∧  CGxw ∧  ETxy ∧  ETxz ∧
ETxw ∧  ETyz ∧  ETyw ∧  ETzw)

A21.
∀ xyzwv ¬ (CGxy ∧  CGxz ∧  CGxw ∧  CGxv ∧
ETxy ∧  ETxz ∧  ETxw ∧  ETxv ∧  ETyz ∧  ETyw ∧
ETyv ∧  ETzw ∧  ETzv ∧  ETwv)

5.7  USING THE CONGRUENCE PRIMITIVE

We are now in the position to define l- and p-connection
(Figure 13), and then the usual notion of connection:

x y
z

x y

z

LCxy PCxy

Figure 13. Line– and point-connection.

D29 LCxy =df ¬ SCxy ∧  ∃ z(SPHz ∧  Ozx ∧  Ozy ∧  
SR(z-x) ∧  SR(z-y) ∧  ¬ SR(z-(x+y)))

(l-connection)

D30. PCxy =df ¬ SCxy ∧  ¬ LCxy ∧  
∃ z(SPHz ∧ ∀ u(CNCuz  →(Oux ∧  Ouy)))

(p-connection)

D31. Cxy =df SCxy ∨  LCxy ∨  PCxy (connection)

Congruence allows us to easily define the notion of
convexity for region (Figure 14):

D32. CONVx =df∀ uvw(P(u+v)x ∧  CGuv ∧ CGwu
∧ BTWwuv) → Pwx  (x is convex)

x

u
vw

CONVx

u
v

v
x

w

w

¬CONVx

Figure 14. Defining convexity.

Here there are some theorems stating interesting properties
of some morphological relations. T18 shows that there
exists only one sphere concentric with y and congruent to
x. T19 states that ‘ET’ relation is preserved by
congruence. T20-T23 establish fondamental properties of
the ‘BTW’ relation. T24 shows that spheres are convex
regions.

T17. CNCxy → Pxy ∨  Pyx (D16)

T18. (SPHx ∧  SPHy) → ∃ !z(CGzx ∧  CNCzy)
(A10; T17)

T19. (SPHx ∧  ETxy ∧  CG(x+y)(x+z)) → ETxz
(A10; A11)

T20. BTWxyz ↔ BTWxzy (D17)

T21. ∃ yz(BTWxyz) (A10; A17; A20; T19)

T22. BTWxyz → (¬ BTWyxz ∧  ¬ BTWzyx) (A18; A19)

T23. (BTWyxz ∧  BTWzyu) → (BTWyxu ∧  BTWzxu)
(A10; A16; A17; A18)

T24. SPHx → CONVx (A10; A11; D32)

6  DISCUSSION

We have presented a logical theory of space quite rich in
axioms and definitions. As stated in the introduction, its
main purpose is to characterize the intended meaning of
the three primitives used – parthood, simple region, and
congruence – in a domain where only three-dimensional
regular regions are assumed. However, even if the formal
properties of this theory (i.e. its soundness, its
completeness and its computational properties) have yet to
be studied in detail, the important theorems coming out of
the proposed axiomatization let us describe some
fundamental features of space.

In this preliminary work, we have concentrated on the task
of explaining in detail our ontological assumptions about
space by means of formal axioms, exploring at the same
time the expressive power, the mutual relationships and
the cognitive relevance of the primitives adopted.

Let us now add some comments on the comparison
between our theory and the RCC theory. We observe first
that the latter is a minimal theory of connection: this
choice may have the advantage of some computational
properties, but it is less precise in the meaning of the
primitives assumed. Our theory, on the other hand,
characterizes more precisely the primitives. In particular,
RCC’s ‘C’ primitive can be interpreted as denoting strong-
connection, line-connection, point-connection or a
combination of these, while we have shown that the above
axiomatization prevents the interpretation of our ‘SC’ as
line-connection or point-connection.



This means that the definitions of point-connection,
“doughnut” and “quasi-manifold” discussed in (Gotts 1994,
Gotts 1994, Cohn 1995) only hold in the intended model
where two regions are connected if they share at least one
point; but if we consider a model were ‘C’ is interpreted as
s-connection then the definitions do not capture the desired
meanings. This freedom in the interpretation could be an
advantage for the RCC approach, in the sense that the
theory is apt to capture a very general notion of
connection, which may be useful for various purposes.
However, the theory appears to be too weak for a formal
characterization of space in its present state.

Full Clarke’s theory, as recently shown in (Asher and
Vieu 1995), is surely more satisfactory in this respect, but
it pays the price of committing to the classical distinction
between open and closed regions, which many people
consider debatable from the cognitive point of view.
Moreover, as discussed in (Varzi 1996b), full Clarke’s
theory presents some unpleasant mereological properties,
since “an open region is always a proper part of its own
closure, but there is no mereological difference between
the two”.

In order to find a satisfatory solution to these problems,
our strategy has been to emphasize the role played by the
morphological properties of space. The definition of
sphere (D11) appears to us to be emblematic in this
respect. Of course, it requires a characterization of
congruence, and this is a complicated task. We admit that
the methodology adopted to have an axiomatization of
congruence turns out to be complicated and difficult, but
unfortunately the alternative would have been “inventing”
our axioms for congruence between regions merely by
means of introspection. In the literature we are aware of,
the only proposal in this sense is the axiomatization of
“convex hull” used within the RCC theory, but the same
authors admit it cannot be considered as satisfactory yet.
The approach we have developed offers a characterization
of a very powerful primitive and seems to us amenable
both for concrete applications and for further mathematical
speculations.
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