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ABSTRACTWEe introduce quantificational modal operators as dynamic modalities with (exten-
sions of) Henkin quantifiers as indices. The adoption of matrices of indices (with action iden-
tifiers, variables and/or quantified variables as entries) gives an expressive formalism which is
here motivated with examples from the area of multi-agent systems. We study the formal prop-
erties of the resulting logic which, formally speaking, does not satisfy the normality condition.
However, the logic admits a semantics in terms of (an extension of) Kripke structures. As a
consequence, standard techniques for normal modal logic become available. We apply these to
prove completeness and decidability, and to extend some standard frame results to this logic.

KEYWORDS:quantificational modality, dynamic logic, Henkin quantifiers, modal logic, multi-
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1. The modal approach in multi-agent systems

In the last 20 years, a variety of logical systems have been developed for mod-
eling agents. Building on the pioneering work of Hintikka [HIN 64], most of them
address the description of situations where there is just one agent with peculiar atti-
tudes, knowledge, believes, and abilities. The same logical formalism is sometimes
adopted for modeling systems that comprise more than one agent, wailécgent
systemgMAS). However, the complexity of the cases in which several agents act con-
currently, perhaps affecting each other, cannot be reduced to the description of each
agent in isolation. Indeed, in addressing the description of a community, researchers
have been exploiting different formalisms in order to pinpoint the specificity of the
agents and their actions as well as the interactions among them and their strategies in
evolving environments.
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Starting with Hintikka [HIN 64] and later with the works of Moore [MOO 85],
Cohen and Levesque [COH 90], Rao and Georgeff [RAO 91], modal logic has become
the formal language for studying agents. Still, as of today [HOE 03, HOE 02], the
work done in the (modal) description of communities of agents seem scattered in
a variety of different logics and, we surmise, this might be due to the inadequacy
of standard logic tools. Indeed, researchers have been testing the modal formalism
in a variety of ways [D’l 97, BEN 02] by studying the interactions among several
modal operators, by varying the semantic interpretations, by isolating techniques for
combining modal systems (like fusion, merging, embedding, full-fibring) [GAB 03].
However, the systems developed for truly concurrent multi-agent systems seem of
limited application.

One can explain this situation in different ways. We report here two reasons that,
in our view, are crucial. On the one hand, the combination of modal languages often
gives rise to complicated logics which, unless severely restricted, are hard to study
and do not present nice formal properties [BEN 02]. In turn, this affects the adoption
and the applicability of the formalisms; a serious obstacle to what we could dub the
tiling approach inMAS, that is, the attempt of describing complex agents by assem-
bling different modal operators, one operator for each (independent) feature of the
agents. On the other hand, formal systems that contain different modalities are hard
to compare both at the syntactic and at the semantic levels. In this way, it is hard to
state the advantages of one approach over the others in a general perspective. Because
of this situation, today we lack a systematic methodology for comparison of multi-
agent systems. In truth, sometimes one can overcome the problem by embedding
several multi-agent logics into the same (stronger) language whose formal properties
are known. An example is given by the results in [SCH 98]. However, this approach
is hardly generalizable.

Toward flexible languages

This being the state of the research, new approaches should be studied to move
forward in this area and, in doing this, it might be important to take advantage of
the semantic flexibility of modal logic. Indeed, we consider an advantage of modal
logic the fact that modal operators support a variety of interpretations. This flexibility
is sometimes exploited to describe different MAS systems in the same language by
varying the semantics adopted. The result is a uniform syntactic description of a
variety of systems avoiding the application of ad hoc formalisms which are often hard
torelate. Through this common language, a comparative study of the modeled systems
becomes possible by concentrating on the analysis of their semantics.

Starting from this overall view, we look for new modal operators that are rich
in expressive power, easily related to different semantics, and suitable for model-
ing MAS. We propose modalities that are obtained by integrating two different ele-
ments, namely the modal operators of dynamic logic [HAR 00] and the Henkin quan-
tifiers [HEN 61, KRY 95]. The operators we study are modalities that describe the
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evolution of the MAS in the fashion of dynamic logic, and that contain (free and
quantified) variables. Informally, the role of quantifiers is to mark the attitude of an
agent at a certain point in time while constants register actions the agents must ex-
ecute (they have no choice to make) at that point in time. In this paper, we present
the characteristics of the new operators, define the corresponding language, and de-
scribe one semantic interpretation. This interpretation seems particularly interesting
for its logical properties and is suitable for describing cooperative agents and coali-
tions [OSB 94]. The comparison of this logic with other modal systems for MAS (an
interesting relationship exists with the logic in [PAU 02]) as well as other semantic
interpretations (see [BOR 03] for an example) are not discussed here.

The paper is structured as follows. In section 2 we look at dynamic logic (DL)
as a formalism for agents and justify the introduction of complex (constant) operat-
ors to deal with MAS. This change gives a new perspective on DL. For this reason, a
throughout comparison of propositional DL and the new system is provided. Section 3
takes a step further and introduces the quantificational modal operators. A semantic
interpretation suitable for cooperative agents is adopted; formal and application-driven
examples of the new formalism are given. Section 4 presents the axiomatization fol-
lowed by completeness and decidability results. Toward the end of the section, we
discuss the relationship between our quantificational logic and propositional normal
logics. Finally, we show how other results for normal logics are inherited in our sys-
tem by considering some standard frame properties.

2. From PDL to multi-agent PDL
2.1. Carving upPDL

Our system can be introduced as the generalization of a propositional multi-modal
logic in the sense of [GAB 03], that is, a subsystenfPadpositional Dynamic Logic
(PDL) [HAR 00] that is here dubberkstricted PDL(rPDL).

PDL is a logical system developed to describe properties of interaction between
programs and propositions independently from the domain of computation. The sys-
tem blends modal logic and the algebra of regular expressions into a formalism that
has found broad application also outside the field of logics of programs. Here is a short
introduction to the fragmemPDL relevant to our work (and some standard definitions
to be specialized later to our system). For a complete introducti&®tDafand more
traditional extensions see [HAR 00].

2.1.1. The fragmentPDL

The language ofPDL contains a non-empty countable setppsbposition iden-
tifiers, Propld, and a non-empty countable setaiftion identifiers Actld. We shall
always assume that these sets are disjoint.
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The proposition identifiers are the simplest (atomic) formulas in the language.
Complex formulas are built recursively as in propositional logic (using implication
—, and negationr) and via modal operators as described below. We shall make use
of the standard conventions for, v, <, T (thetruth), and L (thefalsunj. In PDL,
combinations of action identifiers are obtained recursively by applying several con-
structs. InrPDL, we limit the language to theomposition construdt;) only.> The
composition ofa andb is indicated bya;b or simply byab. Finally, modality is
introduced through the necessity operafotsvherea is an action identifier or a com-
position of action identifiers. Since action identifiers and their compositions are used
to identify modalities in the logic, they play the crucial rolerobdality identifier

The modality identifiers forPDL are defined recursively:

1) all elements irActld are modality identifiers

2) a; b (equivalentlya b) is a modality identifier itz andb are both modality iden-
tifiers

The set oformulasis the smallest set satisfying the following clauses:

1) all elements irPropld are formulas (atomic formulas)

2) ¢ andp — 1 are formulas ifp ands) are formulas

3) [a]¢ is a formula ifa is a modality identifier ang is a formula

In case 2), we say that is in antecedent positiofwith respect toy)) and that
1 is in consequent positiofwith respect tap). Also, we adopt the standard notion

of subformula These latter notions will apply to all the languages introduced in this
paper without further comments.

2.1.2. The semantics aPDL

The semantics ofPDL is taken fromPDL and, more generally, from Kripke's
semantics for modal logic. We depart slightly from the usual presentation in as much
as this allows us to present a notion of frame suitable to our tasks in later sections.

Recall that &Kripke Frameis a pair(W; R) whereW is a set of elements called
statesand R a function assigning a binary relation &% to each modal operator in
the language. The following definition éfgent Kripke Framextends this notion.

DEFINITION 1 (AGENT KRIPKE FRAME). —
AnAgent Kripke Framdor rPDL is a triple K = (W, Act; R) where:

1) W is a non-empty sdthe set of states)
2) Act is a non-empty séthe set of actionsyand

1. Thus, here we do not consider most construcBDi like “choice” (U), “iteration” or “star”
(x), and “test” (?).
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3) for all « € Act, R(«) is a binary relation onW (the accessibility relation for
actiona).

We usen, 3, . . ., possibly decorated, for the elementsiict

Historically, PDL interprets action identifiers, and more generally all modality
identifiers, agprograms Since we are interested in agents and their behavior, we will
interpret action identifiers more broadly astions Informally, the sefAct plays the
role of the set of actions that the agents can perform. Note that the action identifiers
are rigid designators.

Formulas ofrPDL are interpreted over Agent Kripke frames. The truth-value of
a formula depends on the chosealuation function[-] which intervenes to assign a
subset ofi/’ to each atomic proposition and an actiorfict to each action identifiers.
Since the set of atomic propositions and the set of actions identifiers are disjoint, we
can safely use the same notation for the valuation function over the two sets.

An agent Kripke frame augmented with a valuation function is callstiucture
DEFINITION 2 (AGENT KRIPKE STRUCTURE FORPDL). —
Anagent Kripke structure faPDL is a 4-tupleM = (W, Act; R, [-]) where:

1) (W, Act; R) is an agent Kripke frame and
2) [-] is a function(the valuation functionyuch that[p] C W for p € Propld
and[a] € Act fora € Actld.

Given an agent Kripke fram&1, we extend-] to all modality identifiers an® to
sequences of actions as follods:

[ab] =qey [a][b]
R(af) =dey R(a) o R(p)

Let M be a structure. We writd1, s |=,.ppr, ¢ to say thaty is true at state of
M (@ndM;s .ppr ¢ If ¢ is false). The semantic relatida, ppy, is defined as
follows:

a) Letp € Propld, thenM, s |=,.ppr, pif s € [p]

b) M, s |:rPDL —pif M, s F’érPDL ¥

C) M, s Erppr ¢ — Y if M,s|E.ppr p OF M, s =rppr ¥

d) M, s =rppr [a]p ifforall t € W suchthats,t) € R([a]), M,t =rppL @

We write M |=,pp1, o to say that formulap is valid in M, that is, it is true at
each state of structur®1.

DEFINITION 3 (AGENT KRIPKE MODEL IN rPDL). —

2. Operatoro is the usual relational composition and it is associative. On binary relations it is
defined byR o S = {(u,v) | Jw(u,w) € R and(w,v) € S}.
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Anagent Kripke modeflor a set of formulag in rPDL is a structureM for rPDL
such that all formulag € ¥ are valid in M.

2.1.3. The logic ofrPDL

Since we are dealing with a fragment®bDL, we provide a formalization of the
restricted language onyin practice, we disregard the axiom schemas about the other
operators on action identifiers. Furthermore, we use all standard logic connectives
since these are definable from and—.

As usual, a formulap is provablein a set of formulas: (is atheoremof ) if
v € X. If pis provable inX, we writeky . We writek ¢ when is clear from the
context.

(1) Axioms for propositional logic

() lal(p — ¥) — ([a]p — la]v) (Normality)
(3) [ab]p < [a][b]e (Composition)
(MP) W (Modus Ponens)
(Nec) F e (Necessitation)
- lale

Thelogic of rPDL is the smallest set of formulas iRDL containing all instances
of (1) — (3) and closed under rules (MP) and (Nec). We wirite for the logic of
rPDL.

DEFINITION 4 (FRAME-SOUNDNESY. —
LetF be a class of frames. A logit is sound with respect t& if

1) all formulasy in A are valid for structures with frame iff, and
2) all the rules are truth-preserving.

In other terms, each structure with frameJnis a model forA.

The proof that the logid\,. is sound with respect to the class of agent Kripke
frames is routine [CHE 80].

DEFINITION 5 (FRAME-COMPLETENESS. —

Let F be a class of frames for a languadge A logic A is complete forL with
respect taF if the formulas ofL valid in the structures with frames ifi are provable
in the logic.

DEFINITION 6 (FRAME-DECIDABILITY ). —

3. The first satisfactory axiomatization of flRDL was provided by Segerberg [SEG 77]. Com-
pleteness proofs are given in [GAB 77, PAR 78], see also [HAR 00].
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Let F be a class of frames. A logit is decidable with respect t& if there exists
an algorithm that, given a formul@, determines whether there is a state of a model
for A (with frame from the class) at whichis true.

It turns out that the logic ofPDL is complete and decidable with respect to the
class of all agent Kripke frames.

A simple strategy to prove completeness (and decidability as well) follows from
the observation thatPDL is the fusion (see [GAB 03]) of countably mangormal
logics*. Note that in this sublanguage ®DL, axiom (3) has no much deductive
import; it simply tells us that modal operators with complex identifiers are nothing
more than sequences of simple modalities. Fusion preservésithenodel property
as well as completeness and decidability [GAB 03], and this allows us to conclude that
rPDL is complete and decidable (with respect to the class of agent Kripke frames)
provided we verify a couple of properties:

(a) Any agent Kripke frame, with € N* U {400} distinct action identifiers, is
the fusion ofn standard Kripke frames (and vice versa),

(b) rPDL has the finite model property.

The latter follows by applying the standard argument (adapted from mono-modal
logics) to formulas of PDL, while the first property follows from the definitions.

A detailed discussion of the finite model property, completeness, and decidability
in mono- and multi-modal logics, including a discussion of BigL system, can be
found in [BLA 01, CHE 80].

ProrPoOsSITION7. — The logic of rPDL is sound, complete, and decidable with re-
spect to the class of agent Kripke frames.

2.2. Making room for agents:mPDL

We modifyrPDL in order to describe multi-agent systems. The resulting language
differs fromrPDL in the set of modality identifiers. We dub this systemlti-agent
Propositional Dynamic LogiémPDL).

We want the changes in the state of a multi-agent system to be the result of the
actions performed by the agents in that system. To preserve (true) concurrency, our
logic should be able to make a distinction between actions performed at the same point
in time and actions performed at different times. Also, since agents may have different
capabilities and responsibilities, it should be possible to have different outputs when

4. A modal logic, built upon classical propositional logicnisrmalif the modalities in it satisfy

the normality axiom (2) and the necessitation rule (Nec).
5. A modal logic has the finite model property (with respect to a class of models) if for each

formulap true in some model of the class there is a finite modeln the same class such that
 is true at some state M.
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the very same action is performed by different agents. This last desideratum brings
the need for an explicit tie between actions and their performers.

From the above general perspective, the simple action identifier adopt&Diy
seems unable to play the role of a modality identifier. Our logic looks at modality
identifiers as ordered sets of actions identifiers assuming that, in order to understand
how the system evolves, one must know which action identifier is associated to which
agent at that point in time.

Assume the set of proposition identifiePrppld, and the set of action identifiers,
Actld, have been fixed as in the previous section. We fix a positive integérich
informally is the number of agents in the multi-agent system we want to describe. The
guiding idea is thatPDL is the formal system correspondingic= 1.

Choose an ordering of theagents in the multi-agent system. We wiltéor the
first agent. .., k for the k-th agent. If ageni performs the action denoted lay,
agent2 the action denoted hy, . . ., agentk the action denoted by, write

ai
as

ag

for the modal operator that captures the evolution of the system according to the con-

current execution of actiorfa. ], . . . , [ax] by agentsl, . .., k, respectively.
ai a2
. az ay e . .
Assuminga; # ao, Operator| . | and operator] . | (differing only in the first
Qg Q.

two entries) are different modality identifiers since action identifigrand a, are
associated with different agents. In short, we not only list all the (concurrent) action
identifiers, but also link each action identifier to the agent performing the correspond-
ing action. Since one can describe successive actions executed by the agents by using
multi-columns modal operators, we are led to the following

DEFINITION 8 (MODALITY IDENTIFIER FOR mPDL). —

A modality identifier fomPDL is ak x n-matrix (n > 1)

air a2 -+ Qip
ag1 Q22 -+ Q2n
g1 ag2 - Afn

whereq;; is an action identifier¢;; anda,s not necessarily distinct).

The set of formulas anPDL s the smallest set satisfying the following clauses:
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(1) all elements irPropld are formulas (atomic formulas)
(2) ~p andy — 4 are formulas if bothy andv are formulas
(3) [A]¢ is a formula if A is a modality identifier fomPDLandy is a formula

The semantics and the axiomatizationnaPDL will follow naturally from those
of rPDL once we state the semantic counterpart of a modality identifiemfDL
In rPDL, the interpretation of a modality identifier is a (perhaps complex) action, and
S0 a transition in the structure. Similarly, the interpretation of a modality identifier in
mPDL should be associated with a transition in the structurerf®DL This is the
rationale for the following definitions.

DEFINITION 9 (k-ACTION). —

Given a set Act of actions,lzasick-action formPDL is any column of elements
in Act

(€51
Qi

A

k-Actionsare given recursively by:
1) all basick-actions arek-actions
2) AB is ak-action if A and B are bothk-actions
DEFINITION 10 (MULTI-AGENT KRIPKE FRAME FORMPDL). —
A multi-agent Kripke frame fomPDL is a tripleX = (W, Act; R) where:
1) W is a non-empty sdthe set of states)

2) Act is a non-empty séthe set of actionsyand

3) R is afunction, (the accessibility relation)napping basi&-actions (over Act)
to binary relations oV’

aq
R | CWxW.

(875

DEFINITION 11 (MULTI-AGENT KRIPKE STRUCTURE FORMPDL). —

A multi-agent Kripke structure fomPDL is a 4-tupleM = (W, Act; R, [])
where:
1) (W, Act; R) is a multi-agent Kripke frame for mPDL and

2) [-] is a function(the valuation functionyuch that]p] C W for p € Propld
and[a] € Act fora € Actld.
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Given a multi-agent Kripke structurt, [-] is extended inductively to all modality
identifiers in the languagmPDL by

aipr a2 -+ Qlp lair] [ai2] ... [a1a]

a1 G2 -+ A2p [[a21]] [[azz]] ce Haznﬂ
—def : :

ag1 ag2 - Gn lar1] [ax2] ... [arn]

In what follows, we usully writg A] also for[[[A]].
The truth-value of a formula is defined recursively by the following clauses:
a) Letp € Propld, thenM, s = pif s € [p]
by M, s = —pif M,s £
OM,sEp—-Yif MjsEporM,s =
d) M, s |= [A]gifforall t € W such thai(s,t) € R([A]), M,t E ¢
DEFINITION 12 (MULTI-AGENT KRIPKE MODEL IN MPDL). —

A multi-agent Kripke modefor a set of formulag in mPDL s a structureM for
mPDL such that all formulag € ¥ are valid in M.

The logic of mPDLis the smallest set containing the following axiom schemas
(1) —(3) and closed under the rules (MP) and (Nec). Hé@nd B stand for modality
identifiers:

(1) Axioms for propositional logic

) [Al(¢ — ¥) — ([Ale — [A]Y) (Normality)
(3) [ABJp < [A][B]e (Composition)
(MP) MZJJ (Modus Ponens)
Fo L
(Nec) i (Necessitation)

The remaining notions (e.g. valid formula, theorem, etc.) are analogous to those
for mPDL, see sections 2.1.2 and 2.1.3.

To highlight the correspondence with the semantics and axiomatizatid?Ddf,
a

ag
one can writeaias ... ax, to denote the modality identifier . , aza;...ax for

Qg
az

ay
the modality identifier , , and so on.

ag
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In this way, using set{ aiazas...a;, Gza1as...ax, ...; for Actld, we ob-
tain arPDL language as described in section 2.1 which is equivalent tanfPBL
language we started with. One sees that the semantic clauses and the &t of
match semantics and deduction system ofm@®DL Soundness, completeness, and
decidability ofmPDL follow from the corresponding propertiesiéfDL.

PrRoPOSITION13. — The logic of mPDL is sound, complete, and decidable with
respect to the class of multi-agent Kripke frames.

This observation concludes the introduction of our multi-agent propositional dy-
namic logic which is, as we have seen, a propositional dynamic logic for true concur-
rency.

At this point one wonders why we needed to spend time on introducing a language
with such a complex type of modal operators. After all, we just showed that the system
obtained by using matrices of action identifiers as modality identifiers is nothing more
than a fragment oPDL in the sense of section 2.1. The advantage of this approach
will become evident when we introduce quantifiers in section 3. For the time being,
it suffices to know that, although technically we have no advantage in using modality
identifiers versus simple action identifiers, the change in perspective introduced by
the explicit reference to agents and their actions is at the core of the quantificational
language we are going to study.

2.3. rPDL vsmPDL

In the framework of propositional dynamic logic, there are two main strategies to
represent concurrency.

In one case, the syntax remains thaPafL while the semantics is enriched (with
a corresponding extension of the axiomatization). The strategy consists in imposing
concurrency by isolating a subclass of the standard frames over which one should in-
terpret the language. New axioms are added to match this restrictions. They basically
state that (some or all) actions can be executed in any order without changing the set
of reachable states. These are usually catlmfluence axiomand furnish a notion
of concurrency. For instance, over action identifier@ndb, the axiom can be stated
as follows:

(Concy) — (@)[b] @ — [bl{a)g

It should be clear that this strategy is not specific to dynamic logic. Indeed, it can
be applied to poly-modal logics in general. However, it is important to notice that this
characterization of concurrency is quite weak.

Dynamic logic provides a simple way of capturing a stronger notion of concur-
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rency. By composing action identifiers, one can express concurrency as féllows:
(Cone2,)  [ably < [ba]y

This formula matches the following constraint on frames:
R([al) o R([0]) = R([?]) o R([al)

Such a technique suffices, for instance, in describing independent assignments in
a programming language. L&t] beassign value 1 to variable and[b] be assign
value 2 to variable y Formula(Conc?,) “forces” concurrency by stating that the
order of execution of andb does not matter.

However, these conditions are useless when the actions involved are not independ-
ent, a quite natural condition in MAS. For instance, let action identffi¢rbe hold
the nail against the waknd let[b] be hit the nail with the hammerThen, no matter
which action we choose to execute first, the result is anyway different fromctioal
concurrent execution of the very same actions.

The other strategy to handle concurrenci?DL consists in enriching the language
with new constructs (on action identifiers) that characterize concurrency explicitly.
A couple of constructs have been proposed at about the time Dynamic Logic was
developed. These are known as thersection(n) [HAR 00] and theconcurrency
connectiveg \)’ [PEL 87b, GOL 89] constructs.

Intuitively, for any two action identifiers andb, the modality[a N b] takes the
system to those states that both the actimjsand[[b] admit. This interpretation fits
quite well with the semantics ¢¥DL but it is too restrictive for our tasks. In a sense,
it requires]a] and[b] to be compatible actions. Indeed, this operator cannot deal with
two actions]a] and[b] such that the first, when executed without interference, leads
to states that are incompatible with the execution of the latter. The actipousing
milk into my empty cup and the action pburing coffeento my empty cup do not
lead to an inconsistent state when performed concurrently. However, if one executes
the first only the system ends up in states that are inconsistent with the states reachable
through the second action only. This very fact makes useless the applicatioto of
these actions.

The construct\ on action identifiers was introduced by Peleg shortly after dy-
namic logic was recognized as a mature formalism and requires major changes in
the semantics oPDL.2 Following the work of Peleg, the semantics of the logic en-

6. In some cases the “shuffle” construf}) s introduced to capture this type of concurrency.

Modality [ a||b ] corresponds to modalityb] further constrained by (CoRg).
7. Actually, Peleg used symbol as well. We change it ta\ for clarity. As a consequence,

here the symboN is overloaded. It corresponds to Peleg’s concurrent construct when applied

to action identifiers and to the conjunction connective when applied to formulas.
8. The semantic characterization of this construct is not uniform. [PEL 87b] and [PEL 87a] do

not impose sequentiality contrary to [HAR 00]. Both differ on other aspects from the semantics
in [GOL 89].
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riched with this construct is defined taking the accessibility relalida be a subset of
W x 2. The definitions affected by the introduction/efare (herel’, U,V C W):

DM, s = (a)yp if 3T (s,T) € R(a) andM,t = pforallt € T
2) R(ab) ={(s,T) |
U (s,U) € R(a) andVu, € U 3T, (u;, Ty,) € R(b) andT = J Ty, }
3) Rlanb) = {(s,7) |
U,V such that(s,U) € R(a),(s,V) € R(b), andT =U UV}

The meaning ofi A b is captured in the logic by axiom
(anb)p = {a)p A (b)y

Although satisfactory in the context of concurrent programs, the introduction of
this construct does not address our previous objections either. The milk-coffee ex-
ample could be repeated here as well. Also, when several agents are acting concur-
rently, the correct result may depend on knowing who is doing what. For instance,
an insurance company called to pay for a burned building is interested in knowing if
the building really burned down and if the policy holder is responsible of arson. The
relationship between agents and their actions is crucial when dealing with multi-agent
systems.

The very features of multi-agent systems that are problemaR®inintervene in
shaping the more complex languagex@®DL. In this language, the effects of an action
could be altered by the other actions performed concurrently since the transition in the
structure is determined ajl executed actions. Furthermore, the agent and the action
it executes are tied at the syntactic level by the position of the action identifiers in the
modality. These two facts allow us to handle a wide class of situations for multi-agent
systems and to provide a description of the system at a great level of detail.

To conclude, we highlight some important constraints that are expressible in our
language. For the time being, let us assume 2, that is, that there are two agents in
our multi-agent system (and that an ordering has been fixed). In our informal reading,

formula m © says that the actions denoted bpndb are executed concurrently. At

the same time, it states that the action denoted tsyexecuted by the first agent and
that the action denoted tyis executed by the other.

Let e be thenull action that is, an action that corresponds to instructida hoth-
ing”.° The rendition of the confluence axiom of dynamic logic in our multi-agent
formalism allows us to capture subtle relationships

9. Informally, thenull actionis an action that does not alter the effects of other actions. As a
consequence, the bagieaction that has thaull actionin each entry, is interpreted by the set
of states{(s, s)|s € W}.
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‘: Z o o Z Z 0 (execution-order does not matter)

(a €] e b .

c bl P la Y (executing-agent does not matter)

a | e ® (first agent suffices)

€ b ® € € ¥ 9

[a U] b af . . .

D R D K (linearly independent actions for agent 1)
as well as other new constraints like

Z Z 0 o Z i 0 (time independent actions.)

3. Quantificational modalities
In the following pages we extendPDL by introducing variables and quantifiers.

A simplifying assumption we make throughout this paper is that the agents in the
system are homogeneous, that is, they have the same reasoning and memory capabil-
ities, and skills. In a sense, these agents can be considered perfect clones of the same
perfect reasonef.

3.1. Stuffing modalities with variables and quantifiers y4 4

As before, we fix an integet € N* which informally stands for the number of
agents in the system. We extend the syntax of the multi-agent propositional logic
mPDL presented in section 2.2 as follows.

The language€ pq.4 (Or L4k if we need to make: explicit) uses three disjoint
sets of basic identifiers:
- a non-empty countable setopld of proposition identifiers
- a non-empty countable s&ar of variables for actions
- a countable (possibly empty) s&ttld of action identifiers
We will usep, q, . . . (possibly decorated) for proposition identifiers and, in a sim-
ilar fashion,z, vy, ... for variables and, b, . . . for action identifiers. For the sake of

simplicity, neither functions nor relations are introduced, the 0-ary relatioRgojpld
being the only exception.

10. This is mirrored in the semantics adopted in section 3.3.1. It is not a general constraint
forced by the language itself.
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Modality identifierscharacterize the modalities of the language. These are partic-
ular matrices of action identifiers and (possibly quantified) variables. Definition 14
introduces these formally. (We use the tegoantifierfor the symbolsv and3 and
guantified variabldor the expressiongx and3zx.)

DEFINITION 14 (MODALITY IDENTIFIER IN Laoqa(k)). —

A modality identifieris ak x n-matrix (n > 1)

aipr a2 -+ Qip
az; Q22 -+ A2p
a1 Qg2 - Qgn

wherea;; is either an action identifier, a variable, or a quantified variable.
We require that no variable occurs more than once in a modality identifier.

Two modality identifiers are said to be sdime sizéf they have the same number
of columns (that is, the matrices have same size).

A termin L4 is an action identifier or a variablelerm stands for the set of
terms: Term = Actld U Var.

The set ofL 5, 4(1)-formulas is the smallest set satisfying the following clauses:

a) all elements ofPropld are formulas (atomic formulas)
b) —¢ andyp — 1 are formulas ifp and« are formulas
c) [M]y is a formula ifM is a modality identifier forC x4 4(x) andy is a formula

The language we present has special features due to the form of the modality iden-
tifiers. For this, we now classify modal operators according to the identifiers associ-
ated with them.

DEFINITION 15 (MODAL OPERATORS FORL pAq4). —

A modal operatoor modality is an expression of the forid/] where M is a
modality identifier.

1) Aconstant (modal) operat® a modal operator whose entries are action iden-
tifiers. The set of constant operators is denoted by cOP.

2) Avariable (modal) operatds a modal operator whose entries are action identi-
fiers and variables, with at least one variable. The set of variable operators is denoted
by vOP.

3) A gquantificational (modal) operatis a modal operator whose entries are ac-
tion identifiers, variables, and quantified variables, with at least one quantified vari-
able. The set of quantificational operators is denoted by qOP.

OP is the set of all modal operators in the language® = cOP U vOP U qOP
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ay as| . T asf .
az a4’ az ag|’

(@) (b) (c)

Figure 1. Modal operators:(a) constant(b) variable,(c) quantificational

REMARK 16. — There is an obvious bijection between the set of modality identifiers
and the set of modal operators in the language. We will use the two notions indiffer-
ently wherever this does not create ambiguity. For instance, we may write modality
identifier M for the corresponding modal operafdf| and vice versa.

We write [M](i, ), or simply M (i, j), for the entry(i, j) of M. For instance,
[M](2,1) = a means that the entry (2,1) of the modality identifi¢r(here seen as a
matrix) contains action identifier.

An entry containing the expressiafx; (3z;) is called anuniversal(existentia)
entry. Universal and existential entries ajaantified entries A constant entrys an
entry containing an action identifier. Entries containing variables without quantifiers
are callecharameter entries

Thescope of a modal operatds the formula to which it is applied. The scope of
a quantifier is the scope of the modal operator where it occurs. An occurrence of a
variablez is said to beboundin a formula if it occurs quantified in a modal operator
or lies within the scope of an operator whereoccurs quantified. Otherwise, the
occurrence is said to Heee
The set okentencess the set otlosed formulasi.e., the set of formulas with no free
occurrences of variables. In particular, all non-modal formulas are sentences. Also,
an operator with a variable in a parameter entry can occur in a sentence only within
the scope of an operator that contaifisor Jz.

Here are some examples of logical formulas foe 2 (formulas in the first row
are open, formulas in the second row are sentences):

_ YV . dr Jy| |Vx =z b
h Y P2 ' a Yollb wo Fu|P?

R R A A R D

It should be clear that our modal operators bind less tightly than any other con-
nective (analogously to the modalitiesPDL, in rPDL and inmPDL).

Comparing modality identifiers is crucial to establish general properties of the lan-
guage. For this goal, we devise a notation that allow us to modify modality identifiers
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entry by entry. The rest of this section is devoted to notational issues and modality
constructs that will help us in this sense.

DEFINITION 17 (CHANGING MODALITY IDENTIFIERS). —

() Leta € Actld.
Modality [M;;.4)] is like [M] except that entryi, j) of [M(;;.,)] contains action
identifiera.

(i) Let z € Var.

If 2 is new in[M] or occurs, quantified or else, M (i, j), then[M;;._,)] is like
[M] except that entry(i, j) of [M;;_,)] contains the free variable. Otherwise,
[Mij—q)] and[M] are the same modal operator.

(i) Let @ € {V,3} andx € Var.

If 2 is new in[M] or = occurs, quantified or else, it (i, j), then[M;;_qq] is like
[M] except that entryi, j) of [M;;_q.)] containsQz. Otherwise[M;;_q.)] and
[M] are the same modal operator.

(iv) Let@ = wuq,us,... with u; an action identifier, variable, or quantified vari-
able. Then[M;, ;. ivis,...—urus,...)) 18 1K€ [N(ipjy .. us,,..)] Where[N] is the mod-
ality [M(;, j, —u,)]. Alternatively, we Writ M, ;. i,j.....—a))-

Analogously, we WriteM ;, ;. i, s....—va)] TOr [M(i 1 isja....Vuy Vus,...)], @nd so for
[Mi, 1 izja,...—3a)], Provided allu; are variables. If there is no danger of confusion,
we adopt a more compact notation by writing z ], [M(z—va)], and[M z—3q)]
wheref is a sequence of matrix-indices or variables occurring in the modalityiand
is as before.

EXAMPLES 18. — Let[M] = [Vax 3%],then:
[M11-p)] = Z 314 ; [Ma1)] = [V;)x 32/]
M1y = 2 :g] ; [M@1—2)] = [M]
(M3 = :Hf 3%] ; Maze—an] = [M]
[Ma2vuy] = 'Vaa; 33,] o ((Marizezwyw] = [EZU 35]

DEFINITION 19 (UNIFORM MODALITY). —
Let M be a modality identifier.

(a) M is said to bev-uniformif no entry is existential.
(b) M is said to bed-uniformif no entry is universal.
(c) M is said to beuniformif it is V-uniform and3-uniform.
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Equivalently,M is uniform if M € ¢cOP U vOP.

We conclude this part by introducing the notion of complementary modalities and
the constructd, calledmerging that applies to them. This construct is quite import-
ant for the application of our formalism to multi-agent systems and will be used in
section 4.1.2 to characterize the power of groups of agents.

DEFINITION 20 (COMPLEMENTARY MODALITIES AND MERGING). —

Let M, N be two modality identifiers of equal size.

(1) M and N are said to becomplementaryf they satisfy all the followings:
i.1) if z € Term, thenM (i, j) = z ifand only if N (i, j) = z;
i.2) if M(i,j) =V, thenN (i, j) € {Vz, Iz},
i.3) if M (4,j) = 3z, thenN (3, j) = Va;

and, symmetrically,

i.4)if N(i,j) = Va, thenM (i, j) € {Vz, Iz},
i.5) if N(i,5) = 3z, thenM (i, j) = V.

(i) AssumeV/, N are complementary.
Themerging of M and N is the modality identified/ & N whose size is equal
to the size of\f (and V) and is defined by
ii.1) (MWN)(4,j5)=M(®,j),if M(i,7) is an existential entry;
ii.2) (M WN)(i,7) = N(i, j), otherwise.
From the definition, the merging operator is symmetric, Mg N = N w M.

The definition of complementarity among modalities says that to every existential
entry in one of the identifiers corresponds an universal entry in the other one, and that
the identifiers agree on the constant and parameter entries. The definifiérwal
shows how to form a new operator mixing the entries of two complementary operators
giving priority to existential entries.

Here is an example of the application of these notions in a 3-agent system.

dr Wy Ve Vy
Let[M] = | @ Vu| and[N] = | ¢ 3Ju| be two operators. Clearly/ and N
Yo oz Jv  z

are complementary. Thep\/ W N] is defined and we have

Jdxr Vy
[MWN] = a Ju
Jv =z
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3.2. Structures forL 4

The semantics of formulas without variables is naturally inherited from the pro-
positional languagenPDL Formulas with variables (with or without quantifiers) are
new and are interpreted through sets of transitions on Kripke structures.

Generally speaking, to evaluate an operator one needs to associate each entry of
the modality identifier with an action. This relationship between entries and actions
is immediate for the constant operators and in the case of variable operators it can
be provided by thenvironment functioifhere a functioriy : Var — Act) thus fol-
lowing the semantics of first-order logiEQL). The case of quantificational operators
requires further assumptions since, as we shall see, it depends on the quantifiers as
well as on thenternal structureof the operator’s identifier.

Since in our modalities quantified variables are not organized in a linear order,
we cannot apply the method &L to isolate instances of these modalities unless
an ordering of the entries is imposed somehow. Indeed, first-order logic deals only
with sequentially displayed quantifiers. Before proposing a way out, let us see how
one can apply previous ideas for the formulas without quantifiers. The fundamental
notions stated fomPDL are adopted irC o4 Without change, in particular: the no-
tions of of k-action, multi-agent Kripke framgandmulti-agent Kripke structuresee
Definitions 9, 10, 11.

FollowingmPDLand in contrast to standard multi-relational Kripke frames, single
actions do not identify transitions in the frame. Instead, transitions are associated with
particular columns of actions. For the sake of clarity, we provide here the definition
of multi-agent Kripke structure fof yq 4.

DEFINITION 21 (MULTI-AGENT KRIPKE STRUCTURE FORC Aq4). —

A Multi-agent Kripke Structure fo y4 (k) is a 4-tupleM = (W, Act; R, [])
where:

1) (W, Act; R) is a multi-agent Kripke frame for mPDL and the indexand

2) [-] is a function(the valuation functionyuch that[p] € W for p € Propld
and[a] € Act fora € Actld.

As before, given a multi-agent Kripke structukd, [-] is extended to all constant
operators in the language by
ail aiz - Gin [a11] [a12] --- [ain]

a21 a2zt G2n la21] [az22] - [a2n]

—def

QK1 QK2 -+ Gkn [ar1] Tak2] ... [akn]

In standard modal logic, a Kripke frame for the propositional language is a Kripke
frame for the first-order modal language also. Analogously, a multi-agent Kripke
frame formPDL is a multi-agent Kripke frame for the quantificational language cor-
responding to it. However, these two types of frame differ on a crucial aspect. In
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standard Krikpe frames, the domain of quantification is independent from the frame
itself (one can augment the frame with any set as domain of quantification). On the
contrary, in multi-agent Kripke frames it is the very set of actidwsthat plays the

role of domain of quantification. Also, sequences of element&din(the basick-
actions) provide the labels for the transitions in the frame. Thus, in multi-agent Kripke
frames there is an explicit tie between the quantification domain and the transitions.
Finally, note that the extended frame has constant domain of quantification since the
domainActis the same in all possible states.

In the remaining of the paper, we use Kripke frames (structures) to refer to multi-
agent Kripke frames (structures).

3.3. Semantics rises to the occasion

In extending the syntax ahPDL to the richer syntax ofZ,4, we have been
working within a path well-known to logicians, i.e., the introduction of variables and
quantifiers. The whole process has been quite smooth, and so was the introduction of
frames for the latter language. However, the semantic interpretation of the resulting
system is not straightforward.

Once the environmert® : Var — Act is fixed, one can extend the valuation
function[-] over variable modal operators.
DEFINITION 22 (VALUATION OVER VOP)., —

Given a multi-agent Kripke structur@V, Act; R, [-]) and an environmers,

i) if = is a variable, then pufz] =4.5 S(x),

ii) if A is an operator in vOP, then put

aiy a2 - Gip lai:] [a2] ... [ain]

az; Q22 -+ A2p [[Cl21ﬂ [[Cl22]] ce [[aQn]]
—def :

ag1 g2 Gkn lar1] [are] ... [awn]

(We have further overloaded the notation for the valuation function. Since the sets
Propld, Actld, andVar are disjoint, this abuse of notation causes no confusion.)

In Definition 17 we have shown how to represent modality identifiers which differ
on some entries only. Here we give the corresponding definitioh-frtions.
DEFINITION 23 (CHANGING k-ACTIONS). —

Given a set Act of actions, let be ak-action anda, 3, ... € Act, then:

(1) A(ij—a) is k-action A except thatd ;. (i, ) = a.

(i) AGijrisgo,...—a8,...) IS k-action (... (A, j,—a)) (izjz—p))s - - -)-
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(|||) A(iljl,izjzy---‘*d‘) |S k—aCtIOI’] ( .. ((A(illeal))(inQHOCQ))7 .. )
DEFINITION 24 (INSTANCES OF A MODALITY). —

Given a Kripke structuréW, Act; R, [-]) and an environmerig, a k-action A is
aninstance of M| (equivalentlyinstance of modality identified/) if A is obtained
from M by substituting:

a) an action in Act for each quantified variable
b) [a] for each element € Term.

We writelnst(M) for the set of instances @i/].

Action A(4, j) is said toinstantiate variable of M if A € Inst(M) andx occurs,
quantified or else, ad/ (i, j).

PROPOSITION25. — Given a structureW, Act; R, [-]), an environmeng, and an
action identifiera,

Inst(M—q)) = {Aij—a) | A € Inst(M) and [a] = a}.

PROPOSITION26. — Given a structureM with |Act] > 1 and environmen;,

|Inst(M)| = 1ifand only if[M] & qOP.

DEFINITION 27 (CHANGING THE ENVIRONMENT). —

Fix an environment functiofy. We writeS y; = 37 (withy; # y;) for the environ-
ment function defined by:

Sy Dy (@) =S(@) forz & {y, ... e},
S () = ai
Given ak-action A and a modal operatofM] with A € Inst(M), we writeS4, for
the environment function defined as follows:
34 (y) = S(y) for y not occurring inM,
34 (y) = A(i, j) for y occurring (quantified or else) av/ (i, 5).

Note that34, is well defined since, from Definition 14, a variable can occur at
most once in the modality identifigi/ .

3.3.1. Sequential semantic£3, 4

In this section, we present a semantics foy, 4 that is suitable for multi-agent
systems. Generally speaking, in modal logic one can easily define different semantics
for a language; the comparison of different interpretations of the langfiaggis an
important aspect of our work. However, here we disregard this issue and concentrate



22 Journal of Applied Non-Classical Logics. Volume xx&@#200x

on one interpretation of the language only. The interpreted language we obtain is
dubbedC3 4 (0r L34 41, if we need to make the indexexplicit.)

Fix a Krikpe structureM and a stats. Let S be an environment.
We write M, s, =g ¢ to mean that, in the semantiai‘sjAA(k), the formulay is
true (equivalently,satisfied at states of structureM for environments. We write
M, s s ¢ if @ is true for any environmerit. Furthermore M = ¢ means that
formulay is valid in M, that is, it is true at each state .

Relationj=¢ is defined recursively as follows:
15) Letp € Propld,then M, s, S =g p if s € [p]
25) M, 8, S s if M,s,S s
)M, 5, Espo—Y if M;s,SHEsporM,s,SEs ¢
45) Let [M] be uniform, then
M, s, S s [M]e if forall s’ suchthats,s’) € R([M]), thenM, s, S =g ¢
55) Let & be all the existentially quantified variablesi, then,

M, s, =g [M]p if there exists a sequenéeof elements irAct (not necessarily
distinct) such that ifA € Inst(M ;_), then for alls’ such thai(s, s’) € R(A), we

haveM, s', 34, s ¢

As anticipated, we duS$, , the language x4 4 with the semantics given bi) —
55). Note that claused) is consistent with the semanticsmPDLand is a particular
case of claused. The latter will be motivated below.

DEFINITION 28 (MULTI-AGENT KRIPKE MODEL IN E‘/SMA). —

A multi-agent Kripke modefor a set of formulast in £3, 4 is a structureM for
L34 such that all formulas € ¥ are valid in M.

Having stated the semantics 68§, ,, it is now evident that our reading of quan-
tified variables depart from their standard meaning. In the modality identifiers, we
write Vz (and3z) to identify both a quantified variable and an occurrence of that very
variable. In this case, there is no danger of confusion. Nonetheless, it is advisable to
adopt a more explicit notation, for instan¢e.x and3Jzx.x, when considering exten-
sions of the languagé ,4 that allow for more complex combinations of quantifiers
and terms in the entries of the modality identifiers.

We remark that the semantics 6%, is entirely first-order. Although clause;p
quantifies over operators, this should be taken as a figure of speech and not as an
ontological requirement. We have and will freely use expressions like “any instance
A of [M]" as a shorthand for “ang-action corresponding to arbitrary instantiations
of the universally quantified variables occurring[if].” For the sake of clarity, in

's) we rewrite clause 5) highlighting the role of universal quantifiers and avoiding
quantifying over operators. According to Definition 24,) is equivalent to 5).
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') Let [M] € qOP, 7 all the existentially quantified variables, agigll the uni-
versally quantified variables il (the order they occur is irrelevant). Then,
M, s, S Es [M]g if there is a sequencé of elements inAct, such that for any se-
quence] also of elements iAct, for B = [[M(ig Jand(s,s’) € R(B), we have

—a,5)
M, s, 3B s .

But what is the rationale of clausg® Clearly, one expectd/]y to be true when
for each instancel of M, formula[A]yp is true. This fits with claused above. How-
ever, this clause requires much less to conclude that a formula is true. According to
clause &), [M]yp is true if there are actions such that, when used as interpretations
of the existentially quantified variables &f, any instance3 of M (that respects this
interpretation) satisfiea, s, 3% =g [M’]¢ according to claused). (Below we
give an example in MAS to motivate this choice). Thus, in this semantics all existen-
tially quantified variables are instantiated before the universally quantified ones. This
constraint forces a formula id%, , to be true only when, once the values for the ex-
istentially quantified variables is fixed, one cannot reach “undesired” states by varying
the value of universally quantified variables. From the point of view of a multi-agent
system, a formuld)M |y is true if the agents have a way to foree(i.e, to force in-
stances of the quantificational operator that take to those states wherteue) by
deciding beforehand which actions to execute at the existential positions and without
need to know the actions executed at the universal positionk/ diand thus their
possible interferences.)

Such a system is suited for describing a (restricted) notigslasf. For instance,
let Alan and Bill be coworkers in a project for their company and suppose they have to
complete the project by the end of the day. They might need to work on it at different
stages of the development and, as usual in a social environment, they have to combine
their work with other commitments as well. The first thing they can do is to develop
a plan taking into account their constraints and the project needs. Suppose Bill is at
a meeting early in the morning and that Alan has a doctor visit before lunch. After
lunch they are both free but, in the mid afternoon Alan has to meet with the office
manager. A plan for the project is any combination of actions that are compatible with
the given constraints and that guarantee the completion of the project by the due time.
Once such a plan is selected (if it exists), its application ensures the success of the
coworkers’ efforts.

In our language, the following formula describes this situation and one can use it
to isolate such a plan (here Alan is agérand Bill is agen®):

dry d a Jxy Vs
Vyi Jy2 a Jys Jys

whereyp stands for “the project is finished”. Here varialleis universally quantified
since it refers to a time-slot in which Bill will do what asked by the manager. Similarly
for variablezs, this time with respect to Alan. The second time-slot for Alan contains
an action identifierd, which denotes the action “go to the doctor”. Similarly, the third
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time-slot (for both the agents) contains an action identifiecorresponding to “have
lunch”. The remaining variables are existentially quantified so that Alan and Bill can
decide what actions to perform at those positions in order to complete the project in
time.

By choosing beforehand the instances of variables 4, 42, y4, andys the agents
define a plan which states what to do when they work on the profegt, classifies
the formula as true is and only if there exists a choice of instances, fary, ys, y4,
andys that guarantees the completion of the project. However, if such a choice cannot
be successfully made without any knowledge of the valueg/foor x5, then the
formula is false according tﬁﬁAA. That s, if in the early morning their director asks
them if they can finish the project in time, they will answer “yes” in the first case, “no’
(that is, “we cannot guarantee it”) in the latter.

In particular, note that the semantics we have described does not consider adapt-
able plans like, for instance, plans that includ¢ *. . then” conditions. A semantics
applying a more general notion of plan is necessarily more complicated and may re-
quire game-theoretical notions. See [BOR 03] for an example. Finally, although in
this paper we allow for simple expressions only in the modal identifiers Jlikand
Yz with 3,V resembling the traditional universal and existential quantifiers, the ap-
plication of a richer class of expressions may become necessary for modeling some
multi-agent systems. For instance, expressionsdiker with meaning “choose an
item z knowing the truth-value op” or 3p.;(,)z With meaning “choose an item
assuming thap is true”.

3.3.2. L5, 4 atwork

We give a few examples to make clear how the semantics just introduced works.
Also, these examples clarify our claim that the description of multi-agent systems is
an important motivation for this logic system.

In order to keep things simple, we consider a structitg wherek = 2 and
W = {so, s1,s2}. For actions we takelct = {a, 5}. The structure is pictured in
Figure 2. g is the state at which the formulas are evaluated.)

We consider just one proposition identifigrvhose valuation i§p]s = {s;} and
we evaluate atq three formulas:

dr Jz dr Vz Ve dz
Vqup’ Vyflup’ Hqup'

According to the semantic clausg)for £3, , (more preciserLfM(Q)) formula

35 35} p is true in M at s if there are values for and z such that, for any

instantiation ofy andu, the 2-action obtained through substituting these values for
x, 2, Y, u (respectively) brings the system to state False, otherwise.
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g B
[pls = {s1} f
@So
a a
a B
B o
a) o
« ﬁOSl a A SQOa 8
B’ﬁ 57ﬁ a’ o

Figure 2. The two-agent structurdts = ({so, s1,s2}, {e, B}; R, []s) with R and
[p]s as shown.

In practice, the different choices of values foand: isolate (disjoint) subsets of
instances (2-actions) for the quantificational operator as follows (we write— «, 3
for: x is instantiated by andz by j3; the 2-actions in a set are obtained by taking any
possible value foy andw):

S CCIN (N I S
rzeaf {3573§,g§,gg}
IR (N I B
wemss s [0 2a a0 g

Recall that we have

(o ) -n(z)on(2)
Qo (g (6%) Oy

It is then simple to verify that in each of the sets above there is some instance for
dr 3z
Yy Vu

find instances for and z such that the system always ends upatthe only state

wherep is true). Consequently, the formula is not truelis at sg.

by which the system reaches stateor s,. Indeed, it is not possible to

In our informal reading of the formalism, the first agent cannot devise a successful
plan (choice for the existentially quantified variable) that forces the system to gnake
true independently from what the other agent does.
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dr Vz

Ju|?
Analogous to the previous case, this formula is trueuity at s, if there are values
for z andu such that, for any instantiation gfandz, the 2-actions obtained through
substituting these values far, u, y, z (respectively) all bring the system to state
False, otherwise.

Now, consider the second formul

Here are the sets of instances determined in this way.

U IR P SR
T,u—a, {Zg,gg,gg,gg}
compa s (Do 20 me o
cuens 2 {05 B0 g S0

All the 2-actions obtained from assignmentu < «, 3 bring the system to state
s1 as desired. According to the semantics, the formula is trug. at

In our informal reading, the two agents can deviseollaboration and before-
handa successful plan (choice for the existentially quantified variable) that forces the
system to make true no matter what they do when they are not constrained by the
plan.

Vo dz
Jy Vu P,
substituting the quantifiers by their duals. We have

Finally, consider formul which is obtained from the previous by

TR I
I N B S A
IRV B I B
YRR T T AT

One can verify that all sets above contain an instance of the operator for which the
formula is not true inM s at s (it is enough to check the very first 2-action in each
set). We conclude that the formula is false.
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In our informal reading, this result tells us that if the two agents behave with op-
posite intentions with respect to the previous formula, their collaboration does not
suffice to grant the existence of a successful plan.

The modelM s of Figure 2 allows us to prove an interesting property.

PROPOSITION29. — There exist modal operator®, N in L3, , such that
[MN]p # [M][N]p
However, forA, B uniform, we have

[ABlp = [A][Bly

PrROOF. — An example for the first claim is provided by the modéls of Figure 2
by takingM = ¥, N = 3%, andy = p.

The second claim follows from the semanticsid, 4. .

3.4. Which constructs forCS, 4?

Now that the interpreted language has been introduced and motivated, we spend a
few words on different constructs that might be of interest for enriching the language.

Although in this work we have excluded constructs on action identifiers in order to
keep the language simple, in the light of section 2 it is natural to look at those provided
by PDL. The adoption oPDL constructs can be made at two levels. Take the “non-
deterministic choice” operatap: one can add it at theperator-level for instance

writing complex modalities Iike{ OC‘ U g} whereU applies to columns in modal op-

erators, or at thaction-leve] like in

a g b . Analogously, the introduction of the

*
“star” operator« would allow us to write formulas of fornK‘é) ] in the first case,

*
and formulas of form[ac } in the other case. These formulas have different imports

in the language. The first kind of formulas does not affect the action-synchronicity
implicit in £3, 4 and so it would be easy to introduce. Instead, formulas witbr

even the composition construct) at the entry level open the way to the description of
asynchronous systems and requires some changes in the semantics. In both cases, the
interaction of the new constructs with the quantifiers needs to be carefully considered.

An interesting issue is the inclusion of the “test” construct (at the entry level) and
its interaction with the existential quantifier. The introduction of a construct based on
“test” has been suggested at the end of section 3.3.1 although it is quite different from
the operator oPDL. In our reading of the modalities, we could allow an expression
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of form 3,-z in a modality [M] with the meaning “choose a value forknowing

the truth-value ofp at the moment in which: has to be performed”. Note that the
semantics ofﬁf/m makes the result of the test publicly available to all the agents.
By tying strictly the result of the test with the action chosen at that point by the very
agent performing the test, we obtain an operator that fits our overall framework and is
easily motivated in the area of multi-agent systems. Indeed, it would allow to describe
more complex plans in the language (essentidfly.ther conditions) and seems to

be worth to study.

4. The logic of £5, 4
4.1. Deductive system

The substitution of variables by terms is a crucial process in formal languages.
In L4, this substitution takes place only in modalities since variables do not occur
outside these operators. If modal operators are explicitly given, one can use the nota-
tion of Definition 17. For the other cases, especially when there are nested modalities,
we need to represent the substitution of variables without listing every operator in-
volved. For this reason, we refer to some standard notation. Other definitions are here
introduced as well.

DEFINITION 30 (SUBSTITUTION OF TERMY. —

LetZ = z4,...,z, be a sequence of terms (not necessarily distinct) gnd
y1,- .-, Yn @ sequence of distinct variables. Given a formpld Z/¢} ¢ is the formula
obtained fromp by the simultaneous substitution of the free occurrences by x;
(1<i<n).

DEFINITION 31 (FREE FOR A VARIABLE). —

Letz,y € Var. xis free fory in formula if no free occurrence af in ¢ is in the
scope ofvz or Jx.

Also, we need a couple of definitions on subformulas.
DEFINITION 32 (POSITIVE AND NEGATIVE POSITION OF SUBFORMULA¥. —

Given a formulay, an occurrence> of a subformulay of ¢ is said to be positive
or negative according to the following conditions:
i) @ is positive iny
i) if @ is positive (negative) if, then
@ is positive (negative) iy — ~
@ is positive (negative) ifM ]y
@ is negative (positive) iy — x
@ is negative (positive) imy
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Also, given a positive (negative) occurrencezof= [M]y in ¢, we say that the
corresponding occurrence @¥/] is positive (negative) as well.

DEFINITION 33 (CHANGING MODAL SUBFORMULAS). —

Let [M] be a modal operator and’ = x1,...,z, a list of terms withz; oc-
curring (perhaps quantified) id4 (i1, 71) , ... , z, occurring (perhaps quantified) in
M(ip, jp). Letp be[M]x andZ = z1, ..., 2z, be new in all modalities op, then we
write

) oz for [Me,j,..i,j,—n{Z/T}x,
i) p@—vz) for [Mq ... ,—va{Z/T}x,
i) P(z—37) for [M(i1j1 ...,ipijaz“)]{g/f}X-
Lete be a formula]M]y a subformula ofs, andg one single occurrence @}y
in 1), then we write

i) Y{@z—x} for ¢ with ¢ substituted by an occurrence of;._z);

ii) Y{Pz—vz)} for ¢ with 4 substituted by an occurrence @fz. vz);

i) Y{@(z—3z) } for ¢ with ¢ substituted by an occurrence ofz._sz).

Furthermore,@b{gb(liwgl), oy Pla, 2y e With occurrencesy’ and @7 distinct
fori # j, is obtained recursively bl .. (V{(z, ) }) - M, 2}

Let us recall (and expand) our notation on provable formulas (see page 6.)
DEFINITION 34. —

Let A be a set of axioms closed with respect to a set of deduction rules, then

(i) Fa ¢ stands forp € A;
(i) Let X be a set of formulas. We writ€ +, ¢ to mean that there exist
U1, ..,y € X suchthat(y; A ... AYy,) — p €A

As before, when there is no danger of confusion, we omit the indiex-.

A logic for L‘,‘/SMA .y IS the smallest set of formulas 6fy 4 (for the fixedk) closed
under the rules listed below and containing all the instances of the following schemas
([M], [N] range over all modal operators in the language).

Axiom schemas
(PL) Allinstances of propositional tautologiesﬂﬁAA(k)

(K®) For[M] V-uniform
[M](p — ¢) = ((M]p — [M])) (Normality)

(3r°) ForM(i,j) = = € Var anda in Actld or a equal tox
[Mij—ay{a/x}o — [Myj—3,{y/x}e (Existential Introduction)
where eithel is z or y has no free occurrencesgn is free forz in
v, and is new in\/
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(YE®) ForM(i,j) = Yz andy € Term

[M]p — [Mj—p{y/z}e (Universal Elimination)

where ify € Var, theny is z or y is free forz in ¢ with y new in M
(5%)  [MN]p — [M][N]p (Split)
(J%) For all [M], [N] such thafM] is 3-uniform or[N] is V-uniform

[M][N]e — [MN]ep (Join)

Rules

Let[M]x be a subformula of a formula (possibly) = [M]x). Fix an occurrence
of [M]x in ¢ not in the scope of quantificational operators and cafl.itLet ¥ =
z1,...,x, be alist of free variables df\/] (not necessarily all). IfN] is a uniform
operator ofy) and¢ is in its scope, than ng; can occur inN].

(Rule of Universal Introduction
If [M] is V-uniform, no variabler; has free occurrences in subformulas/othat are
in antecedent position (see page 4) with respe,tand¢ is in positive position in
1, then
Y{G@—vp}
where for alli, eithery; is z; or y; new ing.

(Universal Introduction)

(Rule of Existential Elimination
If no variablez; has free occurrences in subformulasyothat are in consequent
position with respect tg, and¢ is in negative position i), then
UG-} _
where for alli, eithery; is z; or y; new ing.

(Existential Elimination)

(Rule of Modus Pones

(mp) L FE fp_) v (Modus Ponens)
(Rule of Necessitatign
For [M] € OP
Foe o
(Nec) Vi (Necessitation)

As a remark to the deductive system 0§, 4, let us give a few examples of the
application of rulegv7°) and(3E®). These rules have been stated in general terms to
comprise several important cases among which the followidgs ¢OP, no variable
in A occurs free in\/)
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[M]p . X — [Mly .

[Mij—wypy{y/x}e X = [Mijvy){y/az}e’

x — [A][M]p . [M]e — x .

X — [AMijvyl{y/z}e’ [Mij—ayp{y/zte — X
(x = [M]p) = ¢ . (x — [A][M]p) — ¢

(X = [Mjeapy/zte) = 0" (x = [Al[M@jayH{y/zhe) —

Other cases are considered in Propositions 38-40.

Finally, note that the restriction df/7°) to V-uniform operators is necessary to
block incorrect deductions. Here is an example of a wrong deduction that we want to
[l
7]

.vz (’9 . . -
there existse such thaf 2] ¢”, while the conclusion states “There existsuch that
forall z, [Z] ¢". Clearly, the latter is not a logical consequence of the first.

avoid:

. This deduction is unsound. The hypothesis reads “For each gjven

4.1.1. Soundness

THEOREM 35 (SOUNDNESY. — The axioms othA are valid in any multi-agent
Kripke model. Also, the rules @, , preserve truth in these models.

PROOF. — Among the axioms, the cases @L), (K?), (317), (VE®) are quite
simple. Here we present the case of the normality axiéif) only. Fix a model and
an initial states. If for some environmernis, formula[M ]y is satisfied at and[M ]
is not, then there exis{si] € Inst(A/) and a state’ such that(s, s’) € R([A]) and
v, ) hold ats’ for &. But[A](¢ — ) is satisfied at for S, i.e., — v holds for
at all states reachable throuph]. Thus,—~¢ must be is satisfied at as well. Finally,
—[A](¢ — ) ats for & and so[M | fails ats. Contradiction.

Regarding the remaining axioms, consider fji$t ). This axiom holds since itis a
consequence of the observation that in first-order logic foralgyvz v (%, ¥, Z, ¥)
implies 37 Vz' 35 Vv o(Z, ¥, Z, ¥). The Join axion(J*®) holds because the restriction
on its application ensures that the interpretation of the two subformulas is obtained by
instantiating the variables in the same order (namely, first all the existentially quanti-
fied and later the universally quantified variables).

Among the rules, the novelty lies witty/°) and (3E°). We show how the ar-
gument runs for the first. The proof is by induction on the complexity)ofLet
Y = [M]x with {¢} = ¢. We need to show that [f//]x is true, then Mz _vz|x
is true as well. We proceed by contradiction. Assume fthat:._vz)]x is not true and
fix a states of the structure and an environment for which this formula is false. Then,
there exists a sequence of termsuch thatf Mz z)]{d/Z}x is false ats. That is,
[M]y is false ats for 2. Contradiction.
Inductive step: assume the rule holds g7} .
Case (a)]N]y{¢} for some uniform{ N]. By assumption, none of the’s occurs in
[N]. Assume[N|y{$z—vaz) } is false at a state, then it follows easily that for some
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environmen{N]y {2} is false as well.

The following cases are treated together

(b) ~—{¢},

(© ~({o} — o)

(d) —¥{¢} — o, and

€) (W{p} — 01) — 02

The firstis trivial. The second and third are reduced to (e) by rewriting negation using
— and_L. (L was introduced at page 4, it is easy to see thts [~ L for all struc-
turesM and all states.) Thus, we concentrate on case (e). Note that no subformula
can be in antecedent position with respectitonless it occurs iny. Assume that
(V{@z—va)} — 01) — 0o fails for some environmerk. Then, for3 the antecedent
Y{@z—vz)} — o1 holds and the conseque fails.

Subcasde;): by the inductive step, if/{¢z—vz } fails for 3, thenw) {5} fails as
well. Thus,»{p} — 1 holds, by which we conclude th&#{p} — 01) — o fails

as we needed to show.

Subcasdes): assumep; is true for3. Then,{p} — o; holds, by which we con-
clude again thaty{¢} — 01) — 0 fails and we are done.

Finally, it remains to verify case (fp — ¥{¢}.

Assume thaty in ¢ — ¥{p} satisfies the conditions required by the rule. Then, if
0 — Y{P@—_vz)} fails for an environment, this means thap holds for while
V{Pz—vaz) } fails. By the inductive step){¢} fails for & as well. Thusp — ¥ {3}
fails also, and we are done. |

4.1.2. Derived rules and theorems

Analogously to standard modal logic, usinydc), (K°), and (/ P), one can
prove the following distribution rule

PROPOSITION36 (DISTRIBUTION RULE). — The following rule is derivable:

=P

BD) G = 7o

where[M] is Y-uniform.

Having (RD) and (K°), one proves other equivalences that are analogous to stand-
ard results of modal logic.

PROPOSITION37 (DISTRIBUTION OVER A). — Let [M] be aV-uniform operator,
then
[M](p A1) < [M]p A [M]y.

The rules listed below are used in the completeness proof.
The first follows from(vI°) and(IE*).

PROPOSITION38 (MODAL UNIVERSAL INTRODUCTION RULE). — Let[A] be uni-
form and[M] V-uniform with M (i, j) = = € Var. Then the following rule is deriv-
able:
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[Al(¥ — [M]p)
[Al(W — [M(ij—va)]#)

wherez not free in[A] nor in .

(RVI)

The following is proved by applying37°).

PROPOSITION 39 (MODAL EXISTENTIAL INTRODUCTION RULE). — Let [A] be
uniform, M (i, j) = « € Var anda € Actld. Then the following rule is derivable:

[A](4) — [Mij—ayl{a/z}e)
[Al(Y = [M(ij—32)]p)
By rule (3E®), we obtain

(R3D)

PROPOSITION40O (MODAL EXISTENTIAL ELIMINATION RULE ). — Let[A] be uni-
form andM (i, j) = « € Var. Then the following rule is derivable:

[A]((x — [M]p) — ¢)
[AJ((x = [M(ij—an))e) — )
wherezx not free iny.

(R3E)

We conclude the description of the logig, , with a result that is quite important
for applications in multi-agent systems. It shows that the capabilities of a group of
agents (that is, the power ofcaalition to force some sentence to become true) do not
interfere with the capabilities of other groups (disjoint from the first). This is shown
by proving that if a group of agents can force a sentence to become true and another
group of agents can force a different sentence to become true, then the two groups can
make true the conjunction of these sentences by acting concurrently.

If we focus on existential entries, a modal operator of our language can be seen as
describing a kind of group (or coalition) to which agérelongs as long as formula
[M]¢ (with ¢ modal-free) shows existential entries in roaf M. In a sense, an agent
participates to the group continuously, occasionally or never depending on the number
of existential entries in its corresponding row.

Constructd was introduced in Definition 20.

THEOREM41. — AssumeV/, N are complementary, then

F ([M]p A [NJp) — [M & N](p A1)

PrROOF. — We limit our proof to one-column operators in a two agent system. More
precisely, we show the following:

(R PN A O [ et

Fy
. g Vx T .
From axiom ¢ E~), we have- y w— Y @ and, similarly,
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Lale=3]e

By Proposition 37 andPL), - ([ Vyx ] oA { \fy } b) — [ 5 } (p A1)

. Sy g YV T Jx
Applying (371°) twice, we get—([ y @A vy ) — . (p AY)
By propositional logic, ) )

VY T dz
"y e _vy_w_)_ay_(<p/\1/})>
to which we can apply{£*) obtaining

Vr T dx
" _so—><_vy_¢—> 3y (WW))-
By propositional logic again, ]

x Yz dx
"l ¥ _Hy_tbﬁ_gy_(sko))
and by 8E°) again, ) )

dx YV Jx
I_-vy-(lp_) -Hy-w_)-ay-((p/\w))

. . Va Jx dx

The latter is equivalent tb ({ = } P A { Wy } P) — { Yy } (p A ) and we are
done. |

4.2. Completeness

In this section, we prove that the IogR;fAA(k) (for k& > 1) is complete for the
class of multi-agent Kripke frames. Our proof of completeness follows the Henkin’s
method generalized to first-order modal logics. As usual, below we assume that an
indexk has been fixed.

The standard notion af-completenesaeeds to be adapted to our language. In
L3, 4, One cannot express the existential quantifier in terms of the universal one. As
a consequencey-completeness in our logic must consider both positive and negat-
ive expressions. In addition, this notion has to take into account the special interplay
among quantificational operators and classical negation. For these reasons, our defin-
ition of w-completeness splits in two cases.

DEFINITION 42 (w-COMPLETE SE). —
A setd C L4 isw-completdif it satisfies the following conditions:

(i) Let [M] beV-uniform with universally quantified variables Let [M]x be a
subformula ofy, and ¢ a positive occurrence df\/]x in «, ¢ not in the scope of a
guantificational operator,
if ¥ = 9{¢z—a)} for all sequences of constantgof the right length), theix - 1;
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(ii,) Let[M] be a quantificational operator with some existentially quantified vari-
ablesz. Let[M]x be a subformula ofy and ¢ a negative occurrence ¢M ]y in ¢, ¢

not in the scope of a quantificational operator,

if ¥+ ¢ {pw—a)} for all sequences of constantgof the right length), thei - ).

DEFINITION 43 (MAXIMAL , CONSISTENT AND SATURATED SETY. —

(i) A setX is maximalif either p € ¥ or —¢ € X for every formulay in the
language.
(i) A set of formulas is consistentf X t# L.
(i) A setX is saturatedf it is maximal, consistent, and-complete.

LEMMA 44. — Fix ¢ with no free occurrence af, y new inM, andy free forx in

®.
If M(i,j) =V, then
= [M]p < [M(inVy)]{y/x}(P
If M(i,7) = 3, then
= [M]p < [Mij—a,)H{y/z}e
PrROOF. — The first equivalence requires some work because of the restriction in

(VI®). For the sake of simplicity, we prove it for the simple modality] = [52],
thus assuming = 2.

By (VE®), [ v; ] p — [ Z ] {y/z}p (sincey free forx in ¢)

ey (i | o | | e
By 19+ | Y Jw/sde— | 3 | ik
oy Py | T o= | 5 | e

By 355 | 5 [~ | 3 ] twrate

The other direction holds as well since the conditions implis free fory in
{y/x}e.

For the second equivalence. [M(;;._ .o — [M(;;—3,]{y/x}¢ is an instance
of (31%) and, by BES), I [M;j—34)l¢ — [Mij—3y){y/x} where[M;._z,)] is
[M]. The other direction is proved similarly. [

Fix setsActld, Propld, andVar, and Iet[ifAA(k) be the language thus obtained.
Let X be an arbitrary consistent set of formulang%AA(k). We prove completeness
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by showing that: has a model. The first step consists in showing how to exietal
a saturated set applying a version of the Henkin method [GAR 01].

Let Cn be a denumerable set of action identifiers with N Actld = (. Let
(L7344 be the languages, ,,, with action identifiers fromdctld™ = Actld U

Cn. From now on, we will refer to elements dfct/d™ indifferently as action iden-
tifiers or constants Note that ifX is consistent irlcfAA(k), then it is consistent in

(L+)§4A(k) as well. From now on, we will work in this extended system.

Let7(1),7(2),... be alist of aII(LﬂfAA(k)-formulas such that if a formula con-
tainsn (not nested) quantificational operators, then it oceutines in the listr; the
first time associated with the first not nested quantificational operator (from left to
right), the second time associated with the second not nested quantificational operator
and so on till then-th occurrence of the formula in. If ¢ is a formula with quanti-
ficational operators ang = 7(h), then thelabel of¢ at h is the occurrence of the
quantificational operator with which the formula is associatedl.afhus, if M €
gOP, then formulayy) = py — [M]p; occurs once inr with label the only occurrence
of M in ¢. Instead, formuldM|p, — [M][M]p; occurs twice. It occurs once with
label the first occurrence (from left to right) 8f, once with label the second occur-
rence ofM, and it does not occur with label the third occurrence (since the latter is in
the scope of another quantificational operator, thus nested).

We do not mark labels explicitly in our notation since the label)ot 7(h) is
clear from the formula) and its occurrences in(1), ..., 7(h — 1), if any. A formula
without quantificational operators has no label. Given a forngudand its labelM, if
¢ = 7(h), we write @(h) for the unique occurrencef the subformuldM]y where
M is the label ofy) andy its scope inyp.

To obtain a saturated set frof) we proceed by recursion constructing a sequence
of consistent sets}, in (£+)§AA(,€) such thatly =45 ¥ and¥, C Sj,41. (We write
Y U @ for the setC U {¢}.)

Suppose:;, has been constructed.

(Case A) Letr(h + 1) = ¢ be a formula with label a quantificatiort&uniform operator
[M] and lety be the universally quantified variables[df]. Let o(h + 1) be negative
in ¢, then
if $p U7(h+1)is consistent, puE, 1 =gy Xp UT(h+ 1) U{s(h + 1) ;0 }
where
a is a sequence (of the right length) of constant€ohew in%;, U 7(h + 1);1
if X, U7(h+ 1) is not consistent, puE+1 =ger T,

(Case B) Letr(h + 1) = ¢ be a formula with label a quantificational operaftdf] with
one or more existential entries, and f#ebe its existentially quantified variabled/(

11. We insist that the substitution is applied to the formula occurreriéet 1) only.
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may contain universally quantified variables as well)>(f + 1) is positive iny, then
if ¥, UT(h+1)is consistent, pul,1 =aey Xp UT(h + 1) Up{S(h +1) 75}
where

a is a sequence (of the right length) of constant€ohew in%;, U 7(h + 1);12

if ¥, U7(h+ 1) is not consistent, puE, 1 =gef .

(Case C) Ifr(h + 1) falls in none of the above cases, then
if X U{r(h+ 1)} is consistent, put; ;i =ger Xp UT(h+1).
if X, U{r(h+ 1)} is not consistent, put;,+1 =ges .-

We need to show that,, ,; is consistent i, is.

(Case A) Suppose(h+ 1) = ¥, X UT(h+ 1) is consistent, an®l;  is not. From the
constructionX, U7(h + 1) F —p{p(h + 1)z—a)}.
Recall that the elements afare new inX, U 7(h + 1).
Since a proof of-¢{@(h + 1) g} uses only finitely many formulas, |gtbe vari-
ables not occurring in the proof and substititéor @ in the whole proof. Formula
o(h + 1)(37&@ is positive in—y{@(h + 1)7—z} and the latter satisfies the con-
ditions in (VI7). By applying (VI°) over thez;'s (and Lemma 44), one obtains
Y UT(h+ 1) F =, contradicting the assumption tHag U 7(h + 1) is consistent.

(Case B) Suppose(h + 1) = ¢, &, U T(h + 1) is consistent, an&;, 1 is not. From
the constructiony, U 7(h + 1) = ={@(h + 1)@@—ay}. In "P{p(h + 1)za)},
the occurrences(h + 1)z 4) iS negative. Arguing as in the previous case, we can
apply (3E7) since the conditions are satisfied. Thus, by Lemma 44, one obtains
Yp UT(h+ 1) F — contradicting the assumption thaf, U 7(k + 1) is consistent.

(Case C) By construction.
Finally, putS. = ;= .

It turns out that ., is maximal, consistent and-complete in(ﬁ*)f/[A(k). Con-
sistency follows from the consistency Bf for eachi. Also, the process guarantees
Yo IS maximal since only formulas not consistent with some subisere left out in
the construction oE,. Regardingu-completeness, we need an argument.

Consider formulag) and— with quantificational operators. Without loss of gen-
erality, let7(r) = — be the first occurrence ofy in 7. As usual,p(r) is the label
of —¢) atr. We write % for the first occurrence of formulain . (Informally, ¢ in ¢
“corresponds” to the occurrence @fr) in —.) Note that, if3(r) is positive in—,
theng is negative iny, and vice versa.

(i) Assume[M], 7, v, ¢ satisfy the conditions i, ), and let¥ o F P {Pz—a)}
for all sequenceg (of the right length). IfS,. U 7(r) is consistent, then by (Case A)
of the construction there exists a sequesiceich that. - (—){@(r)z—a)}. But
(Y @(r)(z—a)} and—(Y{Pz—q)}) are the same formula. Contradiction. Thus,
Y ¥ = and, by maximalityy . F 1.

12. As before, note that the substitution is applied to the formula occurrgfice- 1) only.
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(ii,) Assume[M], I, ¢, ¢ satisfy the conditions iii,, ), and let¥ F {Pz—a)}
for all sequences (of the right length). IfX,. U 7(r) is consistent, then by (Case B)
of the construction there exists a sequedaeich that>, - (=¢){@(r)(z—a)}- AS
before, this leads to a contradiction. Thils, I/ — and, by maximalityy., F .

Since we can apply the same argument for all other labels @fe conclude
that>l, is w-complete.

We now state this result officially.

LEMMA 45. — LetX be a consistent set iﬂfM(k). We can find a saturated set of
(L7)34.4(x) Which is an extension .

DEFINITION 46 (CANONICAL FRAME). —

Thecanonical framéC. for (E*)%A(k) is frame(W¢, Actc; Re) where:

- We is the set of all saturated setsaﬂi+)f4A(k);

- Actc is the set of constants (rﬁ*)‘j/[A(k), i.e. Acte = Actld™;

ail ... Qin
- For s, s’ € W and ak-action : : ) for (5+)}S\4A(k)’ the relationR.

Akl --- Qkn

is defined by the following condition:

aii ... Qin aiy ... Qin
(s,s') € Re | . |ifandonlyif | | : C |lp€sp Cs.
Akl --- Akn Akl --- Akgn

DEFINITION 47 (CANONICAL MODEL). —

Thecanonical modeM . for (£+)§4A(k> is obtained by augmenting the canonical
frame K¢ with a valuation function]-]¢ where[-]¢ is defined onp € Propld by
[¢le = {s| ¢ € s} and itis defined to be the identity function Antld*.

We write(We, Acte; Re; []¢) or, indifferently,(KCc, [-]¢) for the canonical model.

By construction, any:-action A is also an operator inOP sinceA = [A]¢ in
the canonical model. We will take advantage of this double rofe-aftions and talk
informally of modal operators as instances of other operators.

Note that a saturated seenjoys crucial properties like:
(i) ¢ € sifand only if ¢ € s;
(ii) if p — ¢ € sandyp € s, theny € s;
(iii) if ¢ — 4, 7 both ins, then—p € s;
(iv) if st ¢, theny € s;
(v) if (VI¥) applies top{3} € s, theny{Gz—vy} € s;
(vi) if (3E®) applies toy{3} € s, theny{Fz_35} € s;
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(vii) Let [A] be uniform andM] be V-uniform with (some or all) variables if:
if s F[A](v — [M(ng)]{b/f}ap) holds for any sequendeof constants, then
[Al( — [M]e);
(viii) Let [A] be uniform, M(iy,j1) = 3Fx1, ..., M(ip,jp) = 3Tz, be all
the existential entries ofM] and ¢ some or all the universally quantified vari-
ables of M. Then, if there exist constants, ..., a,, such thats - [A]=(y —
[M(f G g>]{a‘, b/Z,}¢) for all sequences of constants, thes + [A]-(¢ —
[M]ep).
Properties (i)-(vi) hold true sinceis maximal and consistent; the remaining two

are special applications af-completeness.

THEOREM48. — Let$ be an environment anfl] ¢ the valuation function extended
over vOP as in Definition 22. For all uniform operatdtd|, [ B]

Re([AB]e) = Re([Ale) o Re([Ble)

PrRoOF. — Without loss of generality, we assure B € cOP.

D) This inclusion follows by induction from axioms®) and(.J®°), and from the
definition of the frame relatio®- overk-actions.

C) Assume(s, s’) € Re([AB]c), thatis,[AB]x € s impliesx € s'.
LetD = {¢ | [A]p € s} andA = {¢ | [Alp € s} U{[B]¢ | ¢ & s'}.

We begin by proving thaf is consistent and that substis w-complete. Then,
we show thatD can be extended to a saturated set contaidingln this way we
isolate a saturated seft in (LJr)i/lA(k) such that(s, s”) € Re¢([A]e) and(s”,s") €
R¢([B]e)- Once this is done, by definition of relation we conclude thats, s') €
Rc(IIABﬂc) implies(s, S/) € Rc([A]]c) o Rc([[Bﬂc)

CLAIM 49. — A is consistent.

Suppose that\ is not consistent. Choosgp1,...,¢,} € A (p > 0) such
that[A]p; € s and{=[B]¢1,...,[BlY,} € A (¢ > 0) such thaty; ¢ s’ with
{¢1,...,0p,[BJYn,...,[Blig} not consistent. Pup = 11 vV ...V ;. Using
(K%), [Blth1 A ... A [Bltyy — [Bly. By (MP) and (PL), we havep; A ... A ¢, —
[B]v from which, by (Vec) and (%) again,[A]e; A ... A [A]e, — [A][B]y. From
[A],[B] € qOP, (S*), and(J*), one shows$A|[ B « [AB]y. This impliesy € s’
so that, by maximality, at least one among, . . ., ¢, is in . Contradiction. Thus,
A is consistent. H(Claim 49)

The crucial step is to find an extension Afwhich is not only consistent bui-
complete as well. We build such an extensiom\odtarting from seD = {¢ | [A]p €
s} which is alreadyw-complete as the following argument shows.

CLAIM 50. — D isw-complete.
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Assumey, [M], Z, ¢ satisfy the conditions ofi.,). If Y{@z_a)} isin D, then
[A]{P@z—a)} € s. This happens for all sequenceégof the right length). Byw-
completeness o, we obtain[A]y{@} € s so that, by definition oD, ¥{¢} € D.
Analogously for(i,,). H(Claim 50)

LetF={~[B]y |y ¢ s’} sothatA =D U F.
We now show how to extenB to a saturated set’ containingF".

Fix alisto(1),0(2), ... of all formulas in(L‘*)fAA(k) (differently from the listr

considered earlier, ia each formula occurs only once). Py = D, o(h + 1) = ¢,
and definef, 1 by cases as follows:

(i) Let ¢ be a formula with some negativeuniform operators (that is, with some
V-uniform operators in negative position) not in the scope of other quantificational op-
erators or some positiv&uniform operators not in the scope of other quantificational
operators (both conditions might hold).

For the sake of clarity, we present this case through an example. Assume that

a) there are two negative occurrences-efniform operators, name(y/; ] and
[Ms] (possibly different occurrences of the same operator) with quantified variables
Z, andzs, respectively, and

b) there are two positive occurrencesdefiniform operators, namely;] and
[N2] (possibly different occurrences of the same operator) with quantified varigbles
andyj,, respectively;

c¢) there are no other quantificational operatorg isatisfying the same condi-
tions.

Let o(M) be the smallest subformula ¢fwith operatorM € {M;, Ma, N1, No}.

If there exist sequences of terms do, 51, 52 such that

En UF U UP{O(M1)(z,—a1), P(Ma) (@, —a), PN (5, 5,y P(N2) (7,5, }
is consistent, then puty, 1 =gcy
En Uy UP{@(M1) (7, —a1), D(M2) (@2 —a2), (V1) (g, 5,y PV2) (7,0 -
PutEn 1 =4er En, otherwise.

(ii) If ¢ does not fall in the previous case ahg U F' U « is not consistent, then
PUtEn 1 =gep En.

(iii) If none of the above applies, pu,+1 =g4er £, U .

CLAIM 51. — E}, is consistent and-complete for allh.

SinceEy = D C A andA is consistent (Claim 49), the construction above
guarantees thak, is consistent for every. For the other property we proceed by
induction onh. We know from Claim 50 that, = D is w-complete. Suppose that
Ey, is w-complete. We showty, 1, is w-complete as well. LeE), ., = Ey Uy (for
E}1 obtained as in case (i) it suffices to apply the argument twice augmehting
with one formula at a time).
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Property(iy, ).
Let B, Uy F x{o(h + 1)(%5)} for all sequenceg (of the right length), where
@(h+1) is a positive occurrence ipof av-uniform operator with quantified variables
y. Then,Ey, E ¢ — x{@(h+1) ;.5 } for all @. Note thatg(h + 1) is positive in
1 — x. By w-completeness af;,, we obtainE), - ¢ — y and, thusf, U = x.

Property(ii,,).
Let B, U = x{@(h+1) ;g 1} for all sequences (of the right length), where
@(h+1) is a negative occurrence of an operator with (one or more) existential entries.
LetZ be all its existentially quantified variables. Thé#, -1 — x{&(h + 1)z}
for all a. As before, we obtailk’;, - ¢ — x and, thusfF, Uy F x. B (Claim 51)

Finally, puts” = |J E},. We need to show:

() Fcs”and
(1) s” is saturated.

(D Leto(h+1) = —[B]x € F. Thus,E, UF Uo(h+ 1) = E, U F which
is consistent by construction. It suffices to she¢h + 1) € Ep4,. From the con-
struction, cases (ii) and (iii) are trivial. For case (i), without loss of generality, assume
that formula—[B]x has operator occurrenc¢d/,, M, N1, N>} as described in (i)
for ¢ = —[B]x. As before, letz(M) be the smallest subformula of B]x containing
operatorM € {M;, Ms, N1, No}.

We need to show that there are sequerites, by, b, such thate,,; = Ej, U
—[BIx U = [BIX{@(M1) 7, a1y, $(M2)(z,—a)> PN (5, 5,y PN2) (57, 50 -

Since—[B]x € F, then—-x € s. Thus,x ¢ s. By w-completeness,
XP(M1) (7 —ar)> P(M2) (25 —a2) P(N1) (7, 5,y P(N2) (g, 5,y } € ' for some
@y, ds, by, by.
Let v = —[BP{&(M1) @ —ar)> P(M2)(@a2) PN (7, 5,y PV2) (7,50 -
Clearly,y € F thusE, U F'U—[B]x U~ = E, U F which is consistent. According
to the construction rules, we havéB]x € Ej,.1. We conclude that’ C s”.

(I1) From Claim 51 it follows thats” is consistent and-complete. It remains to
show thats” is maximal.

Suppose not. Lep ¢ s’ and assume”’ U is consistent . Since lists all formulas
in (ﬁ*)i“(k , for some indexx we haves(h + 1) = ¢. Then,E;, = Ejyq1. We
check if the three cases in the construction are compatible with this result:

Case (i). As before, we check this case through an example. Asguroatains
exactly two negative occurrences ‘¢funiform operators (not in the scope of other
quantificational operators), namdly/;] and [M;] with quantified variables’; and
T, respectively; and exactly two positive occurrences-ohiform operators (not in
the scope of other quantificational operators), nami®ly and[N>] with quantified
variablesy; andys, respectively. Let>(M) be the subformula of corresponding to
label M e {Ml, My, Ny, NQ}
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Sincey has not been included ify, 1, it must be that
EpnUFUY B =p{@(M1) (7, —a1), P(M2) (@), (V1) (7, 5,y P(N2) (7,5, } fOT
all sequences, @, by, bo, i.€.,
En UF F 1 — ~{@(Mi1)(z, 1) P(Ma) (@s—a5)> P(N1) (7, 5,y P(N2) (5, 5,0}
for all sequences,, @, by, bs. SinceF C s”, then
s" E Y — P{@(M1) (7, —a1), P(M2) (@2 —a2), (V1) (7, 5,y P(V2) (7,5, -
But s is w-complete so that, by property.,) on ¢(M), ¢(M2) and property(ii,,)
on ¢(N1), ¢(N3) (plus Lemma 44), one gets’ + ¢» — —). Thus,s” U1 is not
consistent. Contradiction.

Case (ii): The consistency of U+ would contradict, = Ej, 1.

Case (jii): We get a contradiction from ¢ s”. [

From section 3.2, the canonical model. is a Kripke structure for multi-agent
systems.

Note that, while proving Theorem 48, we have applied an argument that yields
another important property. We isolate it here.

THEOREM52. — Lets be a saturated set of formulas and consitler {¢ | [A]y €
s}. Then,

'y <= xecs forall s’ saturated with" C s

PrROOF. — (Left to Right) Suppose thdt - x. Then, there arey,...,p, € T
such thatpy, ..., ¢, — xin (L*)f\“(k). The very same proof then holds in all
containingl’ and, by the properties of saturated sets (see page 38)%'.

(Right to Left) Assume not, thehR U —y is consistent . From Claim 50 of The-
orem 48 we conclude thatis w-complete as well. It remains to show that the consist-
ent andu-complete sef’ can be extended to a saturatedssetin the same language)
containing formula-x. This result is obtained following the constructionsgfin the
proof of Theorem 48 where we substitdtdor A and{—x} for F. What changes is
the argument to provey € s”, i.e., case (l) in the theorem above.

Let F = {—x} and suppose” has been constructed following the work done in
the proof of the previous theorem. In particul&kh, U F' is consistent for alh. Let
o(h+ 1) = —x. We show—x € E,.1. Suppose not. Case (ii) does not apply and
case (iii) gives immediately(h 4+ 1) € Ej41. Suppose now thaty falls under case
@i). If =x € Epry1, then for-y = ¢ we have
Ep UF E —{@(M1)(z,—a) P(M2) (@y—a5), D(N1) (5, 5,y P(N2) (5,5, } Tor all
sequences: , @, by, b, i.e.,

EnF = =p{@(M1)(z, a1y, P(M2) (35 —a2), PN (5, 5,y P(V2) (7, 5, }-
By w-completeness of;,, we getEy, ¢ — —w),i.e.,Ep B -y — xorE, UF F ¥y,
contradicting the consistency &k, U F. Finally, -y € Ep41. [ ]
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We pause for a moment to verify an important property of the system.

PROPOSITION53. — Let < be an environment angl/] an operator withz all its
existentially quantified variables (possibly none), andll its universally quantified
variables (possibly none). Fix a statéén the canonical modeM and a formula

—[Mlp € s
Then, for any sequenceof constants there exist a sequeh@nd a states’ such that

(5,8") € Re([M; ;_s5le) and ~{@b/Z i}p € &

Z,j—a,b)

PrROOF. — (Without loss of generality, let us assurfdé] has no parameter entry.)

Consider first a simple case. @tf] € cOPandX = {¢ | [M]y € s}U{—¢}. By
(the proofs of) Theorem 48 and by Theorem B2s consistent andy | [M]y € s}
is w-complete. Following the proof of Theorem 52, one obtains a saturated extension
s’ (thus a state in the canonical model) such fiat s’ and, thus;~p € s'. At this
point (s, s’) € Re([M]e) follows from 3 C s” and the definition ofRc.

For the general case, |f¥/] € qOP. From the contrapositive ¢B7°) on —[M]¢
one gets~[Mz_q)]{d/Z}y € s for all sequenceg of the right length. Note that
[M(z—a)] has no existential entry.

Sinces is w-complete, from-[M .4 ]{d@/Z}¢ € s it follows that there exists
such that[M . .~ .5 {d, b/, §}p € s. Note thatM ;. .. 5] € cOP.

Let[A] = [M, ., 5] One shows that, = {¢ | [A]y € s}U{~{db/Z, F}e}

is consistent and-complete following (the proofs of) Theorem 48 and Theorem 52.
Also, it follows that there exists a saturated extensifn(a state in the canonical

model) such thal'y C s/, and, thus;—{a, E/f, ytp € s4. FromI'y C ¢4y and the
definition of R¢, we conclude thats, sy) € Re([A]e)- ]

We can now prove theguth lemma

THEOREM54. — For any states in M and any formulap in the language:

Me,s = pifandonlyifp € s

PrROOF. — We proceed by induction on the complexityaf

1) Lety = py be a proposition identifier.
By definition of the canonical modeM ¢, s = po if and only if py € s.

2) Letyp = ).
Me,s =~ ifand only if M, s |~ . By inductive hypothesis, this happens if and
only if ¢ € s. Sinces maximal and consistent, the latter is equivalentip € s.
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3) Letp = x — 9.
Me,s E x — ¢ ifand only if Mc, s & x or M, s = v. By inductive hypothesis,
this happens if and only i ¢ s or € s. Sinces maximal and consistent, this is is
equivalent toy — 1 € s.
ax
4) Lety = [A]yp with [A] = | : | € cOPU VOP.
gk
(Left to right) Let Mc,s = [A]y. If (s,8") € Re([A]c), thenMe, s’ | .
By inductive hypothesis, this happens if and onlyif € s’ for all suchs’. By
definition of R¢, ¢ € s’ for any saturated extension of {¢ | [4]¢ € s}. By The-
orem 52, there existy, ..., o, € {¢ | [A]¢ € s} such that (o1 A ... Ap,) — 2.
From Propositions 36 and 3¥% ([A]o1 A ... A [A]e,) — [A]Y. We conclude
{[A]¢1, .-, [Aler} F [A]Y. From assumptiopy, ..., ¢, € {¢ | [4]p € s}, it fol-
lows [A]p1, ..., [A]e, € s. Finally, [A]y € s.
(Right to left) If [A]y € s and{y | [A]p € s} C ¢, theny € s'. Since this
happens for any’ such thai(s, s') € Re¢([A]c), we concludeMe, s = [A]y.
5) Lety = [M]y with [M] = [AB] € cOPU VOP.
[By (inner) induction on the number of columns with basic case 4).]

First, recall from Theorem 48 that for 44, s") € R¢([AB]c) there exists” such
that(s, s”) € Re([A]lc) and(s”, s") € Re([B]e)-

Clearly, M, s = [ABJy ifand only if for all (s, s’) € Re([AB]¢), Mc, s = 1.
From above, this holds if and only if for gk, s') € Rc([AB]c), there exists” such
that(s, s”) € Re([Ale), (s”,s") € Re([Ble), andMe, s” = [B].

By inner inductive hypothesigB|y € s”. Furthermoref{x | [A]x € s} C §”
for all suchs” and so[A][B]y € s. From this, M¢,s = [AB]y if and only if
[A][B]y € s. By (S®) and (J°), [A][B]v € sif and only if [AB]y € s, which is to
say,Mc, s = [AB]y if and only if [AB]¢ € s.

6) Letyp = [M]y with [M] € qOP.

a) AssumdgM] without existential entries and Igtbe all its universally quan-
tified variables.

(Left to right) M¢, s = [M]« if and only if for any sequencé of constants
(of the right length), ifA = Mz._a), thenMc, s |= [A[{d@/Z}y. From cased)
and5), for any such4, M, s = [A]{d/z}+y if and only if [A[{d@/Z}¢ € s. Sinces
isw-complete, iffA[{a/Z}y € s for all @ of the right length, thefM ]y € s.

(Right to left) The result follows directly froniv E<), casest) and5), and the
semantic clauses.

b) AssumgM] has existential entries and &be all its existentially quantified
variables.

(Left to right) There existi such thatMc,s = [Mz—g)|{d/T}y Now, if
[Mz—a)] is quantificational we apply case a) above, while caes) are used if
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[M(z—a)] is uniform. In this way we obtainMc, s |= [M(z._a ]{d@/Z}v if and only
if [M(z—a)){d@/Z}v € s. From the latter, by applyingi{®), one get§M]y € s.
(Right to left) Sinces is saturated, there exisissuch thafM z. ) |[{d/Z}1) €
s. If [M(z—g)] is quantificational, then apply case a) above, otherwise apply dases
5). We obtainMc, s = [M(z—g)]{d@/Z}+. From the semantics\ic, s = [M]i).

The above results suffice to establish the strong completeness of the logic with
respect to multi-agent Kripke frames.

Let K be the class of multi-agent Kripke frames far Given¥ C ﬁf/m(k)' we
write 3 Ek ¢ to mean that is valid in each model foE, then

COROLLARY 55. — LetX U ¢ be a set of formulas in some IanguagéAA(k) (=
possibly empty), then
Y Ex pifandonly ifS F ¢

4.3. Decidability

Decidability guarantees that there is an algorithm which can answer any question
stated in the language. In the area of knowledge representation and reasoning, one of
the reasons for the success of the modal approach over the years is that a surprising
number of modal logic systems are indeed decidable. We now turn to investigate this
issue with respect to our IogiC‘jAA. At first, one may be discouraged by the fact
that, generally speaking, modal logics extended with first-order quantifiers are not
decidable. This is a consequence of the fact that standard first-order logic is already
not decidable. However, in our case quantifiers play a particular role in the whole
system because of the restriction to occur only within modalities. We will come back
to this observation in section 5.

Our goal is to prove that?, , is decidable. More precisely, we show that for any
fixed k, there exists an algorithm which (correctly) establishes whether a formula in
the Iang_uageljaAﬁk) is satisfied in some model for the logiEy, 41y~ TO reach the
conclusion, we will make use of the decidability results for the propositional system
mPDL (see section 2), the proof of which relies on the finite model property and the
filtration technique. In short, given a formula of f'im(k) we will show how to
obtain a variable-free formula whose decidability can be checkedrmPDL The
result ony will allow us to establish the result op itself. The overall procedure
guarantees the decidability of the Iocﬂﬁ/m(k).

Fix a formulay € £3,,. Without loss of generality, we assume thatgdmo
variable occurs quantified more than once and that a variable cannot have both free
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and bound occurrences. As a consequence, a quantificational operator occurs at most
once inp. Also, we assume that the number of elementadtid is higher than the
number of symbols irp.

Our first step consists in isolating enough action identifiers to witness free and
quantified variables ip. We writedeg, () for the number of free variables i and
for each operatdfM/] occurring ing we write degs (M) for the number of existential
entries inM. Let Actld, = {a € Actld | a occurs ing} and fix a set3 such that:

a) Actld, "B = () and
b) [B| = deg,(») + Enmepdega(M)
whereM € ¢ stands for M occurs iny”.
(Note thatActld, U B is finite. Also, it is non-empty wheneveris modal.)

The idea is to restrict our attention to the language with action identifiers in set
Actld, U B only, and to consider a propositional formula that is obtained fgoly
using combinations of elements irt/d, U B to instantiate the variables. In the next
steps, we show how to construct such a formula.

The functiong,, 5 over the formulas of 3, , with action identifiers fromdctId,,,
is defined recursively by the following clauses (we omit indige® since no confu-
sion arises):

g(p) = p forpatomic
g(=) = —g(¥)
g —x) = g(®)—ag(x)
g([M]y) = [Mlg(y) for [M] uniform
g((MW) = AgM;_5]{8/7}e(¥) for [M] v-uniform inqOP
g((MJ¥) = VaM—a){a/T}hg() for [M] 3-uniform inqOP
g(M]y) = Vailg [M;w »ld b/Z, 7} g(1)  for the other cases
where

i) 7 are all existentially quantified variables &f (if any),
i) ¢ are all universally quantified variables &f (if any), and
i) @ be Actld, U B are of the same length afandy, respectively.

Finally, letg* be given by

gw= "\ A7)

¢ € Actld,UB

wherez collects all the free variables gf)).
If g(¢) contains no variable, then pyt(v) = g(v).

Clearly, g*(¢) does not contain any variable, i.e., it is a formula in the language
of mPDL Furthermore, we know thahPDL enjoys the finite model property and is
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decidable (see Proposition 13). Then, we can use filtration to establish wheéther

is satisfiable in a model fanPDL, that is, if there exists a state of@PDL-model at
which ¢ is true. Since a model fanPDL can be turned into a model a3, , (and

vice versa) preserving the truth of the propositional formulas, the same conclusion
holds by considering*(¢) as a formula ofCS, ,. It remains to show thag* (¢)

holds at a state of some model if and onlyifloes.

PROPOSITIONS6. — g*(¢p) is satisfiable if and only i is.

PrROOF. — The left to right direction is easy. By assumptigri(y) holds at a finite
model with Actld = Actld, U B. Then, it suffices to read ofj*(¢) the action
identifiers that serve as instances for the free and existentially quantifed variables in
¢. (Regarding the universally quantified variables, note that each disjurct of
includes all the instance combinations of elementdén/d, U B.) Trivially, ¢ holds

at the very same state in virtue of those action identifiers.

For the right to left direction. Assume is satisfiable. We show that*(y) is
satisfiable as well. (Without loss of generality, below we assumeRtaatd Actid are
disjoint sets.)

Fix a states in the canonical modeM such thatpy holds at it.
DEFINITION 57 (INSTANCE OF A FORMULA AT A STATES). —

A formula¢ is aninstance of a formuld at states of a modelM, written ¢ €
Finstpq s (9), if the following conditions are satisfied

1) letv be atomic, the = v,
2) lety = —x, theng = —y withy € Flnsta s(x),

3) letd = xo — x1,theng =y — 7
with vg € FInsta,s(xo0) andys € Flnstag,s(x1),

4) lety = [M]x, theno = {a/@}([M,_; {b/ii}7)
where
Z collects all and only the variables free ih(if any);
g collects all and only the quantified variables[ii/] (if any);
[a;] = [=:] for all ¢;
a;,b; € Actld for all 4, j; and
{a, g/f, Y}y € Finstaq,s(X)-

From the definition, the number of instances of a formula with variables depends
on the action identifiers in the language. Since we concentrate on formula instances in
the canonical model, for each actiondretc an identifier inActld is available. Also,
note that from the definition we hav@&nstag s (9) € mPDL.

Clearly, if ¢ is satisfiable at a stateof the canonical model, then at least one of its
instances is satisfiable atas well. Lety) be such an instance. Lét contain all and
only actions identifiers that are ifnbut not inActld,. Note thaiC| < |B|. Thus, we
can find a sef3° C Actld such thaiC' C B° and Actld, N B° = (), and a bijection
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f: B° — B. Lety° be obtained fromp by substituting each action identifiere B°
with f(a) and letM° be obtained from\ by putting

() [a]° = [a] for a ¢ B°,
(i) [f(a)]° = [a] fora € B°.

The remaining changes iM° are at this point obvious. Informally, we have just
renamed a finite number of action identifiers throughout the canonical model. Clearly,
M?° is isomorphic taM¢. Then,° is satisfied inM° and, by construction)® is a
disjunct ing*(¢) and so we are done. [

We have thus proven the decidability of the logic.

THEOREM58. — Ei/[A(k,) is decidable with respect ti.

5. £3,4 and normal modal logics

The proof of completeness we presented in section 4.2 is based on a strategy that,
when applied to first-order modal logic, relies on the adoption oBaean formulas
These, in the traditional modal language, correspond to implication

(BF) Ve O — OVze

and its converse. Their role is to force the domain of quantification to remain fixed
across all states in the frame.

As we already pointed out, quantification has a different purpose in our logic.
Nevertheless, our system relies on the assumption that the domain of quantification
Act does not change if one moves from one state to another in a Kripke frame for
multi-agent systems. Since quantification and modality are strictly intertwined in this
language and the Barcan formulas are not expressible in the standard way, one may
wonder where the axiomatization imposes the corresponding constraint on the set of
actionsAct Looking at the deductive system, one sees that the role of the Barcan
formulas in our multi-agent logic is taken by tBelit (S°) and theJoin (.J°) schemas.
Schemd S¥) is strongly related to formuldz ¢ — OVay as one can see comparing
the semantics of the two subformulasi}, ,. In short, this schema says that an action
available at the initial state, where th& N| operator is evaluated, is also available
at the state where the single operdtdi is evaluated.(J°) provides the other link.
Leaving aside the restrictions (which are due mainly to “information issues” for the
agents and not to properties of the states themselves), this latter schema states that it
makes no difference to quantify on actions at a later state (when we instdnijeté
the antecedent subformula) or directly at the initial state (where we instajitiate).
Semantically, this means that every action available at a later state is already present
at the initial one.

More generally, the techniques that allowed us to prove completeness and decidab-
ility of EfAA have been developed for modal normal logics. But, strictly speaking, our
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logical system is not normal. We restricted the application of axiom schiéniato a

subset of the modal operators, namely the s&tohiform operators, simply because
(K*) fails when there are existential entries. Nevertheless, this mismatch is only ap-
parent. Looking closely, the applicability of these methods is guaranteed by the fact
that the IogicC,SMA, being built on top of the multi-normal propositional logid®DL,

has a natural interpretation on frames. The constant operators lead to the adoption of
multi-agent Kripke frames and, as a consequence, of the standard techniques available
on frames. On this specific issue, the quantificational modal operators have a marginal
role. They can be seen as spesials of constant operatoesd, as such, they do not
affect the adopted notion of frame on which the operators’ interpretation relies.

i S
Frame analysis fory, 4

If the above observations are correct, one surmises that other properties of propos-
itional modal logics are preserved in the richer systéfy) ,. We provide a simple
example by considering classical frame analysis.

A few formulas of propositional (normal) modal logic have attracted much atten-
tion over the years for their relationship with classes of standard Kripke frames as well
as for their relevance in applied logics. Among them, the following schemas deserve
mention:

D.Op— -0

T.Op— ¢

B.p—0-0-¢

4. 0p—00¢

5. "dy—0O-0O¢p
In our multi-agent language, these formulas corresponfi4iod cOP):

Dy [Alp — —[A]~p
T [Alp —

Bm. ¢ — [A]5[A]-e
Am. [Alp — [A][Alp
Sm- —[Alp — [A]-[A]p

It can be shown [CHE 80] that normal modal logic is determined by some special
class of standard Kripke frames depending on which of the above formulas is added as

an axiom in the logic. Here is the list of axioms and corresponding classes of standard
Kripke frames (see [CHE 80] for a complete discussion):
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— standard serial frames

— standard reflexive frames
standard symmetric frames
— standard transitive frames
— standard euclidean frames

e wNY
[

These classical results rely on the normality property of the modalities, so they
provide an interesting test for our case. Basically, we want to see if these results can
be generalized to our quantificational logic. First, we analyze the relationship between
serial Kripke frames and the logi€3, , enriched with schema®,, and, from this
result, we obtain a general statement for the other cases as well.

Recall that a framéW, Act; R) is serialif for each states € 1 and each constant
operatoff 4], the set{s’ | (s,s’) € R([A])} is non-empty. Then,

LEMMA 59. — D,, is valid in (multi-agent) serial Kripke frames.

PROOF. — Fix a modelM for L3, 4, a states in it, and an operatofA] € cOP.
AssumeM, s, | [A]p. We show thatM, s, | —[A]—p. By assumption, if
(s,8") € R([A]m) then M, s',S = ¢. SinceM is serial, there exists’ such that
(s,s") € R([A]m). Then, for suchs’ we haveM, s’ S E -y, i.e., M, s, S |
[A]=¢. We conclude that, s, S = —[A] . ]

LEMMA 60. — Let MZ be the canonical model foff\,tA U D,, (for a givenk).
Then MZ is serial.

PROOF. — We need to show that for every saturated sétvhere consistency is
now stated with respect tﬁ‘j4 4 U Dy,) and constant operatgrl], there exists a
saturated set’ such that{y | [A]¢ € s} C s'. For this, it suffices to establish that
I' = {p | [A]p € s} is consistent with respect &5, , U D,y,. If not, T Fes, up,, L
Then, there exist formulas, , ..., ¢, € I'suchthatcs p,, (p1 A Apy) — L.
Using (K*), (Nec), and propositional logic (see Theorem 4.48), we lh'aééngUDm
([A]lp1 A. .. A[Algn) — [A]L. Then, by the application of (MP) arld,,,, one shows
Fes, up, ([Aler Ao A [Alpn) — —[A]-L. Sincel” containsp, ... ., ¢n, then
{{Alp1, ..., [Alpn} C s,i.e.,[A]-L € s. By (Nec),[A]-L € salso. Thusg is not
consistent, contradicting the assumption thit saturated. ]

We have just proven that schemh, is valid in serial Kripke frames and that the
canonical model has a serial Kripke frame. The proof of this result is obtained by a
simple adaptation of the completeness proof of the previous section analogously to
what happens for standard modal logic. Also, it is clear that quantificational operators
play no role in the new steps, namely Lemmas 59 and 60, introduced to force the
canonical model to be constructed over a serial frame. The rest of the completeness
proof is also unaffected b®,,, and the new constraint on frames.

The above lemmas ob,,, show how to modifying the proofs given in [CHE 80]
to deal with the remaining axiom schemas. In this way, one verifies that the above
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result is not an exception, it holds in all the listed cases. Furthermore, the result yields
decidability for the enriched logics since filtration preserves the properties we are
dealing with (see [CHE 80]).

Now, we can formally state our result.

THEOREM61. — The Iogicﬁf\,m(k) augmented with schenid,,, (T, B, 4m;s 5m)
is complete and decidable with respect to the class of serial (respectively: reflexive,
symmetric, transitive, euclidean) multi-agent Kripke frames:for
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