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ABSTRACT.We introduce quantificational modal operators as dynamic modalities with (exten-
sions of) Henkin quantifiers as indices. The adoption of matrices of indices (with action iden-
tifiers, variables and/or quantified variables as entries) gives an expressive formalism which is
here motivated with examples from the area of multi-agent systems. We study the formal prop-
erties of the resulting logic which, formally speaking, does not satisfy the normality condition.
However, the logic admits a semantics in terms of (an extension of) Kripke structures. As a
consequence, standard techniques for normal modal logic become available. We apply these to
prove completeness and decidability, and to extend some standard frame results to this logic.

KEYWORDS:quantificational modality, dynamic logic, Henkin quantifiers, modal logic, multi-
agent systems.

1. The modal approach in multi-agent systems

In the last 20 years, a variety of logical systems have been developed for mod-
eling agents. Building on the pioneering work of Hintikka [HIN 64], most of them
address the description of situations where there is just one agent with peculiar atti-
tudes, knowledge, believes, and abilities. The same logical formalism is sometimes
adopted for modeling systems that comprise more than one agent, calledmulti-agent
systems(MAS). However, the complexity of the cases in which several agents act con-
currently, perhaps affecting each other, cannot be reduced to the description of each
agent in isolation. Indeed, in addressing the description of a community, researchers
have been exploiting different formalisms in order to pinpoint the specificity of the
agents and their actions as well as the interactions among them and their strategies in
evolving environments.
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Starting with Hintikka [HIN 64] and later with the works of Moore [MOO 85],
Cohen and Levesque [COH 90], Rao and Georgeff [RAO 91], modal logic has become
the formal language for studying agents. Still, as of today [HOE 03, HOE 02], the
work done in the (modal) description of communities of agents seem scattered in
a variety of different logics and, we surmise, this might be due to the inadequacy
of standard logic tools. Indeed, researchers have been testing the modal formalism
in a variety of ways [D’I 97, BEN 02] by studying the interactions among several
modal operators, by varying the semantic interpretations, by isolating techniques for
combining modal systems (like fusion, merging, embedding, full-fibring) [GAB 03].
However, the systems developed for truly concurrent multi-agent systems seem of
limited application.

One can explain this situation in different ways. We report here two reasons that,
in our view, are crucial. On the one hand, the combination of modal languages often
gives rise to complicated logics which, unless severely restricted, are hard to study
and do not present nice formal properties [BEN 02]. In turn, this affects the adoption
and the applicability of the formalisms; a serious obstacle to what we could dub the
tiling approach inMAS, that is, the attempt of describing complex agents by assem-
bling different modal operators, one operator for each (independent) feature of the
agents. On the other hand, formal systems that contain different modalities are hard
to compare both at the syntactic and at the semantic levels. In this way, it is hard to
state the advantages of one approach over the others in a general perspective. Because
of this situation, today we lack a systematic methodology for comparison of multi-
agent systems. In truth, sometimes one can overcome the problem by embedding
several multi-agent logics into the same (stronger) language whose formal properties
are known. An example is given by the results in [SCH 98]. However, this approach
is hardly generalizable.

Toward flexible languages

This being the state of the research, new approaches should be studied to move
forward in this area and, in doing this, it might be important to take advantage of
the semantic flexibility of modal logic. Indeed, we consider an advantage of modal
logic the fact that modal operators support a variety of interpretations. This flexibility
is sometimes exploited to describe different MAS systems in the same language by
varying the semantics adopted. The result is a uniform syntactic description of a
variety of systems avoiding the application of ad hoc formalisms which are often hard
to relate. Through this common language, a comparative study of the modeled systems
becomes possible by concentrating on the analysis of their semantics.

Starting from this overall view, we look for new modal operators that are rich
in expressive power, easily related to different semantics, and suitable for model-
ing MAS. We propose modalities that are obtained by integrating two different ele-
ments, namely the modal operators of dynamic logic [HAR 00] and the Henkin quan-
tifiers [HEN 61, KRY 95]. The operators we study are modalities that describe the
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evolution of the MAS in the fashion of dynamic logic, and that contain (free and
quantified) variables. Informally, the role of quantifiers is to mark the attitude of an
agent at a certain point in time while constants register actions the agents must ex-
ecute (they have no choice to make) at that point in time. In this paper, we present
the characteristics of the new operators, define the corresponding language, and de-
scribe one semantic interpretation. This interpretation seems particularly interesting
for its logical properties and is suitable for describing cooperative agents and coali-
tions [OSB 94]. The comparison of this logic with other modal systems for MAS (an
interesting relationship exists with the logic in [PAU 02]) as well as other semantic
interpretations (see [BOR 03] for an example) are not discussed here.

The paper is structured as follows. In section 2 we look at dynamic logic (DL)
as a formalism for agents and justify the introduction of complex (constant) operat-
ors to deal with MAS. This change gives a new perspective on DL. For this reason, a
throughout comparison of propositional DL and the new system is provided. Section 3
takes a step further and introduces the quantificational modal operators. A semantic
interpretation suitable for cooperative agents is adopted; formal and application-driven
examples of the new formalism are given. Section 4 presents the axiomatization fol-
lowed by completeness and decidability results. Toward the end of the section, we
discuss the relationship between our quantificational logic and propositional normal
logics. Finally, we show how other results for normal logics are inherited in our sys-
tem by considering some standard frame properties.

2. From PDL to multi-agent PDL

2.1. Carving upPDL

Our system can be introduced as the generalization of a propositional multi-modal
logic in the sense of [GAB 03], that is, a subsystem ofPropositional Dynamic Logic,
(PDL) [HAR 00] that is here dubbedrestricted PDL(rPDL).

PDL is a logical system developed to describe properties of interaction between
programs and propositions independently from the domain of computation. The sys-
tem blends modal logic and the algebra of regular expressions into a formalism that
has found broad application also outside the field of logics of programs. Here is a short
introduction to the fragmentrPDL relevant to our work (and some standard definitions
to be specialized later to our system). For a complete introduction ofPDL and more
traditional extensions see [HAR 00].

2.1.1. The fragmentrPDL

The language ofrPDL contains a non-empty countable set ofproposition iden-
tifiers, PropId, and a non-empty countable set ofaction identifiers, ActId. We shall
always assume that these sets are disjoint.
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The proposition identifiers are the simplest (atomic) formulas in the language.
Complex formulas are built recursively as in propositional logic (using implication
→, and negation¬) and via modal operators as described below. We shall make use
of the standard conventions for∧,∨,↔,> (the truth), and⊥ (the falsum). In PDL,
combinations of action identifiers are obtained recursively by applying several con-
structs. InrPDL, we limit the language to thecomposition construct( ; ) only.1 The
composition ofa and b is indicated bya; b or simply bya b. Finally, modality is
introduced through the necessity operators[a] wherea is an action identifier or a com-
position of action identifiers. Since action identifiers and their compositions are used
to identify modalities in the logic, they play the crucial role ofmodality identifier.

The modality identifiers forrPDL are defined recursively:

1) all elements inActIdare modality identifiers

2) a; b (equivalently,a b) is a modality identifier ifa andb are both modality iden-
tifiers

The set offormulasis the smallest set satisfying the following clauses:

1) all elements inPropIdare formulas (atomic formulas)

2) ¬ϕ andϕ→ ψ are formulas ifϕ andψ are formulas

3) [a]ϕ is a formula ifa is a modality identifier andϕ is a formula

In case 2), we say thatϕ is in antecedent position(with respect toψ) and that
ψ is in consequent position(with respect toϕ). Also, we adopt the standard notion
of subformula. These latter notions will apply to all the languages introduced in this
paper without further comments.

2.1.2. The semantics ofrPDL

The semantics ofrPDL is taken fromPDL and, more generally, from Kripke’s
semantics for modal logic. We depart slightly from the usual presentation in as much
as this allows us to present a notion of frame suitable to our tasks in later sections.

Recall that aKripke Frameis a pair〈W ;R〉 whereW is a set of elements called
statesandR a function assigning a binary relation onW to each modal operator in
the language. The following definition ofAgent Kripke Frameextends this notion.

DEFINITION 1 (AGENT KRIPKE FRAME). —

AnAgent Kripke Framefor rPDL is a tripleK = 〈W,Act ;R〉 where:

1)W is a non-empty set(the set of states),

2) Act is a non-empty set(the set of actions), and

1. Thus, here we do not consider most constructs ofPDL like “choice” (∪), “iteration” or “star”
(∗), and “test” (?).
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3) for all α ∈ Act , R(α) is a binary relation onW (the accessibility relation for
actionα).

We useα, β, . . ., possibly decorated, for the elements inAct.

Historically, PDL interprets action identifiers, and more generally all modality
identifiers, asprograms. Since we are interested in agents and their behavior, we will
interpret action identifiers more broadly asactions. Informally, the setAct plays the
role of the set of actions that the agents can perform. Note that the action identifiers
are rigid designators.

Formulas ofrPDL are interpreted over Agent Kripke frames. The truth-value of
a formula depends on the chosenvaluation functionJ·K which intervenes to assign a
subset ofW to each atomic proposition and an action inAct to each action identifiers.
Since the set of atomic propositions and the set of actions identifiers are disjoint, we
can safely use the same notation for the valuation function over the two sets.

An agent Kripke frame augmented with a valuation function is called astructure.

DEFINITION 2 (AGENT KRIPKE STRUCTURE FORrPDL). —

Anagent Kripke structure forrPDL is a 4-tupleM = 〈W,Act ;R, J·K〉 where:

1) 〈W,Act ;R〉 is an agent Kripke frame and

2) J·K is a function(the valuation function)such thatJpK ⊆ W for p ∈ PropId
andJaK ∈ Act for a ∈ ActId .

Given an agent Kripke frameM, we extendJ·K to all modality identifiers andR to
sequences of actions as follows:2

JabK =def JaKJbK
R(αβ) =def R(α) ◦R(β)

LetM be a structure. We writeM, s |=rPDL ϕ to say thatϕ is true at states of
M (andM, s 6|=rPDL ϕ if ϕ is false). The semantic relation|=rPDL is defined as
follows:

a) Letp ∈ PropId , thenM, s |=rPDL p if s ∈ JpK
b)M, s |=rPDL ¬ϕ if M, s 6|=rPDL ϕ

c)M, s |=rPDL ϕ→ ψ if M, s 6|=rPDL ϕ orM, s |=rPDL ψ

d)M, s |=rPDL [a]ϕ if for all t ∈W such that(s, t) ∈ R(JaK),M, t |=rPDL ϕ

We writeM |=rPDL ϕ to say that formulaϕ is valid inM, that is, it is true at
each state of structureM.

DEFINITION 3 (AGENT KRIPKE MODEL IN rPDL). —

2. Operator◦ is the usual relational composition and it is associative. On binary relations it is
defined byR ◦ S = {(u, v) | ∃w(u, w) ∈ R and(w, v) ∈ S}.
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Anagent Kripke modelfor a set of formulasΣ in rPDL is a structureM for rPDL
such that all formulasϕ ∈ Σ are valid inM.

2.1.3. The logic ofrPDL

Since we are dealing with a fragment ofPDL, we provide a formalization of the
restricted language only.3 In practice, we disregard the axiom schemas about the other
operators on action identifiers. Furthermore, we use all standard logic connectives
since these are definable from→ and¬.

As usual, a formulaϕ is provablein a set of formulasΣ (is a theoremof Σ) if
ϕ ∈ Σ. If ϕ is provable inΣ, we write`Σ ϕ. We write` ϕ whenΣ is clear from the
context.

(1) Axioms for propositional logic

(2) [a](ϕ→ ψ)→ ([a]ϕ→ [a]ψ) (Normality)

(3) [ab]ϕ↔ [a][b]ϕ (Composition)

(MP)
ϕ, ϕ→ ψ

ψ
(Modus Ponens)

(Nec)
` ϕ
` [a]ϕ

(Necessitation)

The logic of rPDL is the smallest set of formulas inrPDL containing all instances
of (1) − (3) and closed under rules (MP) and (Nec). We writeΛr for the logic of
rPDL.

DEFINITION 4 (FRAME-SOUNDNESS). —

LetF be a class of frames. A logicΛ is sound with respect toF if

1) all formulasϕ in Λ are valid for structures with frame inF , and

2) all the rules are truth-preserving.

In other terms, each structure with frame inF is a model forΛ.

The proof that the logicΛr is sound with respect to the class of agent Kripke
frames is routine [CHE 80].

DEFINITION 5 (FRAME-COMPLETENESS). —

Let F be a class of frames for a languageL. A logic Λ is complete forL with
respect toF if the formulas ofL valid in the structures with frames inF are provable
in the logic.

DEFINITION 6 (FRAME-DECIDABILITY ). —

3. The first satisfactory axiomatization of fullPDL was provided by Segerberg [SEG 77]. Com-
pleteness proofs are given in [GAB 77, PAR 78], see also [HAR 00].
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LetF be a class of frames. A logicΛ is decidable with respect toF if there exists
an algorithm that, given a formulaϕ, determines whether there is a state of a model
for Λ (with frame from the class) at whichϕ is true.

It turns out that the logic ofrPDL is complete and decidable with respect to the
class of all agent Kripke frames.

A simple strategy to prove completeness (and decidability as well) follows from
the observation thatrPDL is the fusion (see [GAB 03]) of countably manynormal
logics4. Note that in this sublanguage ofPDL, axiom (3) has no much deductive
import; it simply tells us that modal operators with complex identifiers are nothing
more than sequences of simple modalities. Fusion preserves thefinite model property5

as well as completeness and decidability [GAB 03], and this allows us to conclude that
rPDL is complete and decidable (with respect to the class of agent Kripke frames)
provided we verify a couple of properties:

(a) Any agent Kripke frame, withn ∈ N+ ∪ {+∞} distinct action identifiers, is
the fusion ofn standard Kripke frames (and vice versa),

(b) rPDL has the finite model property.

The latter follows by applying the standard argument (adapted from mono-modal
logics) to formulas ofrPDL, while the first property follows from the definitions.

A detailed discussion of the finite model property, completeness, and decidability
in mono- and multi-modal logics, including a discussion of thePDL system, can be
found in [BLA 01, CHE 80].

PROPOSITION7. — The logic of rPDL is sound, complete, and decidable with re-
spect to the class of agent Kripke frames.

2.2. Making room for agents:mPDL

We modifyrPDL in order to describe multi-agent systems. The resulting language
differs from rPDL in the set of modality identifiers. We dub this systemmulti-agent
Propositional Dynamic Logic(mPDL).

We want the changes in the state of a multi-agent system to be the result of the
actions performed by the agents in that system. To preserve (true) concurrency, our
logic should be able to make a distinction between actions performed at the same point
in time and actions performed at different times. Also, since agents may have different
capabilities and responsibilities, it should be possible to have different outputs when

4. A modal logic, built upon classical propositional logic, isnormalif the modalities in it satisfy
the normality axiom (2) and the necessitation rule (Nec).
5. A modal logic has the finite model property (with respect to a class of models) if for each
formulaϕ true in some model of the class there is a finite modelM in the same class such that
ϕ is true at some state inM.
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the very same action is performed by different agents. This last desideratum brings
the need for an explicit tie between actions and their performers.

From the above general perspective, the simple action identifier adopted byrPDL
seems unable to play the role of a modality identifier. Our logic looks at modality
identifiers as ordered sets of actions identifiers assuming that, in order to understand
how the system evolves, one must know which action identifier is associated to which
agent at that point in time.

Assume the set of proposition identifiers,PropId, and the set of action identifiers,
ActId, have been fixed as in the previous section. We fix a positive integerk which
informally is the number of agents in the multi-agent system we want to describe. The
guiding idea is thatrPDL is the formal system corresponding tok = 1.

Choose an ordering of thek agents in the multi-agent system. We write1 for the
first agent, . . . ,k for the k-th agent. If agent1 performs the action denoted bya1,
agent2 the action denoted bya2, . . . , agentk the action denoted byak, write

a1

a2

...
ak


for the modal operator that captures the evolution of the system according to the con-
current execution of actionsJa1K, . . . , JakK by agents1, . . . ,k, respectively.

Assuminga1 6= a2, operator


a1

a2

...
ak

 and operator


a2

a1

...
ak

 (differing only in the first

two entries) are different modality identifiers since action identifiersa1 anda2 are
associated with different agents. In short, we not only list all the (concurrent) action
identifiers, but also link each action identifier to the agent performing the correspond-
ing action. Since one can describe successive actions executed by the agents by using
multi-columns modal operators, we are led to the following

DEFINITION 8 (MODALITY IDENTIFIER FOR mPDL). —

A modality identifier formPDL is ak × n-matrix (n ≥ 1)

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
ak1 ak2 · · · akn

whereaij is an action identifier (aij andars not necessarily distinct).

The set of formulas ofmPDL is the smallest set satisfying the following clauses:
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(1) all elements inPropIdare formulas (atomic formulas)

(2) ¬ϕ andϕ→ ψ are formulas if bothϕ andψ are formulas

(3) [A]ϕ is a formula ifA is a modality identifier formPDLandϕ is a formula

The semantics and the axiomatization ofmPDL will follow naturally from those
of rPDL once we state the semantic counterpart of a modality identifier formPDL.
In rPDL, the interpretation of a modality identifier is a (perhaps complex) action, and
so a transition in the structure. Similarly, the interpretation of a modality identifier in
mPDL should be associated with a transition in the structure formPDL. This is the
rationale for the following definitions.

DEFINITION 9 (k-ACTION). —

Given a set Act of actions, abasick-action formPDL is any column ofk elements
in Act

α1

α2

...
αk

k-Actionsare given recursively by:

1) all basick-actions arek-actions

2) AB is ak-action ifA andB are bothk-actions

DEFINITION 10 (MULTI -AGENT KRIPKE FRAME FORmPDL). —

A multi-agent Kripke frame formPDL is a tripleK = 〈W,Act ;R〉 where:

1)W is a non-empty set(the set of states),

2) Act is a non-empty set(the set of actions), and

3) R is a function, (the accessibility relation), mapping basick-actions (over Act)
to binary relations onW

R

α1

...
αk

 ⊆W ×W.
DEFINITION 11 (MULTI -AGENT KRIPKE STRUCTURE FORmPDL). —

A multi-agent Kripke structure formPDL is a 4-tupleM = 〈W,Act ;R, J·K〉
where:

1) 〈W,Act ;R〉 is a multi-agent Kripke frame for mPDL and

2) J·K is a function(the valuation function)such thatJpK ⊆ W for p ∈ PropId
andJaK ∈ Act for a ∈ ActId .
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Given a multi-agent Kripke structureM, J·K is extended inductively to all modality
identifiers in the languagemPDLby

u

www
v

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
ak1 ak2 · · · akn

}

���
~

=def

Ja11K Ja12K . . . Ja1nK
Ja21K Ja22K . . . Ja2nK

...
...

...
Jak1K Jak2K . . . JaknK

In what follows, we usully writeJAK also forJ[A]K.

The truth-value of a formula is defined recursively by the following clauses:

a) Letp ∈ PropId , thenM, s |= p if s ∈ JpK
b)M, s |= ¬ϕ if M, s 6|= ϕ

c)M, s |= ϕ→ ψ if M, s 6|= ϕ orM, s |= ψ

d)M, s |= [A]ϕ if for all t ∈W such that(s, t) ∈ R(JAK),M, t |= ϕ

DEFINITION 12 (MULTI -AGENT KRIPKE MODEL IN mPDL). —

A multi-agent Kripke modelfor a set of formulasΣ in mPDL is a structureM for
mPDLsuch that all formulasϕ ∈ Σ are valid inM.

The logic of mPDL is the smallest set containing the following axiom schemas
(1)−(3) and closed under the rules (MP) and (Nec). HereA andB stand for modality
identifiers:

(1) Axioms for propositional logic

(2) [A](ϕ→ ψ)→ ([A]ϕ→ [A]ψ) (Normality)

(3) [AB]ϕ↔ [A][B]ϕ (Composition)

(MP)
ϕ, ϕ→ ψ

ψ
(Modus Ponens)

(Nec)
` ϕ
` [A]ϕ

(Necessitation)

The remaining notions (e.g. valid formula, theorem, etc.) are analogous to those
for mPDL, see sections 2.1.2 and 2.1.3.

To highlight the correspondence with the semantics and axiomatization ofrPDL,

one can writea1a2 . . . ak to denote the modality identifier

a1

a2

...
ak

, a2a1 . . . ak for

the modality identifier

a2

a1

...
ak

, and so on.
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In this way, using set{ a1a2a3 . . . ak , a2a1a3 . . . ak , . . .} for ActId, we ob-
tain a rPDL language as described in section 2.1 which is equivalent to themPDL
language we started with. One sees that the semantic clauses and the logic ofrPDL
match semantics and deduction system of ourmPDL. Soundness, completeness, and
decidability ofmPDLfollow from the corresponding properties ofrPDL.

PROPOSITION 13. — The logic of mPDL is sound, complete, and decidable with
respect to the class of multi-agent Kripke frames.

This observation concludes the introduction of our multi-agent propositional dy-
namic logic which is, as we have seen, a propositional dynamic logic for true concur-
rency.

At this point one wonders why we needed to spend time on introducing a language
with such a complex type of modal operators. After all, we just showed that the system
obtained by using matrices of action identifiers as modality identifiers is nothing more
than a fragment ofPDL in the sense of section 2.1. The advantage of this approach
will become evident when we introduce quantifiers in section 3. For the time being,
it suffices to know that, although technically we have no advantage in using modality
identifiers versus simple action identifiers, the change in perspective introduced by
the explicit reference to agents and their actions is at the core of the quantificational
language we are going to study.

2.3. rPDL vsmPDL

In the framework of propositional dynamic logic, there are two main strategies to
represent concurrency.

In one case, the syntax remains that ofPDL while the semantics is enriched (with
a corresponding extension of the axiomatization). The strategy consists in imposing
concurrency by isolating a subclass of the standard frames over which one should in-
terpret the language. New axioms are added to match this restrictions. They basically
state that (some or all) actions can be executed in any order without changing the set
of reachable states. These are usually calledconfluence axiomsand furnish a notion
of concurrency. For instance, over action identifiersa andb, the axiom can be stated
as follows:

(Conc1ab) 〈a〉[ b ] ϕ → [ b ]〈a〉ϕ

It should be clear that this strategy is not specific to dynamic logic. Indeed, it can
be applied to poly-modal logics in general. However, it is important to notice that this
characterization of concurrency is quite weak.

Dynamic logic provides a simple way of capturing a stronger notion of concur-



12 Journal of Applied Non-Classical Logics. Volume xx – n◦ x/200x

rency. By composing action identifiers, one can express concurrency as follows:6

(Conc2ab) [ a b ] ϕ ↔ [ b a ] ϕ

This formula matches the following constraint on frames:

R(JaK) ◦R(JbK) = R(JbK) ◦R(JaK)

Such a technique suffices, for instance, in describing independent assignments in
a programming language. LetJaK be assign value 1 to variable xandJbK be assign
value 2 to variable y. Formula(Conc2ab) “forces” concurrency by stating that the
order of execution ofa andb does not matter.

However, these conditions are useless when the actions involved are not independ-
ent, a quite natural condition in MAS. For instance, let action identifierJaK be hold
the nail against the walland letJbK behit the nail with the hammer. Then, no matter
which action we choose to execute first, the result is anyway different from theactual
concurrent execution of the very same actions.

The other strategy to handle concurrency inPDL consists in enriching the language
with new constructs (on action identifiers) that characterize concurrency explicitly.
A couple of constructs have been proposed at about the time Dynamic Logic was
developed. These are known as theintersection(∩) [HAR 00] and theconcurrency
connective(∧)7 [PEL 87b, GOL 89] constructs.

Intuitively, for any two action identifiersa andb, the modality[ a ∩ b ] takes the
system to those states that both the actionsJaK andJbK admit. This interpretation fits
quite well with the semantics ofPDL but it is too restrictive for our tasks. In a sense,
it requiresJaK andJbK to be compatible actions. Indeed, this operator cannot deal with
two actionsJaK andJbK such that the first, when executed without interference, leads
to states that are incompatible with the execution of the latter. The action ofpouring
milk into my empty cup and the action ofpouring coffeeinto my empty cup do not
lead to an inconsistent state when performed concurrently. However, if one executes
the first only the system ends up in states that are inconsistent with the states reachable
through the second action only. This very fact makes useless the application of∩ to
these actions.

The construct∧ on action identifiers was introduced by Peleg shortly after dy-
namic logic was recognized as a mature formalism and requires major changes in
the semantics ofPDL.8 Following the work of Peleg, the semantics of the logic en-

6. In some cases the “shuffle” construct (||) is introduced to capture this type of concurrency.
Modality [ a||b ] corresponds to modality[ ab ] further constrained by (Conc2

ab).
7. Actually, Peleg used symbol∩ as well. We change it to∧ for clarity. As a consequence,
here the symbol∧ is overloaded. It corresponds to Peleg’s concurrent construct when applied
to action identifiers and to the conjunction connective when applied to formulas.
8. The semantic characterization of this construct is not uniform. [PEL 87b] and [PEL 87a] do
not impose sequentiality contrary to [HAR 00]. Both differ on other aspects from the semantics
in [GOL 89].
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riched with this construct is defined taking the accessibility relationR to be a subset of
W × 2W . The definitions affected by the introduction of∧ are (hereT,U, V ⊆W ):

1)M, s |= 〈a〉ϕ if ∃T (s, T ) ∈ R(a) andM, t |= ϕ for all t ∈ T
2) R(ab) = {(s, T ) |

∃U (s, U) ∈ R(a) and∀ui ∈ U ∃Tui
(ui, Tui

) ∈ R(b) andT =
⋃
Tui
}

3) R(a ∧ b) = {(s, T ) |
∃U, V such that(s, U) ∈ R(a), (s, V ) ∈ R(b), andT = U ∪ V }

The meaning ofa ∧ b is captured in the logic by axiom

〈a ∧ b〉ϕ↔ 〈a〉ϕ ∧ 〈b〉ϕ

Although satisfactory in the context of concurrent programs, the introduction of
this construct does not address our previous objections either. The milk-coffee ex-
ample could be repeated here as well. Also, when several agents are acting concur-
rently, the correct result may depend on knowing who is doing what. For instance,
an insurance company called to pay for a burned building is interested in knowing if
the building really burned down and if the policy holder is responsible of arson. The
relationship between agents and their actions is crucial when dealing with multi-agent
systems.

The very features of multi-agent systems that are problematic inPDL intervene in
shaping the more complex language ofmPDL. In this language, the effects of an action
could be altered by the other actions performed concurrently since the transition in the
structure is determined byall executed actions. Furthermore, the agent and the action
it executes are tied at the syntactic level by the position of the action identifiers in the
modality. These two facts allow us to handle a wide class of situations for multi-agent
systems and to provide a description of the system at a great level of detail.

To conclude, we highlight some important constraints that are expressible in our
language. For the time being, let us assumek = 2, that is, that there are two agents in
our multi-agent system (and that an ordering has been fixed). In our informal reading,

formula

[
a
b

]
ϕ says that the actions denoted bya andb are executed concurrently. At

the same time, it states that the action denoted bya is executed by the first agent and
that the action denoted byb is executed by the other.

Let ε be thenull action, that is, an action that corresponds to instruction “do noth-
ing”.9 The rendition of the confluence axiom of dynamic logic in our multi-agent
formalism allows us to capture subtle relationships

9. Informally, thenull action is an action that does not alter the effects of other actions. As a
consequence, the basick-action that has thenull action in each entry, is interpreted by the set
of states{(s, s)|s ∈ W}.
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[
a ε
ε b

]
ϕ↔

[
ε a
b ε

]
ϕ (execution-order does not matter)

[
a ε
ε b

]
ϕ↔

[
ε b
a ε

]
ϕ (executing-agent does not matter)

[
a ε
ε b

]
ϕ↔

[
a b
ε ε

]
ϕ (first agent suffices)

[
a b
ε ε

]
ϕ↔

[
b a
ε ε

]
ϕ (linearly independent actions for agent 1)

as well as other new constraints like[
a ε
ε b

]
ϕ↔

[
a ε
b ε

]
ϕ (time independent actions.)

3. Quantificational modalities

In the following pages we extendmPDLby introducing variables and quantifiers.

A simplifying assumption we make throughout this paper is that the agents in the
system are homogeneous, that is, they have the same reasoning and memory capabil-
ities, and skills. In a sense, these agents can be considered perfect clones of the same
perfect reasoner.10

3.1. Stuffing modalities with variables and quantifiers:LMA

As before, we fix an integerk ∈ N+ which informally stands for the number of
agents in the system. We extend the syntax of the multi-agent propositional logic
mPDLpresented in section 2.2 as follows.

The languageLMA (orLMA(k) if we need to makek explicit) uses three disjoint
sets of basic identifiers:

- a non-empty countable setPropIdof proposition identifiers

- a non-empty countable setVar of variables for actions

- a countable (possibly empty) setActIdof action identifiers

We will usep, q, . . . (possibly decorated) for proposition identifiers and, in a sim-
ilar fashion,x, y, . . . for variables anda, b, . . . for action identifiers. For the sake of
simplicity, neither functions nor relations are introduced, the 0-ary relations inPropId
being the only exception.

10. This is mirrored in the semantics adopted in section 3.3.1. It is not a general constraint
forced by the language itself.
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Modality identifierscharacterize the modalities of the language. These are partic-
ular matrices of action identifiers and (possibly quantified) variables. Definition 14
introduces these formally. (We use the termquantifier for the symbols∀ and∃ and
quantified variablefor the expressions∀x and∃x.)

DEFINITION 14 (MODALITY IDENTIFIER IN LMA(k)). —

A modality identifieris ak × n-matrix (n ≥ 1)

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
ak1 ak2 · · · akn

whereaij is either an action identifier, a variable, or a quantified variable.

We require that no variable occurs more than once in a modality identifier.

Two modality identifiers are said to be ofsame sizeif they have the same number
of columns (that is, the matrices have same size).

A term in LMA is an action identifier or a variable.Termstands for the set of
terms:Term = ActId ∪Var .

The set ofLMA(k)-formulas is the smallest set satisfying the following clauses:

a) all elements ofPropId are formulas (atomic formulas)

b) ¬ϕ andϕ→ ψ are formulas ifϕ andψ are formulas

c) [M ]ϕ is a formula ifM is a modality identifier forLMA(k) andϕ is a formula

The language we present has special features due to the form of the modality iden-
tifiers. For this, we now classify modal operators according to the identifiers associ-
ated with them.

DEFINITION 15 (MODAL OPERATORS FORLMA). —

A modal operatoror modality is an expression of the form[M ] whereM is a
modality identifier.

1) Aconstant (modal) operatoris a modal operator whose entries are action iden-
tifiers. The set of constant operators is denoted by cOP.

2) Avariable (modal) operatoris a modal operator whose entries are action identi-
fiers and variables, with at least one variable. The set of variable operators is denoted
by vOP.

3) A quantificational (modal) operatoris a modal operator whose entries are ac-
tion identifiers, variables, and quantified variables, with at least one quantified vari-
able. The set of quantificational operators is denoted by qOP.

OP is the set of all modal operators in the language:OP = cOP ∪ vOP ∪ qOP
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[
a1 a3

a2 a4

]
;

[
x a3

a2 a4

]
;

[
∀x z
a2 ∃v

]
(a) (b) (c)

Figure 1. Modal operators:(a)constant,(b) variable,(c) quantificational

REMARK 16. — There is an obvious bijection between the set of modality identifiers
and the set of modal operators in the language. We will use the two notions indiffer-
ently wherever this does not create ambiguity. For instance, we may write modality
identifierM for the corresponding modal operator[M ] and vice versa.

We write [M ](i, j), or simplyM(i, j), for the entry(i, j) of M . For instance,
[M ](2, 1) = a means that the entry (2,1) of the modality identifierM (here seen as a
matrix) contains action identifiera.

An entry containing the expression∀xi (∃xi) is called anuniversal(existential)
entry. Universal and existential entries arequantified entries. A constant entryis an
entry containing an action identifier. Entries containing variables without quantifiers
are calledparameter entries.

Thescope of a modal operatoris the formula to which it is applied. The scope of
a quantifier is the scope of the modal operator where it occurs. An occurrence of a
variablex is said to beboundin a formula if it occurs quantified in a modal operator
or lies within the scope of an operator wherex occurs quantified. Otherwise, the
occurrence is said to befree.
The set ofsentencesis the set ofclosed formulas, i.e., the set of formulas with no free
occurrences of variables. In particular, all non-modal formulas are sentences. Also,
an operator with a variablex in a parameter entry can occur in a sentence only within
the scope of an operator that contains∀x or ∃x.

Here are some examples of logical formulas fork = 2 (formulas in the first row
are open, formulas in the second row are sentences):

p1 →
[
∀x
y

]
p2 ;

[
∃x ∃y
a ∀v

] [
∀x z b
b ∀v ∃u

]
p1[

a
b

]
p1 ∧

[
a
∃y

]
p1 ∧ ¬

[
∀x
∀y

]
p2 ;

[
a
∀x

]([
x b
∃v c

]
p1 ↔ ¬

[
∀x
b

]
p2

)
It should be clear that our modal operators bind less tightly than any other con-

nective (analogously to the modalities inPDL, in rPDL and inmPDL).

Comparing modality identifiers is crucial to establish general properties of the lan-
guage. For this goal, we devise a notation that allow us to modify modality identifiers
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entry by entry. The rest of this section is devoted to notational issues and modality
constructs that will help us in this sense.

DEFINITION 17 (CHANGING MODALITY IDENTIFIERS). —

(i) Let a ∈ ActId .
Modality [M(ij←a)] is like [M ] except that entry(i, j) of [M(ij←a)] contains action
identifiera.

(ii) Let x ∈ Var .
If x is new in[M ] or occurs, quantified or else, inM(i, j), then [M(ij←x)] is like
[M ] except that entry(i, j) of [M(ij←x)] contains the free variablex. Otherwise,
[M(ij←x)] and[M ] are the same modal operator.

(iii) Let Q ∈ {∀,∃} andx ∈ Var .
If x is new in[M ] or x occurs, quantified or else, inM(i, j), then[M(ij←Qx)] is like
[M ] except that entry(i, j) of [M(ij←Qx)] containsQx. Otherwise[M(ij←Qx)] and
[M ] are the same modal operator.

(iv) Let ~u = u1, u2, . . . with ui an action identifier, variable, or quantified vari-
able. Then,[M(i1j1,i2j2,...←u1,u2,...)] is like [N(i2j2,...←u2,...)] where[N ] is the mod-
ality [M(i1j1←u1)]. Alternatively, we write[M(i1j1,i2j2,...←~u)].
Analogously, we write[M(i1j1,i2j2,...←∀~u)] for [M(i1j1,i2j2,...←∀u1,∀u2,...)], and so for
[M(i1j1,i2j2,...←∃~u)], provided allui are variables. If there is no danger of confusion,
we adopt a more compact notation by writing[M(~x←~u)]ϕ, [M(~x←∀~u)], and[M(~x←∃~u)]
where~x is a sequence of matrix-indices or variables occurring in the modality and~u
is as before.

EXAMPLES 18. — Let[M ] =
[
∀x ∃y
a ∀v

]
, then:

[M(11←b)] =

[
b ∃y
a ∀v

]
; [M(21←b)] =

[
∀x ∃y
b ∀v

]

[M(11←x)] =

[
x ∀y
a ∀v

]
; [M(21←x)] = [M ]

[M(11←∃x)] =

[
∃x ∃y
a ∀v

]
; [M(12←∃x)] = [M ]

[M(22←∀w)] =

[
∀x ∃y
a ∀w

]
; [(M(11,12←∃w,∀w)] =

[
∃w ∃y
a ∀v

]
DEFINITION 19 (UNIFORM MODALITY ). —

LetM be a modality identifier.

(a)M is said to be∀-uniform if no entry is existential.

(b)M is said to be∃-uniform if no entry is universal.

(c)M is said to beuniform if it is ∀-uniform and∃-uniform.
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Equivalently,M is uniform ifM ∈ cOP ∪ vOP .

We conclude this part by introducing the notion of complementary modalities and
the construct], calledmerging, that applies to them. This construct is quite import-
ant for the application of our formalism to multi-agent systems and will be used in
section 4.1.2 to characterize the power of groups of agents.

DEFINITION 20 (COMPLEMENTARY MODALITIES AND MERGING). —

LetM,N be two modality identifiers of equal size.

(i) M andN are said to becomplementaryif they satisfy all the followings:

i.1) if z ∈ Term, thenM(i, j) = z if and only ifN(i, j) = z;

i.2) if M(i, j) = ∀x, thenN(i, j) ∈ {∀x, ∃x};
i.3) if M(i, j) = ∃x, thenN(i, j) = ∀x;

and, symmetrically,

i.4) if N(i, j) = ∀x, thenM(i, j) ∈ {∀x, ∃x};
i.5) if N(i, j) = ∃x, thenM(i, j) = ∀x.

(ii) AssumeM,N are complementary.

Themerging ofM andN is the modality identifierM ]N whose size is equal
to the size ofM (andN ) and is defined by

ii.1) (M ]N)(i, j) = M(i, j), if M(i, j) is an existential entry;

ii.2) (M ]N)(i, j) = N(i, j), otherwise.

From the definition, the merging operator is symmetric, i.e.,M ]N = N ]M .

The definition of complementarity among modalities says that to every existential
entry in one of the identifiers corresponds an universal entry in the other one, and that
the identifiers agree on the constant and parameter entries. The definition ofM ] N
shows how to form a new operator mixing the entries of two complementary operators
giving priority to existential entries.

Here is an example of the application of these notions in a 3-agent system.

Let [M ] =

∃x ∀y
a ∀u
∀v z

 and[N ] =

∀x ∀y
a ∃u
∃v z

 be two operators. ClearlyM andN

are complementary. Then,[M ]N ] is defined and we have

[M ]N ] =

∃x ∀y
a ∃u
∃v z
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3.2. Structures forLMA

The semantics of formulas without variables is naturally inherited from the pro-
positional languagemPDL. Formulas with variables (with or without quantifiers) are
new and are interpreted through sets of transitions on Kripke structures.

Generally speaking, to evaluate an operator one needs to associate each entry of
the modality identifier with an action. This relationship between entries and actions
is immediate for the constant operators and in the case of variable operators it can
be provided by theenvironment function(here a function= : Var → Act) thus fol-
lowing the semantics of first-order logic (FOL). The case of quantificational operators
requires further assumptions since, as we shall see, it depends on the quantifiers as
well as on theinternal structureof the operator’s identifier.

Since in our modalities quantified variables are not organized in a linear order,
we cannot apply the method ofFOL to isolate instances of these modalities unless
an ordering of the entries is imposed somehow. Indeed, first-order logic deals only
with sequentially displayed quantifiers. Before proposing a way out, let us see how
one can apply previous ideas for the formulas without quantifiers. The fundamental
notions stated formPDLare adopted inLMA without change, in particular: the no-
tions of ofk-action, multi-agent Kripke frame, andmulti-agent Kripke structure, see
Definitions 9, 10, 11.

FollowingmPDLand in contrast to standard multi-relational Kripke frames, single
actions do not identify transitions in the frame. Instead, transitions are associated with
particular columns of actions. For the sake of clarity, we provide here the definition
of multi-agent Kripke structure forLMA.

DEFINITION 21 (MULTI -AGENT KRIPKE STRUCTURE FORLMA). —

A Multi-agent Kripke Structure forLMA(k) is a 4-tupleM = 〈W,Act ;R, J·K〉
where:

1) 〈W,Act ;R〉 is a multi-agent Kripke frame for mPDL and the indexk, and

2) J·K is a function(the valuation function)such thatJpK ⊆ W for p ∈ PropId
andJaK ∈ Act for a ∈ ActId .

As before, given a multi-agent Kripke structureM, J·K is extended to all constant
operators in the language by

u

v
a11 a12 ··· a1n
a21 a22 ··· a2n

...
...

...
ak1 ak2 ··· akn

}

~ =def

Ja11K Ja12K ... Ja1nK
Ja21K Ja22K ... Ja2nK...

...
...

Jak1K Jak2K ... JaknK

In standard modal logic, a Kripke frame for the propositional language is a Kripke
frame for the first-order modal language also. Analogously, a multi-agent Kripke
frame formPDL is a multi-agent Kripke frame for the quantificational language cor-
responding to it. However, these two types of frame differ on a crucial aspect. In
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standard Krikpe frames, the domain of quantification is independent from the frame
itself (one can augment the frame with any set as domain of quantification). On the
contrary, in multi-agent Kripke frames it is the very set of actionsAct that plays the
role of domain of quantification. Also, sequences of elements inAct (the basick-
actions) provide the labels for the transitions in the frame. Thus, in multi-agent Kripke
frames there is an explicit tie between the quantification domain and the transitions.
Finally, note that the extended frame has constant domain of quantification since the
domainAct is the same in all possible states.

In the remaining of the paper, we use Kripke frames (structures) to refer to multi-
agent Kripke frames (structures).

3.3. Semantics rises to the occasion

In extending the syntax ofmPDL to the richer syntax ofLMA, we have been
working within a path well-known to logicians, i.e., the introduction of variables and
quantifiers. The whole process has been quite smooth, and so was the introduction of
frames for the latter language. However, the semantic interpretation of the resulting
system is not straightforward.

Once the environment= : Var → Act is fixed, one can extend the valuation
functionJ·K over variable modal operators.

DEFINITION 22 (VALUATION OVER vOP). —

Given a multi-agent Kripke structure〈W,Act ;R, J·K〉 and an environment=,

i) if x is a variable, then putJxK =def =(x),
ii) if A is an operator in vOP, then put

u

www
v

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
ak1 ak2 · · · akn

}

���
~

=def

Ja11K Ja12K . . . Ja1nK
Ja21K Ja22K . . . Ja2nK

... . . .
...

Jak1K Jak2K . . . JaknK

(We have further overloaded the notation for the valuation function. Since the sets
PropId, ActId, andVar are disjoint, this abuse of notation causes no confusion.)

In Definition 17 we have shown how to represent modality identifiers which differ
on some entries only. Here we give the corresponding definition fork-actions.

DEFINITION 23 (CHANGING k-ACTIONS). —

Given a set Act of actions, letA be ak-action andα, β, . . . ∈ Act , then:

(i) A(ij←α) is k-actionA except thatA(ij←α)(i, j) = α.

(ii) A(i1j1,i2j2,...←α,β,...) is k-action(. . . ((A(i1j1←α))(i2j2←β)), . . .).
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(iii) A(i1j1,i2j2,...←~α) is k-action(. . . ((A(i1j1←α1))(i2j2←α2)), . . .).

DEFINITION 24 (INSTANCES OF A MODALITY). —

Given a Kripke structure〈W,Act ;R, J·K〉 and an environment=, a k-actionA is
an instance of[M ] (equivalently,instance of modality identifierM ) if A is obtained
fromM by substituting:

a) an action in Act for each quantified variable

b) JaK for each elementa ∈ Term.

We writeInst(M) for the set of instances of[M ].

ActionA(i, j) is said toinstantiate variablex of M if A ∈ Inst(M ) andx occurs,
quantified or else, atM(i, j).

PROPOSITION25. — Given a structure〈W,Act ;R, J·K〉, an environment=, and an
action identifiera,

Inst(M(ij←a)) = {A(ij←α) | A ∈ Inst(M ) and JaK = α}.

PROPOSITION26. — Given a structureM with |Act| > 1 and environment=,

|Inst(M )| = 1 if and only if[M ] 6∈ qOP .

DEFINITION 27 (CHANGING THE ENVIRONMENT). —

Fix an environment function=. We write= a1 ... ar
y1 ... yr (with yi 6= yj) for the environ-

ment function defined by:

= a1 ... ar
y1 ... yr (x) = =(x) for x 6∈ {y1, . . . , yr},
= a1 ... ar

y1 ... yr (yi) = ai.

Given ak-actionA and a modal operator[M ] withA ∈ Inst(M), we write=A
M for

the environment function defined as follows:

=A
M (y) = =(y) for y not occurring inM ,

=A
M (y) = A(i, j) for y occurring (quantified or else) atM(i, j).

Note that=A
M is well defined since, from Definition 14, a variable can occur at

most once in the modality identifierM .

3.3.1. Sequential semantics:LSMA
In this section, we present a semantics forLMA that is suitable for multi-agent

systems. Generally speaking, in modal logic one can easily define different semantics
for a language; the comparison of different interpretations of the languageLMA is an
important aspect of our work. However, here we disregard this issue and concentrate



22 Journal of Applied Non-Classical Logics. Volume xx – n◦ x/200x

on one interpretation of the language only. The interpreted language we obtain is
dubbedLSMA (orLSMA(k) if we need to make the indexk explicit.)

Fix a Krikpe structureM and a states. Let= be an environment.
We writeM, s,= |=S ϕ to mean that, in the semanticsLSMA(k), the formulaϕ is
true (equivalently,satisfied) at states of structureM for environment=. We write
M, s |=S ϕ if ϕ is true for any environment=. Furthermore,M |= ϕ means that
formulaϕ is valid inM, that is, it is true at each state ofM.

Relation|=S is defined recursively as follows:

1S) Let p ∈ PropId , thenM, s,= |=S p if s ∈ JpK
2S)M, s,= |=S ¬ϕ if M, s,= 6|=S ϕ

3S)M, s,= |=S ϕ→ ψ if M, s,= 6|=S ϕ orM, s,= |=S ψ

4S) Let [M ] be uniform, then
M, s,= |=S [M ]ϕ if for all s′ such that(s, s′) ∈ R(JMK), thenM, s′,= |=S ϕ

5S) Let ~x be all the existentially quantified variables inM , then,
M, s,= |=S [M ]ϕ if there exists a sequence~α of elements inAct (not necessarily
distinct) such that ifA ∈ Inst(M (~x←~α)), then for alls′ such that(s, s′) ∈ R(A), we

haveM, s′,=A
M |=S ϕ

As anticipated, we dubLSMA the languageLMA with the semantics given by1S) –
5S). Note that clause 4S) is consistent with the semantics ofmPDLand is a particular
case of clause 5S). The latter will be motivated below.

DEFINITION 28 (MULTI -AGENT KRIPKE MODEL IN LSMA). —

A multi-agent Kripke modelfor a set of formulasΣ in LSMA is a structureM for
LSMA such that all formulasϕ ∈ Σ are valid inM.

Having stated the semantics ofLSMA, it is now evident that our reading of quan-
tified variables depart from their standard meaning. In the modality identifiers, we
write ∀x (and∃x) to identify both a quantified variable and an occurrence of that very
variable. In this case, there is no danger of confusion. Nonetheless, it is advisable to
adopt a more explicit notation, for instance∀x.x and∃x.x, when considering exten-
sions of the languageLMA that allow for more complex combinations of quantifiers
and terms in the entries of the modality identifiers.

We remark that the semantics ofLSMA is entirely first-order. Although clause 5S)
quantifies over operators, this should be taken as a figure of speech and not as an
ontological requirement. We have and will freely use expressions like “any instance
A of [M ]" as a shorthand for “anyk-action corresponding to arbitrary instantiations
of the universally quantified variables occurring in[M ].” For the sake of clarity, in
5′S) we rewrite clause 5S) highlighting the role of universal quantifiers and avoiding
quantifying over operators. According to Definition 24,5′S) is equivalent to 5S).
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5′S) Let [M ] ∈ qOP , ~x all the existentially quantified variables, and~y all the uni-
versally quantified variables inM (the order they occur is irrelevant). Then,
M, s,= |=S [M ]ϕ if there is a sequence~α of elements inAct, such that for any se-
quence~β also of elements inAct, forB = JM(~x,~y←~α,~β)K and(s, s′) ∈ R(B), we have

M, s′,=B
M |=S ϕ.

But what is the rationale of clause 5S)? Clearly, one expects[M ]ϕ to be true when
for each instanceA ofM , formula[A]ϕ is true. This fits with clause 5S) above. How-
ever, this clause requires much less to conclude that a formula is true. According to
clause 5S), [M ]ϕ is true if there are actions such that, when used as interpretations
of the existentially quantified variables ofM , any instanceB of M (that respects this
interpretation) satisfiesM, s,=B

M |=S [M ′]ϕ according to clause 4S). (Below we
give an example in MAS to motivate this choice). Thus, in this semantics all existen-
tially quantified variables are instantiated before the universally quantified ones. This
constraint forces a formula inLSMA to be true only when, once the values for the ex-
istentially quantified variables is fixed, one cannot reach “undesired” states by varying
the value of universally quantified variables. From the point of view of a multi-agent
system, a formula[M ]ϕ is true if the agents have a way to forceϕ (i.e, to force in-
stances of the quantificational operator that take to those states whereϕ is true) by
deciding beforehand which actions to execute at the existential positions and without
need to know the actions executed at the universal positions onM (and thus their
possible interferences.)

Such a system is suited for describing a (restricted) notion ofplan. For instance,
let Alan and Bill be coworkers in a project for their company and suppose they have to
complete the project by the end of the day. They might need to work on it at different
stages of the development and, as usual in a social environment, they have to combine
their work with other commitments as well. The first thing they can do is to develop
a plan taking into account their constraints and the project needs. Suppose Bill is at
a meeting early in the morning and that Alan has a doctor visit before lunch. After
lunch they are both free but, in the mid afternoon Alan has to meet with the office
manager. A plan for the project is any combination of actions that are compatible with
the given constraints and that guarantee the completion of the project by the due time.
Once such a plan is selected (if it exists), its application ensures the success of the
coworkers’ efforts.

In our language, the following formula describes this situation and one can use it
to isolate such a plan (here Alan is agent1 and Bill is agent2):[

∃x1 d a ∃x4 ∀x5

∀y1 ∃y2 a ∃y4 ∃y5

]
ϕ

whereϕ stands for “the project is finished”. Here variabley1 is universally quantified
since it refers to a time-slot in which Bill will do what asked by the manager. Similarly
for variablex5, this time with respect to Alan. The second time-slot for Alan contains
an action identifier,d, which denotes the action “go to the doctor”. Similarly, the third
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time-slot (for both the agents) contains an action identifier,a, corresponding to “have
lunch”. The remaining variables are existentially quantified so that Alan and Bill can
decide what actions to perform at those positions in order to complete the project in
time.

By choosing beforehand the instances of variablesx1, x4, y2, y4, andy5 the agents
define a plan which states what to do when they work on the project.LSMA classifies
the formula as true is and only if there exists a choice of instances forx1, x4, y2, y4,
andy5 that guarantees the completion of the project. However, if such a choice cannot
be successfully made without any knowledge of the values fory1 or x5, then the
formula is false according toLSMA. That is, if in the early morning their director asks
them if they can finish the project in time, they will answer “yes” in the first case, “no’
(that is, “we cannot guarantee it”) in the latter.

In particular, note that the semantics we have described does not consider adapt-
able plans like, for instance, plans that include “if . . . then” conditions. A semantics
applying a more general notion of plan is necessarily more complicated and may re-
quire game-theoretical notions. See [BOR 03] for an example. Finally, although in
this paper we allow for simple expressions only in the modal identifiers, like∃x and
∀x with ∃,∀ resembling the traditional universal and existential quantifiers, the ap-
plication of a richer class of expressions may become necessary for modeling some
multi-agent systems. For instance, expressions like∃ϕ?x with meaning “choose an
item x knowing the truth-value ofϕ” or ∃Bel(ϕ)x with meaning “choose an itemx
assuming thatϕ is true”.

3.3.2. LSMA at work

We give a few examples to make clear how the semantics just introduced works.
Also, these examples clarify our claim that the description of multi-agent systems is
an important motivation for this logic system.

In order to keep things simple, we consider a structureMS wherek = 2 and
W = {s0, s1, s2}. For actions we takeAct = {α, β}. The structure is pictured in
Figure 2. (s0 is the state at which the formulas are evaluated.)

We consider just one proposition identifierp whose valuation isJpKS = {s1} and
we evaluate ats0 three formulas:

[
∃x ∃z
∀y ∀u

]
p ,

[
∃x ∀z
∀y ∃u

]
p ,

[
∀x ∃z
∃y ∀u

]
p .

According to the semantic clause 5S) for LSMA (more precisely,LSMA()) formula[
∃x ∃z
∀y ∀u

]
p is true inMS at s0 if there are values forx andz such that, for any

instantiation ofy andu, the 2-action obtained through substituting these values for
x, z, y, u (respectively) brings the system to states1. False, otherwise.
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Figure 2. The two-agent structureMS = 〈{s0, s1, s2}, {α, β};R, J·KS〉 with R and
JpKS as shown.

In practice, the different choices of values forx andz isolate (disjoint) subsets of
instances (2-actions) for the quantificational operator as follows (we writex, z ←[ α, β
for: x is instantiated byα andz by β; the 2-actions in a set are obtained by taking any
possible value fory andu):

x, z ←[ α, α :

{
α α
α α ,

α α
α β ,

α α
β α ,

α α
β β

}
x, z ←[ α, β :

{
α β
α α ,

α β
α β ,

α β
β α ,

α β
β β

}
x, z ←[ β, α :

{
β α
α α ,

β α
α β ,

β α
β α ,

β α
β β

}
x, z ←[ β, β :

{
β β
α α ,

β β
α β ,

β β
β α ,

β β
β β

}
Recall that we have

R

(
α1 α3

α2 α4

)
= R

(
α1

α2

)
◦R

(
α3

α4

)
It is then simple to verify that in each of the sets above there is some instance for[
∃x ∃z
∀y ∀u

]
by which the system reaches states0 or s2. Indeed, it is not possible to

find instances forx andz such that the system always ends up ats1 (the only state
wherep is true). Consequently, the formula is not true inMS ats0.

In our informal reading of the formalism, the first agent cannot devise a successful
plan (choice for the existentially quantified variable) that forces the system to makep
true independently from what the other agent does.
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Now, consider the second formula,

[
∃x ∀z
∀y ∃u

]
p.

Analogous to the previous case, this formula is true inMS at s0 if there are values
for x andu such that, for any instantiation ofy andz, the 2-actions obtained through
substituting these values forx, u, y, z (respectively) all bring the system to states1.
False, otherwise.

Here are the sets of instances determined in this way.

x, u←[ α, α :

{
α α
α α ,

α β
α α ,

α α
β α ,

α β
β α

}
x, u←[ α, β :

{
α α
α β ,

α β
α β ,

α α
β β ,

α β
β β

}
x, u←[ β, α :

{
β α
α α ,

β β
α α ,

β α
β α ,

β β
β α

}
x, u←[ β, β :

{
β α
α β ,

β β
α β ,

β α
β β ,

β β
β β

}

All the 2-actions obtained from assignmentx, u ←[ α, β bring the system to state
s1 as desired. According to the semantics, the formula is true ats0.

In our informal reading, the two agents can devisein collaboration and before-
handa successful plan (choice for the existentially quantified variable) that forces the
system to makep true no matter what they do when they are not constrained by the
plan.

Finally, consider formula

[
∀x ∃z
∃y ∀u

]
p, which is obtained from the previous by

substituting the quantifiers by their duals. We have

y, z ←[ α, α :

{
α α
α α ,

α α
α β ,

β α
α α ,

β α
α β

}
y, z ←[ α, β :

{
α β
α α ,

α β
α β ,

β β
α α ,

β β
α β

}
y, z ←[ β, α :

{
α α
β α ,

α α
β β ,

β α
β α ,

β α
β β

}
y, z ←[ β, β :

{
α β
β α ,

α β
β β ,

β β
β α ,

β β
β β

}

One can verify that all sets above contain an instance of the operator for which the
formula is not true inMS at s0 (it is enough to check the very first 2-action in each
set). We conclude that the formula is false.
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In our informal reading, this result tells us that if the two agents behave with op-
posite intentions with respect to the previous formula, their collaboration does not
suffice to grant the existence of a successful plan.

The modelMS of Figure 2 allows us to prove an interesting property.

PROPOSITION29. — There exist modal operatorsM,N in LSMA such that

[MN ]ϕ 6≡ [M ][N ]ϕ

However, forA,B uniform, we have

[AB]ϕ ≡ [A][B]ϕ

PROOF. — An example for the first claim is provided by the modelMS of Figure 2
by takingM = ∀x

∃u ,N = ∃z
∃u , andϕ = p.

The second claim follows from the semantics ofLSMA. ■

3.4. Which constructs forLSMA?

Now that the interpreted language has been introduced and motivated, we spend a
few words on different constructs that might be of interest for enriching the language.

Although in this work we have excluded constructs on action identifiers in order to
keep the language simple, in the light of section 2 it is natural to look at those provided
by PDL. The adoption ofPDL constructs can be made at two levels. Take the “non-
deterministic choice” operator∪: one can add it at theoperator-level, for instance

writing complex modalities like

[
a
c ∪

b
d

]
where∪ applies to columns in modal op-

erators, or at theaction-level, like in

[
a ∪ b
c

]
. Analogously, the introduction of the

“star” operator∗ would allow us to write formulas of form

[(
a
c

)∗]
in the first case,

and formulas of form

[
a∗
c

]
in the other case. These formulas have different imports

in the language. The first kind of formulas does not affect the action-synchronicity
implicit in LSMA and so it would be easy to introduce. Instead, formulas with∗ (or
even the composition construct) at the entry level open the way to the description of
asynchronous systems and requires some changes in the semantics. In both cases, the
interaction of the new constructs with the quantifiers needs to be carefully considered.

An interesting issue is the inclusion of the “test” construct (at the entry level) and
its interaction with the existential quantifier. The introduction of a construct based on
“test” has been suggested at the end of section 3.3.1 although it is quite different from
the operator ofPDL. In our reading of the modalities, we could allow an expression
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of form ∃ϕ?x in a modality[M ] with the meaning “choose a value forx knowing
the truth-value ofϕ at the moment in whichx has to be performed”. Note that the
semantics ofLSMA makes the result of the test publicly available to all the agents.
By tying strictly the result of the test with the action chosen at that point by the very
agent performing the test, we obtain an operator that fits our overall framework and is
easily motivated in the area of multi-agent systems. Indeed, it would allow to describe
more complex plans in the language (essentially “if...then” conditions) and seems to
be worth to study.

4. The logic ofLSMA

4.1. Deductive system

The substitution of variables by terms is a crucial process in formal languages.
In LMA, this substitution takes place only in modalities since variables do not occur
outside these operators. If modal operators are explicitly given, one can use the nota-
tion of Definition 17. For the other cases, especially when there are nested modalities,
we need to represent the substitution of variables without listing every operator in-
volved. For this reason, we refer to some standard notation. Other definitions are here
introduced as well.

DEFINITION 30 (SUBSTITUTION OF TERMS). —

Let ~x = x1, . . . , xn be a sequence of terms (not necessarily distinct) and~y =
y1, . . . , yn a sequence of distinct variables. Given a formulaϕ, {~x/~y}ϕ is the formula
obtained fromϕ by the simultaneous substitution of the free occurrences ofyi by xi

(1 ≤ i ≤ n).

DEFINITION 31 (FREE FOR A VARIABLE). —

Letx, y ∈ Var . x is free fory in formulaϕ if no free occurrence ofy in ϕ is in the
scope of∀x or ∃x.

Also, we need a couple of definitions on subformulas.

DEFINITION 32 (POSITIVE AND NEGATIVE POSITION OF SUBFORMULAS). —

Given a formulaψ, an occurrencẽϕ of a subformulaϕ of ψ is said to be positive
or negative according to the following conditions:

i) ϕ̃ is positive inϕ

ii) if ϕ̃ is positive (negative) inγ, then

ϕ̃ is positive (negative) inχ→ γ

ϕ̃ is positive (negative) in[M ]γ
ϕ̃ is negative (positive) inγ → χ

ϕ̃ is negative (positive) in¬γ
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Also, given a positive (negative) occurrence ofϕ̃ = [M ]χ in ψ, we say that the
corresponding occurrence of[M ] is positive (negative) as well.

DEFINITION 33 (CHANGING MODAL SUBFORMULAS). —

Let [M ] be a modal operator and~x = x1, . . . , xp a list of terms withx1 oc-
curring (perhaps quantified) inM(i1, j1) , . . . , xp occurring (perhaps quantified) in
M(ip, jp). Letϕ be [M ]χ and~z = z1, . . . , zp be new in all modalities ofϕ, then we
write

i) ϕ(~x←~z) for [M(i1j1,...,ipjp←~z)]{~z/~x}χ,

ii) ϕ(~x←∀~z) for [M(i1j1,...,ipjp←∀~z)]{~z/~x}χ,

iii) ϕ(~x←∃~z) for [M(i1j1,...,ipjp←∃~z)]{~z/~x}χ.

Letψ be a formula,[M ]χ a subformula ofψ, andϕ̃ one single occurrence of[M ]χ
in ψ, then we write

i) ψ{ϕ̃(~x←~z)} for ψ with ϕ̃ substituted by an occurrence ofϕ(~x←~z);

ii) ψ{ϕ̃(~x←∀~z)} for ψ with ϕ̃ substituted by an occurrence ofϕ(~x←∀~z);

iii) ψ{ϕ̃(~x←∃~z)} for ψ with ϕ̃ substituted by an occurrence ofϕ(~x←∃~z).

Furthermore,ψ{ϕ̃1
(~x1←~z1)

, . . . , ϕ̃n
(~xn←~zn)}, with occurrences̃ϕi and ϕ̃j distinct

for i 6= j, is obtained recursively by(. . . (ψ{ϕ̃1
(~x1←~z1)

}) . . .){ϕ̃n
(~xn←~zn)}.

Let us recall (and expand) our notation on provable formulas (see page 6.)

DEFINITION 34. —

LetΛ be a set of axioms closed with respect to a set of deduction rules, then

(i) `Λ ϕ stands forϕ ∈ Λ;

(ii) Let Σ be a set of formulas. We writeΣ `Λ ϕ to mean that there exist
ψ1, . . . , ψn ∈ Σ such that(ψ1 ∧ . . . ∧ ψn)→ ϕ ∈ Λ.

As before, when there is no danger of confusion, we omit the indexΛ in `.

A logic for LSMA(k) is the smallest set of formulas ofLMA (for the fixedk) closed
under the rules listed below and containing all the instances of the following schemas
([M ], [N ] range over all modal operators in the language).

Axiom schemas:

(PL) All instances of propositional tautologies inLSMA(k)

(KS) For [M ] ∀-uniform
[M ](ϕ→ ψ)→ ([M ]ϕ→ [M ]ψ) (Normality)

(∃IS) ForM(i, j) = x ∈ Var anda in ActIdor a equal tox
[M(ij←a)]{a/x}ϕ→ [M(ij←∃y)]{y/x}ϕ (Existential Introduction)
where eithery is x or y has no free occurrences inϕ, is free forx in
ϕ, and is new inM
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(∀ES) ForM(i, j) = ∀x andy ∈ Term
[M ]ϕ→ [M(ij←y)]{y/x}ϕ (Universal Elimination)
where ify ∈ Var , theny is x or y is free forx in ϕ with y new inM

(SS) [MN ]ϕ→ [M ][N ]ϕ (Split)

(JS) For all [M ], [N ] such that[M ] is ∃-uniform or[N ] is ∀-uniform
[M ][N ]ϕ→ [MN ]ϕ (Join)

Rules:

Let [M ]χ be a subformula of a formulaψ (possibly,ψ = [M ]χ). Fix an occurrence
of [M ]χ in ψ not in the scope of quantificational operators and call itϕ̃. Let ~x =
x1, . . . , xn be a list of free variables of[M ] (not necessarily all). If[N ] is a uniform
operator ofψ andϕ̃ is in its scope, than noxi can occur in[N ].

(Rule of Universal Introduction)
If [M ] is ∀-uniform, no variablexi has free occurrences in subformulas ofψ that are
in antecedent position (see page 4) with respect toϕ̃, andϕ̃ is in positive position in
ψ, then

(∀IS)
ψ{ϕ̃}

ψ{ϕ̃(~x←∀~y)}
(Universal Introduction)

where for alli, eitheryi is xi or yi new inϕ̃.

(Rule of Existential Elimination)
If no variablexi has free occurrences in subformulas ofψ that are in consequent
position with respect tõϕ, andϕ̃ is in negative position inψ, then

(∃ES)
ψ{ϕ̃}

ψ{ϕ̃(~x←∃~y)}
(Existential Elimination)

where for alli, eitheryi is xi or yi new inϕ̃.

(Rule of Modus Ponens)

(MP )
ϕ, ϕ→ ψ

ψ
(Modus Ponens)

(Rule of Necessitation)
For [M ] ∈ OP

(Nec)
` ϕ
` [M ]ϕ

(Necessitation)

As a remark to the deductive system forLSMA, let us give a few examples of the
application of rules(∀IS) and(∃ES). These rules have been stated in general terms to
comprise several important cases among which the followings (A ∈ vOP, no variable
in A occurs free inM )
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[M ]ϕ
[M(ij←∀y)]{y/x}ϕ

;
χ→ [M ]ϕ

χ→ [M(ij←∀y)]{y/x}ϕ
;

χ→ [A][M ]ϕ
χ→ [A][M(ij←∀y)]{y/x}ϕ

;
[M ]ϕ→ χ

[M(ij←∃y)]{y/x}ϕ→ χ
;

(χ→ [M ]ϕ)→ ψ

(χ→ [M(ij←∃y)]{y/x}ϕ)→ ψ
;

(χ→ [A][M ]ϕ)→ ψ

(χ→ [A][M(ij←∃y)]{y/x}ϕ)→ ψ
.

Other cases are considered in Propositions 38-40.

Finally, note that the restriction of(∀IS) to ∀-uniform operators is necessary to
block incorrect deductions. Here is an example of a wrong deduction that we want to

avoid:
[ ∃xz ]ϕ[
∃x
∀z
]
ϕ

. This deduction is unsound. The hypothesis reads “For each givenz,

there existsx such that[ x
z ]ϕ”, while the conclusion states “There existsx such that

for all z, [ x
z ]ϕ”. Clearly, the latter is not a logical consequence of the first.

4.1.1. Soundness

THEOREM 35 (SOUNDNESS). — The axioms ofLSMA are valid in any multi-agent
Kripke model. Also, the rules ofLSMA preserve truth in these models.

PROOF. — Among the axioms, the cases of(PL), (KS), (∃IS), (∀ES) are quite
simple. Here we present the case of the normality axiom(KS) only. Fix a model and
an initial states. If for some environment=, formula[M ]ϕ is satisfied ats and[M ]ψ
is not, then there exists[A] ∈ Inst(M) and a states′ such that(s, s′) ∈ R(JAK) and
ϕ,¬ψ hold ats′ for =. But [A](ϕ→ ψ) is satisfied ats for =, i.e.,ϕ→ ψ holds for=
at all states reachable through[A]. Thus,¬ϕ must be is satisfied ats′ as well. Finally,
¬[A](ϕ→ ψ) ats for = and so[M ]ϕ fails ats. Contradiction.

Regarding the remaining axioms, consider first(SS). This axiom holds since it is a
consequence of the observation that in first-order logic formula∃~x ~y ∀~z ~v ϕ(~x, ~y, ~z,~v)
implies∃~x∀~z ∃~y ∀~v ϕ(~x, ~y, ~z,~v). The Join axiom(JS) holds because the restriction
on its application ensures that the interpretation of the two subformulas is obtained by
instantiating the variables in the same order (namely, first all the existentially quanti-
fied and later the universally quantified variables).

Among the rules, the novelty lies with(∀IS) and(∃ES). We show how the ar-
gument runs for the first. The proof is by induction on the complexity ofψ. Let
ψ = [M ]χ with ψ{ϕ̃} = ϕ̃. We need to show that if[M ]χ is true, then[M(~x←∀~x)]χ
is true as well. We proceed by contradiction. Assume that[M(~x←∀~x)]χ is not true and
fix a states of the structure and an environment for which this formula is false. Then,
there exists a sequence of terms~a such that[M(~x←~a)]{~a/~x}χ is false ats. That is,
[M ]χ is false ats for =~a

~x. Contradiction.
Inductive step: assume the rule holds forψ{ϕ̃}.
Case (a):[N ]ψ{ϕ̃} for some uniform[N ]. By assumption, none of thexi’s occurs in
[N ]. Assume[N ]ψ{ϕ̃(~x←∀~x)} is false at a states, then it follows easily that for some
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environment[N ]ψ{ϕ̃} is false as well.
The following cases are treated together
(b) ¬¬ψ{ϕ̃},
(c) ¬(ψ{ϕ̃} → %),
(d) ¬ψ{ϕ̃} → %, and
(e) (ψ{ϕ̃} → %1)→ %2.
The first is trivial. The second and third are reduced to (e) by rewriting negation using
→ and⊥. (⊥ was introduced at page 4, it is easy to see thatM, s 6|= ⊥ for all struc-
turesM and all statess.) Thus, we concentrate on case (e). Note that no subformula
can be in antecedent position with respect toϕ̃ unless it occurs inψ. Assume that
(ψ{ϕ̃(~x←∀~x)} → %1)→ %2 fails for some environment=. Then, for= the antecedent
ψ{ϕ̃(~x←∀~x)} → %1 holds and the consequent%2 fails.
Subcase(e1): by the inductive step, ifψ{ϕ̃(~x←∀~x)} fails for =, thenψ{ϕ̃} fails as
well. Thus,ψ{ϕ̃} → %1 holds, by which we conclude that(ψ{ϕ̃} → %1) → %2 fails
as we needed to show.
Subcase(e2): assume%1 is true for=. Then,ψ{ϕ̃} → %1 holds, by which we con-
clude again that(ψ{ϕ̃} → %1)→ %2 fails and we are done.
Finally, it remains to verify case (f):%→ ψ{ϕ̃}.
Assume that̃ϕ in % → ψ{ϕ̃} satisfies the conditions required by the rule. Then, if
% → ψ{ϕ̃(~x←∀~x)} fails for an environment=, this means that% holds for= while
ψ{ϕ̃(~x←∀~x)} fails. By the inductive step,ψ{ϕ̃} fails for= as well. Thus,% → ψ{ϕ̃}
fails also, and we are done. ■

4.1.2. Derived rules and theorems

Analogously to standard modal logic, using (Nec), (KS), and (MP ), one can
prove the following distribution rule

PROPOSITION36 (DISTRIBUTION RULE). — The following rule is derivable:

(RD)
ϕ→ ψ

[M ]ϕ→ [M ]ψ
where[M ] is ∀-uniform.

Having (RD) and (KS), one proves other equivalences that are analogous to stand-
ard results of modal logic.

PROPOSITION37 (DISTRIBUTION OVER ∧). — Let [M ] be a∀-uniform operator,
then

[M ](ϕ ∧ ψ)↔ [M ]ϕ ∧ [M ]ψ.

The rules listed below are used in the completeness proof.
The first follows from(∀IS) and(∃ES).

PROPOSITION38 (MODAL UNIVERSAL INTRODUCTION RULE). — Let [A] be uni-
form and[M ] ∀-uniform withM(i, j) = x ∈ Var . Then the following rule is deriv-
able:
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(R∀I)
[A](ψ → [M ]ϕ)

[A](ψ → [M(ij←∀x)]ϕ)

wherex not free in[A] nor inψ.

The following is proved by applying(∃IS).

PROPOSITION 39 (MODAL EXISTENTIAL INTRODUCTION RULE). — Let [A] be
uniform,M(i, j) = x ∈ Var anda ∈ ActId . Then the following rule is derivable:

(R∃I)
[A](ψ → [M(ij←a)]{a/x}ϕ)

[A](ψ → [M(ij←∃x)]ϕ)
.

By rule (∃ES), we obtain

PROPOSITION40 (MODAL EXISTENTIAL ELIMINATION RULE ). — Let [A] be uni-
form andM(i, j) = x ∈ Var . Then the following rule is derivable:

(R∃E)
[A]((χ→ [M ]ϕ)→ ψ)

[A]((χ→ [M(ij←∃x)]ϕ)→ ψ)

wherex not free inψ.

We conclude the description of the logicLSMA with a result that is quite important
for applications in multi-agent systems. It shows that the capabilities of a group of
agents (that is, the power of acoalition to force some sentence to become true) do not
interfere with the capabilities of other groups (disjoint from the first). This is shown
by proving that if a group of agents can force a sentence to become true and another
group of agents can force a different sentence to become true, then the two groups can
make true the conjunction of these sentences by acting concurrently.

If we focus on existential entries, a modal operator of our language can be seen as
describing a kind of group (or coalition) to which agenti belongs as long as formula
[M ]ϕ (with ϕmodal-free) shows existential entries in rowi ofM . In a sense, an agent
participates to the group continuously, occasionally or never depending on the number
of existential entries in its corresponding row.

Construct] was introduced in Definition 20.

THEOREM 41. — AssumeM,N are complementary, then

` ([M ]ϕ ∧ [N ]ψ)→ [M ]N ](ϕ ∧ ψ)

PROOF. — We limit our proof to one-column operators in a two agent system. More
precisely, we show the following:

` (
[
∀x
∃y

]
ϕ ∧

[
∃x
∀y

]
ψ)→

[
∃x
∃y

]
(ϕ ∧ ψ).

From axiom (∀ES), we havè

[
∀x
y

]
ϕ→

[
x
y

]
ϕ and, similarly,
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`
[
x
∀y

]
ψ →

[
x
y

]
ψ.

By Proposition 37 and(PL), ` (
[
∀x
y

]
ϕ ∧

[
x
∀y

]
ψ)→

[
x
y

]
(ϕ ∧ ψ).

Applying (∃IS) twice, we get̀ (
[
∀x
y

]
ϕ ∧

[
x
∀y

]
ψ)→

[
∃x
∃y

]
(ϕ ∧ ψ).

By propositional logic,

`
[
∀x
y

]
ϕ→

([
x
∀y

]
ψ →

[
∃x
∃y

]
(ϕ ∧ ψ)

)
to which we can apply (∃ES) obtaining

`
[
∀x
∃y

]
ϕ→

([
x
∀y

]
ψ →

[
∃x
∃y

]
(ϕ ∧ ψ)

)
.

By propositional logic again,

`
[
x
∀y

]
ϕ→

([
∀x
∃y

]
ψ →

[
∃x
∃y

]
(ϕ ∧ ψ)

)
and by (∃ES) again,

`
[
∃x
∀y

]
ϕ→

([
∀x
∃y

]
ψ →

[
∃x
∃y

]
(ϕ ∧ ψ)

)
.

The latter is equivalent tò (
[
∀x
∃y

]
ϕ ∧

[
∃x
∀y

]
ψ)→

[
∃x
∃y

]
(ϕ ∧ ψ) and we are

done. ■

4.2. Completeness

In this section, we prove that the logicLSMA(k) (for k ≥ 1) is complete for the
class of multi-agent Kripke frames. Our proof of completeness follows the Henkin’s
method generalized to first-order modal logics. As usual, below we assume that an
indexk has been fixed.

The standard notion ofω-completenessneeds to be adapted to our language. In
LSMA, one cannot express the existential quantifier in terms of the universal one. As
a consequence,ω-completeness in our logic must consider both positive and negat-
ive expressions. In addition, this notion has to take into account the special interplay
among quantificational operators and classical negation. For these reasons, our defin-
ition of ω-completeness splits in two cases.

DEFINITION 42 (ω-COMPLETE SET). —

A setΣ ⊆ LMA is ω-completeif it satisfies the following conditions:

(iω) Let [M ] be∀-uniform with universally quantified variables~x. Let [M ]χ be a
subformula ofψ, and ϕ̃ a positive occurrence of[M ]χ in ψ, ϕ̃ not in the scope of a
quantificational operator,
if Σ ` ψ{ϕ̃(~x←~a)} for all sequences of constants~a (of the right length), thenΣ ` ψ;
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(iiω) Let [M ] be a quantificational operator with some existentially quantified vari-
ables~x. Let [M ]χ be a subformula ofψ andϕ̃ a negative occurrence of[M ]χ in ψ, ϕ̃
not in the scope of a quantificational operator,
if Σ ` ψ{ϕ̃(~x←~a)} for all sequences of constants~a (of the right length), thenΣ ` ψ.

DEFINITION 43 (MAXIMAL , CONSISTENT, AND SATURATED SETS). —

(i) A setΣ is maximal if either ϕ ∈ Σ or ¬ϕ ∈ Σ for every formulaϕ in the
language.

(ii) A set of formulasΣ is consistentif Σ 6` ⊥.

(iii) A setΣ is saturatedif it is maximal, consistent, andω-complete.

LEMMA 44. — Fix ϕ with no free occurrence ofy, y new inM , andy free forx in
ϕ.

If M(i, j) = ∀x, then

` [M ]ϕ↔ [M(ij←∀y)]{y/x}ϕ

If M(i, j) = ∃x, then

` [M ]ϕ↔ [M(ij←∃y)]{y/x}ϕ

PROOF. — The first equivalence requires some work because of the restriction in
(∀IS). For the sake of simplicity, we prove it for the simple modality[M ] =

[
∀x
∃z
]
,

thus assumingk = 2.

By (∀ES),`
[
∀x
z

]
ϕ→

[
y
z

]
{y/x}ϕ (sincey free forx in ϕ)

By (∀IS),`
[
∀x
z

]
ϕ→

[
∀y
z

]
{y/x}ϕ

By (∃IS),`
[
∀y
z

]
{y/x}ϕ→

[
∀y
∃z

]
{y/x}ϕ

By (MP ),`
[
∀x
z

]
ϕ→

[
∀y
∃z

]
{y/x}ϕ

By (∃ES),`
[
∀x
∃z

]
ϕ→

[
∀y
∃z

]
{y/x}ϕ

The other direction holds as well since the conditions implyx is free for y in
{y/x}ϕ.

For the second equivalence.` [M(ij←x)]ϕ → [M(ij←∃y)]{y/x}ϕ is an instance
of (∃IS) and, by (∃ES), ` [M(ij←∃x)]ϕ → [M(ij←∃y)]{y/x}ϕ where[M(ij←∃x)] is
[M ]. The other direction is proved similarly. ■

Fix setsActId, PropId, andVar, and letLSMA(k) be the language thus obtained.

Let Σ be an arbitrary consistent set of formulas ofLSMA(k). We prove completeness
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by showing thatΣ has a model. The first step consists in showing how to extendΣ to
a saturated set applying a version of the Henkin method [GAR 01].

Let Cn be a denumerable set of action identifiers withCn ∩ ActId = ∅. Let
(L+)SMA(k) be the languageLSMA(k) with action identifiers fromActId+ = ActId ∪
Cn. From now on, we will refer to elements ofActId+ indifferently as action iden-
tifiers or constants. Note that ifΣ is consistent inLSMA(k), then it is consistent in

(L+)SMA(k) as well. From now on, we will work in this extended system.

Let τ(1), τ(2), . . . be a list of all(L+)SMA(k)-formulas such that if a formula con-
tainsn (not nested) quantificational operators, then it occursn times in the listτ ; the
first time associated with the first not nested quantificational operator (from left to
right), the second time associated with the second not nested quantificational operator
and so on till then-th occurrence of the formula inτ . If ψ is a formula with quanti-
ficational operators andψ = τ(h), then thelabel ofψ at h is the occurrence of the
quantificational operator with which the formula is associated ath. Thus, ifM ∈
qOP, then formulaψ = p0 → [M ]p1 occurs once inτ with label the only occurrence
of M in ψ. Instead, formula[M ]p0 → [M ][M ]p1 occurs twice. It occurs once with
label the first occurrence (from left to right) ofM , once with label the second occur-
rence ofM , and it does not occur with label the third occurrence (since the latter is in
the scope of another quantificational operator, thus nested).

We do not mark labels explicitly in our notation since the label ofψ = τ(h) is
clear from the formulaψ and its occurrences inτ(1), . . . , τ(h− 1), if any. A formula
without quantificational operators has no label. Given a formulaψ and its labelM , if
ψ = τ(h), we write ϕ̃(h) for theunique occurrenceof the subformula[M ]χ where
M is the label ofψ andχ its scope inψ.

To obtain a saturated set fromΣ, we proceed by recursion constructing a sequence
of consistent setsΣh in (L+)SMA(k) such thatΣ0 =def Σ andΣh ⊆ Σh+1. (We write
Σ ∪ ϕ for the setΣ ∪ {ϕ}.)

SupposeΣh has been constructed.

(Case A) Letτ(h+1) = ψ be a formula with label a quantificational∀-uniform operator
[M ] and let~y be the universally quantified variables of[M ]. Let ϕ̃(h+ 1) be negative
in ψ, then
if Σh ∪ τ(h+ 1) is consistent, putΣh+1 =def Σh ∪ τ(h+ 1) ∪ ψ{ϕ̃(h+ 1)(~y←~a)}
where
~a is a sequence (of the right length) of constants ofCnnew inΣh ∪ τ(h+ 1);11

if Σh ∪ τ(h+ 1) is not consistent, putΣh+1 =def Σh.

(Case B) Letτ(h+ 1) = ψ be a formula with label a quantificational operator[M ] with
one or more existential entries, and let~x be its existentially quantified variables (M

11. We insist that the substitution is applied to the formula occurrenceϕ̃(h + 1) only.
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may contain universally quantified variables as well). Ifϕ̃(h+1) is positive inψ, then
if Σh ∪ τ(h+ 1) is consistent, putΣh+1 =def Σh ∪ τ(h+ 1) ∪ ψ{ϕ̃(h+ 1)(~x←~a)}
where
~a is a sequence (of the right length) of constants ofCnnew inΣh ∪ τ(h+ 1);12

if Σh ∪ τ(h+ 1) is not consistent, putΣh+1 =def Σh.

(Case C) Ifτ(h+ 1) falls in none of the above cases, then
if Σh ∪ {τ(h+ 1)} is consistent, putΣh+1 =def Σh ∪ τ(h+ 1).
if Σh ∪ {τ(h+ 1)} is not consistent, putΣh+1 =def Σh.

We need to show thatΣh+1 is consistent ifΣh is.

(Case A) Supposeτ(h+1) = ψ, Σh ∪ τ(h+1) is consistent, andΣh+1 is not. From the
construction,Σh ∪ τ(h+ 1) ` ¬ψ{ϕ̃(h+ 1)(~y←~a)}.
Recall that the elements of~a are new inΣh ∪ τ(h+ 1).
Since a proof of¬ψ{ϕ̃(h+ 1)(~y←~a)} uses only finitely many formulas, let~x be vari-
ables not occurring in the proof and substitute~x for ~a in the whole proof. Formula
ϕ̃(h + 1)(~y←~x) is positive in¬ψ{ϕ̃(h + 1)(~y←~x)} and the latter satisfies the con-
ditions in (∀IS). By applying (∀IS) over thexi’s (and Lemma 44), one obtains
Σh ∪ τ(h+ 1) ` ¬ψ, contradicting the assumption thatΣh ∪ τ(h+ 1) is consistent.

(Case B) Supposeτ(h + 1) = ψ, Σh ∪ τ(h + 1) is consistent, andΣh+1 is not. From
the construction,Σh ∪ τ(h + 1) ` ¬ψ{ϕ̃(h + 1)(~x←~a)}. In ¬ψ{ϕ̃(h + 1)(~x←~a)},
the occurrencẽϕ(h + 1)(~x←~a) is negative. Arguing as in the previous case, we can
apply (∃ES) since the conditions are satisfied. Thus, by Lemma 44, one obtains
Σh ∪ τ(h+ 1) ` ¬ψ contradicting the assumption thatΣh ∪ τ(h+ 1) is consistent.

(Case C) By construction.

Finally, putΣ∞ =
⋃∞

i=1 Σi.

It turns out thatΣ∞ is maximal, consistent andω-complete in(L+)SMA(k). Con-
sistency follows from the consistency ofΣi for eachi. Also, the process guarantees
Σ∞ is maximal since only formulas not consistent with some subsetΣi are left out in
the construction ofΣ∞. Regardingω-completeness, we need an argument.

Consider formulasψ and¬ψ with quantificational operators. Without loss of gen-
erality, letτ(r) = ¬ψ be the first occurrence of¬ψ in τ . As usual,ϕ̃(r) is the label
of ¬ψ at r. We writeϕ̃ for the first occurrence of formulãϕ in ψ. (Informally, ϕ̃ in ψ
“corresponds” to the occurrence ofϕ̃(r) in ¬ψ.) Note that, ifϕ̃(r) is positive in¬ψ,
thenϕ̃ is negative inψ, and vice versa.

(iω) Assume[M ], ~x, ψ, ϕ̃ satisfy the conditions in(iω), and letΣ∞ ` ψ{ϕ̃(~x←~a)}
for all sequences~a (of the right length). IfΣr ∪ τ(r) is consistent, then by (Case A)
of the construction there exists a sequence~a such thatΣ∞ ` (¬ψ){ϕ̃(r)(~x←~a)}. But
(¬ψ){ϕ̃(r)(~x←~a)} and¬(ψ{ϕ̃(~x←~a)}) are the same formula. Contradiction. Thus,
Σ∞ 6` ¬ψ and, by maximality,Σ∞ ` ψ.

12. As before, note that the substitution is applied to the formula occurrenceϕ̃(h + 1) only.
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(iiω) Assume[M ], ~x, ψ, ϕ̃ satisfy the conditions in(iiω), and letΣ∞ ` ψ{ϕ̃(~x←~a)}
for all sequences~a (of the right length). IfΣr ∪ τ(r) is consistent, then by (Case B)
of the construction there exists a sequence~a such thatΣ∞ ` (¬ψ){ϕ̃(r)(~x←~a)}. As
before, this leads to a contradiction. Thus,Σ∞ 6` ¬ψ and, by maximality,Σ∞ ` ψ.

Since we can apply the same argument for all other labels ofψ, we conclude
thatΣ∞ is ω-complete.

We now state this result officially.

LEMMA 45. — Let Σ be a consistent set inLSMA(k). We can find a saturated set of

(L+)SMA(k) which is an extension ofΣ.

DEFINITION 46 (CANONICAL FRAME). —

Thecanonical frameKC for (L+)SMA(k) is frame〈WC , ActC ;RC〉 where:

- WC is the set of all saturated sets in(L+)SMA(k);

- ActC is the set of constants in(L+)SMA(k), i.e.ActC = ActId+;

- For s, s′ ∈ WC and ak-action

(
a11 ... a1n

...
...

ak1 ... akn

)
for (L+)SMA(k), the relationRC

is defined by the following condition:

(s, s′) ∈ RC

(
a11 ... a1n

...
...

ak1 ... akn

)
if and only if

{
ϕ |

[
a11 ... a1n

...
...

ak1 ... akn

]
ϕ ∈ s

}
⊂ s′.

DEFINITION 47 (CANONICAL MODEL). —

Thecanonical modelMC for (L+)SMA(k) is obtained by augmenting the canonical
frameKC with a valuation functionJ·KC whereJ·KC is defined onϕ ∈ PropId by
JϕKC = {s | ϕ ∈ s} and it is defined to be the identity function onActId+.

We write〈WC , ActC ;RC ; J·KC〉 or, indifferently,〈KC , J·KC〉 for the canonical model.

By construction, anyk-actionA is also an operator incOP sinceA = JAKC in
the canonical model. We will take advantage of this double role ofk-actions and talk
informally of modal operators as instances of other operators.

Note that a saturated sets enjoys crucial properties like:

(i) ϕ 6∈ s if and only if¬ϕ ∈ s;
(ii) if ϕ→ ψ ∈ s andϕ ∈ s, thenψ ∈ s;

(iii) if ϕ→ ψ, ¬ψ both ins, then¬ϕ ∈ s;
(iv) if s ` ϕ, thenϕ ∈ s;
(v) if (∀IS) applies toψ{ϕ̃} ∈ s, thenψ{ϕ̃(~x←∀~y)} ∈ s;

(vi) if (∃ES) applies toψ{ϕ̃} ∈ s, thenψ{ϕ̃(~x←∃~y)} ∈ s;
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(vii) Let [A] be uniform and[M ] be ∀-uniform with (some or all) variables in~x:
if s ` [A](ψ → [M(~x←~b)]{~b/~x}ϕ) holds for any sequence~b of constants, thens `
[A](ψ → [M ]ϕ);
(viii) Let [A] be uniform, M(i1, j1) = ∃x1 , . . . , M(ip, jp) = ∃xp be all

the existential entries of[M ] and ~y some or all the universally quantified vari-
ables of M. Then, if there exist constantsa1, . . . , ap, such thats ` [A]¬(ψ →
[M(~x,~y←~a,~b)]{~a,~b/~x, ~y}ϕ) for all sequences~b of constants, thens ` [A]¬(ψ →
[M ]ϕ).

Properties (i)-(vi) hold true sinces is maximal and consistent; the remaining two
are special applications ofω-completeness.

THEOREM 48. — Let= be an environment andJ·KC the valuation function extended
over vOP as in Definition 22. For all uniform operators[A], [B]

RC(JABKC) = RC(JAKC) ◦RC(JBKC)

PROOF. — Without loss of generality, we assumeA,B ∈ cOP.

⊇) This inclusion follows by induction from axioms(SS) and(JS), and from the
definition of the frame relationRC overk-actions.

⊆) Assume(s, s′) ∈ RC(JABKC), that is,[AB]χ ∈ s impliesχ ∈ s′.
LetD = {ϕ | [A]ϕ ∈ s} and∆ = {ϕ | [A]ϕ ∈ s} ∪ {¬[B]ψ | ψ 6∈ s′}.

We begin by proving that∆ is consistent and that subsetD is ω-complete. Then,
we show thatD can be extended to a saturated set containing∆. In this way we
isolate a saturated sets′′ in (L+)SMA(k) such that(s, s′′) ∈ RC(JAKC) and(s′′, s′) ∈
RC(JBKC). Once this is done, by definition of relation◦, we conclude that(s, s′) ∈
RC(JABKC) implies(s, s′) ∈ RC(JAKC) ◦RC(JBKC).

CLAIM 49. — ∆ is consistent.

Suppose that∆ is not consistent. Choose{ϕ1, . . . , ϕp} ⊆ ∆ (p ≥ 0) such
that [A]ϕi ∈ s and{¬[B]ψ1, . . . ,¬[B]ψq} ⊆ ∆ (q ≥ 0) such thatψi 6∈ s′ with
{ϕ1, . . . , ϕp,¬[B]ψ1, . . . ,¬[B]ψq} not consistent. Putψ = ψ1 ∨ . . . ∨ ψq. Using
(KS), [B]ψ1 ∧ . . . ∧ [B]ψq → [B]ψ. By (MP ) and (PL), we haveϕ1 ∧ . . . ∧ ϕp →
[B]ψ from which, by (Nec) and (KS) again,[A]ϕ1 ∧ . . . ∧ [A]ϕp → [A][B]ψ. From
[A], [B] 6∈ qOP, (SS), and(JS), one shows[A][B]ψ ↔ [AB]ψ. This impliesψ ∈ s′
so that, by maximality, at least one amongψ1, . . . , ψq is in s′. Contradiction. Thus,
∆ is consistent. �(Claim 49)

The crucial step is to find an extension of∆ which is not only consistent butω-
complete as well. We build such an extension of∆ starting from setD = {ϕ | [A]ϕ ∈
s} which is alreadyω-complete as the following argument shows.

CLAIM 50. — D isω-complete.
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Assumeψ, [M ], ~x, ϕ̃ satisfy the conditions of(iω). If ψ{ϕ̃(~x←~a)} is in D, then
[A]ψ{ϕ̃(~x←~a)} ∈ s. This happens for all sequences~a (of the right length). Byω-
completeness ofs, we obtain[A]ψ{ϕ̃} ∈ s so that, by definition ofD, ψ{ϕ̃} ∈ D.
Analogously for(iiω). �(Claim 50)

LetF = {¬[B]ψ | ψ 6∈ s′} so that∆ = D ∪ F .

We now show how to extendD to a saturated sets′′ containingF .

Fix a listσ(1), σ(2), . . . of all formulas in(L+)SMA(k) (differently from the listτ
considered earlier, inσ each formula occurs only once). PutE0 = D, σ(h+ 1) = ψ,
and defineEh+1 by cases as follows:

(i) Let ψ be a formula with some negative∀-uniform operators (that is, with some
∀-uniform operators in negative position) not in the scope of other quantificational op-
erators or some positive∃-uniform operators not in the scope of other quantificational
operators (both conditions might hold).
For the sake of clarity, we present this case through an example. Assume that

a) there are two negative occurrences of∀-uniform operators, namely[M1] and
[M2] (possibly different occurrences of the same operator) with quantified variables
~x1 and~x2, respectively, and

b) there are two positive occurrences of∃-uniform operators, namely[N1] and
[N2] (possibly different occurrences of the same operator) with quantified variables~y1
and~y2, respectively;

c) there are no other quantificational operators inψ satisfying the same condi-
tions.

Let ϕ̃(M) be the smallest subformula ofψ with operatorM ∈ {M1,M2, N1, N2}.
If there exist sequences of terms~a1,~a2,~b1,~b2 such that

Eh ∪ F ∪ ψ ∪ ψ{ϕ̃(M1)(~x1←~a1), ϕ̃(M2)(~x2←~a2), ϕ̃(N1)(~y1←~b1)
, ϕ̃(N2)(~y2←~b2)

}
is consistent, then putEh+1 =def

Eh ∪ ψ ∪ ψ{ϕ̃(M1)(~x1←~a1), ϕ̃(M2)(~x2←~a2), ϕ̃(N1)(~y1←~b1)
, ϕ̃(N2)(~y2←~b2)

}.
PutEh+1 =def Eh, otherwise.

(ii) If ψ does not fall in the previous case andEh ∪ F ∪ ψ is not consistent, then
putEh+1 =def Eh.

(iii) If none of the above applies, putEh+1 =def Eh ∪ ψ.

CLAIM 51. — Eh is consistent andω-complete for allh.

SinceE0 = D ⊆ ∆ and ∆ is consistent (Claim 49), the construction above
guarantees thatEh is consistent for everyh. For the other property we proceed by
induction onh. We know from Claim 50 thatE0 = D is ω-complete. Suppose that
Eh is ω-complete. We showEh+1 is ω-complete as well. LetEh+1 = Eh ∪ ψ (for
Eh+1 obtained as in case (i) it suffices to apply the argument twice augmentingEh

with one formula at a time).
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Property(iω).
Let Eh ∪ ψ ` χ{ϕ̃(h+ 1)(~y←~a)} for all sequences~a (of the right length), where
ϕ̃(h+1) is a positive occurrence inχ of a∀-uniform operator with quantified variables
~y. Then,Eh ` ψ → χ{ϕ̃(h+ 1)(~y←~a)} for all ~a. Note thatϕ̃(h + 1) is positive in
ψ → χ. By ω-completeness ofEh, we obtainEh ` ψ → χ and, thus,Eh ∪ ψ ` χ.

Property(iiω).
Let Eh ∪ ψ ` χ{ϕ̃(h+ 1)(~x←~a)} for all sequences~a (of the right length), where
ϕ̃(h+1) is a negative occurrence of an operator with (one or more) existential entries.
Let~x be all its existentially quantified variables. Then,Eh ` ψ → χ{ϕ̃(h+ 1)(~x←~a)}
for all ~a. As before, we obtainEh ` ψ → χ and, thus,Eh ∪ ψ ` χ. � (Claim 51)

Finally, puts′′ =
⋃
Eh. We need to show:

(I) F ⊂ s′′ and

(II) s′′ is saturated.

(I) Let σ(h + 1) = ¬[B]χ ∈ F . Thus,Eh ∪ F ∪ σ(h + 1) = Eh ∪ F which
is consistent by construction. It suffices to showσ(h + 1) ∈ Eh+1. From the con-
struction, cases (ii) and (iii) are trivial. For case (i), without loss of generality, assume
that formula¬[B]χ has operator occurrences{M1,M2, N1, N2} as described in (i)
for ψ = ¬[B]χ. As before, let̃ϕ(M) be the smallest subformula of¬[B]χ containing
operatorM ∈ {M1,M2, N1, N2}.

We need to show that there are sequences~a1,~a2,~b1,~b2 such thatEh+1 = Eh ∪
¬[B]χ ∪ ¬[B]χ{ϕ̃(M1)(~x1←~a1), ϕ̃(M2)(~x2←~a2), ϕ̃(N1)(~y1←~b1)

, ϕ̃(N2)(~y2←~b2)
}.

Since ¬[B]χ ∈ F , then ¬χ ∈ s′. Thus, χ 6∈ s′. By ω-completeness,
¬χ{ϕ̃(M1)(~x1←~a1), ϕ̃(M2)(~x2←~a2), ϕ̃(N1)(~y1←~b1)

, ϕ̃(N2)(~y2←~b2)
} ∈ s′ for some

~a1,~a2,~b1,~b2.
Let γ = ¬[B]χ{ϕ̃(M1)(~x1←~a1), ϕ̃(M2)(~x2←~a2), ϕ̃(N1)(~y1←~b1)

, ϕ̃(N2)(~y2←~b2)
}.

Clearly,γ ∈ F thusEh ∪ F ∪ ¬[B]χ ∪ γ = Eh ∪ F which is consistent. According
to the construction rules, we have¬[B]χ ∈ Eh+1. We conclude thatF ⊂ s′′.

(II) From Claim 51 it follows thats′′ is consistent andω-complete. It remains to
show thats′′ is maximal.

Suppose not. Letψ 6∈ s′′ and assumes′′∪ψ is consistent . Sinceσ lists all formulas
in (L+)SMA(k), for some indexh we haveσ(h + 1) = ψ. Then,Eh = Eh+1. We
check if the three cases in the construction are compatible with this result:

Case (i). As before, we check this case through an example. Assumeψ contains
exactly two negative occurrences of∀-uniform operators (not in the scope of other
quantificational operators), namely[M1] and [M2] with quantified variables~x1 and
~x2, respectively; and exactly two positive occurrences of∃-uniform operators (not in
the scope of other quantificational operators), namely[N1] and [N2] with quantified
variables~y1 and~y2, respectively. Let̃ϕ(M) be the subformula ofψ corresponding to
labelM ∈ {M1,M2, N1, N2}.
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Sinceψ has not been included inEh+1, it must be that
Eh∪F ∪ψ ` ¬ψ{ϕ̃(M1)(~x1←~a1), ϕ̃(M2)(~x2←~a2), ϕ̃(N1)(~y1←~b1)

, ϕ̃(N2)(~y2←~b2)
} for

all sequences~a1,~a2,~b1,~b2, i.e.,
Eh ∪ F ` ψ → ¬ψ{ϕ̃(M1)(~x1←~a1), ϕ̃(M2)(~x2←~a2), ϕ̃(N1)(~y1←~b1)

, ϕ̃(N2)(~y2←~b2)
}

for all sequences~a1,~a2,~b1,~b2. SinceF ⊂ s′′, then
s′′ ` ψ → ¬ψ{ϕ̃(M1)(~x1←~a1), ϕ̃(M2)(~x2←~a2), ϕ̃(N1)(~y1←~b1)

, ϕ̃(N2)(~y2←~b2)
}.

But s′′ is ω-complete so that, by property(iω) on ϕ̃(M1), ϕ̃(M2) and property(iiω)
on ϕ̃(N1), ϕ̃(N2) (plus Lemma 44), one getss′′ ` ψ → ¬ψ. Thus,s′′ ∪ ψ is not
consistent. Contradiction.

Case (ii): The consistency ofs′′ ∪ ψ would contradictEh = Eh+1.

Case (iii): We get a contradiction fromψ 6∈ s′′. ■

From section 3.2, the canonical modelMC is a Kripke structure for multi-agent
systems.

Note that, while proving Theorem 48, we have applied an argument that yields
another important property. We isolate it here.

THEOREM 52. — Lets be a saturated set of formulas and considerΓ = {ψ | [A]ψ ∈
s}. Then,

Γ ` χ ⇐⇒ χ ∈ s′ for all s′ saturated withΓ ⊆ s′

PROOF. — (Left to Right) Suppose thatΓ ` χ. Then, there areϕ1, . . . , ϕn ∈ Γ
such thatϕ1, . . . , ϕn → χ in (L+)SMA(k). The very same proof then holds in alls′

containingΓ and, by the properties of saturated sets (see page 38),χ ∈ s′.

(Right to Left) Assume not, thenΓ ∪ ¬χ is consistent . From Claim 50 of The-
orem 48 we conclude thatΓ isω-complete as well. It remains to show that the consist-
ent andω-complete setΓ can be extended to a saturated sets′′ (in the same language)
containing formula¬χ. This result is obtained following the construction ofs′′ in the
proof of Theorem 48 where we substituteΓ for ∆ and{¬χ} for F . What changes is
the argument to prove¬χ ∈ s′′, i.e., case (I) in the theorem above.

Let F = {¬χ} and supposes′′ has been constructed following the work done in
the proof of the previous theorem. In particular,Eh ∪ F is consistent for allh. Let
σ(h + 1) = ¬χ. We show¬χ ∈ Eh+1. Suppose not. Case (ii) does not apply and
case (iii) gives immediatelyσ(h+ 1) ∈ Eh+1. Suppose now that¬χ falls under case
(i). If ¬χ 6∈ Eh+1, then for¬χ = ψ we have
Eh ∪ F ` ¬ψ{ϕ̃(M1)(~x1←~a1), ϕ̃(M2)(~x2←~a2), ϕ̃(N1)(~y1←~b1)

, ϕ̃(N2)(~y2←~b2)
} for all

sequences~a1,~a2,~b1,~b2, i.e.,
Eh ` ψ → ¬ψ{ϕ̃(M1)(~x1←~a1), ϕ̃(M2)(~x2←~a2), ϕ̃(N1)(~y1←~b1)

, ϕ̃(N2)(~y2←~b2)
}.

By ω-completeness ofEh, we getEh ` ψ → ¬ψ, i.e.,Eh ` ¬χ→ χ orEh ∪F ` χ,
contradicting the consistency ofEh ∪ F . Finally,¬χ ∈ Eh+1. ■
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We pause for a moment to verify an important property of the system.

PROPOSITION53. — Let= be an environment and[M ] an operator with~x all its
existentially quantified variables (possibly none), and~y all its universally quantified
variables (possibly none). Fix a states in the canonical modelMC and a formula

¬[M ]ϕ ∈ s

Then, for any sequence~a of constants there exist a sequence~b and a states′ such that

(s, s′) ∈ RC(JM(~x,~y←~a,~b)KC) and ¬{~a,~b/~x, ~y}ϕ ∈ s′

PROOF. — (Without loss of generality, let us assume[M ] has no parameter entry.)

Consider first a simple case. Let[M ] ∈ cOPandΣ = {ψ | [M ]ψ ∈ s}∪{¬ϕ}. By
(the proofs of) Theorem 48 and by Theorem 52,Σ is consistent and{ψ | [M ]ψ ∈ s}
is ω-complete. Following the proof of Theorem 52, one obtains a saturated extension
s′ (thus a state in the canonical model) such thatΣ ⊆ s′ and, thus,¬ϕ ∈ s′. At this
point (s, s′) ∈ RC(JMKC) follows fromΣ ⊆ s′ and the definition ofRC .

For the general case, let[M ] ∈ qOP. From the contrapositive of(∃IS) on¬[M ]ϕ
one gets¬[M(~x←~a)]{~a/~x}ϕ ∈ s for all sequences~a of the right length. Note that
[M(~x←~a)] has no existential entry.

Sinces is ω-complete, from¬[M(~x←~a)]{~a/~x}ϕ ∈ s it follows that there exists~b

such that¬[M(~x,~y←~a,~b)]{~a,~b/~x, ~y}ϕ ∈ s. Note that[M(~x,~y←~a,~b)] ∈ cOP .

Let [A] = [M(~x,~y←~a,~b)]. One shows thatΓA = {ψ | [A]ψ ∈ s}∪{¬{~a,~b/~x, ~y}ϕ}
is consistent andω-complete following (the proofs of) Theorem 48 and Theorem 52.
Also, it follows that there exists a saturated extensions′A (a state in the canonical
model) such thatΓA ⊆ s′A and, thus,¬{~a,~b/~x, ~y}ϕ ∈ s′A. FromΓA ⊆ s′A and the
definition ofRC , we conclude that(s, s′A) ∈ RC(JAKC). ■

We can now prove thetruth lemma.

THEOREM 54. — For any states inMC and any formulaϕ in the language:

MC , s |= ϕ if and only ifϕ ∈ s

PROOF. — We proceed by induction on the complexity ofϕ.

1) Letϕ = p0 be a proposition identifier.
By definition of the canonical model,MC , s |= p0 if and only if p0 ∈ s.

2) Letϕ = ¬ψ.
MC , s |= ¬ψ if and only ifMC , s 6|= ψ. By inductive hypothesis, this happens if and
only if ψ 6∈ s. Sinces maximal and consistent, the latter is equivalent to¬ψ ∈ s.
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3) Letϕ = χ→ ψ.
MC , s |= χ→ ψ if and only ifMC , s 6|= χ orMC , s |= ψ. By inductive hypothesis,
this happens if and only ifχ 6∈ s or ψ ∈ s. Sinces maximal and consistent, this is is
equivalent toχ→ ψ ∈ s.

4) Letϕ = [A]ψ with [A] =

a1

...
ak

 ∈ cOP∪ vOP.

(Left to right) LetMC , s |= [A]ψ. If (s, s′) ∈ RC(JAKC), thenMC , s′ |= ψ.
By inductive hypothesis, this happens if and only ifψ ∈ s′ for all suchs′. By
definition ofRC , ψ ∈ s′ for any saturated extensions′ of {ϕ | [A]ϕ ∈ s}. By The-
orem 52, there existϕ1, . . . , ϕr ∈ {ϕ | [A]ϕ ∈ s} such that̀ (ϕ1 ∧ . . . ∧ ϕr) → ψ.
From Propositions 36 and 37,̀ ([A]ϕ1 ∧ . . . ∧ [A]ϕr) → [A]ψ. We conclude
{[A]ϕ1, . . . , [A]ϕr} ` [A]ψ. From assumptionϕ1, . . . , ϕr ∈ {ϕ | [A]ϕ ∈ s}, it fol-
lows [A]ϕ1, . . . , [A]ϕr ∈ s. Finally, [A]ψ ∈ s.

(Right to left) If [A]ψ ∈ s and{ϕ | [A]ϕ ∈ s} ⊂ s′, thenψ ∈ s′. Since this
happens for anys′ such that(s, s′) ∈ RC(JAKC), we concludeMC , s |= [A]ψ.

5) Letϕ = [M ]ψ with [M ] = [AB] ∈ cOP∪ vOP.

[By (inner) induction on the number of columns with basic case 4).]

First, recall from Theorem 48 that for all(s, s′) ∈ RC(JABKC) there existss′′ such
that(s, s′′) ∈ RC(JAKC) and(s′′, s′) ∈ RC(JBKC).

Clearly,MC , s |= [AB]ψ if and only if for all (s, s′) ∈ RC(JABKC),MC , s′ |= ψ.
From above, this holds if and only if for all(s, s′) ∈ RC(JABKC), there existss′′ such
that(s, s′′) ∈ RC(JAKC), (s′′, s′) ∈ RC(JBKC), andMC , s′′ |= [B]ψ.

By inner inductive hypothesis,[B]ψ ∈ s′′. Furthermore,{χ | [A]χ ∈ s} ⊂ s′′

for all suchs′′ and so[A][B]ψ ∈ s. From this,MC , s |= [AB]ψ if and only if
[A][B]ψ ∈ s. By (SS) and (JS), [A][B]ψ ∈ s if and only if [AB]ψ ∈ s, which is to
say,MC , s |= [AB]ψ if and only if [AB]ψ ∈ s.

6) Letϕ = [M ]ψ with [M ] ∈ qOP.

a) Assume[M ] without existential entries and let~x be all its universally quan-
tified variables.

(Left to right)MC , s |= [M ]ψ if and only if for any sequence~a of constants
(of the right length), ifA = M(~x←~a), thenMC , s |= [A]{~a/~x}ψ. From cases4)
and5), for any suchA,MC , s |= [A]{~a/~x}ψ if and only if [A]{~a/~x}ψ ∈ s. Sinces
is ω-complete, if[A]{~a/~x}ψ ∈ s for all ~a of the right length, then[M ]ψ ∈ s.

(Right to left) The result follows directly from(∀ES), cases4) and5), and the
semantic clauses.

b) Assume[M ] has existential entries and let~x be all its existentially quantified
variables.

(Left to right) There exist~a such thatMC , s |= [M(~x←~a)]{~a/~x}ψ Now, if
[M(~x←~a)] is quantificational we apply case a) above, while cases4)-5) are used if
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[M(~x←~a)] is uniform. In this way we obtain:MC , s |= [M(~x←~a)]{~a/~x}ψ if and only
if [M(~x←~a)]{~a/~x}ψ ∈ s. From the latter, by applying (∃IS), one gets[M ]ψ ∈ s.

(Right to left) Sinces is saturated, there exists~a such that[M(~x←~a)]{~a/~x}ψ ∈
s. If [M(~x←~a)] is quantificational, then apply case a) above, otherwise apply cases4)-
5). We obtainMC , s |= [M(~x←~a)]{~a/~x}ψ. From the semantics,MC , s |= [M ]ψ.

■

The above results suffice to establish the strong completeness of the logic with
respect to multi-agent Kripke frames.

Let K be the class of multi-agent Kripke frames fork. GivenΣ ⊆ LSMA(k), we
write Σ |=K ϕ to mean thatϕ is valid in each model forΣ, then

COROLLARY 55. — Let Σ ∪ ϕ be a set of formulas in some languageLSMA(k) (Σ
possibly empty), then

Σ |=K ϕ if and only ifΣ ` ϕ

4.3. Decidability

Decidability guarantees that there is an algorithm which can answer any question
stated in the language. In the area of knowledge representation and reasoning, one of
the reasons for the success of the modal approach over the years is that a surprising
number of modal logic systems are indeed decidable. We now turn to investigate this
issue with respect to our logicLSMA. At first, one may be discouraged by the fact
that, generally speaking, modal logics extended with first-order quantifiers are not
decidable. This is a consequence of the fact that standard first-order logic is already
not decidable. However, in our case quantifiers play a particular role in the whole
system because of the restriction to occur only within modalities. We will come back
to this observation in section 5.

Our goal is to prove thatLSMA is decidable. More precisely, we show that for any
fixed k, there exists an algorithm which (correctly) establishes whether a formula in
the languageLSMA(k) is satisfied in some model for the logicLSMA(k). To reach the
conclusion, we will make use of the decidability results for the propositional system
mPDL (see section 2), the proof of which relies on the finite model property and the
filtration technique. In short, given a formulaϕ of LSMA(k) we will show how to
obtain a variable-free formulaψ whose decidability can be checked inmPDL. The
result onψ will allow us to establish the result onϕ itself. The overall procedure
guarantees the decidability of the logicLSMA(k).

Fix a formulaϕ ∈ LSMA. Without loss of generality, we assume that inϕ no
variable occurs quantified more than once and that a variable cannot have both free
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and bound occurrences. As a consequence, a quantificational operator occurs at most
once inϕ. Also, we assume that the number of elements inActId is higher than the
number of symbols inϕ.

Our first step consists in isolating enough action identifiers to witness free and
quantified variables inϕ. We writedegv(ϕ) for the number of free variables inϕ, and
for each operator[M ] occurring inϕ we writedeg∃(M) for the number of existential
entries inM . Let ActIdϕ = {a ∈ ActId | a occurs inϕ} and fix a setB such that:

a) ActIdϕ ∩B = ∅ and

b) |B| = degv(ϕ) + ΣM∈ϕdeg∃(M)
whereM ∈ ϕ stands for “M occurs inϕ”.

(Note thatActIdϕ ∪B is finite. Also, it is non-empty wheneverϕ is modal.)

The idea is to restrict our attention to the language with action identifiers in set
ActIdϕ ∪ B only, and to consider a propositional formula that is obtained fromϕ by
using combinations of elements inActIdϕ ∪B to instantiate the variables. In the next
steps, we show how to construct such a formula.

The functiongϕ,B over the formulas ofLSMA with action identifiers fromActIdϕ,
is defined recursively by the following clauses (we omit indicesϕ,B since no confu-
sion arises):

g(p) = p for p atomic
g(¬ψ) = ¬g(ψ)

g(ψ → χ) = g(ψ)→ g(χ)
g([M ]ψ) = [M ]g(ψ) for [M ] uniform
g([M ]ψ) =

∧
~b[M(~y←~b)]{~b/~y}g(ψ) for [M ] ∀-uniform inqOP

g([M ]ψ) =
∨

~a[M(~x←~a)]{~a/~x}g(ψ) for [M ] ∃-uniform inqOP
g([M ]ψ) =

∨
~a

∧
~b[M(~x,~y←~a,~b)]{~a,~b/~x, ~y}g(ψ) for the other cases

where

i) ~x are all existentially quantified variables ofM (if any),

ii) ~y are all universally quantified variables ofM (if any), and

iii) ~a,~b ∈ ActIdϕ ∪B are of the same length of~x and~y, respectively.

Finally, letg∗ be given by

g∗(ψ) =
∨

~c ∈ ActIdϕ∪B

{~c/~z}g(ψ)

where~z collects all the free variables ofg(ψ).
If g(ψ) contains no variable, then putg∗(ψ) = g(ψ).

Clearly,g∗(ϕ) does not contain any variable, i.e., it is a formula in the language
of mPDL. Furthermore, we know thatmPDLenjoys the finite model property and is
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decidable (see Proposition 13). Then, we can use filtration to establish whetherg∗(ϕ)
is satisfiable in a model formPDL, that is, if there exists a state of amPDL-model at
whichϕ is true. Since a model formPDLcan be turned into a model forLSMA (and
vice versa) preserving the truth of the propositional formulas, the same conclusion
holds by consideringg∗(ϕ) as a formula ofLSMA. It remains to show thatg∗(ϕ)
holds at a state of some model if and only ifϕ does.

PROPOSITION56. — g∗(ϕ) is satisfiable if and only ifϕ is.

PROOF. — The left to right direction is easy. By assumption,g∗(ϕ) holds at a finite
model with ActId = ActIdϕ ∪ B. Then, it suffices to read offg∗(ϕ) the action
identifiers that serve as instances for the free and existentially quantifed variables in
ϕ. (Regarding the universally quantified variables, note that each disjunct ofg∗(ϕ)
includes all the instance combinations of elements inActIdϕ ∪B.) Trivially, ϕ holds
at the very same state in virtue of those action identifiers.

For the right to left direction. Assumeϕ is satisfiable. We show thatg∗(ϕ) is
satisfiable as well. (Without loss of generality, below we assume thatB andActId are
disjoint sets.)

Fix a states in the canonical modelMC such thatϕ holds at it.

DEFINITION 57 (INSTANCE OF A FORMULA AT A STATEs). —

A formulaφ is an instance of a formulaϑ at states of a modelM, writtenφ ∈
FInstM,s(ϑ), if the following conditions are satisfied

1) letϑ be atomic, thenφ = ϑ,

2) letϑ = ¬χ, thenφ = ¬γ with γ ∈ FInstM,s(χ),
3) letϑ = χ0 → χ1, thenφ = γ0 → γ1

with γ0 ∈ FInstM,s(χ0) andγ1 ∈ FInstM,s(χ1),

4) letϑ = [M ]χ, thenφ = {~a/~x}([M(~y←~b)]{~b/~y}γ)
where
~x collects all and only the variables free inϑ (if any);
~y collects all and only the quantified variables in[M ] (if any);
JaiK = JxiK for all i;
ai, bj ∈ ActId for all i, j; and
{~a,~b/~x, ~y}γ ∈ FInstM,s(χ).

From the definition, the number of instances of a formula with variables depends
on the action identifiers in the language. Since we concentrate on formula instances in
the canonical model, for each action inActC an identifier inActId is available. Also,
note that from the definition we haveFInstM,s(ϑ) ⊆ mPDL.

Clearly, ifϕ is satisfiable at a states of the canonical model, then at least one of its
instances is satisfiable ats as well. Letψ be such an instance. LetC contain all and
only actions identifiers that are inψ but not inActIdϕ. Note that|C| ≤ |B|. Thus, we
can find a setB◦ ⊂ ActId such thatC ⊆ B◦ andActIdϕ ∩ B◦ = ∅, and a bijection
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f : B◦ → B. Letψ◦ be obtained fromψ by substituting each action identifiera ∈ B◦
with f(a) and letM◦ be obtained fromMC by putting

(i) JaK◦ = JaK for a 6∈ B◦,
(ii) Jf(a)K◦ = JaK for a ∈ B◦.

The remaining changes inM◦ are at this point obvious. Informally, we have just
renamed a finite number of action identifiers throughout the canonical model. Clearly,
M◦ is isomorphic toMC . Then,ψ◦ is satisfied inM◦ and, by construction,ψ◦ is a
disjunct ing∗(ϕ) and so we are done. ■

We have thus proven the decidability of the logic.

THEOREM 58. — LSMA(k) is decidable with respect toK.

5. LSMA and normal modal logics

The proof of completeness we presented in section 4.2 is based on a strategy that,
when applied to first-order modal logic, relies on the adoption of theBarcan formulas.
These, in the traditional modal language, correspond to implication

(BF ) ∀x� ϕ→ �∀xϕ

and its converse. Their role is to force the domain of quantification to remain fixed
across all states in the frame.

As we already pointed out, quantification has a different purpose in our logic.
Nevertheless, our system relies on the assumption that the domain of quantification
Act does not change if one moves from one state to another in a Kripke frame for
multi-agent systems. Since quantification and modality are strictly intertwined in this
language and the Barcan formulas are not expressible in the standard way, one may
wonder where the axiomatization imposes the corresponding constraint on the set of
actionsAct. Looking at the deductive system, one sees that the role of the Barcan
formulas in our multi-agent logic is taken by theSplit(SS) and theJoin(JS) schemas.
Schema(SS) is strongly related to formula∀x�ϕ→ �∀xϕ as one can see comparing
the semantics of the two subformulas inLSMA. In short, this schema says that an action
available at the initial state, where the[MN ] operator is evaluated, is also available
at the state where the single operator[N ] is evaluated.(JS) provides the other link.
Leaving aside the restrictions (which are due mainly to “information issues” for the
agents and not to properties of the states themselves), this latter schema states that it
makes no difference to quantify on actions at a later state (when we instantiate[N ] of
the antecedent subformula) or directly at the initial state (where we instantiate[MN ]).
Semantically, this means that every action available at a later state is already present
at the initial one.

More generally, the techniques that allowed us to prove completeness and decidab-
ility of LSMA have been developed for modal normal logics. But, strictly speaking, our
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logical system is not normal. We restricted the application of axiom schema(KS) to a
subset of the modal operators, namely the set of∀-uniform operators, simply because
(KS) fails when there are existential entries. Nevertheless, this mismatch is only ap-
parent. Looking closely, the applicability of these methods is guaranteed by the fact
that the logicLSMA, being built on top of the multi-normal propositional logicmPDL,
has a natural interpretation on frames. The constant operators lead to the adoption of
multi-agent Kripke frames and, as a consequence, of the standard techniques available
on frames. On this specific issue, the quantificational modal operators have a marginal
role. They can be seen as specialsets of constant operatorsand, as such, they do not
affect the adopted notion of frame on which the operators’ interpretation relies.

Frame analysis forLSMA

If the above observations are correct, one surmises that other properties of propos-
itional modal logics are preserved in the richer systemLSMA. We provide a simple
example by considering classical frame analysis.

A few formulas of propositional (normal) modal logic have attracted much atten-
tion over the years for their relationship with classes of standard Kripke frames as well
as for their relevance in applied logics. Among them, the following schemas deserve
mention:

D. �ϕ→ ¬� ¬ϕ
T. �ϕ→ ϕ

B. ϕ→ �¬� ¬ϕ
4. �ϕ→ � � ϕ

5. ¬� ϕ→ �¬� ϕ

In our multi-agent language, these formulas correspond to ([A] ∈ cOP ):

Dm. [A]ϕ→ ¬[A]¬ϕ
Tm. [A]ϕ→ ϕ

Bm. ϕ→ [A]¬[A]¬ϕ
4m. [A]ϕ→ [A][A]ϕ
5m. ¬[A]ϕ→ [A]¬[A]ϕ

It can be shown [CHE 80] that normal modal logic is determined by some special
class of standard Kripke frames depending on which of the above formulas is added as
an axiom in the logic. Here is the list of axioms and corresponding classes of standard
Kripke frames (see [CHE 80] for a complete discussion):
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D − standard serial frames
T − standard reflexive frames
B − standard symmetric frames
4 − standard transitive frames
5 − standard euclidean frames

These classical results rely on the normality property of the modalities, so they
provide an interesting test for our case. Basically, we want to see if these results can
be generalized to our quantificational logic. First, we analyze the relationship between
serial Kripke frames and the logicLSMA enriched with schemaDm and, from this
result, we obtain a general statement for the other cases as well.

Recall that a frame〈W,Act ;R〉 is serial if for each states ∈W and each constant
operator[A], the set{s′ | (s, s′) ∈ R(JAK)} is non-empty. Then,

LEMMA 59. — Dm is valid in (multi-agent) serial Kripke frames.

PROOF. — Fix a modelM for LSMA, a states in it, and an operator[A] ∈ cOP .
AssumeM, s,= |= [A]ϕ. We show thatM, s,= |= ¬[A]¬ϕ. By assumption, if
(s, s′) ∈ R(JAKM) thenM, s′,= |= ϕ. SinceM is serial, there existss′ such that
(s, s′) ∈ R(JAKM). Then, for suchs′ we haveM, s′,= 6|= ¬ϕ, i.e.,M, s,= 6|=
[A]¬ϕ. We conclude thatM, s,= |= ¬[A]¬ϕ. ■

LEMMA 60. — LetMDC be the canonical model forLSMA ∪ Dm (for a givenk).
Then,MDC is serial.

PROOF. — We need to show that for every saturated sets (where consistency is
now stated with respect toLSMA ∪ Dm) and constant operator[A], there exists a
saturated sets′ such that{ϕ | [A]ϕ ∈ s} ⊆ s′. For this, it suffices to establish that
Γ = {ϕ | [A]ϕ ∈ s} is consistent with respect toLSMA∪Dm. If not, Γ `LSMA∪Dm

⊥.
Then, there exist formulasϕ1, . . . , ϕn ∈ Γ such that̀ LSMA∪Dm

(ϕ1∧. . .∧ϕn)→ ⊥.

Using(KS), (Nec), and propositional logic (see Theorem 4.48), we have`LSMA∪Dm

([A]ϕ1∧ . . .∧ [A]ϕn)→ [A]⊥. Then, by the application of (MP) andDm, one shows
`LSMA∪Dm

([A]ϕ1 ∧ . . . ∧ [A]ϕn) → ¬[A]¬⊥. SinceΓ containsϕ1, . . . , ϕn, then
{[A]ϕ1, . . . , [A]ϕn} ⊂ s, i.e.,¬[A]¬⊥ ∈ s. By (Nec),[A]¬⊥ ∈ s also. Thus,s is not
consistent, contradicting the assumption thats is saturated. ■

We have just proven that schemaDm is valid in serial Kripke frames and that the
canonical model has a serial Kripke frame. The proof of this result is obtained by a
simple adaptation of the completeness proof of the previous section analogously to
what happens for standard modal logic. Also, it is clear that quantificational operators
play no role in the new steps, namely Lemmas 59 and 60, introduced to force the
canonical model to be constructed over a serial frame. The rest of the completeness
proof is also unaffected byDm and the new constraint on frames.

The above lemmas onDm show how to modifying the proofs given in [CHE 80]
to deal with the remaining axiom schemas. In this way, one verifies that the above
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result is not an exception, it holds in all the listed cases. Furthermore, the result yields
decidability for the enriched logics since filtration preserves the properties we are
dealing with (see [CHE 80]).

Now, we can formally state our result.

THEOREM 61. — The logicLSMA(k) augmented with schemaDm(Tm, Bm, 4m, 5m)
is complete and decidable with respect to the class of serial (respectively: reflexive,
symmetric, transitive, euclidean) multi-agent Kripke frames fork.
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