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Abstract .  In this paper we present a progress report of the
OntoWordNet project, a research program aimed at achieving a formal
specification of WordNet. Within this program, we developed a hybrid
bottom-up top-down methodology to automatically extract association
relations from WordNet, and to interpret those associations in terms of
a set of conceptual relations, formally defined in the DOLCE
foundational ontology. Preliminary results provide us with the
conviction that a research program aiming to obtain a consistent,
modularized, and axiomatized ontology from WordNet can be
completed in acceptable time with the support of semi-automatic
techniques.

1. Introduction

The number of applications where WordNet (WN) is being used as an ontology rather
than as a mere lexical resource seems to be ever growing. Indeed, WordNet contains a
good coverage of both the lexical and conceptual palettes of the English language.
However, WordNet is serviceable as an ontology (in the sense of a theory expressed
in some logical language) if some of its lexical links are interpreted according to a
formal semantics that tells us something about the way we use a lexical item in some
context for some purpose. In other words, we need a formal specification of the
conceptualizations that are expressed by means of WordNet’s synsets1. A formal
specification requires a clear semantics for the primitives used to export WordNet

                                                  
1 Concept names in WordNet are called synsets, since the naming policy for a concept is a set

of synonym words, e.g. for sense 1 of car: { car, auto, automobile, machine, motorcar }. In
what follows, WN concepts are also referred to as synsets.



information into an ontology, and a methodology that explains how WordNet
information can be bootstrapped, mapped, refined, and modularized during the export
procedure.

The formal specification of WordNet is the objective of the so-called
OntoWordNet research program, started two years ago at the ISTC-CNR, and now
being extended with other partners, since collaborations have been established with
the universities of Princeton, Berlin and Roma. The program is detailed in section 2,
where we outline the main objectives and current achievements.
In this paper we describe a joint ongoing work of ISTC-CNR and the University of
Roma that has produced a methodology and some preliminary results for adding
axioms (DAML+OIL “restrictions”) to the concepts derived from WordNet synsets.
The methodology is hybrid because it employs both top-down techniques and tools
from formal ontology, and bottom-up techniques from computational linguistics and
machine learning. Section 3 presents a detailed description of the methodology.
The preliminary results, presented in section 4, seem very encouraging, and provide
us with the conviction that a research program aiming to obtain a consistent,
modularized, and axiomatized ontology from WordNet can be completed in
acceptable time with the support of semi-automatic techniques.

2. The OntoWordNet research program: objectives,
assumptions, and first achievements

The OntoWordNet project aims at producing a formal specification of WordNet as an
axiomatic theory (an ontology). To this end, WordNet is reorganized and enriched in
order to adhere to the following commitments:

• Logical commitment. WordNet synsets are transformed into logical types, with a
formal semantics for lexical relations. The WordNet lexicon is also separated
from the logical namespace.

• Ontological commitment. WordNet is transformed into a general-purpose
ontology library, with explicit categorial criteria, based on formal ontological
distinctions (Gangemi et al. 2001). For example, the distinctions enable a clear
separation between (kinds of) concept-synsets, relation-synsets, meta-property-
synsets, and enable the instantiation of individual-synsets. Moreover, such formal
ontological principles facilitate the axiomatic enrichment of the ontology library.

• Contextual commitment. WordNet is modularized according to knowledge-
oriented domains of interest. The modules constitute a partial order.

• Semiotic commitment. WordNet lexicon is linked to text-oriented (or speech act-
oriented) domains of interest, with lexical items ordered by preference,
frequency, combinatorial relevance, etc.

A set of logical commitments has been introduced in WordNet through
methodological assumptions that are described in (Gangemi et al. 2002). The
hyperonymy relation in WN is basically interpreted as formal subsumption, although
hyperonymy for concepts referring to individuals (geographical names, characters,



some techniques, etc.) is interpreted as instantiation. This will be referred as
assumption A1 (“hyperonymy as synset subsumption”). For example, the concept
retrospective#1 has the hyperonym art_exhibition#1, which is logically represented
as:

"x. Retrospective(x) Æ Art_Exhibition(x),

while the hyperonymy link between the gemini#1 and constellation#1 is represented
as an instantiation:

Constellation(Gemini)

WordNet’s ontological commitments are more demanding to be explicitated, but
many results are already available. For example, an incremental methodology has
been adopted, reusing the DOLCE foundational ontology (Gangemi et al. 2002), in
order to revise or to reorganize WordNet synset taxonomies and relations (see also
paragraph 3.2.1). Substantial work has been done on the refinement of the
hyponym/hyperonym relations, which have being investigated since several years.
WordNet synonymy is a relation between words, not concepts, therefore we should
assume that the synonymy relation (synsets in WordNet) is an equivalence class of
words (or phrases), sharing the same meaning within an ontology. Consequently, two
words are synonyms when their intended meaning in WordNet is the same. This will
be referred to as assumption A2 (“synset as meaning equivalence class”).
However, we have no formal definition of words in WordNet that allows us to create
equivalence classes (synsets) analytically (i.e., to state semantic equivalences).
Instead, we have pre-formal synsets that have been validated by lexicographers with
an intuition that could be formalized as semantic equivalence. Part of this intuition is
conveyed by textual definitions (called glosses). No claim of completeness is made
though. This will be referred as assumption A3 (“glosses as axiomatizations”). In this
paper we are trying to formalize such intuition.
A related assumption that we make is that words in glosses are used in a way
consistent to the WordNet synsets. This will be referred as assumption A4 (“glosses
are synset-consistent”). A4 lets us assume also that the informal theory underlying
synsets, hyperonymy relations, and glosses, can be formalized against a finite
signature (the set of WN synsets), and a set of axioms derived from the associations
(A-links) between any synset S and the synsets that can be associated to the words
used in the gloss of S. This is dependent on A3 and A4, and may be referred as
assumption A5 (“A-links as conceptual relations”).
The revision of WordNet synset taxonomies is still ongoing, but it is already usable to
carry out novel experiments. For example, the WEBKB-22 project is using the
preliminary results of our work.

Contextual and semiotic commitments are very partially implemented, although some
resources and the methodologies to exploit them are available. For example,
contextual information could be extracted using the so-called domain labels defined
                                                  
2 http://meganesia.int.gu.edu.au/~phmartin/WebKB/doc/wn
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Foundational (order of 100)
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Domain Ontology
(order of 103)
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in (Miller et al. 1993) and (Magnini and Cavaglia, 2000). Domain labels have been
associated to WordNet 1.6 synset, and we are currently analyzing and refining this
information.
Domain labels are being exploited in order to create a partial order of ontological
modules that is consistent with the actual use of the lexicon within real world corpora.
To this purpose, we are using both foundational ontologies (top-down reorganization),
and Web catalogues (bottom-up reorganization).

Figure 1 shows the “layers” in which the OntoWordNet ontology library is being
organized. The foundational layer contains modules including domain-independent
concepts, relations, and meta-properties. The core layer contains modules including
generic concept and relations for a given domain of interest. The domain layer
contains modules including domain-oriented instances, concepts, and relations. This
layer can be automatically populated by an ontology extension technique,
implemented in the OntoLearn system (Navigli et al. 2003).

Figure 1. The three levels of generality of a Domain Ontology.

3. Semi-automatic axiomatization of WordNet

The task of axiomatizing WordNet, starting from assumptions A1-A5 outlined in the
previous section, requires that the informal definition in a synset gloss be transformed
in a logical form. To this end, first, words in a gloss must be disambiguated, i.e.
replaced by their appropriate synsets. This first step provides us with pairs of generic
semantic associations (A-links) between a synset and the synsets of its gloss.
Secondly, A-links must be interpreted in terms of more precise, formally defined
semantic relations. The inventory of semantic relations is selected or specialized from
the foundational ontology DOLCE, as detailed later, since in WordNet only a limited
set of relations are used, that are partly ontological, partly lexical in nature. For
example, part_of (meronymy in WordNet) and kind_of (hyponymy in WordNet) are
typical semantic relations, while antonymy (e.g. liberal and conservative) and
pertonymy (e.g slow and slowly) are lexical relations. Furthermore, WordNet relations
are not axiomatized, nor are they used in a fully consistent way.
To summarize, the objective of the method described in this section is to:



• automatically extract a number of semantic relations implicitly encoded in
WordNet, i.e. the relations holding between a synset and the synsets in its gloss.

• (semi)-automatically interpret and axiomatize these relations.

For example, sense 1 of driver has the following gloss “the operator of a motor
vehicle”. The appropriate sense of operator is #2: operator, manipulator (“an agent
that operates some apparatus or machine”), while motor vehicle is monosemous:
motor vehicle, automotive vehicle (“a self-propelled wheeled vehicle that does not run
on rails”).
After automatic sense disambiguation, we (hopefully) learn that there exists an A-link
between driver#1 and operator#2, and between driver#1 and motor vehicle#1.
Subsequently, given a set of axiomatized semantic relations in DOLCE, we must
select the relation that best fits the semantic restrictions on the relation universes
(domain and co-domain, or range). For example, given an A-link between driver#1
and motor vehicle#1, the best fitting relation is agentive-co-participation (Figure 2),
whose definition is:

AG_CO_PCP(x,y) =df CO_PCP(x,y) Ÿ Agentive_Physical_Object(x) Ÿ
    Ÿ Non_Agentive_Functional_Object(y)

driver#1 motor vehicle#1

AG_CO_PCP

"the operator of a
motor vehicle"

i
s
-
a

operator#1

i
s
-
a

vehicle#1

Figure 2. An example of semantic relation.

The definition says that agentive co-participation is a relation of mutual participation
(participation of two objects in the same event), with the domain restricted to
“ Ag e n t i v e _ P h y s i c a l _ Ob j e c t ”  a n d  t h e  r a n g e  r e s t r i c t e d  t o
“Non_Agentive_Functional_Object”.
Domain and range in a conceptual relation definition are established in terms of the
DOLCE ontology. Consequently, another necessary step of our method is to re-link at
least some of the higher level nodes in WordNet with the DOLCE upper ontology.
In the following sub-sections we detail the procedures for gloss disambiguation,
WordNet re-linking, and selection of conceptual relations.



3.1 Bottom-up learning of association links.

The first step is a bottom-up procedure that analyses the NL definitions (glosses) in
WordNet and creates the A-links.
For each gloss (i.e., linguistic concept definition), we perform the following automatic
tasks:
a) POS-tagging of glosses (using the ARIOSTO NL processor) and extraction of
relevant words;
b) Disambiguation of glosses by the algorithm described hereafter;
c) Creation of explicit "association" links (A-links) from synsets found in glosses to
synsets to which glosses belong.

3.1.1 Description of the gloss disambiguation algorithm

We developed a greedy algorithm for gloss disambiguation that relies on a set of
heuristic rules and is based on multiple, incremental iterations. A simplified formal
description of the algorithm is in Figure 3.

The algorithm takes as input the synset S  whose gloss G  we want to
disambiguate.

Two sets are used, P  and D . D  is a set of disambiguated synsets, initially
including only the synset S. P is a set of terms to be disambiguated, initially
containing all the terms from gloss G  and from the glosses {G’} of the direct
hyperonyms of S. As clarified later, adding {G’} provides a richer context for
semantic disambiguation. The term list is obtained using our NL processor to
lemmatize words, and then removing irrelevant words. We use standard information
retrieval techniques (e.g stop words) to identify irrelevant terms.

When, at each iteration of the algorithm, we disambiguate some of the terms in
P, we remove them from P and add their interpretation (i.e. synsets) to the set D.
Thus, at each step, we can distinguish between pending and disambiguated terms
(respectively the sets P and D). Notice again that P is a set of terms, while D contains
synsets.

a) Find monosemous terms
The first step of the algorithm is to remove monosemous terms from P (those

with a unique synset) and include their unique interpretation in the set D.

b) Disambiguate polysemous terms
Then, the core iterative section of the algorithm starts. The objective is to detect

semantic relations between some of the synsets in D  and some of the synsets
associated to the terms in P. Let S’ be a synset in D (an already chosen interpretation
of term t’) and S” one of the synsets of a polysemous term t” Œ  P  (i.e., t” is still
ambiguous). If a semantic relation is found between S’ and S”, then S” is added to D
and t” is removed from P.

To detect semantic relations between S’ and S”, we apply a set of heuristics
grouped in two classes, Path and Context, described in what follows. Some of these
heuristics have been suggested in (Milhalcea, 2001),



Path heuristics
The heuristics in class Path seek for semantic patterns between the node S’ and

the node S” in the WordNet semantic network. A pattern is a chain of nodes (synsets)
and arcs (directed semantic relations), where S’ and S” are at the extremes.

Formally, we define "' SS
R

nÆ as "' 1 SSSS n

RRR

≡ÆÆÆ K , that is a chain of n

instances of the relation R. We also define 
21,RR

Æ  as 
21
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Æ»Æ .

The symbols:
&%#~@

,,,, ÆÆÆÆÆ  respectively represent the following semantic
relations coded in WordNet 1.6: hyperonimy (kind_of), hyponymy  (has kind)
meronymy (part_of), holonymy (has_part), and similarity. Similarity is a generic
relation including near synonyms, adjectival clusters and antonyms. Finally, the gloss

relation TS
gloss

Æ indicates that the gloss of S includes a term t, and T is one of the
synsets of t.

We use the following heuristics to identify semantic paths (S’Œ  D , S ”  Œ
Synsets(t”), t” Œ P):

1 Hyperonymy path: if S’
@

nÆ S” choose S” as the right sense of t” (e.g., canoe#1
@

2Æ boat#1, i.e. a canoe is a kind of boat);

2 Hyperonymy/Meronymy path: if S ’
#@,
nÆ S” choose S” as the right sense of t”

(e.g., archipelago#1 
#

Æ  island#1);

3 Hyponymy/Holonymy path: if S’
,%~

nÆ S” choose S” as the right sense of t” (e.g.,

window#7 
%

Æ  computer screen#1);
4 Adjectival Similarity: if S” is in the same adjectival cluster than S’, choose S” as

the right sense of t”.

5 Parallelism: if exists a synset T such that S’
@

Æ  T 
@

¨ S”, choose S” as the right

sense of t” (for example, background#1 
@

Æ  scene#3 
@

¨  foreground#2);

Context heuristics
The Context heuristics use several available resources to detect co-occurrence
patterns in sentences and contextual clues to determine a semantic proximity between
S’ and S”. The following heuristics are defined:

1 Semantic co-occurrences: word pairs may help in the disambiguation task if they
always co-occur with the same senses within a tagged corpus. We use three
resources in order to look for co-occurrences, namely:



ß the SemCor corpus, a corpus where each word in a sentence is
assigned a sense selected from the WordNet sense inventory for that
word; an excerpt of a SemCor document follows:

Color#1 was delayed#1 until 1935, the widescreen#1 until the
early#1 fifties#1.
Movement#7 itself was#7 the chief#1 and often#1 the only#
attraction#4 of the primitive#1 movies#1 of the nineties#1.

ß the LDC corpus, a corpus where each document is a collection of
sentences having a certain word in common. The corpus provides a
sense tag for each occurrence of the word within the document.
Unfortunately, the number of documents (and therefore the number
of different tagged words) is limited to about 200. An example
taken from the document focused on the noun house follows:

Ten years ago, he had come to the house#2 to be interviewed.
Halfway across the house#1, he could have smelled her morning
perfume.

ß gloss examples: in WordNet, besides glosses, examples are
sometimes provided containing synsets rather than words. From
these examples, as for the LDC Corpus, a co-occurrence
information can be extracted. With respect to the LDC corpus,
WordNet provides examples for thousands of synsets, but just a few
for the same word. Some examples follow:

“Overnight accommodations#4 are available.”
“Is there intelligent#1 life in the universe?”
“An intelligent#1 question.”

As we said above, only the SemCor corpus provides a sense for each word in a
pair of adjacent words occurring in the corpus, while LDC and gloss examples
provide the right sense only for one of the terms.
In either case, we can use this information to choose the synset S” as the
interpretation of t” if the pair t’ t” occurs in the gloss and there is an agreement
among (at least two of) the three resources about the disambiguation of the pair
t’ t”. For example:
[…] Multnomah County may be short of general assistance money in its budget
to handle an unusually high summer#1 month#1's need […].
Later#1, Eckenfelder increased#2 the efficiency#1 of treatment#1 to between 75
and 85 percent#1 in the summer#1 months#1.
are sentences respectively from the LDC Corpus and SemCor. Since there is a
full agreement between the resources, one can easily disambiguate summer and
months in the gloss of summer_camp#1: “a site where care and activities are
provided for children during the summer months”.



2 Common domain labels: Domain labels are the result of a semiautomatic
methodology described in (Magnini and Cavaglia, 2000) for assigning domain
labels (e.g. tourism, zoology, sport..) to WordNet synsets3. This information can
be exploited to disambiguate those terms with the same domain labels of the
start synset S. Notice that a synset can be marked with many domain labels,
therefore the algorithm selects the interpretation S”  of t” if the following
conditions hold together (the factotum label is excluded because it is a sort of
topmost domain):

ß DomainLabels(S”) \ { factotum }Õ  DomainLabels (S) \ { factotum
};

ß There is no other interpretation S”’ of t” such that DomainLabels
(S”’) \ { factotum } Õ DomainLabels (S) \ { factotum }.

For example, boat#1 is defined as “a small vessel for travel on water”, both
boat#1 and travel#1 belong to the tourism domain and no other sense of travel
satisfies the conditions, so the first sense of travel can be chosen; similarly,
cable car#1 is defined as “a conveyance for passengers or freight on a cable
railway”, both cable car#1 and conveyance#1 belong to the transport domain
and no other sense of conveyance satisfies the conditions, so the first sense of
conveyance is selected.

c) Update D and P
During each iteration, the algorithm applies all the available heuristics in the

attempt of disambiguating some of the terms in P, using all the available synsets in D.
While this is not explicit in the simplified specification of Figure 3, the heuristics are
applied in a fixed order reflecting their importance, that has been experimentally
determined. For example, Context heuristics are applied after Path heuristics 1-5. At
the end of each iterative step, new synsets are added to D, and the correspondent
terms are deleted from P. The next iteration makes use of these new synsets in order
to possibly disambiguate other terms in P. Eventually, either P becomes empty, or no
new semantic relations can be found.

When the algorithm terminates, D \ { S } can be considered a first approximation
of a semantic definition of S. For mere gloss disambiguation purposes, the tagged
terms in the hyperonyms’ gloss are discarded, so that the resulting set (GlossSynsets)
now contains only interpretations of terms extracted from the gloss of S. At this stage,
we can only say that there is a semantic relation (A-link) between S and each of the
synsets in GlossSynsets .

A second, more precise approximation of a sound ontological definition for S is
obtained by determining the nature of the A-links connecting S with each concept in
D \ { S }. This is an ongoing task and is discussed in Section 4.

                                                  
3 Domain labels have been kindly made available by the IRST to our institution for research

purposes.



3.1.2 A running example

In the following, we present a sample execution of the algorithm on sense 1 of
retrospective. Its gloss defines the concept as “an exhibition of a representative
selection of an artist’s life work”, while its hyperonym, art exhibition#1, is defined as
“an exhibition of art objects (paintings or statues)”. Initially we have:

D = { retrospective#1 }
P = { work, object, exhibition, life, statue, artist, selection, representative, painting,
art }

The application of the monosemy step gives the following result:

D = { retrospective#1, statue#1, artist#1 }
P = { work, object, exhibition, life, selection, representative, painting, art }

because statue and artist are monosemous terms in WordNet. During the first
iteration, the algorithm finds three matching paths:

retrospective#1
@

2Æ exhibition#2, statue#1 
@

3Æ  art#1 and statue#1 
@

6Æ object#1

this leads to:

D = { retrospective#1, statue#1, artist#1, exhibition#2, object#1, art#1 }
P = { work, life, selection, representative, painting }

During the second iteration, an hyponymy/holonymy path is found:

art#1 
~

2Æ painting#1 (painting is a kind of art)

D = { retrospective#1, statue#1, artist#1, exhibition#2, object#1, art#1, painting#1 }
P = { work, life, selection, representative }

Since no new paths are found, the third iteration makes use of the LDC Corpus
to find the co-occurrence “artist life”, with sense 12 of life (biography, life history):

D  = { retrospective#1, statue#1, artist#1, exhibition#2, object#1, art#1, painting#1,
life#12 }
P = { work, selection, representative }

Notice that, during an iteration, the context heuristics are used only if the path
heuristics fail.

The algorithm stops because there are no additional matches. The chosen senses
concerning terms contained in the hyperonym’s gloss were of help during
disambiguation, but are now discarded. Thus we have:

GlossSynsets(retrospective#1) = { artist#1, exhibition#2, life#12 }



DisambiguateGloss(S)

{G already disambiguated? }
if (GlossSynset(S) ≠ Ø) return

{ S is the starting point }
D := { S }
{ disambiguation is applied the terms within
the gloss of S
  and the glosses of its direct hyperonyms }
P := Gloss(S) » Gloss(Hyper(S))

{look for synsets associated to monosemous
terms in P }
M := SynsetsFromMonosemousTerms(P)
D := D » M
{ ‘Terms’ returns the terms contained in the
gloss of M }
P := P \ Terms(M)

LastIteration:=D

{ until there is some heuristic to apply }
while(LastIteration ≠ Ø)
    NS := Ø { new chosen synsets for
disambiguating
              terms in the gloss of S }

        { for each just disambiguated synset S’}
        foreach (S’ Œ LastIteration)
            { look for connections between S’
              and the synsets to disambiguate }
            NS := NS » Path-heuristics(S’, P)

            NS := NS » Context-heuristics(S’, P)

        { D now contains all the new chosen
synsets from
          the last iteration }
        D := D » NS
        { remove the terms contained in the
gloss of NS }
        P := P \ Terms(NS)
        { these results will be used
          in the next iteration }
        LastIteration := NS

{ stores the synsets chosen for some terms
  in the gloss of S }
foreach S’ Œ D
    if (Terms(S’) « Gloss(S) ≠ Ø)
        GlossSynsets(S) := GlossSynsets(S) » {
S’ }

return GlossSynsets(S)

Figure 3. The disambiguation algorithm.

Figure 4 shows in dark gray the A-links between retrospective#1 and the synset of its
glosses, while in the light gray area are shown the synsets of the hyperonyms.



3.2 Top-down learning: formal ontologies and WordNet “sweetening”

In the top-down phase, the A-links extracted in the bottom-up phase are refined. A-
links are similar to RT (Related Term) relations in thesauri, which provide just a clue
of relatedness between pairs of thesaurus descriptors4. In fact, associations are
conceptually ambiguous, since we can only assume that there is some relatedness
between a synset and another synset extracted from the gloss analysis, but this
relatedness must be explicit, in order to understand if it is a hyperonymy relation, or
some other conceptual relation (e.g. part, participation, location, etc.).

retrospective#1

exhibition#2

artist#1life#12

object#1

statue#1

art#1

painting#1

Figure 4. A first approximation of a semantic definition of retrospective#1.

First of all, we need a shared set of conceptual relations to be considered as
candidates for A-links explicitation, otherwise the result is not easily reusable.
Secondly, these relations must be formally defined. In fact, as already pointed out at
the beginning of section 3, not only are A-links vague, but they also lack a formal
semantics: for example, if we decide (which seems reasonable) to represent
associations as binary relations –like DAML+OIL “properties”– is an association
symmetric? Does it hold for every instance, or only for some of the instances of the
classes derived from the associated synsets? Is it just a constraint on the applicability
of a relation to that pair of classes? Is the relation set a flat list, or there is a taxonomic
ordering?
To answer such questions, the shared set of relations should be defined in a logical
language using a formal semantics.
Since WordNet is a general-purpose resource, the formal shared set of relations
should also be general enough, based on domain-independent principles, but still
flexible, in order to be easily maintained and negotiated.

                                                  
4 A-links have an advantage over RT relations, because A-links are directed, while RT are

symmetric relations. A-links are directed because we assume that the links hold from a
source synset to a synset extracted from its gloss.



3.2.1 The DOLCE descriptive ontology

A proposal in this direction is provided by the WonderWeb5 project Foundational
Ontology Library (WFOL), which will contain a library including both compatible
and alternative modules including domain-independent concepts and relations. A
recently defined module that accomplishes the abovementioned requirements is
DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering).
DOLCE is expressed in an S5 modal logic (Masolo et al. 2002), and has counterparts
in computational logics, such as KIF, LOOM, RACER, DAML+OIL, and OWL. The
non-KIF counterparts implement a reduced axiomatization of DOLCE, called
DOLCE-Lite. DOLCE-Lite has been extended with some generic plugins for
representing information, communication, plans, ordinary places, and with some
domain plugins for representing e.g. legal, tourism, biomedical notions. The
combination of DOLCE-Lite and the existing plugins is called DOLCE-Lite+. The
current version 3.6 of DOLCE-Lite+ without domain plugins contains more than 300
concepts and about 150 relations (see table 1 and 2 in Appendix 1).
DOLCE assumes that its categories (top classes) constitute an extensionally closed set
on any possible particular entity, i.e., entities that cannot be further instantiated
within the assumptions of the theory (cf. Masolo et al. 2002, Gangemi et al. 2001). Of
course, DOLCE does not assume an intensionally closed set, thus allowing for
alternative ontologies to co-exist. Such assumptions will be referred to as A6_D
(“extensional total coverage of DOLCE”). Consequently, we also assume that WN
globally can be tentatively considered a (extensional) subset of DOLCE, after its
formalization. Since we cannot practically obtain a complete formalization of WN, we
will be content with incrementally approximating it.
A trivial formalization of WN might consist in declaring formal subsumptions for all
unique beginners (top level synsets) under DOLCE categories, but this proved to be
impossible, since the intension of unique beginners, once they are formalized as
classes, is not consistent with the intension of DOLCE categories. Then we started
(Gangemi et al. 2002) deepening our analysis of WN synsets, in order to find synsets
that could be subsumed by a DOLCE category (or one of their subclasses) without
being inconsistent.
In our previous OntoWordNet work, WordNet 1.6 has been analyzed, and 809 synsets
have been relinked to DOLCE-Lite+ in order to harmonize (“sweeten”) WN
taxonomies with DOLCE-Lite+. A working hypothesis (A7_D) has been that the
taxonomy branches of the relinked synsets are ontologically consistent with the
DOLCE-Lite+ concepts, to which the relinking is targeted. This hypothesis proved
inadequate in the initial attempts to get a complete DOLCE coverage of WordNet,
since the intended meanings of hyponym synsets are usually not consistent through
the entire branching (cf. Gangemi et al. 2002 for examples) After some additional
work, the current linking of 809 synsets seems acceptable, but it needs refinement,
since some subsumptions are debatable, and it must be considered that some
extensions of DOLCE-Lite+ are still unstable.
Nonetheless, such an approximate and partly debatable coverage could be enough to
start experimenting with a more explicit axiomatization of synsets. We will show in
                                                  
5 http://wonderweb.semanticweb.org



what follows that this experiment can also provide feedback to refine some of the
subsumptions.

3.2.2 Disambiguation of association links

Assumptions A4 and A5 (section 2), together with A6_D (in previous sub-section),
make it possible to exploit the axiomatized relations in DOLCE-Lite+. Such relations
are formally characterized by means of ground axioms (e.g. symmetry, transitivity,
etc.), argument restrictions (qualification of their universe), existential axioms, links
to other primitives, theorems, etc. (refer to (Masolo et al. 2002), and the web site of
the LOA).

By looking at the A-links, a human expert can easily decide which relation from
DOLCE-Lite+ is applicable in order to disambiguate the A-link, for example, from:

1. A-link(car#1, engine#1)

we may be able to infer that cars have engines as components:

"x. Car(x) Æ $y. Engine(y) Ÿ Component(x,y)

or that from

2. A-link(art_exhibition#1, painting#1)

we can infer that exhibitions as collections have paintings as members:

"x. Art_exhibition(x) Æ $y. Painting(y) Ÿ Member(x,y)

But this is an intellectual technique that requires a lot of effort. We are instead
interested, at least for the sake of bootstrapping a preliminary axiomatization of
synsets, in a (semi) automatic classification technique.
From this viewpoint, the only available structure is represented by the concepts
(synsets) to which the A-links apply. Such synsets can be assumed as the argument
restrictions of a conceptual relation implicit in the association. For example, given
(A-link(S1, S2)), where S1, S2 are synsets, we can introduce the argument restrictions
for a conceptual relation Ra-link

i(x,y) Æ S1(x) Ÿ S2(y). Then, from A5 and its depend-on
assumptions, we have a good heuristics for concluding that S1(x) Æ $y. Ra-link

i(x,y) Ÿ
S2(y). In other words, we formalize the association existing between a synset and
another synset used in its gloss. This leaves us with the question of what is the
intension of Ra-link

i(x,y), beyond its argument restrictions: e.g. what does it mean to be
a relation between art exhibitions and paintings? And are we allowed to use this
heuristics to conclude that art exhibitions are related to at least one painting?
Assuming A6_D, we can claim that some Ri(x,y) from DOLCE-Lite+ subsumes Ra-

link
i(x,y). Since the relations from DOLCE-Lite+ have a total extensional coverage on

any domain, we can expect that at least one relation from DOLCE has a universe



subsuming that of Ra-link
i(x,y). For example: Member(x,y) from DOLCE-Lite+ can

subsume Ra-link
i(x,y) when Art_exhibition(x) and Painting(y), since the domain and

range of “Member” subsume “Art_exhibition” and “Painting” respectively.
These subsumptions are easily derivable by using a description-logic classifier (e.g.
LOOM, MacGregor, 1993, or RACER, Moeller, 2001) that computes the applicable
relations from DOLCE-Lite+ to the training set of A-links.
For example, an “ABox” query like the following can do the job in LOOM:

ABox-1
(retrieve (?x ?R ?y)  (and (get-role-types ?x ?R ?y) (min-cardinality ?x ?R 1) (A-link ?x ?y)))

i.e., provided that A-links have been defined on DOLCE-Lite+ classes (i.e. that WN
synsets ?x ?y are subsumed by DOLCE-Lite+ classes), the relation “get-role-types”
will hold for all the relations in DOLCE-Lite+ that are applicable to those classes,
with a cardinality≥1. For example, given the previous example (2) of A-link, the
classifier uses some of the DOLCE-Lite+ axioms to suggest the right conceptual
relation. In fact, the WordNet synset art_exhibition#1 is a (indirect) sub-class of the
DOLCE class “unitary collection”, a category for which the following axiom holds:

"x. Unitary_Collection(x) Æ $y. Physical_Object(y) Ÿ Member(x,y)

Furthermore, since painting#1 is a (indirect) sub-class of “physical object”, and the
axiom holds with a cardinality≥1, the classifier can propose the correct relation and
axiom.

In other cases, ABox-1 retrieves relations that are questionable. For example, given:

3. A-link(boat#1,travel#1)

with boat#1 subsumed by Physical_Object and travel#1 subsumed by Situation in
DOLCE+WordNet, and the relation “Setting” holding between physical objects and
situations, we have no axiom like the following in DOLCE-Lite+:

* "x. Physical_Object(x) Æ $y. Situation(y) Ÿ Setting(x,y)

then the relation Ra-link
i formalizing the A-link between boat and travel cannot be

automatically classified and proposed as subsumed by the relation “Setting” in
DOLCE-Lite+. In other words, in general it is not true that “for any physical object
there is at least a situation as its possible “setting”: we can figure out physical objects
in general, without setting them anywhere, at least within the scope of a
computational ontology.
In other cases, there exists a potentially appropriate relation, but it is applied in an
incorrect way. For example, given:

4. A-link(motor hotel#1,parking area#1)



DOLCE-Lite+ provides the relation “spatial-location”, holding between objects and
regions. According to its argument restrictions, DOLCE-Lite+ suggests that motor
hotel (subsumed by object) is located in a parking area (subsumed by space region).
But it is imprecise: actually, the parking area is located in the overall area of the
motor hotel.
The above examples show that axioms representing generally acceptable intuitions in
a foundational ontology may prove inadequate in a given application domain, where
certain axiomatizations need an ad-hoc refinement.
The solution presented here exploits a partition of argument restrictions for the gloss
axiomatization task. For this solution, we need a partition ’ of relation universes,
according to the 25 valid pairs of argument restrictions that can be generated out of
the five top categories of DOLCE-Lite+ (Object, Event, Quality, Region, and
Situation), which on their turn constitute a partition on the domain of entities for
DOLCE-Lite+. This enables us to assign one of the 25 relations to the A-link whose
members are subsumed by the domain and range of that relation. For example, from:
(Boat(x) Æ Object(x)), and (Travel(y) Æ Situation(y)), we can infer that some
R<Object,Situation> holds for the pair {x,y}.
However, in DOLCE-Lite+, existing relations are based on primitives adapted from
the literature, covering some basic intuitions and that are axiomatized accordingly.
Therefore, the current set of DOLCE-Lite+ relations ’d is not isomorphic with ’,
while the same extensional coverage is supported. For example, the DOLCE-Lite+
relation “part” corresponds to a subset of the union of all the argument pairs in ’ that
include only the same category (e.g., <Event, Event>). ’d is inadequate to perform
an automatic learning of conceptual relations, because we cannot distinguish between
“part” and other relations with the same universe (e.g. “connection”). Similarly, we
cannot distinguish between different pairs of argument restrictions within the “part”
universe (e.g. <Event, Event> vs. <Object, Object>).
The choice of axioms in DOLCE-Lite+ is motivated by the necessity of grounding the
primitive relations in human intuition, for example in so-called cognitive schemata
that are established during the first steps of an organism’s life by interacting with its
environment and using its specific abilities to react to the stimuli, constraints, and
affordances provided by the context (Johnson 1987). In fact, without that grounding,
the meaning of relations cannot be figured out at all (even though they are correct
from a logical viewpoint).
There is also another reason for the inadequacy of ’d . A conceptual relation in
DOLCE-Lite+ can be “mediated”, e.g. defined through a composition (called also
chaining, or joining in the database domain). For example, two objects can be related
because they participate in a same event, for example, engine and driver can “co-
participate” because they both participate in driving.
In brief: we cannot use ’d, since it does not discriminate at the necessary level of
detail, and because it is not a partition at all, if we take into account mediated
relations. On the other hand, we cannot use ’ , because it is cognitively inadequate.
Consequently, we have evolved a special partition ’d+ that keeps both worlds: a real
partition, and cognitive adequacy. ’d+ denotes a partition with a precise mapping to
’d. In appendix 2, the current state of ’d+ is shown.



For example, by using ’d+, the proposed relation for the car/engine example is
(Physical-)Mereotopological-Association (PMA), defined as the union of some
DOLCE-Lite+ primitive relations: part, connection, localization, constituency, etc.,
holding only within the physical object category. In fact, many possible relational
paths can be walked from an instance of physical object to another, and only a wide-
scope relation can cover them all. Formally:

PMA(x,y) =df (Part(x,y) ⁄ Overlaps(x,y) ⁄ Strong-Connection(x,y) ⁄
         ⁄ Weak-Connection(x,y) ⁄ Successor(x,y) ⁄ Constituent(x,y) ⁄
         ⁄ Approximate-Location(x,y)) Ÿ
         Ÿ Physical_Object(x) Ÿ Physical_Object(y)

Starting from ’d+, other relations have been defined for subsets of the domains and
ranges of the relations in ’d+.
By means of ’d+, the query function ABox-1 can be adjusted as follows:

ABox-2
(retrieve (?x ?r ?y)
  (and
   (A-Link ?x ?y)
   (Superrelations ?x Physical_Object)
   (Superrelations ?y Physical_Object)
   (not
    (and (Superrelations?x Unitary_Collection)
            (Superrelations?y Physical_Object)))
   (not
    (and (Superrelations?x Amount_of_Matter)
            (Superrelations?y Physical_Body)))
   (not (subject ?x dolce))
   (not (subject ?y dolce))
   (not (Superrelations ?x ?y))
   (not (Superrelations ?y ?x))
   (min-cardinality ?x ?r 1)))

The query approximately reads “if two synsets subsumed by physical object (provided
that the first is not an amount of matter or a collection, and that they are not related by
hyperonymy), are linked by an A-link, tell me what relations in DOLCE+WordNet
are applicable between those synsets with a cardinality of at least 1”.

In this way, we are able to learn all the relations that are applicable to the classes ?x
and ?y involved in the A-Link tuples. The intention here is, for example, to limit the
universe of “PMA”, in order to give room to more specific relations, such as
“Member” or “Constituent”, with specialized universes. For example, applied to the
synset car#1 that has an A-link to the synset engine#1, the query returns:

RPMA(car#1,engine#1)

that, on the basis of known assumptions, is used to propose an axiom on car#1,
stating that cars have a “physical mereotopological association” with an engine,



because a DOLCE-Lite+ ancestor of both car#1 and engine#1 (“physical object”)
defines the universe of the relation PMA with a cardinality of at least 1 on the range.
This heuristics supports the logical axiom:

"x. Car(x) Æ $y. Engine(y) Ÿ PMA(x,y)

Notice that at this level of generality, the classifier cannot infer the “component”
relation that we intellectually guessed at the beginning of section 3.2. A more specific
relation can be approximated, if we define more specialised relations and axioms. For
example, a “functional co-participation” can be defined with a universe of only
“functional objects”, which are lower in the DOLCE-Lite+ taxonomy, but still higher
than the pair of synsets associated by the A-link. Functional co-participation (“FCP”)
is defined by composing two participation relations with a common event (in the
example, a common event could be “car running”):

FCP(x,y) =df $z. Participant_in(x,z) Ÿ Participant(y,z) Ÿ Event(z)

FCP is closer to the “component” intuition. The last can be precisely inferred if we
feed the classifier with “core” domain relations. For example, we may define a
domain relation holding for vehicles and functional objects, provided that the
functional object plays the role of system component for vehicles:

vehicles^Component(x,y) =df  FCP(x,y) Ÿ Vehicle(x) Ÿ Functional_Object(y) Ÿ
Ÿ $z. Plays(y,z) Ÿ Vehicle_System_Component(z)

In other words, by increasing the specificity of the domain (tourism in the examples
discussed so far), we may assume that relations should be specified accordingly. As
discussed in this section, this process is triggered by the observation of some A-link,
and proceeds semi-automatically until a reasonable coverage is reached.
Anyway, when the domain cannot be specified, even a generic association like
“PMA” provides a better intuition than a bare A-link.
The conceptual relation partition is being incrementally verified, and the results of the
experiment presented here can also be used as a test bed for creating a pruned set of
domain-oriented relations. Notice that the pruned set of relations ’d+ is always
consistent with the original DOLCE-Lite+ conceptual relations, with which the
pruned relations form a larger intensional set (the extensional coverage is
maintained).

4. Experimental results and discussion

The gloss disambiguation algorithm and the A-link interpretation methods have been
evaluated on two sets of glosses: a first set of 100 general-purpose glosses6 and a

                                                  
6 The 100 generic glosses have been randomly selected among the 809 glosses used to re-link

WordNet to DOLCE-Lite+.



second set of 305 glosses from a tourism domain. This allows us to evaluate the
method both on a restricted domain and a non-specialized task.
For each term in a gloss, the appropriate WordNet sense has been manually assigned
by two annotators, for over 1000 words.
To assess the performance of the gloss disambiguation algorithm we used two
common evaluation measures: recall and precision. Recall provides the percentage of
right senses with respect to the overall number of terms contained in the examined
glosses. In fact, when the disambiguation algorithm terminates, the list P may still
include terms for which no relation with the synsets in D could be found. Precision
measures the percentage of right senses with respect to the retrieved gloss senses. A
baseline precision is also computed, using the “first sense choice” heuristic. In
WordNet, synsets are ordered by probability of use, i.e. the first synset is the most
likely sense. For a fair comparison, the baseline is computed only on the words for
which the algorithm could retrieve a synset.

Domains # glosses # words
# disamb.

words
# of

which ok Recall Precision
Baseline
Precision

Tourism 305 1345 636 591 47,28% 92,92% 82,55%
Generic 100 421 173 166 41,09% 95,95% 67,05%

Domains noun
recall

noun
precision

adj
recall

adj
precision

verb
recall

verb
precision

# tot
nouns

# tot
adj

# tot
verbs

Tourism 64,52% 92,86% 28,72% 89,29% 9,18% 77,78% 868 195 294
Generic 58,27% 95,95% 28,38% 95,24% 5,32% 80% 254 74 94

Table 1a) performance of the gloss disambiguation algorithm b) performance by
morphological category.

Table 1 gives an overview of the results. Table 1a provides an overall evaluation of
the algorithm, while table 1b computes precision and recall grouped by morphological
category. The precision is quite high (well over 90% for both general and domain
glosses) but the recall is around 40%. Remarkably, the achieved improvement in
precision with respect to the baseline is much higher for general glosses than for
domain glosses. This is motivated by the fact that general glosses include words that
are more ambiguous than those in domain glosses. Therefore, the general gloss
baseline is quite low. This means also that the disambiguation task is far more
complex in the case of general glosses, where our algorithm shows particularly good
performance.
An analysis of performance by morphological category (Table 1b) shows that noun
disambiguation has much higher recall and precision. This is motivated by the fact
that, in WordNet, noun definitions are richer than for verbs and adjectives. The
WordNet hierarchy for verbs is known as being more problematic with respect to
nouns. In the future, we plan to integrate in our algorithm verb information from



FRAMENET7, a lexico-semantic knowledge base providing rich information
especially for verbs.
In Table 2 we summarize the efficacy of the A-link semi-automatic axiomatization,
after the partly manual creation of a domain view ’d+ as discussed in section 3.2.

Domains Synsets A-links Noun-only Subsumptions
Filtered
A-links

Axioms
generated Correct

Tourism 305 725 644 209 435 569 511
Generic 100 212 187 40 147 142 121

Table 2. Axiomatizations for the A-links. “Best arrangement” data refer to
results in Table 3.

Tourism
Tourism
correct Generic Generic correct

Total amount of axioms 569
511
(89.80%) 142 121 (85.21%)

Axioms with generic
universes 540

490
(90.74%) 139 121 (87.05%)

Axioms with some
specific universes 545

507
(93.02%) 136 118 (86.76%)

Axioms with only
topmost universes 375

356
(94.93%) 110 98 (89.09%)

Table 3. Axiomatizations ordered by generality.

As a preventive measure, we have excluded the A-links that include either an
adjective or a verb, since these synsets have not been integrated yet with DOLCE-
Lite+. Another measure excluded the A-links that imply a subsumption (sub-class)
link, since these are already formalized. This filter has been implemented as a simple
ABox query that uses relations that range on classes:

ABox-3
(retrieve (?x ?y) (and (A-Link ?x ?y) (Superrelations ?x ?y)))

These measures reduced the amount of A-Links from the experimental set to 582
(435+147). We have used these tuples to run the revised query ABox-2.
The revised query produced 711 (569+142) candidate axioms by using all the pruned
relations defined for the experiment in ’d+. Table 3 shows the resulting axioms
ordered by generality of the relation universes (domain and range).
The most relevant results are:

                                                  
7 http://www.icsi.berkeley.edu/~framenet/



• One third of the A-Links from the tourism domain are actually subsumption
links, while only 20% from the mixed generic set is a subsumption. This could be
explained by the fact that glosses for generic synsets are less informative, or
because generic words are not defined, in WN, in terms of more generic ones.

• The correct subset of axioms learnt for the tourism domain is about 4 to 6%
larger than for the generic one with reference to the whole sets.

• We have tried to use some relations that are in principle “less precise”. For
example, a universe composed of physical objects and amounts of matter has a
basic intuition of “constituency”, and the relation has_n_constituent has been
defined to such purpose. This relation has proved very inefficient though: in the
generic set, only 50% of learnt axioms are correct, while in the tourism domain,
only 16% are correct. We could expect that domains like earth science and
physics can be more appropriate for constituency relations. For this reason, we
have included a relation with a functional flavor in the experimental set of
relations (including ’d+ and its specializations), called “provides”, and defined
on functional objects and functional matters (this universe is a meaningful subset
of the previous one). This relation proved quite efficient in the tourism domain,
just as expected, with about 78% of correct axioms, while it is useless in the
generic set, with 0%. This is an example of “provides” axioms: "x. Brasserie(x)
Æ $y. Beer(y) Ÿ Provides(x,y).
This, and similar examples, confirm our expectations about the importance of
developing dedicated sets of relations for different domains or tasks, while a
“ground” level of relations is useful everywhere: in fact, the percentage of
correct axioms increases if only the first level of the relation hierarchy is taken
into account (95% in tourism, 89% in generic).

• In 8 cases, the axioms were not definable with a cardinality≥1, although they
could be used in more restricted domains or for subclasses of the universe.

• Some indirect A-links can be investigated as well (though our first strategy has
been to disregard indirect links, as explained in section 3.1). For example in the
retrospective#1 example of Figure 2, two synsets (painting#1 and statue#1) are
learnt as “indirect” synsets (they are learnt from the glosses relative to the
hyperonyms of retrospective#1). But paintings and statues are not always found
in exhibitions, then we are not allowed to infer an axiom with cardinality ≥1. In
these cases, the algorithm could be refined to propose an axiom that includes a
common parent to both painting#1 and statue#1, i.e. art#1, which incidentally is
another “indirect” A-link to retrospective#1. In Figure 5 the refined A-links for
retrospective#1 are shown: a retrospective in WordNet 1.6 has the intended
meaning of a (unitary) collection in DOLCE-Lite+, which is a kind of non-
agentive functional object. This lets the classifier infer:

• a “functional association” to artist#1, because an artist is a functional role;
• a more precise “plays” relation to life#12, since an artistic biography is a

functional role as well, and a collection of art works plays just the role of an
artistic biography;

• a subsumption of retrospective#1 by exhibition#2;
• three “has_member” relationships to the indirect A-links: art#1, painting#1,

and statue#1. These are correct, since a collection can have functional



objects (art works) as members. But while the first has a meaningful
cardinality 1 to n, the others have a logically irrelevant cardinality of 0 to n.

retrospective#1

exhibition#2

artist#1life#12

object#1

statue#1

art#1

painting#1

has_member{0, n}

functional_association {1, n}

has_member{0, n}

has_member{1, n}

plays{1,n}

Figure 5. Interpretation of A-links for retrospective#1.

Conclusions

In this paper we have presented some preliminary results of OntoWordNet, a large-
scale project aiming at the “ontologization” of WordNet. We presented a two step
methodology: during the first, automatic phase, natural language word sense glosses
in WordNet are parsed, generating a first, approximate definition of WN concepts
(originally called synsets). In this definition, generic associations (A-links) are
established between a concept and the concepts that co-occur in its gloss.
In a second phase, the foundational top ontology DOLCE (in the DOLCE-Lite+
version), including few hundreds formally defined concepts and conceptual relations,
is used to interpret A-links in terms of axiomatised conceptual relations. This is a
partly automatic technique that involves generating solutions on the basis of the
available axioms, and then creating a specialized partition of the axioms (the set ’d+
and its specializations) in order to capture more domain-specific phenomena.
Overall, the experiments that we conducted show that a high performance may be
obtained through the use of automatic techniques, significantly reducing the manual
effort that would be necessary to pursue the objective of the OntoWordNet project.
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Appendix 1

DOLCE-Lite+ top taxonomies of classes and (binary) relations, presented in
hierarchical form, with short descriptions and examples.

Entity Anything conceived as no more instantiatable
: Quality-Space A space of values (e.g. dimensional spaces)
: : Region A value or range of values in a (dimensional) space
: : : Abstract-Region Non-physical or temporal values (e.g. monetary)
: : : Physical-Region Physical values (e.g. volume, color, geographic space)
: : : Temporal-Region Temporal values (e.g. gregorian date system)
: Quality An individual counterpart of a region (e.g. the color of

a rose)
: Endurant (≈Object) An entity with a direct spatial value (localization)
: : Non-Physical-Endurant A non-physical object, such as social or mental objects
: : : S-Description A reified conceptualization or theory (e.g. plans, norms)
: : : Course An (abstract) sequence of activities (cf. process model)
: : : Functional-Role A role played by an object (e.g. minister, student)
: : : Parameter A selection of value sets (e.g. speed limit)
: : Physical-Endurant (≈Substance) A physical entity with a direct localization, wholly

present at a snapshot, cf. Substance
: : : Amount-Of-Matter An amount of matter without a unity (e.g. sand, milk)
: : : : Functional-Matter An amount of matter according to scope (e.g. food)
: : : Feature A relevant part within an object (e.g. edges, holes)
: : : Physical-Object A substance with a unity criterion (e.g. stones, roses)
: : : : Agentive-Physical-Object A physical object with intentionality (e.g. organisms,

robots)
: : : : : Agentive-Functional-Object An agentive object according to some scope (e.g.

robots)
: : : : Non-Agentive-Physical-Object A physical object without intentionality (e.g. stones,

livers)



: : : : : Non-Agentive-Functional-Object A non-agentive object according to some scope (e.g.
hammers, walls)

: Perdurant (≈Event, Process) An entity with a direct temporal value (temporal
presence), present only as spanning through time

: : Event A temporal entity with heterogeneous parts (e.g.
activities, phenomena)

: : State A temporal entity with homogeneous parts
: Situation A reified model or structure (e.g. conditions,

environments, states of affairs, observed facts)

Conceptual-Relation Entity(x), Entity(y). The top-level relation between entities
whatsoever.

: Immediate-Relation Any relation holding directly, without any other intermediate
relation chaining

: : Constituent A relation of constituency between e.g. matter and objects, e.g.
skin made up of epithelial tissue

: : : Has-Member A constituency between collections and their members, e.g. a
society and its members

: : : Setting-For A constituency between situations and their entities, e.g. a flu and
its observed symptoms

: : Host Feature(x), Physical-Endurant(y). The relation between features
and objects, e.g. a hole in the cheese

: : Inherent-In Quality(x), Entity(y). The relation between qualities and entities,
e.g. the red of a rose

: : Part Any part relation (but not constituency), e.g. a chair and its legs
: : : Proper-Part Any antisymmetric part, e.g. a human body and its legs
: : : : Boundary A part relation between an entity and its boundary, e.g. Italy’s

borders
: : : : Component A functional, non-transitive part relation, e.g. a car and its parts
: : Participant Event(x), Object(y), the relation for taking part in something, e.g.

love and lovers
: : Q-Location Quality(x), Quality-Space(y), the relation between qualities and

their counterparts, e.g. the red of a rose and its representation in
a color palette

: : References S-description(x), Situation(y), the relation between
conceptualizations and situations, e.g. a plan and an activity
executed according to that plan

: : : Played-By Functional-role(x), Object(y), the relation for role-playing, e.g.
student and a person who is enlisted in a university

: : Weak-Connection A generic, unordered connection
: : Predecessor An ordered connection, e.g. between two consecutive intervals
: Mediated-Relation Any relation holding indirectly, for which some other relation

must hold preliminarily
: : Co-Partipation Object(x), Object(y), the relation holding between two objects

that participate in th same event or state
: : Generic-Location Any location relation between entities whatsoever
: : : Exact-Location Any location between objects or events, and a) region, e.g. Rome

and its geographic coordinates, a stone and its volume
: : : Approximate-Location Any location between entities other than regions, e.g. the pen is

on the table



Appendix 2

The experimental set of relations (’d+ and its specializations, argument restrictions
into brackets). Only retrieved relations are listed, with their numerosity in the
experimental glosses, and the amount of correct assignments.

Relation taxonomy
Tour
ism

Tou.
corr.

Gen
eric

Gen.
corr.

Conceptual_Relation (Entity, Entity)  top: correct by A5
: Descriptive_Association (Object, S-Description) 7 6 5 4
: : Descriptive_Constituent_Of (Functional-Role, S-Description) 1 0
: Inv_Descriptive_Association (S-Description, Object) 7 7 4 4
: : Has_Descriptive_Constituent (S-description, Functional-Role) 1 0
: Functional_Association (Object, Functional-Role) 72 68 22 19
: : Functional_Role_Co_Participation (F-Role,F-Role) 21 21 13 12
: Inv_Functional_Association (Object, Functional-Role) 45 45 21 19
: Physical_Location_Of (Geographical-Entity, Physical-Object) 2 2 2 2
: : Functional_Location_Of (Geographical-Entity, Functional-Object) 1 1
: Has_Physical_Location (Physical-Object, Geographical-Entity) 6 3
: : Has_Functional_Location (Functional-Object, Geographical-Entity) 6 3
: Quality_Region_Of (Region, Object) 3 3 2 1
: Has_Quality_Region (Object, Region) 9 8 2 0
: Host_Of (Physical-Object, Feature) 7 2 3 2
: Host (Feature, Physical-Object) 1 1
: Mereotopological_Association (Physical-Object, Physical-Object) 140 140 29 29
: : Agentive_CoParticipation (Agentive-Physical-Object, A.P.O.) 1 1 2 1
: : Functional_CoParticipation (Functional-Object, Functional-Object) 98 94 1 1
: : Has_Member (Collection, Object) 4 4
: : Provides (Functional-Object, Functional-Matter) 22 17 3 0
: : Biological_Part_Of (Biological-Object, Organism) 4 4
: : Has_Material_Constituent (Physical-Object, Amount-Of-Matter) 24 4 6 3
: : Used_By_Co_Pcp (Functional-Object, Agentive-Physical-Object) 7 4
: : Member_Of (Object, Collection) 1 0
: Participant (Event, Object) 14 14
: : Agentive_Participant (Event, Agentive-Object) 3 3
: Participant_In (Object, Event) 14 13 6 6
: : Agentive_Participant_In (Functional-Object, Event) 1 1
: P_Has_Quality_Region (Event, Region) 1 1
: Setting_For (Situation, Entity) 18 17
: : Referenced_By (Situation, S-Description) 1 0
: Setting (Entity, Situation) 21 21 8 7
: : References (S-Description, Situation) 3 2 2 2
: Temporal_ Mereotopological_Association (Event, Event) 6 5 2 1
: Inherence_Of (Entity, Quality) 2 0 4 4


