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Abstract

This paper argues that a community of interoperating information systems agents requires an
ontology not only of the objects in the world, the agents themselves and the message types
available; but also of the complex behavioural protocols through which tasks are accomplished.
The universe of these applications is described using formal upper ontologies and the material
ontology of institutional fact, and a method of representing a subsumption lattice of behavioural
protocols using the process algebra representation of finite state machines is adapted from the
literature. This behavioural subtype structure is shown to be compatible with the other aspects of
the ontology. The resulting system is applied to a community of agents.
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Abstract
This paper argues that a community of interoperating information systems agents requires
an ontology not only of the objects in the world, the agents themselves and the message
types available; but also of the complex behavioural protocols through which tasks are
accomplished. The universe of these applications is described using formal upper
ontologies and the material ontology of institutional fact, and a method of representing a
subsumption lattice of behavioural protocols using the process algebra representation of
finite state machines is adapted from the literature. This behavioural subtype structure is
shown to be compatible with the other aspects of the ontology. The resulting system is
applied to a community of agents.

Introduction
A community of agents is a collection of programs which interact with each other in order to achieve their
respective ends as determined by the policies programmed into the agents by their owners. The agents
interoperate by means of shared events, which are generally implemented by exchanges of messages.

It is well established that a community of agents must be supported by an ontology describing the objects
involved in the interaction. An ontology is a standardized vocabulary and semantics. The agents must
commit to the ontology: that is, they must agree on the terms to be used and what they mean [4].

The ontology includes the universe of objects which the messages exchanged by the agents are about (for
example the SNOMED system for medical records, or the claimed universal ontology Cyc). It includes the
agents themselves (organized in systems like Yellow Pages directories). It includes also the types of
messages that can be exchanged and their content (for example the Z39.50 protocol for information
exchange or the various Electronic Document Interchange (EDI) standards). Finally, and this is the point of
this paper, it must also include the sequences of messages that must be exchanged in order to achieve
particular tasks. Ideally, all of these aspects of the ontology should be coherent both intellectually for
human understanding and representationally, for use by the agent programs.

Intellectual and representational coherence can be achieved partly by the use of a formal upper ontology
like DOLCE [5] or the Bunge-Wand-Weber (BWW) system [11], and partly by very general material
ontological distinctions like the distinction between brute fact and institutional fact given by Searle [6]. The
material ontological stance of the present work is that almost all the content of most information systems
consist of institutional facts, and that almost all the shared events of agent communities consist of speech
acts which create institutional facts. The main formal ontological stance is the distinction between
endurants and perdurants, based on the formal mereological primitive part-of.

In the sequel we first explain the ontological framework used, then focus on events and event sequences
using the formal concept of finite state machine represented in process algebras. We then apply this
framework to interoperation in agent communities, then show how the behavioural dimension of agent
interoperation can be fitted in to a subtype structure, first at the level of two interoperating agents then at
the level of an entire agent community.
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Ontological Framework

Endurants and Perdurants

The distinction between endurants and perdurants is central to the DOLCE formal ontology [5] and also
(under different names) to the BWW system [11].

Endurants are entities that exist in time. If they have parts, all of their parts exist at the same time. Ordinary
objects are endurants, as are records such as are stored in information systems. In the BWW system an
endurant is called a thing.

Perdurants are entities that happen in time. A perdurant can happen at a point in time, or can have temporal
parts. There are two subclasses of perdurant: event and stative. An event is definite. Even if it is complex, it
is capable of completion. If it has temporal parts, none of them are of the same kind as the whole. A stative
is indefinite. It can have temporal parts which are the same kind as the whole. We might think of an event
as happening, while a stative is going on. See [7] section 4.1, where a perdurant is called an occurrent.

Examples of events are falling over, blowing up, coming into and going out of existence, including being
born and dying. Almost all speech acts are events: buying, selling, being inaugurated President of the USA,
getting married, getting divorced, being given a name, winning or losing a contest, being hired or fired,
enrolling in a university program, being awarded grades, earning a degree, graduating. Some of these have
temporal parts. In particular, earning a degree has parts including enrolling, being awarded grades and
graduating, none of which are earning a degree.

Exmples of statives include raining, sitting, being alive, being dead, being ready, running, working,
cleaning (indefinitely – cleaning the kitchen floor is an event, since its temporal parts are things like
cleaning in front of the stove, cleaning under the table, and so on, which are not cleaning the kitchen floor).

The BWW system includes events but not statives.

An endurant is created by an event. Its existence is a sort of memory of the happening of the event. Any
change in an endurant is created by an event. An endurant is destroyed by an event. Unless the event
destroying an endurant also creates another endurant (perhaps of a different kind, a log file transaction say),
there is no longer any memory of the event.

A stative is started and stopped by events. The rain starts and stops. Inauguration of a President of the USA
begins his presidency while inauguration of the next president stops his presidency. Sending a request for
quotation message starts the sending site’s being receptive to a quotation, which is stopped by the receipt of
the quotation or by the expiration of a deadline. Enrolling in a degree program starts the studying for the
degree, which is finished by the degree being awarded.

The BWW concept of state is the unchanging representation of an endurant between events. It is parallel to
the DOLCE stative, but does not have an explicit behavioural dimension.

Since the creation, destruction and any change to an endurant is performed by an event, the BWW concept
of history of an endurant is a perdurant. Any temporal part of the history of an endurant is a history of the
endurant, so the history of an endurant is a stative.

But a record is an endurant. So the record of the history of an endurant is an endurant. As is the record of
any perdurant.

A perdurant may have an extension in time, but in its interaction with the universe at any point in time can
only be determined by its physical state at that point in time. Historical causality is not admissible. Neither
can the future have any causal effect. So associated with any perdurant is a collection of endurants. The
record of a perdurant is identical with the history of its associated endurants.

This view, expanded from [5] and [11] is generally consistent with [7] and [8].

Institutional facts

In the present work, the concern is not the ontology or metaphysics of the whole world, but only the
specific aspect of the world needed to understand interoperating information systems as one finds in
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electronic commerce and the semantic web. Information systems of this sort are concerned almost
exclusively with the special kinds of things called by John Searle [6] institutional facts and speech acts.

Searle recognizes two kinds of fact, brute fact, which is independent of human society, and institutional
fact, which depends on human society for its existence. An institutional fact is a brute fact which has a
social significance. Searle encapsulates the relationship as “brute fact X counts as institutional fact Y in
context C”. An institutional fact is created by a speech act, and is sustained in existence by records of the
speech act having been performed. An institutional fact is an endurant, as are the records through which it
continues to exist.

A speech act is an event. It is something done which has a social significance in an institutional context.
We can adapt Searle’s formula: “human activity X counts as speech act Y in context C”. Giving someone a
name is a speech act. The activity is filling out a form and lodging it at a government registry of births. The
context includes the person signing the form being a parent, the office the correct office of the proper
government, and so on. Making a purchase is a conflation of two speech acts, buying to the purchaser and
selling to the vendor. The activity is complex, for example lodging an order at the appropriate desk,
handing over the goods, checking that the goods meet specifications, handing over a cheque, handing the
cheque in to a bank, and the bank’s eventual transfer of funds from the purchaser’s account to the vendor’s
account. The context includes the vendor having title to the goods, the paper being handled by properly
designated staff, the purchaser having in fact an account at their bank with sufficient funds, and so on.

The institutional facts involved are in the first case the person having their name and in the second the
purchase of the goods. The institutional facts are sustained in existence in the first case by the memories of
the people who know and interact with the person, and also by the record of the birth certificate maintained
by the government office. In the second case, the purchase is sustained in existence by the purchaser having
undisputed title to the goods (possession and the memories of relevant people), backed up by copies of the
invoices and payment records maintained by the various parties.

Institutional facts are special partly because they are created by discrete deliberate human events. They are
also radically unchanging. My body has undergone many changes in the many years since I was given my
name, but my name remains exactly the same. My car has undergone many changes since I purchased it,
but the fact of the purchase remains exactly the same. The story of endurants and perdurants told in the
previous section applies in a very straightforward way to institutional facts and speech acts.

Interoperating agents in information systems

We want to apply our ontological concepts to worlds consisting of collections of agents interoperating
among information systems. It makes sense to begin with the ontology of this world.

At the outermost layer, one of these worlds consists entirely of agents. An agent is a computer program,
either autonomous or functioning as an interface between a human and the other agents. An agent is an
endurant, in much the same sort of way that a person is.

Agents interact with each other solely by interchange of discrete messages. These messages can be of two
sorts: performative or informative. An informative message asks a question or gives an answer. For
example the exchange:

1. Tell me the price and availability of product 1234

2. Sorry, we do not supply product 1234

consists of two informatives. The exchange

3. I am placing an order for 10 units of product 1234 on 17 October, 2002

4. Your order for 10 units of product 1234 ordered 17 October, 2002 has been shipped on 18
October, 2002, and your account has been debited.

Consists of two performatives. A performative is a speech act which establishes an institutional fact.
Message 3 establishes the institutional fact of an order having been opened, which authorizes the vendor to
ship and leads him to expect payment. Message 4 completes the purchase, closing the order, creating two
new institutional facts of a purchase made and an order filled while destroying the institutional fact of an
order being open.
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The act of sending (and receiving) a message is a perdurant, specifically an event, since it happens at a
given time. On the other hand, the message itself is an endurant. Once composed and sent, it can be stored
by both the composer and sender agent, perhaps to be used as a record of the performative.

Many, perhaps most, messages in an agent world are complex – they have parts. The exchange 3 and 4 is a
purchase with two temporal parts, order and fulfillment. In general, communication in an agent world is
limited to tokens of a small number of types of messages. Each message type has a small and definite
collection of types of parts. The types of messages and their parts is established by a convention among the
organizations operating the agents. The convention is published as a standard, such as one of the electronic
data interchange (EDI) standards, or the Z39.50 standard used in the library world.

At any given time, an agent is capable of receiving and responding to tokens of only some of the types of
messages available in its world. The convention may require that a performative making a purchase can
only be performed if the performative establishing an account has previously been completed.
Furthermore, the messages which are parts of complex performatives must be exchanged in constrained
sequences. A more complex purchase transaction involves seven types of message: request for quotation
(RFQ) issued by the purchaser, Quote by the supplier, Purchase Order by the purchaser, Delivery Advice
by the supplier, Delivery Acknowledgement by the purchaser, Invoice by the supplier and finally Payment
by the purchaser. This particular type of purchase transaction requires that the messages be sent in that
prescribed order.

So the behavioural propensities of an agent change in discrete ways over time, remaining stable between
changes. It makes sense to consider the behavioural propensities of an agent during the interval between
changes as a stative, more specifically as a state, since every temporal part of a stable behaviour propensity
is the same behavioural propensity.

It happens that a widely used method of designing agents is that of finite state machines (FSM). The
method has a vocabulary to describe the behavioural propensities of a system which includes the terms
state, event and transition. The FSM term “state” describes something which would be described by the
DOLCE term “state”, and similarly for the term “event”. An FSM “transition” is an association of a state,
an event, and a new state.

In FSM, the behavioural propensities of an agent are prescribed by a design expressed in one of a number
of formally equivalent methods, one of which is an FSM diagram. An FSM diagram is an endurant, as is
any plan or design. So the design view of an agent is an endurant, while the behaviour of the agent is a
sequence of perdurants: states changed by events. Recall that the history of the agent is also a perdurant,
but the record of that history is an endurant.

So for agents describable by FSMs, there is a formal isomorphism between its behaviour (perdurants) and
structure (endurants). The design constrains the behaviour, whose history is formally equivalent to the
record of the history. An agent, like any endurant, is present in the world via qualities which inhere in it.
One of the qualities inhering in an agent is its design and another the record of its history. So an agent’s
behaviour is completely characterized by its qualities. Note that this characterization tells us that an agent
describable by an FSM is very limited in comparison with a general agent, in particular in comparison with
an unconstrained human.

Complex speech acts

Our concern in the present work is with interoperating agents. These agents cooperate in the performance
of speech acts which establish institutional facts. A single speech act will generally involve behaviour from
more than one agent. For this reason the context of speech acts generally includes the concept of role. An
agent playing a particular role in a speech act will have a certain repertoire of behaviour, which will
generally differ from the repertoire available to agents playing other roles.

Speech acts can be complex in more than one way. Besides the possibility that several behaviours may
need to be coordinate to perform a speech act, a speech act can have temporal parts – subordinate speech
acts which together make up the whole complex act. Each of these temporal parts may itself involve
coordinated behaviour.

For example, the complex speech act purchase transaction described above, which involves the exchange
of seven messages beginning with RFQ and ending with Payment, has two roles, a Purchaser and a
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Supplier. It can be convenient to analyse the speech act into several temporal parts, each of which is a
speech act:

• Establish product and price: Purchaser issues a RFQ, Supplier issues a Quotation

• Place order: Purchaser issues a Purchase Order

• Deliver: Supplier makes a delivery and issues a Delivery Advice, Purchaser issues a Delivery
Acknowledgement.

• Payment: Supplier issues an Invoice, Purchaser issues a Payment.

Just as the behaviour of the agents can be described as a FSM, so also can the articulation into temporal
parts of a speech act. Each speech act part provides the context in which are valid other speech act parts of
particular types. The part Place order is valid only if Establish product and price has been previously
performed; the part Deliver is valid only if Place order has been previously performed; the part Payment is
valid only if the part Deliver has been previously performed.

What we will call behaviour in the sequel is just this sort of articulation of complex speech acts. A single
event therefore is a speech act which involves possibly several roles and possibly the exchange of several
messages among the agents playing those roles. There may or may not be constraints on the sequence of
messages.

Ontology of Behaviour
It is well known that endurants can often be organized into subtype lattices based on constraints on their
qualities. In general, a subtype has qualities which are strictly more constrained than any supertype.
Therefore, if we are able to establish a system of constraints on the design or record of the history of an
agent, we can include these qualities in the subtype structure. Since the record of the history of an agent is
completely characterized by its design, we can limit our search for a system of constraints to the design
only.

Process algebra representation of FSM

One of the equivalent ways of representing the design of an FSM is as a process algebra. The process
algebra represents a FSM by a description of allowed sequences of events using what are called regular
expressions. A regular expression is composed from an alphabet of symbols representing the possible event
types recognized in any state, using several operators. If a and b are events, then the sequence operator “.”
allows the designation of a followed by b as a.b. That is to say that if the FSM recognizes event a, it always
transitions to a state in which it will recognize event b. The selection operator ‘+’ allows the designation of
a state in which either a or b are recognized by a+b. A FSM can be in a state in which a particular event
type is recognized which results in the FSM remaining in the same state. In this situation, the event type
can recur and again be recognized, and the situation is repeated indefinitely. The process algebra has an
iteration operator ‘*’ to express this situation. If a is an event, then a* represents that event recurring
indefinitely. Finally, the process algebra has a perform in parallel operator ‘||’, with a||b expressing that
events a and b must both occur, but the order is not specified (|| is derived: a||b = (a.b + b.a)).

Besides the sequence, selection and iteration operators, the process algebra has two constants: “do nothing”
represented by “1” and “deadlock” represented by “0”. Deadlock represents a state in which no event is
recognized – the FSM is frozen. The alphabet, constants and operators can be combined in regular
expressions using parentheses for grouping. The process algebra is so called because some regular
expressions are equivalent to others, according to the following laws. If e, e’ and e” are events in the
alphabet, then
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1. e + 0 = e
2. e + e = e
3. e + e’ = e’ + e
4. e + (e’ + e”) = (e + e’) + e”
5. 1.e = e.1 = e
6. e.0 = 0.e = 0
7. e.(e’.e”) = (e.e’).e”
8. e.(e’ + e”) = e.e’ + e.e”
9. (e’ + e”).e = e’.e + e”.e

The alphabet of events has three distinguished kinds: creators, destructors and modifiers. Creators bring an
instance of an object into existence, while an object recognizing a destructor destroys itself. Modifiers are
events which are recognized by an already existing object, and which do not destroy it. An alphabet for an
object must have at least one creator and at least one destructor. The alphabet of event types for an object A
is designated ev(A).

A regular expression can be rewritten using the process algebra into a collection of alternatives each of
which is a sequence. Each of these alternatives represents a valid sequence of events, called a scenario.
This collection of scenarios is called the regular language associated with the regular expression. We
designate the regular expression associated with object A as exp(A) and the regular language derived from
it as lang(A).

The regular expression is the design for the behaviour of the FSM, while the regular language is the
collection of all possible (records of) histories.

Behavioural subtypes

Snoeck and Dedene [9] recognize a behavioural subtype relationship between two objects G and S (S is a
subtype of G). Their characterization is based on the notion that a subtype is less constrained than its
supertype, so their results are not directly applicable to the present work. However, if we adapt their system
to the notion of a subtype as being more constrained than its supertypes, then we get the formulation that S
is a subtype of G if

ev(S) is a subset of ev(G). (1)

every sequence of events valid for S is also valid for G. (G may recognize additional events, but must
recognize at least every sequence of events its subtype does.) (2)

To formally represent point 2, we first need some definitions.

If A and B are two objects, then we can project the behaviour of B onto behaviour of A using an operator
“|”.

• lang(B|A) =df scenarios in lang(B) removing all events in (ev(B) - ev(A)).

• exp(B|A) =df expression generating lang(B|A).

In other words, we go through the scenarios for B and remove all events not in the alphabet of A. Exp(B|A)
is the regular expression generating the resulting language.

So point 2 becomes

lang(G|S) is a superset of lang(S) (2’)

This generates a partial order > on the regular expressions. We define

• exp(B) > exp(A) =df lang(B) is a superset of lang(A),

so  (2’) becomes

exp(G|S) > exp(S) (2”)

We overload the partial order designator, so that we also write G > S if G is a supertype of S. Notice that a
consequence of these definitions is that a regular expression containing an iteration operator subsumes an
otherwise identical expression lacking the iteration operator. The expression <e*> > <e>.
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Example

The following example is adapted from [9].

Imagine a library where different kinds of items can be consulted: single issues of journals, volumes of
journals, books, CD-roms, …, and so on. All available items can be searched for by means of an on-line
catalogue. Issues of journals can not be lent out; books and volumes of journals can. Only loans of books
can be renewed. To prevent loss, CD-roms are kept in a separate place and must be lent out at the loan
desk. They must not leave the library. Equipment is provided to view CD-roms and to print informatioin.
Printing is charged when the CD-rom is returned.

A possible library model could contain the following object type definitions:

Version 1

ITEM = <{create, classify, borrow, return, declassify, remove, renew, lose, print},
create.classify.(borrow+return+renew+lose+print)*.declassify.remove>

BOOK = <{create, classify, borrow, return, declassify, remove, renew, lose},
create.classify.(borrow.renew*.return)*.
(borrow. renew*.lose+1).declassify.remove>

VOLUME = <{create, classify, borrow, return, declassify, remove, lose},
create.classify.(borrow.return)*.(borrow.lose+1).declassify.remove>

ISSUE = <{create, classify, declassify, remove, lose}, create.classify.(lose+1).declassify.remove>

CD-ROM = <{create, classify, borrow, return, declassify, remove, print, lose},
create.classify.(borrow.print*.return)*.(borrow.print*.lose+1).declassify.remove>

BOOK, ISSUE, VOLUME, CD-ROM are specialization types of ITEM:

ITEM < BOOK, ITEM < ISSUE, ITEM < VOLUME, ITEM < CD-ROM

Note that the behaviour of the supertype ITEM is very weakly constrained. It would be possible to refine
the behaviour of the supertype to the regular expression created by taking as alternatives the four subtype
regular expressions. This would, however, make it difficult to introduce additional subtypes.

Application of OntoClean concepts

We have so far developed a definition for behavioural subtype which is consistent with the standard
concept of subtype in information systems, where the subtype is more constrained than the supertype. In
the information systems case, the constraints apply to attributes or relationships which are optional in the
supertype; while in the behavioural case, the constraints apply to allowed scenarios, or sequences of events
recognized by the supertype.

In the standard information systems formulation, systems of subtypes are subject only to the constraint that
each instance of the top supertype, including instances of all subtypes, must be capable of being identified
by a combination of attributes of the top supertype. These attributes are therefore mandatory. There are also
generally logical expressions on the values of attributes or relationships with which an instance of a
supertype can be identified as an instance of a given subtype (defined types in description logic terms). Our
library example in its data model would have attributes through which an item could be identified as a
book, volume, issue or CD-rom.

The OntoClean system [12] features a number of meta-properties of attributes and relationships which
make it easier to talk about the subsumption hierarchy, and which provide a discipline for the use of
primitive subtypes in description logic systems. These features can apply to behavioural subtypes, and
thereby increase their usefulness.

We can think of the alphabet, regular expression and language of an object as sorts of properties. One of the
OntoClean metaproperties is essentiality. An essential property is one which has the same value for all
instances of a type. We can partition the alphabet of a type into essential and non-essential event types. If
ev(T) is the alphabet of type T, we can call them ess(ev(T)) and non-ess(ev(T)), respectively. This would
naturally be interpreted as a requirement that all subtypes of T have ess(ev(T))  as subsets of their alphabet.
We could therefore simplify the representation of the type system by including in the declaration of the
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alphabet of a subtype only those event types which are non-essential in the supertype. The subtype would
inherit the essential event types.

Since behaviour consists of combinations of event types, both essential and non-essential, it is not sufficient
to simply propagate essentiality from the alphabet to the language. We need also to designate scenarios as
essential or non-essential. An essential scenario would of course consist only of essential event types. The
stipulation would therefore be that every scenario in the language of a type when projected onto the
essential alphabet would be an essential scenario.

Formally, if we have type G, we designate ess-lang(G) as a set of scenarios over ess(ev(G)), then

E1. lang(G|ess(ev(G))) must be a superset of ess-lang(G).

By the definition of essential, if S is a subtype of G, then

E2. lang(S|ess(ev(G))) must be a superset of ess-lang(G)

and

E3. exp(S|ess(ev(G))) is the regular expression generating lang(S|ess(ev(G)))

A specialization of essential property is rigidity. A rigid property is one which is not only essential but also
serves to identify an individual as an instance of its type. It is conceivable that one might want to identify a
type at least partly by the events or sequence of events it recognizes.

We now re-cast the library example in this enhanced system. We will designate essential events in the
alphabet by making them bold. Similarly, we will designate the essential aspects of an expression where
possible by bolding. We have stipulated that create, classify, declassify, return and lose are events that
must be able to happen to any event, but that not every scenario must include losing the item. Essential
event types have been removed from all the subtypes. The expression for all the subtypes includes the
essential expression for ITEM.

Version 2

ITEM = <{create, classify, borrow, return, declassify, remove, renew, lose, print},
create.classify.(borrow+return+renew+(1+lose)+print)*.declassify.remove>

BOOK = <{borrow, return, renew}, create.classify.(borrow.renew*.return)*.
(borrow. renew*.lose+1).declassify.remove>

VOLUME = <{borrow, return}, create.classify.(borrow.return)*.(borrow.lose+1).declassify.remove>

ISSUE = <{}, create.classify.(lose+1).declassify.remove>

CD-ROM = <{borrow, return, print},
create.classify.(borrow.print*.return)*.(borrow.print*.lose+1).declassify.remove>

BOOK, ISSUE, VOLUME, CD-ROM are specialization types of ITEM:

ITEM < BOOK, ITEM < ISSUE, ITEM < VOLUME, ITEM < CD-ROM

Versions 1 and 2 of the example have served to illustrate the syntax and semantics of the behavioural
subtype, but not the power of the concept. The subtype system is flat. We can follow Snoeck and Dedene
and improve the structure, removing redundancy by creating an intermediate type LOAN-ITEM which has
essential behaviour the same as VOLUME. We add to the syntax that the expression of a type indicates the
insertion of its introduced event types by italics. The library example becomes

Version 3

ITEM < LOAN-ITEM, ITEM < ISSUE,

LOAN-ITEM < CD-ROM, LOAN-ITEM < VOLUME, LOAN-ITEM < BOOK

ITEM = <{create, classify, borrow, return, declassify, remove, renew, lose, print},
create.classify.(borrow+return+renew+(1+lose)+print)*.declassify.remove>

LOAN-ITEM = <{ borrow , return },
create.classify.(borrow.return)*.(borrow.lose+1).declassify.remove>
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BOOK = <{renew}, create.classify.(borrow.renew* .return)*.
(borrow.renew*.lose+1).declassify.remove>

VOLUME = <{},
create.classify.(borrow.return)*.(borrow.lose+1).declassify.remove>

CD-ROM = <{print},
create.classify.(borrow.print*.return)*.
(borrow.print* .lose+1).declassify.remove>

ISSUE = <{}, create.classify.(lose+1).declassify.remove>

Notice that although CD-ROM recognizes and responds to the event types inherited from LOAN-ITEM, it
uses different methods to do so. A CD-rom can not be removed from the library. The system allows
subtypes to override methods inherited from supertypes, so long as their behaviour sequence is formally
identical.

An agent world
We would like to have a characterization of a world of agents, that is to say the collection of agents which
interact within a particular domain, be it an electronic commerce exchange, a group of museums using
Z39.50, or a fragment of the semantic web organized around some group of topics. There are three
elements to the problem: the agents themselves, the messages they exchange (their behaviour), and the
universe to which they refer in their messages.

The universe to which they refer is generally organized according to an ontology of endurants, expressed as
a conceptual model. In previous sections of the present work, we have shown how the agents’ behaviour
can be organized according to an ontology of perdurants derived from an ontology of plans which are
endurants. The agents themselves are endurants, so can be organized according to an ontology derived both
from their universe and from their behaviour. This section shows how an integrated view can be
constructed.

The key idea is the recognition that the universe consists of institutional facts. The agents are sending
messages which are either queries and responses concerning institutional facts (informatives) or are speech
acts which alter the universe of institutional facts (performatives). Institutional facts are complex structures,
organized in multiple layers of contexts. The organization of contexts is what gives coherence to the agent
world.

Customer Product
Purchase

Transaction

Activity

Customer Product

order

delivery

pack

ship acknowledge

Figure 1. Fragment of an order entry system

Figure 1 shows a fragment of an order entry system, presented at two levels of abstraction, expressed as an
entity-relationship (ER) model. (Entities are shown by names, relationships by arrows. Relationships are
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un-named unless necessary for disambiguation. An end of an arrow with an arrowhead has cardinality one,
while an end without an arrowhead has cardinality many. The relationships are all assumed to be mandatory
on the many side. The notation is intended to clearly show the functional dependencies. An arrow shows a
functional relationship whose domain is the entity at the plain end and codomain the entity at the end with
the arrowhead. By assumption, all functional relationships are total. We will call an instance of the domain
of a functional relationship a source instance and the corresponding instance of the codomain a target
instance.)

The more abstract representation in the lower part of the figure has four entities, each of which are types of
institutional fact. An instance of Customer is a record of the speech act of establishment of a business
relationship with another agent, whose details are recorded in the institutional fact as qualities, represented
in the ER model as attribute values. An instance of Product is a record of the speech act of offering for sale
a type of product. The speech act includes a number of elements like description and price, represented in
the ER model as attributes. An instance of Purchase Transaction is a record of a customer’s having
successfully purchased a quantity of a particular product on a particular date. An instance of Activity is a
record of what the organization does when it accepts and fills an order (hand over the goods, accept
payment, and so on).

A dynamic view

Following [2] or [10], we can interpret an instance of a total functional relationship as saying that the target
instance must exist in the codomain before or at least at the same time as the source instance in the domain.
In Figure 1, this says that in order for an activity to be completed, the corresponding product must have
been already offered for sale, and that in order for a purchase transaction to be completed, not only must the
product have been already offered for sale, but the corresponding customer relationship must have been
established and the corresponding activity completed. From a static point of view, the target institutional
facts must already exist. They are parts of the context of the source institutional facts. From a dynamic
point of view, the speech acts creating the target institutional facts must have been performed before the
speech acts creating the source institutional facts.

Using the process algebra representation, we have an alphabet of four events

est-cust: establish a customer relationship with someone

off-prod: offer a product for sale

act: complete the activity implementing a purchase

purch: complete a purchase transaction

and the behaviour is represented by the regular expression

<(est-cust||off-prod).(act.purch)*> (3)

The key point of this example is that the alphabet of the process is derived from the need to create instances
of the four entities in the model, and regular expression is derived from the functional dependencies in the
model. The dynamic aspect is implied by the static aspect.

Note that the converse is also true. The static aspect is implied by the dynamic. The entities are records of
the occurrence of the events in the alphabet, while the functional dependences are guaranteed by the
sequence restrictions.

In Figure 1, the upper part is a refinement of the lower part. An instance of the institutional fact type
Activity has parts of type Ship, Pack and Acknowledge, while an instance of the institutional fact type has
parts of type Order and Delivery. All the parts are also institutional facts, with their corresponding speech
acts.

Refinement of the speech acts gives the regular expression

<(est-cust||off-prod).(acknowledge.(order||(pack.ship)).deliver)*> (4)

The rules of the refinement are given in [1]. In the static view, they require that each part of Purchase
Transaction be functionally dependent on a part of Activity in such a way that the transitive dependencies
are preserved. In the dynamic view they require that each part of purch follow a part of act. The details are
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beyond the scope of the present paper, and in any case are not essential for the present purposes, except to
indicate that the refinement in the process view appears more complex than it does in the static view. This
is of course an artifact of the difference between a one-dimensional and a two-dimensional notation.

We have illustrated the argument of Snoeck and Dedene [10] that the dynamic aspect of the system is
equivalent to the static aspect, with examples in (3) and (4). In fact, there are subtle problems with both
examples, one of which is that in example (4) the event acknowledge precedes the event order. This is
certainly counterintuitive, since the order originates with the agent playing the customer role, and is
logically the start of the whole process. Our problem with (4) raises the point that the populations of
databases are generally updated in transactions, in which possibly several changes are made at the same
time. In fact, the population of a database implementing Figure 1 would be updated in a transaction in
which instances were added simultaneously to both order an acknowledgement. The static view is to this
extent less refined than the dynamic view.

The issue becomes clearer when we step back to a more ontologicial view. In Figure 1, the institutional fact
recorded in an instance of order represents the completion of a speech act of the supplier accepting the
order. That speech act has parts, namely first the customer requests to place an order, then the supplier
acknowledges the customer’s request, thereby accepting the order. The record of the speech act accept an
order includes the records of the speech acts request an order and acknowledge the request. The
transaction records only the completion of accept an order, while the dynamic view must consider the
sequence of parts.

The regular expression (4) is better as

<(est-cust||off-prod).(order.acknowledge.(pack.ship.deliver))*> (4’)

A second such problem is present in the model of Figure 1, namely the relationships deliver, pack and ship.
The speech act deliver an order includes the speech acts pack and ship. Furthermore, a reasonable
enterprise interpretation of the model in Figure 1 would have the process initiated by the issuance of a
delivery order, which would trigger the relevant part of the organization to schedule a shipping order,
which in turn would trigger the issuance of a packing order. On completion of the packing, the shipping
could proceed to completion, thereby allowing the delivery to complete. In the same way as a completed
order institutional fact is recorded in instances of both the entities order and acknowledgement, a
completed delivery institutional fact is recorded in instances of all three of delivery, ship and pack. If the
database is recording completed institutional facts, then the three delivery, ship and pack would be updated
simultaneously in a transaction. Refining the dynamic aspect, regular expression (4’) becomes

<(est-cust||off-prod).(order.acknowledge.deliver.ship.pack)*> (4”)

Our regular expression now expresses the correct sequence of actions, but there is still a minor problem in
that the packaging has been lost that makes the complex order and acknowledgement distinct from deliver,
ship and pack. For similar reasons, the sequence of act and purch in (3) must be reversed.

We can see that, contrary to the claim of [10], existence dependency does not tell the whole story. The
conceptual model expresses the static structure of the data on completion of all the institutional facts
represented in it, but does not adequately specify the sequence of speech acts creating complex institutional
facts.

OntoClean clarifies the situation

The OntoClean system of meta-properties supports both existence dependency and parthood [3]. A
complex institutional fact is essentially dependent on its parts. That is, existence of all its parts is essential
for the existence of the whole. This is why the static view of Figure 1 shows the whole being dependent on
its parts. The whole of an institutional fact is an endurant. But the creation of the institutional fact is an
event, and the event has temporal parts. Occurrence of the first temporal part begins the event, which is not
completed until the occurrence of the last temporal part. Because the whole is essentially dependent on its
parts, the static view which shows only wholes must be updated with the whole and its parts
simultaneously, in a transaction.

Returning to the ER model of Figure 1, the essential part analysis shows that the representation system used
in ER uses the same notation to designate ontologically different relationships between atomic entities. This
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kind of situation is called ontological overloading by Weber [11]. In the bottom, more abstract, model the
relationships whose targets are Customer and Product are all existence dependencies, while the relationship
whose source is Purchase Transaction and whose target is Activity expresses an essential part relationship.
In the refinement, Purchase Transaction has two parts, Order and Delivery. In their turn, Order has an
essential part Acknowledgement and Delivery has an essential part Ship, which has an essential part Pack.
The relationships from Delivery to Order, and from Pack to Acknowledge plus the derived relationships
from Ship and Deliver to Acknowledge are all existence dependencies.

Since the ER model represents existence dependency and essential parthood in the same way, additional
specification must be added to the design to be able to specify behaviour. One way to do this is by
annotating the ER diagram, as in Figure 2. The essential part relationship has a thicker arrow than the
existence dependency.

Customer Product
Purchase

Transaction

Activity

Customer Product

order

delivery

pack

ship acknowledge

Figure 2 Figure 1 with essential part relationship noted

The behaviour can now be generated against the arrows for existence dependency and with the arrows for
essential parthood. The resulting regular expression is

<(est-cust||off-prod).((order.acknowledge).(deliver.ship.pack))*> (5)

The speech acts establishing a customer relationship and offering a product for sale provide the context for
purchase transactions. The temporal part order establishes the context for its completion in acknowledge
and then for temporal the part deliver, which in its turn establishes the context for its completion in ship,
which establishes the context for its completion in pack. When all of purchase transaction’s temporal parts
have occurred, then the institutional fact of having made a purchase is created.

Interoperation
The agent through which an information system interoperates with others does not in general expose all its
internal operations to its partners. It makes visible only sufficient data structure to support the speech acts
involving other parties, and only those speech acts are known about by its partners.
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Customer

ProductProduct

Supplier

Order

Deliver Deliver

Order

Figure 3: A simple e-commerce interaction

In Figure 3, we have the order entry system of Figure 1 on the right, and a counterpart purchasing system
shown on the left. The only objects published by the order entry system are Customer, Product, Order and
Deliver. The counterpart purchasing system publishes only Supplier, Product, Order and Deliver.

In order for any interoperation to take place, the two structures must be coordinated. The speech acts
generally involve behaviour of more than one agent. In particular, the instance of Customer referring to the
particular purchaser and the instance of Supplier referring to the particular supplier would have been
created simultaneously in the same speech act in which the institutional fact of the customer-supplier
relationship was established. Also, the instance of product involved in the sale must be in a one-to-one
correspondence between the two. This correspondence would have been created previously be one or more
informatives, probably initiated by the purchaser. The records of the institutional facts of the order having
been placed and the delivery having been made are kept in both systems.

The behaviour of the interaction has the behaviour Purch with the alphabet

establish-customer-supplier-relationship (est-cust-supp)
offer-product (off-prod)
establish-correspondence-between-products (est-corr)
order
deliver

governed by the regular expression

<off-prod.(est-cust-supp||est-corr).(order.deliver)*> (6)

If we designate by OE the behaviour of the order entry system governed by the regular expression (4), and
identify the speech act est-cust of OE with est-cust-supp of Purch, we can see that the projection of OE
onto Purch has the regular expression

exp(OE|Purch) = <(off-prod||est-cust-supp).(order.deliver)*> (7)

In order to specify the interoperation in (6), we need to impose a restriction on the parallel execution of
events off-prod||est-cust-supp, as well as add the informative est-corr, which is not visible in the order
entry system. This shows that in general we need to refine the specification of individual systems when we
specify their interoperation. In order for the behaviour of the order entry system to conform to regular
expression (6) when it is projected onto the interoperation along with the data, regular expression (5) would
have to be

< off-prod.(est-cust||est-corr).((order.acknowledge).(deliver.ship.pack))*> (8)

The refinement required is to recognize that offering a product for sale has precedence over establishing a
customer relationship, making provision for the informative in the alphabet, and requiring that the
informative precede the order.
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Role of behavioural subtypes

Ontologies are used to organize the objects in a world of agents. The essential qualities of objects higher in
the subsumption network can be used to simplify interactions concerning objects lower in the network. For
example, if the agent world concerns the purchase of software, the products offered for sale may be
organized into a hierarchy as shown in Figure 4. Essential qualities of Product include that the product type
= software (a rigid quality) and license conditions common to all software purchases. There are two
subtypes, that sold on CD with a delivery time common to all products and that sold by download, with the
ftp site used for downloading as an essential quality.

Product (type = software, license conditions)

CD-software(media = CD, delivery time)

Downloadable(media = download, ftp-site)

P1
P2 P3

Figure 4 A simple subsumption hierarchy

All of the terms used in Figure 4 are of course registered in the ontology, so that the supplier and potential
purchasers must all commit to the ontology in order to be able to use the terms reliably. An agent intending
to purchase software can make a series of queries (informatives) on the supplier’s product catalog to make
a decision to buy say product P3. The product catalog is a system of endurants.

How does the purchasing agent actually accomplish the purchase? The actual purchase is an event. For
purchasing downloadable software, the event is simple, just download. Download is a speech act in which
the agent playing the purchaser role sends a message identifying the product to be downloaded and
providing electronic funds transfer details, while the agent playing the supplier role executes the electronic
funds transfer and the download itself.

For purchasing CD-software, the event has temporal parts: first order the software then take delivery. Not
only is the latter more complex than the former, they use different methods. Clearly, the alphabet of
elementary events must be in the ontology as a set of names (endurants referring to perdurants). So the
supplier and intending purchasers can agree on what order, deliver and download mean and what data must
or can be included in the messages implementing these elementary events. Not only that, we have
established above that we can assign specifications of behaviour as qualities of endurants. In this way, the
appropriate purchasing behaviour can be assigned as essential qualities at the appropriate level in the
subsumption network, as in Figure 5. The behavioural qualities form a subsumption hierarchy, since they
satisfy the requirements (1) for events and (2) for the behaviour.

Product (<order.deliver+download>)

CD-software(<order.deliver>)

Downloadable(<download>)

P1
P2 P3

P4

Figure 5. Subsumption hierarchy with behavioural qualities

We have now that it is possible to associate with any object in an ontology supporting an information
system attributes whose values specify how to interact with it. These attribute values represent qualities in a
quality space which is aligned with the subsumption network in which the objects are organized.

Which agent performs which roles is specified only implicitly. The agent managing the product catalog and
the order entry function will only attempt speech acts in which it can play the supplier role, while an agent
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intending to purchase will only attempt speech acts in which it can perform the purchaser role. Therefore
the role names must be included in the ontology as well as the speech acts.

From dyad to community

The behavioural qualities and their subsumption structure of the previous section was developed in the
context of a single interaction of two agents. In practice, a community will consist of many agents which
interoperate over a long period. The agents will be programmed for complex behaviour such as

• keeping a manufacturing plant operating fully with minimum inventory of parts and materials at a
minimum cost

• purchasing complex goods and services by tender

• responding to tenders for complex goods and services

• planning travel itineraries

• buying and selling goods at auction

Agents will be programmed to exhibit more or less intelligent behaviour, ideally to be able to adapt their
strategies based on assessment of success or failure.

There is a wide variety of agent interaction patterns (protocols), even for the restricted activity of
purchasing.

A minimal protocol is a simple purchase, where a customer first identifies a single product or service
desired then executes the purchase. The customer and vendor do not explicitly maintain a relationship. In
particular, payment is made by credit card or electronic funds transfer at the time of purchase. Examples
include purchase of tickets on “no-frills” airlines, purchasing software by download, booking hotels,
concert tickets, retail cash sales generally. An alphabet for a simple purchase is {offer-product, identify-
product-price, purchase} with a regular expression

simple-purchase = <offer-product.(identify-product-price.purchase)*> (9)

We have already in Figure 5 introduced a contrasting protocol, where a physical product is involved which
must be delivered:

deliver-purchase = <offer-product.(identify-product-price. purchase.deliver)*> (10)

A simpler protocol occurs in markets where the products are unique, such as art, used goods or real estate.
There the product is offered only once, but still is delivered

unique-purchase = <offer-product.identify-product-price. purchase.deliver> (11)

A more complex protocol occurs where the purchase is for a number of different goods at one time, but still
without establishing a business relationship. This protocol occurs in many retail applications and also in
complex travel itineraries

shopping-cart = <offer-product*.(identify-product-price*.purchase)*> (12)

which can be without delivery (12) or with delivery

del-shopping-cart = <offer-product*.(identify-product-price*.purchase.deliver)*> (13)

Some sites make partial deliveries

part-del-shopping-cart = <offer-product*.(identify-product-price*.purchase.deliver*)*> (14)

There is a protocol where the vendor and purchaser establish a relationship. The example is built on (14),
but a comparable paradigm could be built on any of the protocols (9) to (14)

rel-part-del-shopping-cart = <offer-product*.est-cust.(identify-product-price*.purchase.deliver*)*>
(15)

Similarly, the purchase can be divided into the temporal parts order, deliver, bill and pay, where billing
aggregates several orders (a normal and fairly simple business-to-business protocol):
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bill-part-del-shopping-cart = <offer-product*.est-cust.(identify-product-price*.

order.deliver*)*.bill.pay> (16)

There are many protocols besides these shown, some of which are exceedingly complex. They can involve
requests for quotation, quotes and purchase orders in place of the simple identify-product-price method of
commiting to a purchase. Some industries have complex discount structures which depend on cumulative
purchases over nominated periods of time. And so on.

A community of agents operating through some sort of exchange functions much like a particular industry
in the physical world, like liquor retailing, home renovations or domestic real estate. Even though there are
many different protocols in commerce generally, a particular industry uses only a few.

Furthermore, each interaction strategy implemented in an agent must assume a particular protocol. In order
for agents to interact, they must share protocols. It is therefore an advantage for the developers of the
agents if the agent community supports a limited number of protocols.

Use of a limited number of protocols in a particular agent community therefore makes sense both from a
business and a technical point of view.

An agent community needs an ontology describing the things the interagent interactions are about. We have
previously established that it is possible to develop an ontology of interaction patterns. Therefore, the
limited number of interaction patterns supported by a particular agent community can be included in its
ontology. Figure 6 shows the interaction patterns (9) to (16) organized as a subsumption hierarchy. Note
that the alphabet has been abbreviated for clarity of visualization of the whole, according to the legend
shown.

With this structure, an agent participating in an exchange can advertise the interaction patterns it supports
in addition to its product catalog. It only needs to advertise the most general pattern, since an agent with a
subsumed pattern can interoperate successfully. Should different classes of products support different
interaction patterns, the interaction pattern can be associated with the subsumption structure at the most
general level relevant, as in Figure 5.
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simple-purchase
<OP.(IPP.P)*>

deliver-purchase
<OP.(IPP. P.D)*>

unique-purchase
<OP.IPP. P.D>

shopping-cart
<OP*.(IPP*.P)*>

del-shopping-cart
 <OP*.(IPP*.P.D)*>

part-del-shopping-cart
<OP*.(IPP*.P.D*)*>

rel-part-del-shopping-cart
<OP*.EC.(IPP*.P.D*)*>

bill-part-del-shopping-cart
<OP*.EC.(IPP*.O.D*)*.B.PY>

<OP*.(IPP*.P.(1+D)*)*>

<OP*.EC.(IPP*.(O+P).(1+D)*)*.(1+B.PY)>

B bill
D deliver
EC est-cust
IPP identify-product-price
O order
OP offer-product
P purchase
PY pay

Figure 6 A subsumption hierarchy for commerce protocols

Interaction with other parts of the ontology

The behavioural subtype system proposed here is consistent with and interacts with the usual ontologies of
endurants. We have seen already that the behavioural qualities form a quality space which can be the basis
of defined types in the product catalog. The atomic events are exchanges of messages. The sending of a
message is a perdurant, but the message itself is an endurant, since it is wholly present and its text can be
made to persist. The messages can have a subtype structure, which is isomorphic to a subtype structure for
atomic events.

For example, in Figure 6, the two rightmost protocols rel-part-del-shopping-cart and bill-part-del-
shopping-cart have respectively the atomic events purchase (P) and order (O), which occur at homologous
places in the protocols. The purchase event includes all the information in the order event, with the
addition of message elements enabling funds transfer, for example credit card details. The funds transfer
elements can be seen as a package of fields which are either present (in purchase) or absent (in order). We
can construct a supertype where this complex is optional, called say OP. This would enable the two
protocols to be organized into a subtype structure as in Figure 7, based on Figure 6 with the leftmost
subtype system removed for clarity. The intermediate type on the right has the optional sequence B.PY and
the message supertype OP. The leftmost leaf type has one message subtype and the optional behaviour
absent, while the rightmost has the other subtype and the optional behaviour present.
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rel-part-del-shopping-cart
<OP*.EC.(IPP*.P.D*)*>

bill-part-del-shopping-cart
<OP*.EC.(IPP*.O.D*)*.B.PY>

<OP*.(IPP*.P.(1+D)*)*>

<OP*.EC.(IPP*.(O+P).(1+D)*)*.(1+B.PY)>

<OP*.EC.(IPP*.OP.D*)*.(1+B.PY)>

Figure 7 Fragment of Figure 6 with behavioural subtypes based on message subtypes

What to do about mismatches

It was claimed above that an interoperation can take place if the two parties have different behaviour
protocols, so long as one subsumes the other. On closer inspection, the situation is more complicated than
that. If, for example, the purchaser follows the unique-purchase protocol (Figure 6) and the supplier the
deliver-purchase protocol, there is no problem, but if the protocols are reversed, the interaction may not
succeed.

Whether there is a problem depends on whether the partner supporting the subtype protocol can force the
partner supporting the supertype protocol to limit its behaviour. Where the purchaser follows the unique-
purchase protocol and the supplier the deliver-purchase protocol, the restriction to a single product per
order is under the control of the purchaser. In the reverse case, the purchaser may want to place an order for
several products, but the supplier can accept only one product per order. Here the problem is not too severe,
since the purchaser can adjust its ordering strategy to the capabilities of the supplier. The purchaser can
control the interaction protocol, since it initiates all sequences of events.

But suppose the purchaser follows the del-shopping-cart protocol and the supplier the part-del-shopping-
cart protocol. In this case, the supplier initiates the deliveries so may break the order into parts even though
the purchaser can’t handle multiple deliveries. The supplier must limit its behaviour to the capabilities of
the purchaser.

In general, both parties must agree to behave according to the most constrained (subtype) protocol, so their
interaction strategies must be flexible enough to support subtype behaviour protocols.

This leads to a consideration of what can be done if the two parties support protocols neither of which
subsumes the other. The possibility exists that there may exist an acceptable common subtype.

Calculation of the greatest common subtype is easy if the only difference between the protocols is the
presence or absence of the iteration operator. Suppose one party supports the del-shopping-cart protocol
which allows more than one product per order but a single delivery for each product. The definition (13) is
repeated below (17) for convenience

del-shopping-cart = <offer-product*.(identify-product-price*.purchase.deliver)*> (17)

The other party follows a protocol we will call simple-part-del in which one product can be ordered at a
time, but partial deliveries are allowed (18)

simple-part-del = <offer-product*.(identify-product-price*.purchase.deliver*)> (18)
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The greatest common subtype is computed simply by deleting the iteration operator at any place in the
regular expressions where it does not occur in both, giving in this case (19)

common = <offer-product*.(identify-product-price*.purchase.deliver)> (19)

If both parties can limit their behaviour to common, then an interaction may proceed. This will require an
exchange of messages to establish.

The same sort of tactic can work if the difference is in message subtypes. Suppose one party supports rel-
part-del-shopping-cart of Figure 7, while the other supports bill-part-del-shopping-cart. The greatest
common subtype algorithm can be augmented by replacing a clash between message subtypes by a
common subtype of both, if such exists.

In any case, the initial exchange establishing a common protocol must have a state in which the attempted
connection fails.

Conclusion

We have shown how the purdurant behaviour of agents can be organized into a system of subtypes which is
based on the same principles as and is compatible with the subtype systems used to organize the endurants
through which and on which the behaviour occurs. An agent can be programmed with arbitrarily intelligent
behaviour within a standardized behaviour protocol. It can seek out other agents with which it can interact
using the same subsumption mechanisms for behaviour protocols as it does for its message repertoire and
the objects about which the interaction is about.

The subsumption structure of the behaviour protocols has been constructed from existence dependency and
essential parthood, concepts central to the OntoClean meta-ontology, and the whole structure has been
based on the endurant/perdurant distinction of DOLCE applied to the material ontological category of
institutional fact. It shows how basic formal and material ontology can help us organize and comprehend
the world of computerized agents.
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