
Quality of Ontologies in Interoperating Information Systems

Robert M. Colomb

Technical Report 18/02 ISIB-CNR
Padova, Italy, November, 2002

National Research Council

Institute of Biomedical Engineering

ISIB-CNR

Corso Stati Uniti, 4

35127 Padova

Robert M. Colomb

School of Information Technology and Electrical Engineering
The University of Queensland

Queensland 4072 Australia
colomb@itee.uq.edu.au

Work performed partly while visiting LADSEB-CNR; Corso Stati Uniti, 4; Padova, Italia,

2

Abstract
The focus of this paper is on quality of ontologies as they relate to interoperating information systems.
Quality is not a property of something but a judgment, so must be relative to some purpose, and generally
involves recognition of design tradeoffs. Ontologies used for information systems interoperability have
much in common with classification systems in information science, knowledge based systems, and
programming languages, and inherit quality characteristics from each of these older areas. Factors peculiar
to the new field lead to some additional characteristics relevant to quality, some of which are more
profitably considered quality aspects not of the ontology as such, but of the environment through which the
ontology is made available to its users. Suggestions are presented as to how to use these factors in
producing quality ontologies.

3

Quality of Ontologies in Interoperating Information
Systems

Robert M. Colomb

School of Information Technology and Electrical Engineering

The University of Queensland

Queensland 4072 Australia

colomb@itee.uq.edu.au

Work performed partly while visiting LADSEB-CNR; Corso Stati Uniti, 4; Padova, Italia

Short Title: Quality of Ontology

Index terms: information systems interoperation, ontology, quality

Abstract
The focus of this paper is on quality of ontologies as they relate to interoperating information
systems. Quality is not a property of something but a judgment, so must be relative to some
purpose, and generally involves recognition of design tradeoffs. Ontologies used for
information systems interoperability have much in common with classification systems in
information science, knowledge based systems, and programming languages, and inherit
quality characteristics from each of these older areas. Factors peculiar to the new field lead
to some additional characteristics relevant to quality, some of which are more profitably
considered quality aspects not of the ontology as such, but of the environment through which
the ontology is made available to its users. Suggestions are presented as to how to use these
factors in producing quality ontologies.

Introduction – information systems quality and its contribution
of ontology.
The focus of this paper is on quality of ontologies as they relate to interoperating information systems.
Since part of our argument is that use of high-quality ontologies increases the quality of interoperable
information systems we are also concerned with quality of information systems more generally.

Let us start with some very general considerations. Quality is not a property of something but a judgment,
so must be relative to some purpose. Information systems generally have many stakeholders, who have
quite different views on quality.

Management wants a system that delivers a maximum benefit at minimum cost, where benefit is defined in
terms of the operational effectiveness of the organization, not in terms of the system itself or even its
functionality.

End users also want a system that delivers a maximum benefit at minimum cost, but benefit is defined in
terms of enhancement of their individual and small group effectiveness, and cost generally in terms of ease
of use. For very powerful systems, ease of use might take into account the skill increase expected from a
quantum of training.

The engineers who build and maintain the system see the management and end user quality judgments as
objective functions on which to make design tradeoffs. The engineering design tradeoffs are the first place
we begin to see the sorts of technical issues with which this paper is concerned.

Very few systems are based on radically new designs. The usual approach is to begin with a general
framework having a number of parameters which are often correlated. The management and end-user

4

quality judgments are represented in terms of design principles or rules of thumb which assist the engineers
in setting the parameters and managing their interaction. An important element of quality at this level is the
tools and techniques which assist the engineers. Such tools and techniques tend to improve quality partly
because they make it easier for the engineers to work, thereby reducing costs; or increase the engineers’
capability, thereby increasing attainable functionality.

We leave it to others to explore the issues of quality in information systems and in conceptual modeling
generally. Our focus, ontology design, is a complex of tools and techniques which come into play when the
engineers need to make information systems interoperate. This can either involve modifying existing
applications or creating new ones, and can involve interoperation among systems implemented in the same
organization (a large hospital, say) or in autonomous organizations (the semantic web).

Designing an ontology involves selecting a universe of discourse. More particularly, an ontology is a
catalog of the contents of the universe visible in the interoperation of a group of existing or potential
applications. Ontology is related to conceptual modeling in that the tasks performed and some of the tools
used are similar. Ontology differs from conceptual modeling in that it is much more public and tends to be
less specific. More public in that it records the agreements taken by the stakeholders which define the
universe of interoperation, and therefore must be referred to by the designers of all the individual
interoperating applications and integrated into the individual conceptual models. Less specific in that the
ontology tends to abstract away from many implementation details through which the interoperations are
produced. For example, the Electronic Data Interchange (EDI) standards record the agreements as to the
types, semantics and permissible content of a wide variety of business messages including purchase orders
and invoices. The standard is silent on how a purchase order is stored in the database of a complying
system, and on how the purchase order is related to the subsequent invoice through perhaps a series of
intermediate steps invisible to the customer.

Ontologies come at several levels of generality. The most specific are those supporting a particular group of
applications, such as SNOMED1 (medical conditions and interventions) or that supporting a particular
business-to-business exchange like CorProcure2. SNOMED has 11 general categories of object, including
anatomy, pharmaceuticals, and living organisms, with a total of more than 150,000 particulars such as
heart, aspirin and the bacterium e. coli. CorProcure has a number of general categories of product such as
office goods, and a large range of particular named products called stock keeping units, allowing demand to
be aggregated and volume bids to be placed for sales to multiple customers at the same time.

More general ontologies support many specific groups of applications in a broad context, such as the EDI
standards X.11 and UN EDIFACT, or a hypothetical ontology based on the intellectual property law and
regulations of the European Union. The EDI standards specify the types, semantics and permissible content
of business documents such as purchase orders or invoices. An ontology of intellectual property law would
include a classification of various types of intellectual property, various types of stakeholders, and various
types of permitted and forbidden uses of the types of property by the types of stakeholders.

Most general are the universal ontologies like Cyc3 or the IEEE Suggested Upper Merged Ontology
(SUMO)4 which are intended to be application independent catalogs of things in the world, and the formal
upper ontologies like OntoClean (Welty and Guarino 2001) or Bunge-Wand-Weber (BWW) (Weber 1997),
which are neutral with respect to content, focusing on the forms used to represent the more specific
ontologies.

Ontologies contribute to the quality of interoperating information systems partly by increasing capability. A
single repository for general agreements among the interoperating parties is much less complex than a web
of inter-party agreements, making feasible interoperation on a much greater scale. They contribute also by
reducing costs. Storing the common elements in one place greatly reduces redundancy and consequently
the effort needed to develop and maintain the interoperation.

1 www.snomed.org/
2 http://www.corprocure.com/
3 http://www.opencyc.org/
4 http://ontology.teknowledge.com/

5

We recognize that ontologies are used in a number of areas different from information systems
interoperation, most particularly artificial intelligence and natural language applications. Our comments do
not necessarily apply to ontologies used for these other purposes, at least not directly.

Quality of ontologies – preliminary
If quality is a judgment of an object against an intended use, then in order to evaluate the quality of a
particular ontology we need to test alternatives against the requirements of the application as seen by the
various stakeholders. A framework for doing this for conceptual modeling generally was published by
Lindland et al. (1994), in which quality was to be assessed against three linguistic dimensions: syntactic,
semantic and pragmatic. These three dimensions answer respectively the questions:

• Is the model syntactically correct?

• Does the model cover the domain of interest?

• Is the model comprehensible by the user?

The syntactic dimension is on its face straightforward. If the model contains syntactic errors, then the
CASE tool supporting the language used in model should be able to point these errors out to the analyst.
However, a deeper issue is how complex a syntax should be used. There are, after all, many modeling
languages. In CASE-supported ontologies, the syntactic issue is richness and complexity of syntax rather
than correctness.

Semantic quality is how well the ontology reflects its universe of discourse, while pragmatic quality is how
easy the ontology is to understand. Assessment along these dimensions is in practice an assessment of
fitness for purpose. The closer an ontology reflects its universe of discourse, the larger and more complex it
will tend to be and therefore the more difficult to understand. There are comparable tradeoffs between
syntax and semantics, and between syntax and pragmatics.

Lindland et al. recogise this issue with their consideration of feasibility. Syntax must be rich enough,
semantics must be complete enough and pragmatics must be understandable enough. They say “Adding the
notion of feasibility lets you trade off between benefits and drawbacks”.

The Lindland et al. framework gives a way to design usability tests. The argument of the present paper is
that we also need to be able to describe the differences among the alternatives in order to be able to
determine what characteristic of the alternative ontologies lead to particular quality judgments. In other
words, we need a technical vocabulary to describe the ontological design space.

The technical aspects of quality with which we are concerned in this paper therefore have to do with the
general frameworks and correlated parameters of ontologies and the design principles used by the engineers
to make their tradeoff decisions. We are further concerned with actual or possible tools available to the
engineer to increase capability or reduce costs. In order to see these frameworks, principles and tools, we
need to distinguish a vocabulary to talk about ontologies from a vocabulary to represent ontologies. Every
ontology has a representation language, but part of the task of studying quality is to develop a vocabulary
about them, which requires some thought.

One way to develop vocabulary in a new field is to identify and adapt relevant vocabulary from adjacent
more established fields. Neighbors of ontology include the branch of information science concerned with
the development of classification systems, knowledge-based systems, and programming languages. In all
cases, it is essential that the system being evaluated be comprehensible to the humans who are building it, if
not to the end users, so that cognitive considerations are important.

In the following, we collect a relevant vocabulary from the neighbouring disciplines, then consider some
quality issues specific to ontologies. Finally, we look at how this design vocabulary can be used to help
assess the quality of particular ontologies.

6

Lessons from information science

Classification systems
One important characteristic of ontologies is that they often include subsumption hierarchies (is-a
networks). The analogous concept in information science is the classification system, where the network is
based on the broader term/ narrower term relationship. Classification systems are used to organize
information repositories, including libraries. If the repository consists of a collection of documents, then
each document is attached to exactly one of the leaf nodes in the hierarchy, and thereby to the chain of
broader terms associated with that leaf node. There is a very long history of engineering of such systems,
with design principles given in such texts as Rowley (1992) and Colomb (2002).

A critical design parameter in a classification system is specificity – the average number of documents
associated with a leaf node. This parameter is based on cognitive principles, namely the number of
documents a user is prepared to sift through in the result of a query on the document repository. Once the
specificity of the system has been established, the size of the collection determines another parameter, size
– the number of leaf nodes. In an information retrieval system, the designers might determine that a user
making a query with a single term would tolerate an average of 50 documents in a query result, so the
system would have a specificity of 50. If there were 1 million documents in the repository, then there
would have to be 20,000 descriptor terms, so the system would have a size of 20,000.

If the classification system is intended to be understood by humans, then the size of the system can be a
problem. Large classification systems such as used in libraries, for example, have hundreds of thousands of
leaf nodes. Humans are capable of comprehending only a small number of alternatives, generally well
below 100. For this reason, classification systems are generally hierarchical. If we call the average number
of subclasses in a class the width of the classification system, then the size of the system determines the
depth of the system, or the average number of subsumption steps from the root to a leaf. In the library
world, the Library of Congress classification system (LOC) and the Dewey Decimal Classification System
(DDC) are of similar size, both intended to classify all books published in the past and foreseeable future.
The LOC system is wider than the DDC. Many classes in the LOC have more than 20 subclasses, while in
the DDC each class has at most 10 subclasses. The LOC is therefore shallower than the DDC. It has a depth
of about 7 compared with more than 10 in the DDC.

So the design parameters for a classification system for a collection of documents of a given size include
specificity, size of the classification system, width and depth of the hierarchy. Specificity and size are (anti-
)correlated, as are width and depth. The driving parameters specificity and width are both derived from
cognitive considerations, so that a system is of low quality if its specificity or width deviate too far from the
cognitively most comfortable.

The cognitive consideration is loosely that smaller (result sets or menu choices) is better. So is a more
specific or narrower system generally of higher quality than a less specific or wider system? The answer is
not necessarily. There are two additional design principles introduced by Bates (1986) and discussed in
Colomb (2002), the principles of variety and uncertainty, which affect the quality of the system through the
choice of specificity and width.

Variety is a technical parameter, first introduced in cybernetics as Ashby’s law of requisite variety, a
control system must have more states than the system it is controlling. This principle is another way of
saying smaller is better, and its application leads to more specific or wider systems. This principle might
lead one to classify my occupation as University Reader in the Australian system, and my field as
Information Systems Interoperability.

Uncertainty opposes variety. The principle of uncertainty derives from the cognitive fact that people, even
trained indexers, are not very reliable at assigning documents to very specific classes. That is, two different
people or even one person at different times will tend to assign different specific classes to a given
document. The problem gets worse the more specific the classes or the wider the hierarchy. If my
occupation were to be classified in the American system, would I be considered as an Associate Professor
or a Full Professor? Would my field be classed as a subclass of communication, or database systems, or
Web technology?

7

High quality systems therefore tend to be no more specific than they need to be. Most systems that would
classify my occupation would have me as a university teacher, and my field as information systems. Large
systems which are necessarily more specific than is comfortable for humans will be supported by indexes,
coding manuals, and other tools to help overcome the results of the principle of uncertainty, thereby
maintaining quality.

One would expect that these design principles would transfer fairly directly to the taxonomies used in
ontology design. Specificity is often interpreted somewhat differently, though. In many cases the objects of
interest are not individuals (documents in the information science case), but types, for example customers
or products. An information system may have millions of instances of types without any problem with
specificity. That multiplicity is as it were outside the design horizon.

Uncertainty is central to ontologies, since they are intended to be used by multiple parties. There are thus
many opportunities for misunderstanding and unintended interpretations. One way to limit uncertainty is to
describe an ontology using structural relationships among meta-properties. This adds an element of
redundancy somewhat like the use of types in programming languages. The users of the ontology must not
only agree on the meta-properties but also on the structural relationships underlying the terms in the
ontology itself. The structural relationships can in many cases be described in axioms which give necessary
and sufficient conditions for the ontological terms.

OntoClean (Welty and Guarino 2001) makes extensive use of this approach. They put forward meta-
properties such as identity (the ability to identify instances) and unity (the ability to put together the parts of
complex objects) and use them to guide the structural relationships used in subsumption networks. In
particular, their approach gives a principled solution to the famous problem of Clyde the elephant. (Clyde is
an elephant. Elephant is a species. Is-a is a transitive relationship. Therefore the fallacious conclusion
Clyde is a species. The OntoClean approach prevents subsumption from being used in this case since the
identity criteria for instances of elephant are different from the identity criteria for instances of species.)

Coherence
Uncertainty appears in classification systems as difficulty humans have in consistently assigning an
instance to a class. The way the subclasses are defined can make a big difference to the difficulty of
assigning individuals to them. Plato, in The Phaedrus, perhaps the first systematic presentation of
classification as a knowledge representation technique, advises that the subclasses should divide the
superclass “at the joints”. In other words, the subclasses should be divided according to a systematic, easily
agreed upon set of characteristics. This method appears in the information science literature as theoretical
analysis (Rowley 1992, Colomb 2002).

One way to achieve coherent subdivision of a class is to define the subclasses formally using SQL views or
defined concepts (see eg Donini et al. 1996 for terminology) in description logics. The set of subclasses
should be disjoint and exhaustive (partition the superclass). Other ways include basing the subclasses on
the set-instance or part-whole relationship. For example, one can classify material about computers by CPU
type (defined concepts), or material about famous computers by the computer’s name (Difference Engine,
Enigma, Eniac, HAL – set/instance relationship), or material about computer systems by subsystem (cpu,
monitor, disk, printer, modem – part/whole relationship). The alternative is a heterogeneous collection of
names (primitive concepts in description logics), such as is found in many subclasses of Yahoo!. At one
stage (in 2001), the Computers and the Internet: WWW class included as subclasses Books and Java,
among others. The obvious question to ask is where would a book about Java be classed.

However, a coherent method of subclassification is not a guarantee of high quality. Coherence interacts
with specificity. The different subclasses can differ very much in specificity. Since the width of the
hierarchy is strongly constrained, the further decompositions of the more specific subclasses are much
shallower than the more general, so that the system is unbalanced. Unbalanced systems can be undesirable
because in a menu system it can take many more choices to reach some leaf nodes than others. Where a
classification system is used as the basis of a coding system, the shallower branches leave code space
unused. So in applications where balance is important, a high quality system may be subdivided on a less
coherent basis, but will compensate by providing extra assistance to the people making the decisions
classifying instances. Coherence and balance are anti-correlated design parameters.

8

It may be that in ontology work, the need for coherence is stronger than the need for balance. There is a
good case to be made that the revision of WordNet according to the OntoClean method (Gangemi et al.
2002) improved the quality of WordNet5 by regularizing the subsumption relationships using the meta-
properties of their system.

Faceted systems
Uncertainty influences the quality of information science classification systems in yet another way – the
consistency of subdivision among the different branches of the hierarchy. Suppose we have a classification
system for Olympic athletic teams. First teams are classified by sport. Then each sport is subclassified by
the country from which the team comes. The assignment of individuals to classes is easier if each sport is
subclassified by the same set of countries. One benefit of this kind of approach is that we can easily
rearrange the hierarchy, subdividing first by country then by sport, for example. The two independent
subdivisions are called semantic dimensions or facets (Rowley 1992, Colomb 2002).

The cost of this faceted method is that there may be possibly many empty classes – Jamaica may have a
bobsled team, but Egypt does not. In many cases, the predominance of empty classes makes the method
infeasible – for example if we subdivide sport by type of event, the subdivisions of swimming are entirely
inapplicable to those for equestrian events, and vice versa.

However, high quality systems intended to classify complex objects tend to be built using the faceted
approach, for example the SNOMED6 system for classifying medical conditions and interventions. This
kind of issue appears in ontologies that support multiple inheritance. The quality of these might improve if
note were taken of faceted design methods.

Lessons from knowledge-based systems
Quality in knowledge-based systems was addressed by Debenham (1989). What is meant by knowledge-
based system in that work is a deductive database, that is a relational database with possibly recursive view
definitions. The objects of design are called data, information and knowledge. Data is the individual atomic
names that are stored in the database (the names of individuals in description logic terms). Information
includes both the schemas defining the database relations (roles) and the tuples stored in the database (role
membership assertions). Knowledge is the view definitions, which are expressed as Horn clauses (complex
concepts).

There are a large number of specific design principles in the work, but they are all expressions of the
fundamental principle of avoiding redundancy – each object in the universe of discourse is represented in
the knowledge-based system in one place and one place only. This is an extension of the database design
principle of normalization, where the schemas are designed to store various kinds of dependencies non-
redundantly. The reason for normalization is that it avoids update anomalies – a change in a dependency
can be recorded by a single update without introducing inconsistencies. The reason given for Debenham’s
design principles is maintainability – a change in an object in the universe of discourse can be represented
in the knowledge-based system by one possibly complex change in the data, information and/or knowledge.

For example, universities have degree programs, each of which has a set of rules. There will often be
aspects of rules which apply to more general groups of students – say undergraduates versus postgraduates,
coursework versus research degrees, degrees offered by different Faculties. If the common rule sets
applying to each group of students is factored out of the rule definition, then a general change to say a
research degree type of program will automatically propagate to each specific research degree.

The price paid for normalization is increased complexity of structure (more tables) and increased
complexity of processing (more joins). Applications where performance is a quality issue often
denormalize the most-used tables. Some database systems support view materialization, where a
denormalized table is represented as a view whose population is computed eagerly and where the redundant
updates are performed automatically. Similarly, application of Debenham’s design principles tends to

5 http://www.cogsci.princeton.edu/~wn/online/

9

introduce additional complexity both of structure and processing. In the university rule example, the rules
expressed in this way will be very difficult for a student to understand since the rules relevant to a
particular student will be scattered through a number of modules. Quality will be enhanced if the student-
rule interface is able to automatically incorporate all the modules into a single relevant story.

So a high-quality system will be designed in the awareness of redundancy, and where redundancy needs to
be introduced into the design, it will be properly controlled. The complexity introduced will be
compensated. In fact, the university rule example shows that we can view this principle as a call for the use
of ontology in the design of knowledge-based systems (the different groups of students form an ontology)
as well as a call for the avoidance of redundancy in ontologies.

Programming languages
Design of programming languages has a long history and a large literature. Some relevant design tradeoffs
include expressiveness versus simplicity, orthogonality versus efficiency, and support for re-usability
versus one-off cost.

Expressivity is an interesting issue. The minimum model for computation is extremely simple – a Turing
machine is a CPU and memory with a few instructions. There is nothing that can’t in principle be
programmed with the minimum model. Programming languages with more facilities simply make it easier
to do certain kinds of things, so expressivity does not refer to what you can say at all, but what you can say
easily. Expressivity is very closely related to re-usability – the more than minimal features of a
programming language are re-usable structures.

The cost of expressivity is complexity. The more re-usable structures there are in a programming language,
the more difficult it is for the programmer to find the right one to use, and to learn to use it. Similarly to the
variety/uncertainty tradeoff in information science, a high quality programming language will tend to have
its complexity limited to a set of features useful in a class of applications, so that the benefit of learning is
high.

For ontologies, this tradeoff casts light on the design issues around specificity discussed above. Addition of
a subclass increases the cost of learning how to use it as well as the cost of acquiring and maintaining its
instances. For example, an application supporting membership in a professional society may find that many
of its members have an address that indicates that they work for the same organization. It would be possible
to model the organizational affiliation in the address, but the model would be very complex (organizations
often have many addresses, for example, and also can merge or split, while the member continues to work
and receive post at the same address). So we have another reason to expect that a high-quality ontology
would not be more specific than necessary. Nor would it have more other features than necessary.

Orthogonality in a programming language has to do with the interaction of its various features. Two
features are orthogonal to the extent that they are not correlated. For example, a language may have a range
of data types and may have a function constructor. If a function can return any type, then the function
constructor and the data types are orthogonal. A language with orthogonal features is easier to use than one
with correlated features, since the programmer does not have to learn the correlations. The cost of
orthogonality is efficiency. It may be extremely difficult to implement certain types as values of functions,
so that a program making use of these difficult-to-implement constructions may be extremely large or
extremely slow, and thus unsatisfactory. So high-quality programming languages tend to have limited
orthogonality, especially if they are more expressive (there are more features to interact). They will also
tend to have optimizing implementations to preserve as much orthogonality as possible.

Orthogonality is related to the faceted classification systems discussed above. In ontology terms, these
systems allow complex objects to be classified along several relatively simple dimensions rather than one
complex hierarchy.

Reusability is related to expressivity, as described above. But a programming language can make it easier
to re-use not only language features, but programs developed by a particular user community. This sort of
facility is often called abstract data types, and in object-oriented languages is often implemented as the
ability to associate methods with classes. The most easily re-used abstract data types generally have clear
specifications, so that a programmer can understand what the method is intended to do without knowing
anything about its implementation. Historically, the most successful types are mathematical and statistical

10

function libraries. The relational algebra and is relatives in SQL are good examples, as are the various
breeds of logic programming derived from particular subsets of the predicate calculus. In fact, the most
successful abstract data types tend to be incorporated as increased expressiveness in programming
languages.

Experience has shown that it is extremely difficult to develop easily used abstract data types, since it
amounts to developing new mathematics. This is why the tradeoff for reusability is one-off cost. It is much
cheaper to develop programs for a specific application than it is to develop libraries for use in many
applications. A high-quality programming language/environment will provide support for libraries of
abstract data types.

The whole point of ontology is reusability. An ontology is intended to be a collection of descriptions of
object types which support an ecology of interoperating information systems. So a high-quality ontology
environment will permit the re-use of as much as possible of the successful abstract data types associated
with its classes. A high-quality class will tend to have methods associated with it implementing useful
operations on its objects. A high quality ontology will support meta-properties which will insure that the
methods of its classes are reliably applicable to instantiations. This is essentially the justification for the use
of the OntoClean methodology of ontology design (Guarino and Welty 2002). The methodology permits
the more extensive and reliable use of subsumption and abstract data types associated with the part-whole
relationship, among others.

Ontology-specific quality issues
We have seen that ontologies used for information systems interoperability have much in common with
classification systems in information science, knowledge based systems, and programming languages, and
that they inherit quality characteristics from each of these older areas. The quality characteristics generally
involve recognition of design tradeoffs, in particular the interaction of adequacy for human cognition
(principle of uncertainty, ability to distinguish alternatives, ease of learning and so on), with technical
factors (principle of variety, control of redundancy, implementability, reusability and so on).

Ontologies are of course a field in themselves. Key differentiating factors include

• They are independent of specific applications within a general context.

• They are often public, in the sense that they are independent of any particular organization
deploying applications.

• They must integrate with a large variety of applications and interfaces, increasingly including
natural language interfaces.

These special requirements lead to some additional quality issues, some of which are more profitably
considered quality aspects not of the ontology as such, but of the environment through which the ontology
is made available to its users.

The three requirements suggest that an ontology may be of poor quality if it is so tied to a particular natural
language that it is difficult to integrate it with applications or interfaces using a different natural language.
Similarly, it may be of poor quality if it is so tied to a particular programming language that it is difficult to
integrate it with applications written in different programming languages. So language independence is a
quality dimension, both natural language for content and programming language for representation. The
cost of language independence is lack of subtlety of expression. There are many features of particular
language which are useful to users of that language, and it can often be difficult to express features of a
particular application in a standard language.

Of course, there is no outside of language. The content must be expressed in some language. So an
ontology must take into account the range of natural languages with which it must interface, and tailor its
content appropriately to a least common denominator. Hence the loss of subtlety. Similarly, the ontology
must be represented somehow – there is no outside of representation. An ontology will therefore be
represented in a standard representation system which is widely used among the applications intended to
employ it, hence again at a cost of subtlety.

11

Furthermore, any ontology is intended to be used in a particular context, say a particular e-commerce
exchange, or a medical records exchange system within a particular region, or for advice and bookings for
independent travelers in a given group of countries. The objects and messages represented in the ontology
and its associated applications will be interpreted in the light of what Searle (1995) calls background
knowledge – that is customs, expectations, business practices and regulations which are not generally
explicitly represented in either the ontology or the applications. Examples include be settlement deadlines
for invoices and the consequences of missing them, or the regulations and practices regarding use of private
data. In particular, an airline may publish a limit of 15 kilograms for checked baggage. Whether I need to
worry about removing stuff from my 18-kilogram bag depends on the background of how strongly the
airline enforces the weight limit at check-in.

Changes in the background associated with the context can make a significant difference to the applications
involved (think of changes in taxation or privacy regimes). Although as with any application it is
impossible to foresee all possible changes, there are certain kinds of changes which can be anticipated. An
ontology will have a facility for representing relevant background parameters, thereby making predictable
change easier. The cost is of course complexity, since the more background is represented, the bigger the
system must be.

Finally, no matter how good the ontology is, in order for it to be useful it must be deployed in an
environment where it can be effectively accessed both by human users (typically systems developers) and
by the applications and agents operating in its context. Therefore, there are quality issues related to the
ontology server and its operating environment. The tradeoff dimension is of course cost. The better the
environment, the more it costs to build it.

For the human, the ontology environment needs to provide

• Glosses on the terminology, and links to background literature to assist the user in understanding
the terms and their relationships.

• Search and browse facilities supported by indexes to that people can quickly and reliable find what
they need.

For the applications and agents, there needs to be

• Hooks to relate terms from particular natural languages to the terms in the ontology.

• Facility for rewrite rules to express the terms in the ontology in a variety of implementation
languages.

How all this helps with quality assessment
What this paper has done is to present a vocabulary to describe what are almost physical characteristics of
ontologies in terms of engineering design tradeoffs. This vocabulary enables us to describe an ontology in
terms of its location in a design space. Further, all of the engineering tradeoffs are apparent at the design
stage, before the ontology is actually built. This vocabulary is summarized in Table 1. Concepts are
presented in pairs. The left column is the concept in the pair commonly expressed as a desired feature. The
right column is the correlated concept commonly thought of as the cost of the desired feature.

12

Table 1

Summary of engineering tradeoffs

Dimension at a cost of Dimension

specificity How much each term covers size Number of terms needed

width Number of terms visible at

once

depth Number of levels of hierarchy

coherence Ease of understanding balance Equality of depth for all branches

maintainability Ease of change complexity

expressivity What you can say complexity

orthogonality Lack of interaction of features efficiency

re-usability one-off cost

language

independence

From particular natural

language

loss of subtlety Some things easier to say in

particular language

standard

representation

loss of subtlety Some concepts can be hard to

express in standard language

representation of

background

complexity

richness of

deployment

environment

cost

One way to use this vocabulary is to develop a series of prototypes which differ along one or two design
dimensions, say balance, or maintainability, or specificity and width, or specificity and orthogonality. The
prototypes can be ranked according to cost using the correlated cost dimensions. They then can be assessed
for suitability using a method appropriate to the particular application and relevant stakeholders. Results of
the suitability analysis can be factored in with cost assessments in order to decide on a high quality design.

Another way to use the vocabulary is to assess the feasibility of being able to meet the specifications of a
proposed system. Often the specifications include characteristics which are constrained by the quasi-
physical laws to be correlated. It may happen that the requirements specify systems which are impossible or
very difficult to build. For example, some people would prefer user manuals to be both small and specific.
The ideal manual for these users consists of a single page which tells them exactly what to do in the
situation presently confronting them on their screen. The engineering tradeoff dimensions can be used as a
basis for negotiation with the stakeholders to attain a specification which is possible to build at a reasonable
cost. We might think of this use of the dimensions as contributing to the quality of the ontology building
process, in terms of producing satisfactory results on time within budget.

In conclusion, in this paper we have attempted to elucidate some of the engineering tradeoff dimensions
related to quality in the ontologies used to support interoperating information systems. We have drawn
some of these from ancestral technologies and some from the specific requirements of the emerging area,
and indicated how these engineering dimensions can contribute to quality.

13

Acknowledgement
This paper owed much to discussions with Nicola Guarino of LADSEB-CNR.

References
Bates, M. J. (1986) Subject access in online catalogs: a design model. JASIS 37(6) 357-76.

Colomb, R.M. (2002) Information Spaces: the architecture of cyberspace Springer, London.

Debenham, J. K. (1989) Knowledge Systems Design Prentice-Hall, Englewood Cliffs, NJ.

Donini, F., Lenzerini, M., Nardi, D. and Schaerf, A. (1996) Reasoning in Description Logics. In Brewka, G. (ed.)
Principles of Knowledge Representation and Reasoning Studies in Logic, Language and Information, CLSI
Publications, Stanford, CA

Gangemi, A., Guarino, N., Oltramari, A. and Borgo, S. (2002) Cleaning-up WordNet's Top-Level. Proc. 1st Global
WordNet Conference, 21-25 January pp. 109-121. Central Institute of Indian Languages, Mysore, India.

Guarino, N. and Welty, C. (2002) Evaluating Ontological Decisions with OntoClean. CACM 45(2) 61-65.

Lindland, O.I., Sindre, G., and Sølvberg, A. (1994) Understanding quality in conceptual modelling. IEEE Software
11(2) March 42-49.

Rowley, J. E. (1992) Organizing Knowledge 2nd Edn Gower, Aldershot, England.

Searle, J. R. (1995) The Construction of Social Reality The Free Press, New York.

Welty, C. and Guarino, N. (2001) Supporting Ontological Analysis of Taxonomic Relationships. Data and
Knowledge Engineering 39(1) 51-74.

Weber, R. (1997) Ontological Foundations of Information Systems Coopers & Lybrand Accounting Research
Methodology. Monograph No. 4. Melbourne.

