
An Approach to Ontology for Institutional Facts in the Semantic Web

Robert M. Colomb e C.N.G. Dampney

Technical Report 15/02 ISIB-CNR

Padova, Italy, November, 2002

National Research Council

Institute of Biomedical Engineering

ISIB-CNR

Corso Stati Uniti, 4

35127 Padova

Robert M. Colomb

School of Information Technology and Electrical Engineering
The University of Queensland

Queensland 4072 Australia
colomb@itee.uq.edu.au

Work performed partly while visiting LADSEB-CNR; Corso Stati Uniti, 4; Padova,
Italia, and partly while visiting Department of Computing, Macquarie University,

Sydney, Australia

C.N.G. Dampney

School of Information Technology, University of Newcastle, Callaghan, NSW 2308
Australia

2

Abstract

This paper shows how it is possible to represent the complex data structures needed to
support electronic commerce applications in the semantic web using ontologies. The
conventional mereological or subtype-oriented refinement of the ontology is
supplemented by a method of coordinated refinement based on category theory. The
combined methods make ontologies a much more powerful tool for organising the
semantic web.

3

An Approach to Ontology for Institutional Facts in the Semantic Web

Robert M. Colomb

School of Information Technology and Electrical Engineering
The University of Queensland

Queensland 4072 Australia
colomb@itee.uq.edu.au

Work performed partly while visiting LADSEB-CNR; Corso Stati Uniti, 4; Padova,
Italia, and partly while visiting Department of Computing, Macquarie University,

Sydney, Australia

C.N.G. Dampney

School of Information Technology, University of Newcastle, Callaghan, NSW 2308
Australia

Abstract

This paper shows how it is possible to represent the complex data structures
needed to support electronic commerce applications in the semantic web using
ontologies. The conventional mereological or subtype-oriented refinement of
the ontology is supplemented by a method of coordinated refinement based on
category theory. The combined methods make ontologies a much more
powerful tool for organising the semantic web.

INTRODUCTION - ontology engineering deficiencies for insti tut ional
facts, and their remediation

Much of the motivation for the Semantic Web is to permit easy interoperability of
electronic commerce and related applications. In particular, the structures are intended to
support the use of agents in these types of applications.

Electronic commerce involves the exchange of messages which execute the business
transactions. There is a long history of standardisation of these kinds of messages in
the Electronic Data Interchange (EDI) community, and these standards are being adapted
for the Web, both by being simplified and by being represented in standard structured
data transport languages such as XML. A typical very simple exchange between a
customer C and a supplier S might involve

• C -> S Request for quotation (RFQ)
• S -> C Quote
• C -> S Purchase Order
• S -> C Delivery Advice
• C -> S Acceptance of Delivery
• S -> C Invoice
• C -> S Payment

Each of these messages is a speech act [1]. When the supplier sends a quote, the world
has changed to the extent that he is now obligated to supply that product at that price
to that customer if a purchase order is received within the period of validity of the
quote. Similarly, the sending of a purchase order commits the customer to accept a
delivery and an invoice, and if the goods are delivered in a satisfactory state, to make a
payment.

4

Speech acts are not arbitrary messages. Their use in organizational contexts produces
what Searle [8] calls institutional facts. Searle distinguishes institutional facts from
physical objects, what he calls brute facts. An institutional fact is a brute fact which
has a meaning in a particular institutional context. Following the quote example, a
record of the quotation message having been sent is a brute fact. The brute fact is
interpreted as a record of a quotation along the lines of the previous paragraph if it was
sent in the appropriate context.

Our EDI exchange has a number of more or less complex contexts. The RFQ requires
that the supplier and the product both be accessible to C. The quote requires that both
the customer and the product be represented in S’s database, and on the terms and
conditions contained in the RFQ. A purchase order depends on the existence of a quote.
A delivery advice depends on a purchase order, an acceptance of delivery on the delivery
advice, an invoice on an acceptance of delivery, and a payment on an invoice.

Searle’s characterization of institutional facts is (brute fact) X counts as (institutional
fact) Y in context C. Institutional facts are potentially very complex. In particular, the
context C can be richly and deeply structured. Our electronic commerce example
illustrates this point – the context necessary for a message transmitting a sum of
money to be accepted as payment for a shipment of a product in respect of an order
based on a quotation in response to an RFQ is complex indeed.

Furthermore, almost all information systems in the electronic commerce sort of
domain are devoted to generating and storing institutional facts.

Ontology is a major tool in organising the semantic web. Ontology has been defined

by for example the IEEE SUO Working Group1 as

The goal of this Working Group is to develop a standard ontology that
will promote data interoperability, information search and retrieval,
automated inferencing, and natural language processing. An ontology
is similar to a dictionary or glossary, but with greater detail and
structure that enables computers to process its content. An ontology
consists of a set of concepts, axioms, and relationships that describe a
domain of interest.

Ontologies that have been constructed to date are generally networks of simple terms
connected by subtype or part-of relationships. Although the information systems
implementing the electronic commerce applications have complexly structured data
representing institutional facts, it is difficult for the ontologies to represent the
structures. In particular, with only simple terms it is difficult to represent a generic
speech act such as for example business transaction which requires a generic customer,
supplier and product; and for this generic speech act to be refined (the term comes from
the formal methods in software engineering community) to more specific structures
supporting specific business domains. The terms themselves can be refined in an
ontology, but refinement of the relationships requires not only some kind of subtype or
part structure for the generic relationship but also the coordinated refinement of the
terms.

1 http://ontology.teknowledge.com/

5

There is a branch of mathematics, called category theory (see eg [2]), which deals with
graphs and has a number of very powerful tools for the analysis and synthesis of such
structures. Category theory has been proposed as a meta-ontology for the structural
aspects of semantic web applications by Johnson and Dampney [5]. It has also been
proposed as a foundation ontology for the IEEE Standard Upper Ontology in the

Information Flow Framework2

Using category theory, it has been possible to propose a solution to the long-standing
problem of abstraction and refinement in entity-relationship models [4]. This solution
makes it possible to say in a principled way that one more detailed complex structure
refines a more abstract complex structure. The method advocated is focussed on the
large scale structures being refined, and does not interfere very much with the more
local refinements characteristic of ontology. We therefore propose that the two methods
together be used to develop the structured ontology needed for institutional facts.

In the following, we first present some terminology and a number of plausible criteria
for a principled structural refinement. We then present the category-theory based
refinement method in the form of a set of guidelines, and show how the method
interacts with a mereology-based ontological refinement. The electronic commerce
business transaction is used as a source of examples throughout.

Terminology and criteria for structural refinement

Complex structures are frequently represented in information systems using the entity-
relationship (ER) method. ER modelling has a well-developed and widely understood
terminology. Category theory is a branch of mathematics which can be used for
representing ER models, but of course category theory has its own well-developed
system of terminology which is quite different from that supporting ER, and is very
much less widely known in the semantic web community. Unfortunately for the
comprehensibility of papers such as this, it is very difficult to express the results using
only ER terminology, so some category theory terminology is necessary. In this
section we first develop the terminology, then give a plausible set of requirements for
structural refinement.

The fundamental elements of ER modelling are entities and relationships. An entity is
a set of objects in the business domain (Universe of Discourse). A relationship
connects entities, defining a relation among their instances. A number of integrity
constraints are used in ER modelling, in particular the cardinality of a relationship. A
relationship R between two entities A and B is said to be many-to-one if it defines a
function from A to B. A relationship is said to be mandatory on the side of an entity if
every instance of the entity is constrained to participate in the relationship. A many-to-
one relationship between A and B determines a total function if it is mandatory on the
A (domain) side, and a surjective function if it is mandatory on the B (codomain or
range) side.

It is always possible to represent a conceptual model using binary many-to-one
relationships which are mandatory on the many side. In set theory terminology, the
model is represented as a collection of domains and total functions. There are many

2 http://suo.ieee.org/IFF/versions/20020102/IFFFoundationOntology.htm

6

notations for ER models. In this paper we use one which emphasises the representation
as a network of functional relationships, as in Figure 1. The names in boxes are names
of entities. The arrows represent relationships which are many on the side without an
arrowhead and one on the side with an arrowhead. The relationships are not named,
unless names are needed for disambiguation or in discussion.

Customer ProductTransaction

Activity

Figure 1: An ER model of a business transaction

Semantically, this model expresses at a high level a business transaction from the
point of view of one of the parties. A transaction requires a product and a customer, and
some activity on the part of the organisation to carry it out.

The notation of Figure 1 is that of a directed graph. Category theory (CT) is the theory
of mathematical structures which can be represented by directed graphs. In CT the
entities are called objects and the relationships arrows. The object at the many side is
called the source and the object at the one side the target of the arrow. To be a category
a collection of objects and arrows must have two additional properties – the arrows
must compose associatively (functional relationships compose associatively), and
associated with each object must be an identity arrow (the identity function is always
possible). So Figure 1 can be viewed as a category (technically, the diagram of a
category). Identity arrows are typically only represented on a diagram if they are needed
for a discussion. Further, to conserve space on the page the boxes around the objects
are generally omitted.

A fundamental notion in CT is that of a functor, a homomorphism between two
categories. (A homomorphism is a functional relationship which preserves structure.)
A functor takes objects into objects, arrows into arrows, and compositions of arrows
into compositions of arrows. It is conventional in CT to represent functors as in
Figure 2, with the domain of the functor shown above the codomain. Hence the objects
in the domain carried into an object in the codomain are said to be above the codomain
object, and similarly for the arrows.

7

Customer ProductTransaction

Activity

business

1
business

P

Figure 2: A functor

The functor P maps the category of Figure 1 into a minimal category consisting of
only one entity (object) (called business) with only one relationship (arrow), the
required identity relationship. (The convention is to name the identity relationship
associated with an entity 1 subscripted by the name of the entity.) P takes each entity
into business and each relationship into 1business.

We turn now to the requirements for one ER model to plausibly be a refinement of
another. Recall that the refinement under discussion is a coordinated ontological
refinement of the sorts of institutional facts used in electronic commerce. We want the
more abstract model to be something like a type for the more specific. As with
ontology generally, this gives some of the tools for organising this aspect of the
semantic web.

Since it is not common in ER modeling to discuss two related models, we need some
new terminology. It is convenient to borrow some of the CT terminology. We want to
say that one model R (for refinement) is a refinement of another S (for specification).
Some authors advocate a method of refinement for development of ER models (eg. [3],
[10], [11]), but their methods are weak in the sense that there are no properties
possessed by the more abstract model which must also be possessed by the refinement.
There is no well-defined way in which the detailed model can be said to satisfy a
specification in the more abstract model.

We will speak of the refinement as being above the specification. Figure 2 therefore
represents a refinement.

Requirement 1 - Integrity: Every entity in the refinement is above an entity in the
specification, every relationship in the refinement is above a relationship in the
specification, and every entity and relationship in the specification is refined.

This requirement says that nothing in the specification is lost, and that nothing is added
that is not specified.

Requirement 2 – Composition: Every composition of relationships in the specification
is refined by a composition of refinements of the relationships composed.

The relationship Transaction -> Product in Figure 1 is the composition of Transaction
-> Activity and Activity -> Product. Every refinement of the latter two must compose

8

into a refinement of the former. Otherwise, the functional relationships in the
specification are not preserved in the refinement.

Requirement 3 – Completeness: Every entity refining a specification entity is the target
of a relationship refining a relationship whose target is the specification entity. (There
are alternative requirements canvassed in [4], but this version is adequate.)

Otherwise, there can be many things going on in the refinement which don’t satisfy the
requirements of the specification so long as there is one refinement which does. We
want every refinement of Product to be associated with a refinement of Activity, and
every refinement of Activity to be associated with a refinement of Transaction.

Requirement 4 – Pattern Preservation: Every entity and relationship in the refinement
is part of a pattern with the same structure as the specification.

We want every refinement of Transaction to be associated with refinements of
Customer, Product and Activity.

We argue that these are a close to being a minimal set of requirements to be able to
talk meaningfully of refining a data model. Extended examples in [4] show that the
requirements have force (it is possible to make mistakes), and at least in the examples
presented can lead to a refinement which is a better design.

The refinement method

It is shown in [4] that category theory provides tools that can implement the
requirements 1 – 4 for a model to be a refinement of a specification. We have already
seen that both models can be viewed as categories.

Integrity is implemented by making the refinement a functor surjective on entities and
relationships whose source is the refined model and whose target is the specification
(the refinement is above the specification).

Composition is implemented by requiring that every relationship in the specification is
refined by a relationship, possibly a composition, for each and every entity in the
refinement and which is called the cartesian relationship with certain strong properties
described below.

Completeness is implemented by requiring that every refinement of the target of a
specification relationship be the target of a cartesian relationship. This is encapsulated
in CT by a special type of functor called a fibration. The entities and relationships
above a specification entity are called the fibre indexed by the specification entity.
(Relationships whose source and target are both above the same specification entity are
refinements of the identity relationship for that specification entity.)

Pattern preservation is implemented by requiring that the fibration have possibly
several right inverses which are functors, and that every refined entity be related to a
refined entity in one of the images of the specification. (All of the technical terms from
CT are defined and illustrated in [2])

Note that functors compose, as do fibrations, so we can perform our refinement in
steps, in the normal software engineering manner.

The refinement method can be presented as a set of five design guidelines:

Guideline 1. Freedom within a fibre: The fibration does not itself place any
restrictions on the refined model fragments within a fibre. This is because the constant

9

functor (whose codomain is a single entity with its identity relationship, as in Figure
2) is always a fibration. This rule, or lack of rule, shows us that the guidelines being
introduced are not local, so complementing the standard local refinement processes. The
guidelines are in addition to the standard design rules, not simply reformulations of
existing rules. Figure 2 is an example of this guideline. The refinement is entirely
unconstrained.

Guideline 2. Connections between fibres must be unitary
(requirements integrity and composition): A key element in the definition of
a fibration is that there must be what is called a cartesian relationship above every
relationship in the enterprise model for each entity above the target. A cartesian
relationship has the property illustrated in Figure 3. This property is a very strong
constraint, as we will see in the following.

A
B

C
f

g

h

Y

X

Z

c

v

w∃ !

c is cartesian for f and Y

Figure 3: Cartesian relationship

The bottom diagram in Figure 3 is a fragment of the specification. The top diagram is
a fragment of the refinement, with entity X in the fibre above C, Z above A and Y
above B. The relationship of main interest is c:X -> Y above f:C -> B. The
specification has a relationship g:A -> B which is a composition of f with h:A -> C.
For c to be a cartesian relationship (for f and Y), associated with each v above g, there
must be a unique w above h such that v is the composition of c with w. Note that
there can be many different Ys above B.

This requirement has particular force above a single relationship of the specification, as
every entity has an associated identity arrow, and all the arrows within a fibre map to
the identity relationship associated with the entity the fibre is above. The situation is
shown in Figure 4, where on the left the design satisfies the criterion, while on the
right it does not.

What this means is all relationships originating in one fibre and terminating at a single
entity in another fibre are examples of v in Figure 4. We will call an entity above the
target fibre an anchor for relationships. We would expect many anchors, since the
specification target is refined.

1

10

There is no
c that is cartesian
for f and Y

Figure 4: Cartesian relationship (left) and no cartesian relationship (right) for fibres
above an identity

The constraint that the connections between fibres must be unitary is
that one relationship must be cartesian for each anchor and all the
others must be dependent on the cartesian relationship for that anchor
in exactly one way. The source of the primary relationship is called the centre of
the group of objects for that anchor.

Example T.1 We will develop a running example based on further refinement of
Figure 2, the business transaction. We will distinguish specification entities from
refined entities. Both will be named in italics, but the specification entities will be also
in bold.

Figure 5 shows a refinement of Figure 2, where we have introduced two parts to
transaction, namely order and delivery. We have refined the relationships
transaction -> customer, transaction -> product and transaction ->
activity. If we want for example delivery to depend on product, the unitary
connection guideline prevents us from making a direct relationship, instead we take
order as the centre of relationships to the anchor product, and delivery must depend on
order. This of course makes semantic sense, as the two parts of transaction must be
related to each other, and the order part of the process occurs before the delivery part.

1

11

Customer ProductTransaction

Activity

Customer Product

Activity

order

delivery

Figure 5: First refinement of transaction

Guideline 3. Every entity above an entity in the enterprise model
which is the target of a relationship must be the target of a
relationship in the implementation model satisfying guideline 2
(requirement completeness). In other words, every entity in a fibre above the
target of a specfication relationship must be an anchor for relationships above the
specification relationship. This guideline comes from the definition of a fibration,
which constrains the fibres which are above the targets of arrows, but not those which
are above the sources of arrows.

Example T.2 If we now refine activity as in Figure 6, also into two parts, pack
and ship. From guideline 2, one part must be the centre of a relationship to the anchor
product, and since pack is prior, it makes semantic sense to choose it. Ship is
dependent on pack for the same reason that delivery is dependent on order. Guideline 3
requires that both pack and ship be the anchors of relationships above delivery ->
activity . The indicated refinement satisfies this constraint, where the dependency
delivery -> pack is derived.

1

12

Customer Product

Activity

order

delivery

Customer Product

order

delivery

pack
ship

Figure 6 Refinement of activity

Guideline 4. If there is a derived relationship in the specficat ion,
relationships above it must be derived from the cartesian relat ionships
of guideline 2. This guideline is derived from the general definition of a cartesian
relationship given in Figure 3. The refinement in Figure 6 satisfies this guideline
vacuously, since all the arrows shown plus the derived delivery -> pack are cartesian
with respect to the refinement shown. If we view the composition of the refinements in
Figures 5 and 6 as a refinement of the specification of Figure 2, the refinement also
satisfies this guideline. The relationship delivery -> product above transaction ->
product is not cartesian, but is derived from delivery -> pack and pack -> product,
which are.

Guideline 5. If there are diverging relationships in the specif icat ion,
then there must be relationships in the refinement above them whose
centres are aligned (requirement pattern preservation). This guideline is a
consequence of the requirement that everything in the refinement must be dependent on
objects in an image of the specification.

Example T.3: The refinement of Figure 5 fails this guideline. Delivery has
relationships with activity, customer and product (the latter two derived), but order is
not the source of a relationship whose target is activity. The semantic force of
guideline 5 in this situation is that as it stands, it is possible for an order to get lost, in
the sense that no activity is ever associated with it. Think of a large organisation where
the orders are taken by one department and filled by another. It would probably make
the auditors happier if when an order is taken by marketing there is some
acknowledgement by the shipping department recorded in the database.

The refinement of Figure 6 does not provide much help for this problem. We have
refined transaction as a process with two parts, order and deliver, with the parts held
together by the later having a functional relationship with the earlier. We have also

1

13

refined activity as a process with two parts, pack and ship, held together similarly.
To satisfy guideline 5, we must have a relationship between order and an entity above
activity. Neither of the existing entities will do, since the target of a relationship
must exist prior to, or at least be created simultaneously with, the source. Issuance of a
picking slip (recorded in pack) may occur well after the order is taken, and the issuance
of a shipping order (recorded in ship) after that.

One way to solve this problem is to include an additional part in the process refining
activity, say acknowledgement, which is created in the same database transaction as
the order. In practice, this may be simply a view on the order which is routinely
checked by the shipping department. Another way is to make an inventory reservation
in the same database transaction as the order, in the way airlines reserve seats when a
trip is booked. A complete refinement of Figure 2 satisfying all the guidelines is given
in Figure 7.

Customer ProductTransaction

Activity

Customer Product

order

delivery

pack

ship acknowledge

Figure 7: Refinement of Figure 2 satisfying all guidelines

Relationship with mereological refinement

Mereological refinement is a progressive articulation of a whole by defining its parts
[9]. Its parts may exist all at once, or may be progressively created. The whole may be
thought of as an object or a process. Parts may have parts (the whole-part relationship
is transitive).

Fibrations-based structural refinement does not interfere with the mereological
refinement of the individual specification entities. Simply, if there are relationships
among specification entities, the structural refinement insures that the relationships are
maintained as the specification entities are refined.

There are a number of issues to take into account.

1

14

• How strong the structural constraints should be – it makes sense to separate
requirements 1-3 from requirement 4. We can call guidelines 1- 3 weak structural
refinement, and the addition of guideline 4 strong structural refinement.

• What stages in the refinement process are considered integrity constraints and
which are simply the sequence of making engineering decisions. In the example of
T.1 – T.3 above, one might take the first refinement of Figure 2 to be integrity
constraints and the others as engineering choices. In a larger system, there might
be several layers of integrity constraints, the more refined of which may be local
from the point of view of the more general specification.

• At what stage in the population of the mereological schemas we need the integrity
constraints to be satisfied. In the business transaction example of Figure 7, they
are always satisfied. In the refinement of Figure 6 (which fails to satisfy guideline
4), they are not. Between the placement of the order and the request to deliver there
is no relationship between an instance of a refinement entity above transaction
and an instance of a refinement entity above ac t i v i t y. We will distinguish
continual satisfaction of the constraint from eventual satisfaction.

These are business issues, all of which lead to technically satisfiable specifications.

In general, if we have a specification A -> B and refine both A and B by parts, we can
think of the instances populating the mereological schemas as participating in chains
of associations following the schema, which must be acyclic. Either the whole
structure is inserted into the database in the same database transaction, or it is inserted
in stages down the chains of functional dependencies (an instance of the target of a
functional dependency must exist when an associated instance of the source comes into
existence). We will call instances of entities which are not the target of a relationship
bottom instances. Similarly, we will call instances of entities which are not the source
of a relationship top instances.

The minimum constraint where structural refinement makes sense would be the
eventual satisfaction of weak structural refinement. Here, the bottom instances of
entities refining the target of a specification relationship must have an association with
some instances of entities refining the source of the specification relationship. Eventual
satisfaction of strong structural refinement requires that the top instances of entities
refining the source of a specification relationship have an association with some
instances of entities refining the target of the specification relationship.

Relationship with e-commerce
We began this story with a discussion of the sorts of messages used to implement
institutional facts found in electronic commerce, with their complex contexts. We will
finish the story by seeing how our machinery applies to these kinds of data objects.

Institutional facts are records of speech acts. Speech acts, at least the sort we are
considering, involve inter-organisational or at least inter-agent communication. An
organisation or an agent does not necessarily want to expose all of its internal structure
to its potential communication partners. For this reason, it is usual to construct views
which hide the structural details not necessary for external partners. Following [5], a
view on a system E has a schema K and a homomorphism mapping K into the
classifying category for E, which they call Q(E). The classifying category contains all
the queries on E. For our purposes, a view looks like an information system. It is

1

15

important that it can be constructed using the tools of category theory, but the details
are not relevant here.

Figure 8 shows views for two parties who may participate in an e-commerce exchange
such as we have discussed. Note that they share the specification for transaction and
product. They differ in that the purchaser has a specification for supplier while the
supplier has a specification for customer. The purchaser is of course only one
possible customer for the supplier, and the supplier only one possible supplier for the
customer. The refinement of product may be different for the two organisations, as it
is very likely that a customer buys only a small fraction of any particular supplier’s
range, but buys from several suppliers.

Customer

ProductTransactionProduct Transaction

Supplier

Purchaser Supplier

Figure 8 Purchaser’s and supplier’s views of each other.

The critical factor for the ability to interoperate is that the two organisations have
visible in their views coordinated refinements for the data records associated with the
transaction process, as we see in Figure 9. We have used the sequence RFQ, Quote,
Purchase Order, Delivery Advice, Delivery Acknowledgement, Invoice, Payment
discussed in the introduction. The process begins from the customer, so the RFQ has a
link both to supplier on the customer’s side and to customer on the supplier’s side.
RFQ also has a link to product on both sides. These functional relationships are
necessary to establish the communication.

Both sides keep copies of all messages. This is common practice to support follow-up
and to resolve misunderstandings. In addition, each side may establish relationships
from their copy of a message to other structures outside the view. However, the
minimum requirement is that each message has a relationship with the last. The
linkages between the two organisations are always able to be derived.

Note that the specification in Figure 9 shows relationships between the organisations,
using dashed lines. These relationships are necessary to conduct the business
transaction. They are distinguished from the within-organisation relationships only for
expository purposes. The refinement in the figure is a system which continually
satisfies strong structural refinement. Note also that the relationship between RFQ and
also Payment in the customer and supplier is bi-directional. This is formally necessary
to satisfy requirement 3 (completeness), and semantically necessary to record (for RFQ)
the confirmation of the initiation of a communication sequence, and (for Payment) the
closure of the transaction for both parties.

1

16

Product Transaction

Supplier

Purchaser

Customer

ProductTransaction

Supplier

Customer

ProductProduct

Supplier

RFQ

Quote

Purch Ord

Del Adv

Del Ack

Invoice

Payment

RFQ

Quote

Purch Ord

Del Adv

Del Ack

Invoice

Payment

Figure 9: Coordinated refinement of transaction supporting an e-commerce
application

Of course the refinement in Figure 9 is quite likely still not detailed enough to support
specific interactions. The EDI standards have large and complex data structures, and
exchanges supporting a particular class of business generally use only a small subset of
the possible data items. Further refinement is therefore necessary, which is supported
by our method.

Completing the link back to the semantic web, agents need not only to interact with
each other, but also to find each other. Because interactions are not only complex but
also have deep semantic content, agents do not generally seek each other on the open
web using for example search engines. It is much more common to use e-commerce
exchanges supporting particular industries or types of interactions. An e-commerce
exchange can support much more complex data structures than a search engine.

Even using an exchange, the negotiations necessary to set up a transaction are
complex. For example, the processes necessary for electronic tendering are analysed in
[6]. The progressive refinements we have described in this paper can be used as an index
to structure this complex data to support the protocol negotiations, in a way similar to
that described in [7].

In conclusion, we have presented a method of coordinated refinement of complex data
structures supporting institutional facts and the speech acts which create them, which
interacts well with the more conventional local mereological and subtype refinement
methods. The combined methods make ontologies a much more powerful tool for
organising the semantic web.

1

17

Acknowledgements

This paper owes much to many people, but most immediately to discussions between
Colomb and Chris Partridge and Nicola Guarino of LADSEB-CNR.

References

[1] Austin, J.L. How to Do Things with Words (Harvard U.P., Cambridge, Mass,
1962)

[2] Barr, M. and Wells, C. Category Theory for Computer Scientists (Prentice-Hall,
New York, 1990).

[3] Batini, C., Ceri, S. and Navathe, S.B. Conceptual Database Design: an Entity-
Relationship Approach (Benjamin/Cummings, New York, 1992).

[4] Colomb, R.M., Dampney, C.N.G. and Johnson, M. Category-Theoretic Fibration
as an Abstraction Mechanism in Information Systems Acta Informatica 38 (2001)
1-44.

[5] Johnson, M. and Dampney, C.N.G. On Category Theory as (meta) Ontology for
Information Systems Research in Welty, C. and Smith, B. (eds) International
Conference On Formal Ontology In Information Systems (FOIS-2001) October
17-19, 2001, Ogunquit, Maine (ACM Press, New York, 2001).

[6] Kayed, A. and Colomb, R.M. Business-to-business Electronic Commerce:
Electronic Tendering, in S.M. Rahman and R.J. Bignall (eds) Internet Commerce
and Software Agents: Cases, Technologies and Opportunities (Idea Group
Publishing, London, 2001) 231-250.

[7] Kayed, A. and Colomb, R.M. (2002) Using ontologies to index conceptual
structures for tendering automation Thirteenth Australasian Database Conference
(ADC2002, Jan. 28 - Feb. 1, 2002, Melbourne, Australia) 95-102.

[8] Searle, John R. The Construction of Social Reality (The Free Press, New York,
1995).

[9] Simons, Peter Parts: a study in ontology (Oxford University Press, Oxford, 1987).

[10] Simsion, G. Data Modeling Essentials: Analysis, Design and Innovation (Van
Nostrand Reinhold, New York, 1993).

[11] Thalheim, B. Entity-Relationship Modeling – foundations of database technology
(Springer, Berlin, 2000).

