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† Institute for Cognitive Science and Technology (CNR), Roma, Italy, firstname.lastname@istc.cnr.it
‡ University of Würzburg, Würzburg, Germany, esther.ratsch@biozentrum.uni-wuerzburg.de

§ EML-Research gGmbH, Heidelberg, Germany, lastname@eml-r.de

Abstract

In this paper we present an unsupervised model
for learning arbitrary relations between concepts of
a molecular biology ontology for the purpose of
supporting text mining and manual ontology build-
ing. Relations between named-entities are learned
from the GENIA corpus by means of several stan-
dard natural language processing techniques. An
in-depth analysis of the output of the system shows
that the model is accurate and has good potentials
for text mining and ontology building applications.

1 Introduction
Bioinformatics is one of the most active fields for text mining
applications because of the fast rate of growth of digital doc-
uments collections such as Medline and SwissProt. The ulti-
mate goal of text mining in bioinformatics is knowledge dis-
covery by means of natural language processing (NLP) and
machine learning. To achieve this objective it is necessary to
access the information contained “inside” the documents, i.e.
their content. One possible strategy to get to the content is
through information extraction. One starts with a conceptu-
alization of the domain; i.e., a domain ontology, which spec-
ifies relevant concepts as well as semantic relations, such as
is-a, part-of, and more complex relations encoding important
interactions between concepts. Then it is necessary to apply
extraction techniques to recognize where, in the documents,
concepts are instantiated by specific entities, and where im-
portant interactions are expressed by linguistic structures.

Several ontologies which define concepts and structural se-
mantic relations, e.g., is-a, are available. Instead there is a
need for ontologies that specify relevant arbitrary semantic
relations between concepts; for example, that “Cell express-
the-receptor-for Protein” or that “Virus replicate-in Cell”. In
this paper we investigate the problem of enriching an existing
ontology with arbitrary semantic relations which are strongly
associated with ordered pairs of concepts. We design an unsu-
pervised system that combines an array of off-the-shelf NLP
techniques such as syntactic parsing, collocation extraction
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and selectional restriction learning. We apply our system
to a corpus of molecular biology literature, the GENIA cor-
pus [Ohta et al., 2002], and generate a list of labeled binary
relations between pairs of GENIA ontology concepts. An in-
depth analysis of the learned templates shows that the model,
characterized by a very simple architecture, has good poten-
tials for text mining and ontology building applications.

In the next section we describe the problem of learning re-
lations from text and related work. In Section 3 we describe
our system and the data used in our study in detail. In Sec-
tion 4 we discuss the evaluation of the system’s output.

2 Problem statement and related work
The GENIA ontology contains concepts related to gene ex-
pression and its regulation, including cell signaling reactions,
proteins, DNA, and RNA. Much work in bioinformatics has
focused on named-entity recognition (NER), or information
extraction (IE), where the task is the identification of se-
quences of words that are instances of a set of concepts. As
an example one would like to recognize that “NS-Meg cells”,
“mRNA” and “EPO receptor” are, respectively, instances of
the GENIA classes “Cell line”, “RNA family or group” and
“Protein molecule” in the following text (Example 1):

(1) “Untreated [Cell line NS-Meg cells] ex-
pressed [RNA family or group mRNA] for the
[Protein molecule EPO receptor]”

A natural extension of NER is the extraction of relations
between entities. NER and relation extraction could provide
a better support for mining systems; e.g., patterns of enti-
ties and relations could be compared across document collec-
tions to discover new informative pieces of information (as
in [Swanson and Smalheiser, 1997] for example). Currently
most of the work on relation extraction applies hand-built
rule-based extraction patterns; e.g., Friedman et al. [2001]
on identifying molecular pathways and Šarić et al. [2004b]
on finding information on protein interactions which use a
manually-built ontology similar to that described in [Ratsch
et al., 2003]. One problem with rule-based IE is that sys-
tems tend to have good precision but low recall. Machine
learning oriented work has focused on extracting manually-
compiled lists of target relations; e.g., Rosario and Hearst
[2004] address the relation extraction problem as an exten-
sion of NER and use sequence learning methods to recognize
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Figure 1: A small fraction of the GENIA ontology. Contin-
uous lines represent unspecified taxonomic relations, dashed
lines represent other regions.

instances of a set of 6 predefined relations about “Diseases”
and “Treatments”. These systems yield good precision and
recall but still need that sets of relations between classes be
defined first. Yet another problem which deals with seman-
tic relations is that addressed by Craven and Kumlien [1999]
who present a model for finding extraction patterns for 5 bi-
nary relations involving proteins. A similar work is that of
Pustejovsky et al. [Pustejovsky et al., 2002] on automatically
extracting “inhibit” relations. Semantic relations have been
used as templates, or guiding principles, for the generation
of database schemata [Rojas et al., 2002]. Another applica-
tion of ontological relations is that of consistency checking
of data in molecular biology databases to individuate errors
in the knowledge base (e.g., by checking the consistency of
the arguments) or to align different databases.

Biological text mining systems that involve relations re-
quire predefined sets of relations that have to be manually
encoded, a job which is complex, expensive and tedious, and
that as such can only guarantee narrow coverage – typically
a handful of relations and one pair of classes. Our aim is to
automatically generate all relevant relations found in a corpus
between all ontological concepts defined in an ontology. This
work is also valuable to ontologists since ontology building
and evaluation are becoming more and more automatized ac-
tivities and most of the corpus-based work has focused only
on structural relations such as is-a and part-of [Pantel and
Ravichandran, 2004; Berland and Charniak, 1999].

3 Learning relations from text
Our model takes as input a corpus of texts in which named-
entities, corresponding to ontology concepts, have been iden-
tified. Here we use the GENIA corpus, for which the tagging
has been carried out manually, but the corpus data can be also
generated automatically using an appropriate NER system.
The model outputs a set of templates that involve pairs of GE-
NIA ontology classes and a semantic relation. For example,
a template might be “Virus infect Cell”.

3.1 Data
The GENIA ontology was built to model cell-signaling re-
actions in humans with the goal of supporting information
extraction systems. It consists of a taxonomy of 46 nominal

concepts with underspecified taxonomic relations, see Fig-
ure 1. The ontology was used to semantically annotate bio-
logical entities in the GENIA corpus. We used the G3.02 ver-
sion consisting of 2,000 articles, 18,546 sentences, roughly
half a million word tokens, and 36 types of labels. This cor-
pus has complex annotations for disjunctive/conjunctive en-
tities, for cases such as “erythroid, myeloid and lymphoid
cell types”. We excluded sentences that contained only in-
stances of complex embedded conjunctions/disjunctions and
also excessively long sentences (more than 100 words). The
final number of sentences was 18,333 (484,005 word to-
kens, 91,387 tags). Many tags have nested structures; e.g.
“[Other name [DNA IL-2 gene] expression]”. Here we only
considered the innermost labels, although the external labels
contain useful information and should eventually be used.

One potential drawback of the GENIA ontology is the rel-
atively small number of biological concepts and their coarse
granularity which causes groups of similar but distinct en-
tities to be assigned to the same class. Some relations fit
very well to subsets of the entities of the related concepts,
whereas they don’t fit well for other entities of the same con-
cept. For example, the concept “DNA domain or region”
contains sequences with given start and end positions, as well
as promoters, genes, enhancers, and the like. Even if promot-
ers, genes, and enhancers are pieces of sequences too (with
start and end positions), they also are functional descriptions
of sequences. Therefore, different statements can be made
about such kinds of DNA domains or regions and (pure) se-
quences. The relation “DNA domain or region encodes Pro-
tein molecule” makes sense for genes, but not for enhancers,
and may make sense or not for (pure) sequences, depending
on their (unknown) function. On the other hand any NLP ori-
ented resource cannot have many fine-grained concepts de-
fined, otherwise IE wouldn’t be accurate. In this respect the
GENIA corpus is unique in that it provides extensive named-
entity annotations which can be used to train appropriate NER
systems (cf. [Kazama et al., 2002].

3.2 Relations as dependency paths

The 18,333 sentences were parsed with a statistical
parser [Charniak, 2000].1 Since we are interested in rela-
tions that connect entities as chunks we want to avoid that the
parser analyzes an entity that is split among different phrases.
This can happen because entity names can be fairly long,
complex and contain words that are unknown to the parser.
To avoid this problem we substituted the entity tags for the ac-
tual named-entities; the result can be seen in Figure 2 which
shows the substitution and the relative parse tree for the sen-
tence of Example 1. Trees obtained in this way are simpler
and don’t split entities across phrases. For each tree we gener-
ated a dependency graph: each word2 is associated with one
governor, defined as the syntactic head3 of the phrase closest

1Which takes roughly three hours on a Pentium 4 machine.
2Morphologically simplified with the “morph” function from the

WordNet library, plus morphological simplifications from UMLS.
3The word whose syntactic category determines the syntactic

category of the phrase; e.g., a verb for a verb phrase (VP), a noun
for a noun phrase (NP), etc.



S:express

NP:Cell_line

JJ

Untreated

NNP

Cell_line

VP:express

VBD

expressed

NP:RNA_family_or_group

RNA_family_or_group

PP:for

IN

for

NP:Protein_molecule

DT

the

NNP

Protein_molecule

NN

Figure 2: Parse tree for the sentence of Example 1. Entities are substituted with their tags. Phrases are labeled with their
syntactic heads. The dependency graph is depicted with dashed directed edges pointing to the governed element.

to the word that differs from the word itself. For example,
in Figure 2 “Cell line” is governed by “express”, while “Pro-
tein molecule” is governed by the preposition “for”.

In this way it is possible to formalize the notion of semantic
relation between two entities. A related application of depen-
dency relations concerns the recognition of paraphrase sen-
tences [Lin and Pantel, 2001]. A relation r between two en-
tities ci and cj in a tree is the shortest path between ci and
cj following the dependency relations. For example, in Fig-
ure 2 the path between “Cell line” and “Protein molecule” is
“←express→for→”. There is a path for every pair of enti-
ties in the tree. Paths can be considered from both directions
since the reverse of a path from A to B is a path from B to A.
A large number of different patterns can be extracted, overall
we found 172,446 paths in the data. For the sake of inter-
pretability, by inspection, of the outcome of the model in this
paper we focused on a subset of these patterns. We selected
paths from ci to cj where j > i and the pivotal element, the
word with no incoming arrows, is a verb v. In addition we im-
posed the following constraints: ci is governed by v under an
S phrase (i.e., is v’s surface subject, SUBJ), e.g., “Cell line”
in Figure 2; and one of the following six constraints holds:

1. cj is governed by v under a VP (i.e., is v’s direct object,
DIR OBJ), e.g., “RNA family or group” in Figure 2;

2. cj is governed by v under a PP (i.e., is v’s indirect object,
IND OBJ), e.g. “Protein molecule” in Figure 2;

3. cj is governed by v’s direct object noun (i.e., is a mod-
ifier of the direct object, DIR OBJ MOD), e.g. “Virus”
in “... influenced Virus replication”;

4. cj is governed by v’s indirect object noun (i.e., is the
indirect object’s modifier, IND OBJ MOD), e.g., “Pro-
tein molecule” in “..was induced by Protein molecule
stimulation”;

5. cj is governed by a PP which modifies the direct object
(DIR OBJ MOD PP); e.g., “Protein molecule” in “.. in-
duce overproduction of Protein molecule”;

6. cj is governed by a PP which modifies the indirect ob-
ject (IND OBJ MOD PP); e.g., “Lipid” in “..transcribed
upon activation with Lipid”.

For the sentence in Figure 2 we identify two
good patterns: “SUBJ←express→DIR OBJ” be-
tween “Cell line” and “RNA family or group”, and

“SUBJ←express→for→IND OBJ”, between “Cell line”
and “Protein molecule”. Overall we found 7,189 instances
of such relations distributed as follows:

Type Counts RelFreq
SUBJ-DIR OBJ 1,746 0.243
SUBJ-IND OBJ 1,572 0.219
SUBJ-DIR OBJ MOD PP 1,156 0.161
SUBJ-DIR OBJ MOD 943 0.131
SUBJ-IND OBJ MOD PP 911 0.127
SUBJ-IND OBJ MOD 861 0.120

The data contained 485 types of entity pairs, 3,573 types of
patterns and 5,606 entity pair-pattern types.

3.3 Learning relations (Stage 1)

Let us take A to be an ordered pair of GENIA classes; e.g. A =
(Protein domain,DNA domain or region), and B to be a pat-
tern; e.g., B = SUBJ←bind→DIR OBJ. Our goal is to find re-
lations strongly associated with ordered pairs of classes, i.e.,
bi-grams AB. This problem is similar to finding collocations;
e.g., multi-word expressions such as ”real estate”, which form
idiomatic phrases. Accordingly the simplest method would
be to select the most frequent bi-grams. However many bi-
grams are frequent because either A or B, or both, are fre-
quent; e.g., SUBJ←induce→DIR OBJ is among the most
frequent pattern for 37 different pairs. Since high frequency
can be accidental and, additionally, the method doesn’t pro-
vide a natural way for distinguishing relevant from irrelevant
bi-grams, we use instead a simple statistical method.

As with collocations a better approach is to estimate if
A and B occur together more often than at chance. One
formulates a null hypothesis H0 that A and B do not oc-
cur together more frequently than expected at chance. Us-
ing corpus statistics the probability of P (AB), under H0,
is computed and H0 is rejected if P (AB) is beneath the
significance level. We use a chi-square test for this pur-
pose. For each observed bi-gram we create a contingency
table of the frequencies AB, ¬AB, A¬B, and ¬A¬B; e.g.,
for A = Protein molecule-DNA domain or region and B =
SUBJ←bind→DIR OBJ the table computed from the corpus
would contain respectively the values 6, 161, 24 and 6,998.
The chi-square test compares the observed frequencies vs. the
frequencies expected under H0. Together with the test we use
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Figure 3: The “Virus” concept with the selected and general-
ized relations, and related concepts, in the enriched ontology.

the log-likelihood chi-squared statistic: 4

G2 = 2
∑

i,j

oij log
oij

eij

(2)

where i and j range over the rows and columns of the contin-
gency table, and the expected frequencies are computed off
the marginal frequencies in the table. In the previous exam-
ple G2 is equal to 16.43, which is above the critical value 7.88
for α = 0.005, hence B is accepted as a relevant pattern for
A. The following table shows the three highest ranked class
pairs for pattern B. There is strong evidence that entities of
the protein type tend to bind DNA locations, which is a rea-
sonable conclusion:

B = SUBJ←bind→DIR OBJ
A G2 Sig
Protein domain-DNA domain or region 16.43 YES
Protein family or group-DNA d. or r. 13.67 YES
Virus-Protein molecule 7.84 NO

In this study we used α = 0.005. In general, α is an ad-
justable parameter which might be set on held-out data in
order to maximize an objective function. We also ignored
bi-grams occurring less than 2 times and pairs A, patterns B,
occurring less than 4 times. Overall there are 487 suitable AB
pairs, 287 (58.6%) have a value for G2 higher than α.

3.4 Generalization of relations (Stage 2)
Relations can share similar arguments as in “bind” above
where, in both significant cases, the direct object is “DNA
domain or region” while the subject is some kind of pro-
tein. This can be evidence that, in fact, we are facing a
more general template holding between superordinates of the
arguments found in the first stage. It is desirable, when
possible, to learn more general relations such as “Protein
SUBJ←bind→DIR OBJ DNA”, because the learned ontol-
ogy is more compact and has greater generalization power,
i.e., relations apply to more entities. Finding such general-
izations is similar to learning selectional restrictions of pred-
icates, that is, the preferences that predicates place on the se-
mantic category of their arguments; e.g., that “eat” prefers ob-
jects that are “foods”. Several methods have been proposed

4Dunning [1993] argues that G
2 is more appropriate than Pear-

son’s X
2 with sparse data; here they produce similar rankings.

for learning such restrictions. We use here the method pro-
posed in [Clark and Weir, 2002] which is accurate and sim-
ple. We use the taxonomy defined in the GENIA ontology,
see Figure 1, to generalize arguments of the learned patterns.5

Clark and Weir define an algorithm, top(c, r, s), which (ad-
justing the terminology to our case) takes as input a relation
r, a class c and a syntactic slot s, and returns a class c′ which
is c itself or one of its ancestors, whichever provides the best
generalization for p(r|c, s). The method uses the chi-squared
test to check if the probability p(r|c, s) is significantly differ-
ent from p(r|c′, s), where c′ is the parent of c. If this is false
then p(r|c′, s) is supposed to provide a good approximation
for p(r|c, s), which is interpreted as evidence that (r, s) holds
for c′ as well. The procedure is iteratively applied until a sig-
nificant difference is found. The last class considered is the
output of the procedure, the concept that best summarizes the
class that r “selects” in syntactic slot s. We computed the
frequencies of patterns involving superordinate classes sum-
ming over the frequencies, from the GENIA corpus, of all
descendants of that class for that pattern.

For each relation r, slot s and class c, learned in stage 1,
we used Clark and Weir’s method to map c to top(c, r, s). We
again used the G2statistic and the same α value of 0.005. Us-
ing these maps we generalized, when possible, the original
287 patterns learned. The outcome of this process is a set
of 240 templates 153 of which have generalized arguments.
As an example, the templates above “Protein domain binds
DNA domain or region” and “Protein family or group binds
DNA domain or region” are mapped to the generalized tem-
plate “Protein binds DNA”. Figure 3 depicts the set of labeled
relations the concept Virus is involved in, and the respective
paired concepts, after stage 1 and 2.

4 Evaluation
We discuss now an evaluation of the model carried out by a
biologist and an ontologist, both familiar with GENIA. The
biological evaluation focuses mainly on the precision of the
system; namely, the percentage of all relations selected by the
model that, according to the biologist, express correct biolog-
ical interactions between the arguments of the relation. From
the ontological perspective we analyze semantic aspects of
the relations, mainly the consistency with the GENIA classes.

4.1 Biological evaluation
The output of stage 1 is a set of 287 patterns, composed of
an ordered pair of classes and a semantic relation. 91 of
these patterns, involving in one or both arguments the class
“Other name”, were impossible to evaluate and excluded al-
together. This GENIA class is a placeholder, for very dif-
ferent sorts of things, which needs partitioning and structur-
ing. Relations involving “Other name” (e.g., “treat”) might
prove correct for a subset of the entities tagged with this

5Four of the 36 GENIA corpus class labels, namely,
“DNA substructure”, “DNA N/A”, “RNA substructure” and
“RNA N/A”, have no entries in the GENIA ontology, we used
them as subordinates of ” DNA” and “RNA”, consistently with
“Protein N/A” and “Protein substructure” which in the ontology are
subordinates of “Protein”.



label (e.g., “inflammation”) but false for a different subset
(e.g., “gene expression”). Of the remaining 196 patterns
76.5% (150) are correct, i.e., express valid biological facts
such as “Protein molecule induce-phosphorylation-of Pro-
tein molecule”, while 23.5% (43) are incorrect, e.g. “Protein
inhibit-expression-of Lipid”. Evaluation involved the exhaus-
tive inspection of the original sentences to verify the intended
meaning of the pattern and spot recurring types of errors.
Half of the mistakes (22) depend on how we handle coor-
dination, which causes part of the coordinated structure to be
included in the relation. For example, the first two DNA enti-
ties in the noun phrase “DNA, DNA, and DNA” are governed
by the head DNA rather than by, say, the main verb. Thus
wrong relations such as “Protein bind-DNA DNA” are gener-
ated in addition to good ones such as “Protein bind DNA”.
Fixing this problem involves simply the specification of a
better dependency structure for coordinations. Finally, 5 er-
rors involved the class “Other name” embedded somewhere
within the relation, suggesting again generalizations that can-
not be judged with enough confidence. The remaining er-
rors are probably due to sparse data problems. In this re-
spect we plan to implement an NER system to produce more
data and consequently more reliable distributional informa-
tion. Finally, we notice that, although the GENIA ontology
was intended to be a model of cell signaling reactions, it lacks
important concepts such as signaling pathway. This leads to
some errors as in the following case: ”An intact TCR sig-
naling pathway is required for p95vav to function.”. In this
case we derive the relation: “Protein molecule is-required-
for Protein molecule” since only “TCR” is annotated as “Pro-
tein molecule” neglecting signaling pathway.

To the best of our knowledge we can compare these re-
sults with one other study. Reinberger et al. [2004] evaluate
(also by means of experts) 165 subject-verb-object relations,
extracted from data similar to ours6 but with a different ap-
proach. They report an accuracy of 42% correct relations.
Their method differs from ours in three respects: relations
are extracted between nouns rather than entities (i.e., NER
is not considered), a shallow parser is used instead of a full
parser, and relations are selected by frequency rather than by
hypothesis testing. A direct comparison of the methods is not
feasible. However, if the difference in accuracy reflects the
better quality of our method this is likely to depend on any, or
on a combination, of those three factors.

As far as stage 2 is concerned we first removed all
relations involving “Other name” (40 out of 153), which
does not have superordinates nor subordinates, and eval-
uated if the remaining 113 generalized patterns were cor-
rect. Of these, 60 (53.1%) provided valid general-
izations; e.g., “Protein molecule induce-phosphorylation-
of Amino acid monomer” is mapped to “Protein induce-
phosphorylation-of Amino acid monomer”. Excluding mis-
takes caused by the fact that the original relation is incorrect,
over-generalization is mainly due to the fact that the taxon-
omy of the GENIA ontology is not a is-a hierarchy; e.g.,
“DNA substructure” is not a kind of “DNA”, and “Protein”

6The SwissProt corpus, 13 million words of Medline abstracts
related to genes and proteins.

is not a kind of “Amino acid”. Generalizations such as se-
lectional restrictions instead seem to hold mainly between
classes that share a relation of inclusion. In order to support
this kind of inference the structural relations between GENIA
classes would need to be clarified.

4.2 Ontological assessment
The 150 patterns validated by the expert are potential new
components of the ontology. We compiled GENIA, includ-
ing the newly learned relations, in OWL (Ontology Web
Language [McGuinness and van Harmelen, 2004]) to as-
sess its properties with ontology engineering tools. Ignoring
“Other name”, the GENIA taxonomy branches from two root
classes: “Source” and “Substance”. GENIA classes, by de-
sign, tend to be mutually exclusive, meaning that they should
be logically disjoint. Our main objective is to verify the de-
gree to which the new relations adhere to this principle.

To analyze the relations we align, i.e., map, “Source” and
“Substance” to equivalent classes of another more general
ontology. Ideally, the alignment should involve an ontology
of the same domain such as TAMBIS [Stevens et al., 2000].
Unfortunately TAMBIS scatters the subordinates of “Source”
(organisms, cells, etc.) across different branches, while “Sub-
stance” in TAMBIS does not cover protein and nucleic acid-
related subordinates of “Substance” in GENIA.7 In GENIA
substances are classified according to their chemical features
rather than biological role, while sources are biological lo-
cations where substances are found and their reactions take
place. This distinction assumes a stacking of ontology lay-
ers within the physical domain where the biological is su-
perimposed to the chemical level. This feature of GENIA
makes it suitable for alignment with DOLCE-Lite-Plus (DLP,
http://dolce.semanticweb.org), a simplified translation of the
DOLCE foundational ontology [Gangemi et al., 2003]. DLP
specify a suitable distinction between “chemical” and “bio-
logical” objects. It features about 200 classes, 150 relations
and 500 axioms and has been used in various domains includ-
ing biomedicine [Saric et al., 2004a].

We aligned “Source” and “Substance” to the biological and
chemical classes in DLP. There are 78 types of relations out
of 150, 58% of them (45) occur only with one pair of classes,
i.e., are monosemous, while 33 have multiple domains or
ranges, i.e., are polysemous. Since the root classes of GE-
NIA are disjoint we checked if there are polysemous relations
whose domain or range mix up subclasses of “Source” with
subclasses of “Substance”. Such relations might not imply
logical inconsistency but raise doubts because they suggest
the possibility that a class of entities emerged from the data,
which is the union of two classes that by definition should
be disjoint. Interestingly, there are only 4 such relations out
of 78 (5.1%); e.g., “encode”, whose subject can be either
“Virus” or “DNA”. In biology, DNA encodes a protein, but
biologists sometimes use the verb ”metonymically”. By say-
ing that a virus encodes a protein, they actually mean that
a virus’ genome contains DNA that encodes a protein. The
small number of such cases suggests that relations emerging

7Notice that we are not questioning the quality of TAMBIS, but
only its fitness for aligning GENIA.



from corpus data are consistent with the most general classes
defined in GENIA.

At a finer semantic level relations are composed as fol-
lows: 54 (68%) are eventive, they encode a conceptualiza-
tion of chemical reactions as events taking place in biological
sources; 81% of the relations between biological and chemi-
cal classes are eventive, supporting the claim made in GENIA
that biologically relevant chemical reactions involve both a
biological and chemical object. Non-eventive relations have
either a structural (e.g. “Consist-of”), locative (“Located-
in”), or epistemological meaning (“identified-as”).

5 Conclusion and future work
We presented a study on learning semantic relations from text
in the domain of molecular biology. We investigated an unsu-
pervised approach using the GENIA ontology and its corpus.
Our model is based on a representation of relations as syn-
tactic dependency paths between an ordered pair of named-
entities. To select “good” relations, class pairs and depen-
dency paths can be interpreted as bi-grams, and scored with
statistical measures of correlation. We showed that it is also
possible to generalize over the arguments of the relation using
a taxonomy and algorithms for selectional restrictions learn-
ing. The results of a biological and ontological analysis of the
acquired relations are positive and promising.

Other aspects need to be addressed beyond precision, in
particular we are interested in evaluating the recall, i.e., the
coverage, of the system,8 the precision of alternative selec-
tion criteria, and the usefulness of automatically learned re-
lations in information extraction tasks. The latter will imply
the identification of synonymic relations; e.g., in the context
of Protein-Protein interaction “positively-regulate” is equiva-
lent to “activate”, “up-regulate”, “derepress”, “stimulate” etc.
Representing relations as dependency paths one can frame
this problem straightforwardly as that of finding paraphrases
(e.g. as in [Lin and Pantel, 2001]).
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