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Abstract: An initial fragment of a core ontology for the manufacturing domain is 

presented and motivated. It consists of an ontological classification of 

ADACOR concepts according to the DOLCE foundational ontology. The 

ontology is conceptually transparent and semantically explicit thus suitable for 

information communication, sharing, and retrieval. The system here described 

considers entities performing the manufacturing scheduling and control 

operations only.  
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1. INTRODUCTION 

If “communication age” and “information era” are popular terms 

highlighting the characteristics of the time we are living, the struggle for 

mutual and reliable understanding that is nowadays recognizable across all 

application domains suggests that a more appropriate term to capture the 

trend in today and the near future research could be “the semantic period”. 

This special nature of our time can be seen in application domains as 

well and the popularity of the term “ontology” in manufacturing is an 

example. Generally speaking, this term refers to knowledge engineering 

artifacts that are constituted by a natural or formal language plus a set of 

assumptions and constraints (Guarino, 1998). 

The development of an ontology may take from a few hours up to 

months or even years depending on the choice of the language, the covered 

topics, and the level of formality and precision. The ultimate goal is the 

unambiguous description of a certain “reality” of interest. The type of 

application or the sought generality leads to the choice of a construction 

methodology which, in turn, guarantees the reliability of the resulting 

ontology. There are several possible ways to evaluate an ontology among 

which the expressivity of the adopted language (glossaries, 

controlled/natural/formal languages), the purpose of the ontology 

(knowledge sharing, domain modeling, information retrieval, natural 

language processing,...), the domain covered (management, business, law, 

medicine, digital libraries...), the structural complexity of the system 
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(tangledness of the taxonomy, degree of branching, depth of the hierarchy, 

modularity,...) and so on. 

Taking semantics at face value, one can roughly divide ontological 

systems in classes starting from those with weak semantics like glossaries, 

thesauri, and taxonomies (terminological ontologies) and ending with rich 

logical theories (formal ontologies). The first type of ontologies, like 

WordNet (Fellbaum, 1998), is helpful in organizing catalogs, databases and 

protocols where only terminological services are needed. When looking for 

conceptually transparent and semantically robust systems, sophisticated 

knowledge structures like formal ontologies need to be used. Formal 

ontologies can be very general (foundational) or domain dependent (core). 

Generally, a core ontology is aligned to a foundational one to guarantee 

interoperability in open and evolving environments. 

Nowadays only a few projects have produced widespread formal 

ontologies, e.g. the GALEN project1 in the medical field. There are several 

reasons for this. Formal ontologies are relatively new and only in the last 

few years reliable methodologies have been introduced and consistently 

applied (Oltramari et al., 2002). Moreover, the development of applications 

based on these ontologies is sometimes demanding so that often research 

concentrates on smaller projects, e.g. (Bertolazzi et al., 2001), whose results 

are unfortunately hardly generalizable. 

This paper starts from a widely used foundational ontology and develops 

a formal ontology for manufacturing scheduling and control environments. 

 
1 http://www.opengalen.org/ 
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The aim is to extend this approach the other aspects of the manufacturing 

domain in order to build a core ontology for this domain that guarantees: (1) 

integration with a well organized and accepted foundational ontology; (2) 

accessibility to agents in the manufacturing domain; and (3) suitability for 

product and process modeling as well as for information sharing, exchange 

and retrieval. 

It is important to understand that the adoption of foundational ontologies 

does not force to change the production nor the production organization. If 

ontological considerations will likely suggest changes in the overall 

enterprise information system to optimize knowledge management and to 

guarantee data consistency, the very fact that a foundational ontology 

focuses on data content and description should make clear that the 

production and its organization do not concern the ontology itself. Indeed, 

foundational ontologies are independent from the type of products or the 

number of their variants, their functionalities, qualities or else. Actually, 

foundational ontologies can improve the product quality by giving a tool to 

handle non-functional requirements (security, reliability) which are hard to 

consider within standard architecture languages. 

This paper is organized as follows. In section 2 the application domain is 

introduced and specific concepts are highlighted. Section 3 gives a general 

overview of important projects that bring the ontological perspective into the 

manufacturing area. The next section describes the chosen domain 

architecture and, in section 5, the DOLCE foundational ontology is 

presented. The core of the paper is section 6 where the alignment between 
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the domain architecture and the formal ontology is motivated and carried 

out. A few examples show how to express relevant information in the 

resulting formal language. The last section briefly discusses the use of the 

proposed manufacturing ontology in applications, adds some final 

considerations, and lists future steps to be carried out. 

2. SCHEDULING AND CONTROL PROBLEM 

DESCRIPTION 

The manufacturing domain is and will be in the future one of the main 

wealth generators in Europe. Nowadays it represents approximately 22% of 

the GNP of the EU and 70% of the employment (European Commission, 

2004). The development of adaptive, digital, networked and knowledge-

based manufacturing processes is the key factor for the competitiveness and 

success of a manufacturing enterprise. 

This study applies to manufacturing scheduling and control systems: it 

considers a manufacturing enterprise that produces discrete items and 

models components of the factory plant as well as aspects of the scheduling, 

monitoring, and execution processes. 

2.1 Manufacturing System Description 

A manufacturing enterprise produces products which are offered to the 

market. Within the enterprise, the products are described by the product 

model, which contains all technical data and describes the structure of a 
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product (list of sub-products or parts that assembled constitutes the product), 

and by the process model, which defines how to produce the product. 

The process model specifies the process plan, that is, a list of operations 

necessary to produce a part. In this context, an operation is a job to be 

executed in order to produce the product and is characterized by a set of 

information, such as estimated processing time, description, precedence, and 

requirements. Assembly, storage, transportation, manipulation, maintenance 

and inspection, are examples of operations. 

A customer interacts with a company to order one of the available 

products or a new product. This order, known as customer order, must 

include reference to a product, a quantity, a deliver date, and a price. 

Additionally, the enterprise management system creates forecast orders to 

anticipate the market demands. The manufacturing planning convert the 

customer and forecast orders into production orders, aggregating if possible 

several customer and forecast orders into a production order, to obtain 

volume and transport advantages. A production order is indexed to a product 

object and comprises a list of work orders. A work order is the description 

of an operation (a job) and thus is a part of a process plan. Work orders are 

intended to be executed by resources such as movers, transporters, drilling 

machines, milling machines, turning machines and tools. Each resource is an 

entity that can execute a certain range of jobs, when it is available, as long as 

its capacity is not exceeded. 

The shop floor consists of a group of resources with different 

characteristics (spindle speed, list of tools and grippers, payload, time 



#. Foundations for a core Ontology of Manufacturing 7 
 
autonomy, work volume, repeatability, etc.), whose combined features allow 

to execute the products. The factory model describes each individual shop 

floor's resource as well the logical and physical organization of these 

resources. The availability of a resource is represented by an agenda that 

indicates the list of work orders allocated to the resource over the time. In 

particular, the agenda comprises time slots where the resource is: free, 

allocated to execute orders, temporarily out of service (e.g. due to 

maintenance) and out of service (e.g. due to a break in the provision of 

needed elements like water or electric power). 

2.2 Manufacturing Control Description 

The main functions that a manufacturing control system (MCS for short) 

fulfills are process planning, resource allocation planning (scheduling), plan 

execution, and pathological state handling. 

The production of a product involves the execution (according to a 

precedence diagram) of the steps defined in the process plan. At the process 

planning level, the MCS launches the production orders to the shop floor 

together with a process plan. The latter provides the required sequence of 

operations and the required machine type for each operation. Based on the 

available resources, it is possible to create alternative process sequences 

(aiming to achieve flexibility), each one indicating the exact resource that 

should execute each operation. 

Through the resource allocation planning, the MCS schedules the 

necessary operations to produce the parts (including processing, transport, 
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maintenance and set-up operations) taking into account the process plans, 

the constraints and resources capacity. The goal is to produce the products 

while minimizing the costs and increasing the productivity. Also, at this 

level the MCS considers possible reorganizations of the production unit (in 

general by varying the resource allocations) if a modification in demand or 

machine failure makes it necessary. 

The plan execution functions of the MCS take care of the physical 

implementation of the schedule into the factory. The scheduled orders are 

dispatched to the manufacturing plant, i.e. the resources, and a monitoring 

activity of the production progress takes place. The reaction to disturbances 

is first considered by the MCS at the level of the plan execution but may 

imply re-scheduling of the operations to minimize the effects of the 

disturbance and, in some cases, the interruption of the production process. 

The pathological state handling level intends to keep the system in a safe 

state, in order to avoid and/or recover from undesirable system states, such 

as deadlock. 

3. ONTOLOGIES AND THE MANUFACTURING 

DOMAIN 

In order to improve agility and flexibility, nowadays one uses distributed 

approaches in developing manufacturing control applications. These are 

built upon autonomous and cooperative entities, such as those based on 
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multi-agent and holonic systems. Holonic Manufacturing System (HMS)2 

translates to the manufacturing world the concepts developed by Arthur 

Koestler for living organisms and social organizations (Koestler, 1969). 

Holonic manufacturing is characterized by holarchies of holons (i.e., 

autonomous and cooperative entities), which represent the entire range of 

manufacturing entities. A holon is a part of a (manufacturing) system that 

has a unique identifier, may be made up of subordinate parts and, in turn, 

can be part of a larger whole. 

3.1 Manufacturing Interoperability 

In distributed manufacturing environments (with autonomous entities 

representing machines, cells, factories or even enterprises) it is important to 

guarantee the compatibility between the distributed entities or applications 

(i.e. issues related to interfaces and protocols) and to verify that the semantic 

content is preserved during the exchange of messages between distributed 

entities. Thus, interoperability in distributed platforms increases the need for 

shared ontologies. Specifically, the term ‘manufacturing interoperability’ is 

related to the ability to share technical and business information throughout 

a distributed factory plant or even an extended or virtual manufacturing 

enterprise. A study commissioned by NIST (National Institute of Standards 

and Technology) (Brunnermeier and Martin, 1999) reported that the U.S. 

automotive sector alone expends one billion dollars per year to solve 

interoperability problems. 

 
2 http://hms.ifw.uni-hannover.de/ 
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The ontologies currently used in the manufacturing domain are the result 

of non-coordinated efforts and relinquish the interoperability with other 

agents communities. Indeed, proprietary manufacturing ontologies have 

been developed to support the interoperability between distributed entities 

belonging to the same platform only. The lack of interoperability between 

different agent-based or holonic manufacturing control platforms pushes for 

a common manufacturing ontology capable of merging (or at least of 

communicating adequately with) these. 

3.2 Toward Standard Manufacturing Ontologies 

Since interoperability has become a central issue in the manufacturing 

domain, several efforts have been undertaken to develop standard 

mechanisms for the unambiguous exchange of information in this area. This 

section reviews some of these efforts and highlights important aspects for a 

general manufacturing ontology. 

The EDI (Electronic Data Interchange) is a standard suitable for 

applications that want to exchange data through standard formats. EDI is 

limited to business data only, thus those applications that need to manage 

engineering and technological information have to resort to other standards 

targeting more closely the exchange of product data. 

Several proposals have been presented for this goal. The IGES (Initial 

Graphics Exchange Specification) and SET (Standard d'change et de 

Transfert) have been important stimuli for the data exchange standardization 

but they fall short of solving the entire problem because the proposed 
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standardization considers the information at the geometrical level and 

disregards the technological data. STEP, Standard for the Exchange of 

Product Model Data developed by the International Organization for 

Standardization (ISO), defines a standard data format for exchanging a 

complete product specification (e.g. geometry and production process) 

between heterogeneous CAD/CAM systems or entities belonging to a supply 

chain. ISO developed also Plib, Parts Library (http://www.tc184-sc4.org/), 

which is a computer-interpretable representation of parts library data to 

enable a full digital information exchange between suppliers and users. Plib 

and STEP share a common technology basis and are completely 

interoperable, one focusing on product data, the other on libraries of parts. 

However, since STEP refers to the product information only and Plib to 

representation and exchange of part library data, the process and enterprise 

engineering information are out of their scope. 

Another set of initiatives seek to fulfill the gaps. The Process 

Specification Language project (PSL) (Schlenoff et al., 1996) aims to 

develop a general ontology for representing manufacturing processes to 

serve as an interlingua to integrate multiple process-related applications 

throughout the manufacturing life cycle. A Language for Process 

Specification (ALPS) (Catron and Ray, 1991) identifies information models 

to facilitate process specification and to transfer this information to process 

control. The TOVE, Toronto Virtual Enterprise project (Fadel et al., 1994), 

defines a domain-specific formal ontology for enterprise modeling which is 

not connected to foundational ontologies. The Enterprise Ontology provides 
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“a collection of terms and definitions relevant to business enterprises to 

enable coping with a fast changing environment through improved business 

planning, greater flexibility, more effective communication and integration” 

(Uschold et al., 1998). The goal of the Process Interchange Format project 

(PIF) (Lee et al., 1998) is to support the exchange of business process 

models across different formats and schemas. Finally, the Plinius project 

(van der Vet et al., 1994) aims to define a domain-specific ontology for 

mechanical properties of ceramic material.  

In spite of the referred efforts to develop ontologies in areas related to 

manufacturing, as of today no formal ontology is available in the 

manufacturing domain. Nonetheless, it is recognized that the application of 

formal ontologies to support the interoperability between agent-based and 

holonic manufacturing control applications could provide a reliable and 

durable solution to this problem. The ongoing activity of the holonic 

manufacturing community within FIPA (Foundation for Intelligent Physical 

Agents) to adequate the FIPA specifications to the manufacturing 

requirements would benefit as well from the adoption of well-justified and 

organized formal ontologies, that is, ontologies furnished with a deep logical 

characterization. 

3.3 Foundational Ontologies 

As anticipated in section 1, foundational ontologies are formal ontologies 

devoted to facilitate mutual understanding in the large and are developed 

independently of specific domains. Because of this approach, they comprise 
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only general concepts and relations, and to be applied they need to be 

populated with notions specific to the domain of interest. Indeed, these 

ontologies aim at setting a general framework that can be tailored to any 

application domain; in this way they furnish a reliable tool for information 

sharing and exchange in all areas. In short, foundational ontologies are 

characterized by the following crucial properties: they are general in the 

sense that they limit themselves to the most reusable and widely applicable 

concepts leaving to the user the population of the ontology with more 

specific concepts; they are reliable since they are logical theories with rich 

axiomatizations and with careful analysis of their formal consequences 

(theorems);  and they are well organized because the construction of a 

foundational ontology is based on philosophical principles whose choice is 

explicitly motivated. 

Just a few foundational ontologies have been developed to a satisfactory 

level in the literature: DOLCE, the Descriptive Ontology for Linguistic and 

Cognitive Engineering (Masolo et al., 2003) http://www.loa-

cnr.it/DOLCE.html; GFO, the General Formal Ontology (Heller and Herre, 

2003) http://www.onto-med.de; OCHRE, the Object-Centered High-level 

Reference Ontology (Masolo et al., 2003); and, although still in a 

preliminary form, BFO, the Basic Formal Ontology (Masolo et al., 2003), 

http://www.ifomis.de. Two other systems are sometimes considered in the 

literature although they are not, strictly speaking, foundational ontologies. 

These are OPENCYC (http://www.opencyc.com) and SUMO 

(http://www.ontologyportal.org). 
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Two issues should be carefully analyzed in choosing a foundational 

ontology for applications: the ontology must include a set of conceptual 

distinctions sufficient for that domain (e.g. the distinction between abstract 

and concrete, agentive and non-agentive, etc.), and all the relevant entities 

should be clearly characterizable within the ontology (e.g. orders, resources, 

sensors, measurable qualities, etc.) 

4. THE ADACOR MANUFACTURING ONTOLOGY 

In the manufacturing domain, manufacturing control approaches are 

implemented and improved continuously. To ground the discussion, this 

paper selects one architecture and provides an ontological assessment of its 

concepts. That is, the notions of this architecture are analyzed for their 

ontological commitment (Guarino, 1998), classified following a 

foundational ontology, and formalized accordingly. The result of this 

process is a formal system comprising the architecture notions and their 

ontological organization, that is, a system that can be taken as a core 

ontology for the manufacturing domain. This system is not limited to the 

chosen architecture. New concepts can be added from other architectures by 

following the methodology (see section 6) and other systems can openly and 

safely communicate with any aligned architecture (if they can manage the 

language of the ontology) even without being aligned themselves.  

ADACOR (ADAptive holonic COntrol aRchitecture for distributed 

manufacturing systems) (Leitão et al., 2005) is the architecture here 



#. Foundations for a core Ontology of Manufacturing 15 
 
analyzed. Based in the HMS paradigm, it addresses the agile reaction to 

disturbances at the shop floor level in volatile environments and it is built 

upon a set of autonomous and cooperative holons, each one being a 

representation of a manufacturing component, i.e., a physical resource 

(numerical control machines, robots, etc.) or a logic entity (orders, etc.). 

ADACOR defines its own proprietary manufacturing ontology, 

expressed in an object-oriented frame-based manner as recommended in the 

FIPA Ontology Service Recommendations (http://www.fipa.org/). It uses 

classes to describe concepts and predicates and fixes them as part of the 

application ontology. In this way, an ontology is quickly generated with an 

immediate underlying implementation. 
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Figure 1. Manufacturing Ontology in the ADACOR Architecture 

The manufacturing ontology used in ADACOR is developed through the 

definition of a taxonomy of manufacturing components, which contributes to 
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the analysis and formalization of the manufacturing problem (these 

components are mapped into a set of objects, illustrated in the UML class 

diagram of  
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). For this, one must fix the vocabulary used by the distributed entities 

over the ADACOR platform, isolate the ADACOR-concepts, the ADACOR-

predicates and -relations, the ADACOR-attributes of the classes, and the 

meaning of each term. Note that not all ADACOR concepts find a place in 

Figure 1. The diagram is restricted to the relationships between simple 

manufacturing components used by the manufacturing control system. For 

example, a production order may index one customer order or an 

aggregation of these although this relationship and the latter concept are not 

shown. 

4.1 ADACOR Concepts 

ADACOR-concepts are expressions that hold for complex entities whose 

structure can be defined in terms of classes or objects. The main concepts in 

the ADACOR architecture, Figure 1, are informally described as follows: 

• Product: entity produced by the enterprise (it includes sub-products). 

• Raw-material: entity acquired outside the enterprise and used during the 

production process, e.g. blocks of steel, nuts and bolds (unless produced 

internally). 

• Customer order: entity received by the enterprise from a customer 

requesting products. 
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• Production order: entity obtained by aggregating customer and forecast 

orders. 

• Process Plan: description of a sequence of operations (for producing a 

product) with temporal constraints like precedence of execution. 

• Operation: a job executed by one resource like drilling, maintenance, and 

reconfiguration of resources. 

• Work order: entity that describes the production of a product by listing 

the operations and processing time, participants (e.g. type and number of 

resources), priority, scheduled dates, state and quantity.  

• Resource: entity that can execute a certain range of operations as long as 

its capacity is not exceeded. Producer, mover, transporter, tool, and 

gripper are specializations of resource and inherit its characteristics3. 

• Disturbance: unexpected event, like machine failure or delay, that 

degrades the execution of a production plan. 

• Setup: set of actions that it is necessary to execute in order to prepare a 

manufacturing resource for the execution of a range of operations. 

• Property: an attribute that characterizes a resource or that a resource 

should satisfy to execute an operation.  

In agent-based or holonic manufacturing control approaches, the control 

is achieved by the interaction between distributed entities, i.e. the agents or 

the holons. An agent or holon in ADACOR is an entity that represents 

manufacturing components like resources, products or orders. 

 
3 Here human operators are not considered among the resources of the system. 
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4.2 ADACOR Predicates 

Predicates establish relationships among concepts, for instance: 

• ComponentOf(x,y): product x is a component of product y. 

• Allocated(x,y,t): operation x is allocated to resource y at time t. 

• Available(x,y,t): resource x is available at time t for operation y. 

• RequiresTool(x,y): execution of operation x requires tool y. 

• HasTool(x,y,t): resource x has tool y available in its magazine at t. 

• HasSkill(x,y): resource x has property (skill) y. 

• HasFailure(x,y,t): a disturbance x occurred in resource y at time t. 

• Proposal(x,y,w,z,u): the entity x proposes to the entity y the execution of 

the work order w with location u and charging the price z. 

• Precedence(x,y): operation x requires previous execution of y. 

• UsesRawMaterial(x,y): production order x uses raw material y. 

• RequestSetup(x,y): operation x needs the execution of setup y. 

• HasProcessPlan(x,y): production of x requires process plan y. 

• OrderExecution(u,x,w,y): operation u is listed in process plan w 

(describing production of y) for production order x. 

• HasRequirement(x,y): operation x requires property y. 

• HasGripper(x,y,t): resource x has gripper y in its magazine at time t. 

• ExecutesOperation(x,y): work order x includes operation y. 

 

If these predicates are available, an agenda can be defined as a set of 

Allocated(x,y,i) and Available(x,y,t) predicates. 
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4.3 Attributes of ADACOR Concepts 

Attributes are values relative to properties of concepts. Here is a list of 

properties (in brackets an example of measure units) associated with the 

skills of a resource or the requirements of an operation: 

• Axes: a non-negative integer, e.g. the number of axes of a machine.  

• ProcessingType: a type of processing e.g. turning, milling, or drilling. 

• Repeatability: a non-negative integer, it gives an indication about the 

precision of the machine (expressed in mm). 

• FeedRate: a positive rational number, it gives the feed rate of a specific 

axis (expressed in mm/rot). 

• SpindleSpeed: a range of non-negative integers, it gives the spindle speed 

in the form [min, max] (expressed in rpm). 

• CuttingSpeed:  a positive rational number, it gives the cutting speed 

(expressed in mm/s). 

• Tailstock: a range of non-negative integers, it gives the size in form 

[min,max] of pieces that the machine can process (expressed in mm). 

• Payload: positive integer, it gives the maximum load of the robot that 

guarantees the repeatability (expressed in kg). 

• MaxReachability: positive integer, it gives the work volume of the robot 

(expressed in mm). 

• Autonomy: non-negative integer, it gives the amount of time that an 

autonomous vehicle can work without the need to re-fill its batteries 

(expressed in hours). 
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• MagazineCapacity: non-negative integer, it gives the number of tools or 

grippers that the magazine of a machine or robot can store. 

5. THE DOLCE FORMAL ONTOLOGY 

In section 3.3, a number of foundational ontologies have been 

introduced. This section focuses on the DOLCE ontology and presents those 

features that are most relevant for a manufacturing core ontology. The 

interested reader can find in (Masolo et al., 2003) the motivations for this 

ontology and a throughout discussion of technical aspects. 

5.1 DOLCE from the Manufacturing Perspective 

The Descriptive Ontology for Linguistic and Cognitive Engineering, 

DOLCE, concentrates on particulars, that is, roughly speaking, objects 

(physical or abstract), events, and qualities. The ontology does not attempt to 

provide a taxonomy of properties and relations and these are included in the 

system only if crucial in characterizing particulars. 

The DOLCE ontology provides a good framework for the manufacturing 

area: it adopts the distinction between objects like products and events like 

operations; it includes a useful differentiation among individual qualities, 

quality types, quality spaces, and quality values; it allows for fine 

descriptions of properties and capacities; and it relies on a very expressive 

language, namely first-order modal logic. Because of these features, the 

formalization of categories like physical object, agent, and process can be 
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done following the corresponding notions as used in the manufacturing 

domain. Furthermore, in DOLCE the user can choose and characterize the 

qualities needed in the application which provides a great level of freedom 

and facilitates update and maintenance. From the implementation viewpoint, 

lightweight versions of DOLCE are available in LOOM, DAML+OIL, 

RDFS, and OWL and the full system is implemented in CASL (see 

http://www.brics.dk/Projects/CoFI/CASL.html) with connections to theorem 

provers and graphical tools.  

 

Figure 2. Taxonomy of DOLCE basic categories (Masolo et al., 2003). 

The development of DOLCE has been explicitly influenced by natural 

language and cognitive considerations. This explains in part the adoption of 

a multiplicative approach, that is, the assumption that different entities can 

be co-localized in the same space-time. For example, a drilling machine and 
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the amount of matter that forms it are captured in DOLCE as two distinct 

entities (as opposed to different aspects of the same entity). The reason lies 

on the different set of properties that these entities enjoy: the drilling 

machine ceases to exist if a radical change of shape occurs (e.g., when it is 

crashed and it cannot be repaired) while its amount of matter is not affected. 

The ontology uses endurant for objects like “gripper” or “plastic”, and 

perdurant for events like “making a hole”, “moving a steel block” and the 

like. The term ‘object’ is used in the ontology to capture a notion of unity as 

suggested by the partition of the class “physical endurant” into classes 

“amount of matter”, “feature”, and “physical objects” (Figure 2). Both 

endurants and perdurants are associated with a bunch of qualities, the list of 

qualities may depend on the entity: shape and weight are usually taken as 

qualities of endurants, duration and direction as qualities of perdurants. 

Roughly speaking, in DOLCE an individual quality is a quality associated 

with one and only one entity; it can be understood as the particular way in 

which that entity instantiates the corresponding property. For example, in 

DOLCE the endurant Gripper_321 (a physical machine) has its own 

individual instantiation of property “having weight”. This instantiation is the 

individual weight-quality of Gripper_321. Gripper_321 may have several 

individual qualities, each related to a different property: the individual 

weight-quality, the individual shape-quality, the individual color-quality, 

etc. Recall that DOLCE gives freedom in choosing the individual qualities 

that are associated with an entity. This is important since particular 

properties like “having light sensors” are relevant in specific applications 
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only. Yet, they should not be ruled out from the start nor forced to be always 

considered. The change of an endurant in time is explained through the 

change of some of its individual qualities. For example, with the substitution 

of a component, Gripper_321 may increase its weight from a to b, then the 

individual weight-quality of Gripper_321 changes since that individual 

quality was initially associated with a and then with b. Note that a and b 

should not be considered weight measures like, say, 5 kg. They are elements 

of a space called quality space or, in this specific example, the weight-

quality space. We will discuss quality spaces below. First, note that the 

substituted component of Gripper_321 must not be essential to the gripper. 

The substitution of an essential part would destroy Gripper_321 and 

generate a new one. Finally, note that the gripper cannot exist without its 

individual qualities: DOLCE forces a strict existential dependence between 

individual qualities and their hosts. 

The example of the gripper makes clear that the “position in the quality 

space” of an individual quality can change over time. DOLCE calls such 

positions qualia (quale in singular form). A quality space for a property is 

the collection of all possible qualia (positions) that an individual quality can 

assume. Suppose that in an application an endurant is either heavier, equal, 

or lighter than another endurant α. Then, an admissible weight-quality space 

for that application has at least three distinguished positions: one is the 

position taken by the individual weight-qualities of endurants lighter than α, 

a second position is taken by the individual weight-qualities not 

distinguishable from the individual weight-quality of α, and the third is the 
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position of the individual weight-qualities of the heavier endurants. If other 

considerations seem to require a different system, one can assume that the 

quality space (the set of positions) is more complex, for instance the set of 

non-negative real numbers. This latter case can be described in DOLCE by 

positioning the individual weight-quality of α at some positive real x and the 

individual quality of an endurant lighter than α to the sub-region  {z ∈ ℜ+ | z 

< x}. (Here the position is the whole region, not just a point in it. 

Mereological principles are used to map between regions and points when 

needed.) Similarly, the individual quality of an endurant heavier than α is 

positioned at the sub-region {z ∈ ℜ+ | z > x}. The mapping between the two 

weight-quality spaces just described is trivial. Note that neither measurement 

methods nor units have been used, these must be introduced explicitly.  

Finally, DOLCE is actively compared to other foundational ontologies at 

different levels of formality (Masolo et al., 2003; Martin, 2003). Since 

DOLCE is included in merging initiatives, the core ontology here proposed 

is likely to be automatically connected to any other manufacturing ontology 

developed for interoperability. 

5.2 Categories and Relations in DOLCE 

The categories of Figure 2 relevant to our work are here introduced. 

  

• ED(x), PED(x) stand for “x is an endurant” and “x is a physical 

endurant”, respectively, with the latter is a subclass of the first. 
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• NAPO(x) stands for “x is a non-agentive physical object”, i.e., endurants 

that have spatial and temporal location but not intentions, believes, or 

desires, like “products” and “production orders”. 

 

In the manufacturing domain, one needs to deal with a variety of 

operations (jobs). First, note that here an operation is a precise event or 

happening, that is a precise perdurant, and not a type of perdurants. (Types 

are introduced through the use of descriptions. This crucial distinction will 

be developed at another stage of this work. See also section 6). An operation 

in DOLCE is said to be homeomeric if every temporal part of it is itself an 

operation of the same “type”. For instance, a “milling” operation during 

interval t is homeomeric since if one divides this interval in two parts, say, 

t_1 and t_2, the sub-operation during t_1 is still a milling operation and so is 

the sub-operation during t_2. This does not hold for “setup” operations. A 

setup operation requires the completion of a process which is obtained once 

a specific state is reached. If this does not happen, the setup does not occur. 

Thus, if a setup operation is divided in two temporal parts as before, only 

one of the two sub-operations (if any) can be considered a setup operation. 

This and similar distinctions drive the ontological classification of the 

ADACOR notions and are captured by the DOLCE predicates below. 

 

• PD(x) stands for “x is a perdurant”. 

• ACH(x) stands for “x is an achievement”, i.e., perdurants that are anti-

cumulative (summing two achievements one does not obtain an 
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achievement) and atomic (they do not have temporal parts). E.g., the 

“completion of a reconfiguration”4. 

• ACC(x) stands for “x is an accomplishment”. These are non-atomic 

perdurants since they have temporal parts. E.g. “machine 

reconfiguration”. The fact that the sum of two “machine 

reconfigurations” is not a “machine reconfiguration” itself shows that 

accomplishments are anti-cumulative. 

• ST(x) stands for “x is a state”, i.e., cumulative perdurants like “drilling” 

(the sum of two drilling operations is again a drilling operation). These 

perdurants are also homeomeric. 

• qt(q,x) stands for “q is an individual quality of x”. 

• ql(r, q), ql(r,q,t) stand for “r is the quale of the perdurant’s quality q”, “r 

is the quale of the endurant’s quality q during time t”, respectively. 

6. THE ALIGNMENT ADACOR - DOLCE 

DOLCE provides a distinct category for each type of entity in ADACOR. 

Beside the distinction between endurants and perdurants, descriptions are 

modeled explicitly as abstract entities, and properties are rendered through 

the associated qualities. In this section the ADACOR concepts, predicates 

and attributes are checked from an ontological perspective and classified in 

DOLCE. For lack of space, not all the notions of section 4 are included. 

Nonetheless, the overall framework should be clear from the cases below. 

 
4 Note the distinction between ''completion of a reconfiguration'' and ''reconfiguration''. Only 
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6.1 ADACOR - DOLCE: Endurants 

A crucial point is the distinction between endurants and their 

descriptions. An example is given by the concept of “order”, let it be 

“customer order”, “production order” or “work order”. In the manufacturing 

enterprise “order” is at the same time the physical support for some data (a 

physical object like a sheet of paper or a part of a computer device) and the 

description of an entity or event (the description of an operation that must be 

executed or of a product that must be produced). Since “order as a physical 

object” and “order as a description” have different properties (if one can take 

a physical object from one office to another, it makes no sense to take an 

abstract entity from an office to another; likewise a product can conform to a 

description but not to a paper)5, it is necessary to make sure that the 

formalization keeps them distinct. 

For each ambiguous ADACOR concept, two predicates are introduced in 

DOLCE; one referring to endurants (in this case the very same expression is 

used), the other referring to descriptions (in this case the superscript ‘D’ is 

added). Here it is assumed that a description is considered as long as 

recorded in some physical object, e.g. in a document about product 

specifications. (The study of descriptions is not presented here except for 

one minor case.) 

                                                                         
the first is an achievement. 

5 Here one should refrain from exploiting the ambiguities of natural language (one of the 
reasons for employing formal ontology). In a given context one finds meaning even for 
sentences like ''take this description to the management office'' or ''this bolt conforms to 
the paper they gave me''. If sentences are interpreted contextually, the communication 
cannot be reliable unless there is only one context. 
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Products, resources and orders (as physical endurants) are non-agentive 

entities, thus they are naturally classified as NAPO  

( ) )()()()( xNAPOxOrderxResourcexProduct !""  

At the level of descriptions, 

! 

Product
D
(x)"Resource

D
(x)"Order

D
(x)( )# AB(x)  

where AB is the predicate that characterizes abstract entities in DOLCE 

(entities neither in space nor in time). 

Since raw-material may refer to physical objects (bolts, lenses, etc.) as 

well as to amounts of matter (water, sand or gasoline), this concept is 

mapped to the category PED which includes both  

)()(_ xPEDxmaterialRaw !  

The constraint ( ))()()(_ xMxPOBxmaterialRaw !"  would be too 

restrictive since it requires any raw-material to be either a physical object or 

an amount of matter (the two class are disjoint in DOLCE). That would 

exclude raw-material composed of physical objects and some amount of 

matter. Instead, it is necessary to add the restriction that features are not raw-

material 

)()(_ xFxmaterialRaw ¬!  

Note that the notion of raw material is not ontological. A company that 

produces clothes and that buys buttons from another producer classifies the 

buttons as raw-material. Indeed, buttons are here parts of the produced items 

without being products themselves. However, the very same items are 

products for the button producer. This discrepancy is only apparent since 
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ontologically the items (call them raw-material or products) have the same 

individual qualities in all contexts.  

Some ADACOR concepts, like “Order” or “Resource”, are totally 

determined in terms of more specialized entities also in ADACOR. In these 

cases, the formalization lists which entities these concepts subsume. In 

particular, the “Order” and “Resource” are partitioned as follows 

 

! 

Order(x)" Production_order(x)#Customer_order(x)#Work_order(x)( )  

! 

Resource(x)" Producer(x)#Mover(x)#Transporter(x)#Tool(x)#Gripper(x)( )
 

6.2 ADACOR - DOLCE: Perdurants 

Most of the entities in ADACOR are perdurants (or descriptions of 

perdurants) since they identify activities or states. If the classification of 

“Operation” as generic perdurant is immediate, the notion of “Disturbance” 

is more involved and will be discussed below together with “Delay” and 

“Failure”. As for ''Completion'', it marks the end of an event and thus it is an 

achievement. The remaining operations are divided in two groups: stative 

perdurants and accomplishment perdurants. 

)()( xPDxOperation !  

)()( xACHxeDisturbanc !  

! 

Transportation(x)"Turning(x)"Drilling(x)"Milling(x)( )# ST(x)   

! 

Setup(x)"Reconfiguration(x)" Inspection(x)"Maintenance(x)"(

Assembly (x)"Production(x))# ACC(x)
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It is natural to consider “transportation” as a state: since all the temporal 

parts of a transportation event can be classified as transportations 

themselves, this type of event falls in the class of stative perdurants (ST). A 

similar argument holds for “turning”, “drilling”, and “milling” since these 

are relatively simple perdurants. More specialized operations, for instance 

operations where it is necessary to distinguish explicitly different phases of 

execution (say, to resume properly after a failure event), may require the 

notion of process. As of now, this kind of operations is not present in 

ADACOR. The remaining operations are all implicitly characterized by a 

notion of “final state” and, consequently, classified as accomplishments. 

“Operation”, “Disturbance”, and “Reconfiguration” are characterized by 

more specialized notions as follows 

( ))()()( xDelayxFailurexeDisturbanc !"  

! 

Operation(x)" Completation_of _ setup(x)#Reconfiguration(x)( #

# Inspection(x)#Setup(x)#Maintenance(x)#Turning(x)#

#Production(x)#Milling(x)#Transportation(x)#

#Assembly(x)#Drilling(x))

 

! 

Reconfiguration(x)" Addition _of _ new _ resource(x)#(

#Change_of _ layout(x)#

#Removal_of_resource(x)#

#Change_of _ resource_capability(x))

 

 

Correctly, ADACOR considers “Operation” and “Disturbance” as 

disjoint notions, that is, no entity is both an operation and a disturbance. 

)()( xeDisturbancxOperation ¬!  
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There is a misalignment between the notion of “setup” as an operation 

(above) and the concept of “setup” shown in Figure 1. In some cases, 

“setup” is seen as a requirement for other operations and this justifies its 

addition as a separate entry in Figure 1. The status of “being a requirement” 

can be captured ontologically through a standard precedence relation. 

 

“Delay”, “Disturbance”, and “Failure” are special kind of events in 

ADACOR. A disturbance is an unexpected event: machine failure or 

machine delay are the only examples of disturbances considered. These 

events affect the scheduled production plan. When an operation is being 

executed, several different scenarios can be expected: (1) the resource 

finishes the execution of the operation within the estimated time interval, (2) 

the resource fails and it cannot finish the operation (a failure has occurred) 

or (3) the operation is delayed (a delay has occurred). Thus, failures and 

delays are perdurants and machines participate in them. Clearly, a failure is a 

kind of achievement (the event at which a production plan rescheduling is 

requested). The classification of “Delay” is similar although it might be less 

obvious. First it is important to understand that not all holdups are delays. 

For a delay to occur, it is not enough to have an operation postponed or 

retarded. What matters is the satisfaction of the temporal constraints set by 

the production plan. A delay occurs only when it is acknowledge that the 

production plan cannot be satisfied. Thus, it marks a state where a 

production plan rescheduling is requested and so it is an achievement. In 

short, the distinction between “Failure” and “Delay” is based on the cause 



32 Chapter # 
 
that brought to the rescheduling request, not on the type of perdurant these 

notions refer to. For the sake of completeness, regarding the anti-

cumulativeness property note that the sum of two delays is not itself a delay 

since it does not correspond to a “single” rescheduling request. 

6.3 ADACOR - DOLCE: Qualities 

In the terminology of DOLCE, skills are qualities of endurants. For each 

type of skill it is introduced a quality space and, for each endurant that has 

that skill, an individual quality specific to that entity. The quale gives a 

classification of that endurant with respect to the given skill. Since skills 

require the introduction of all these different elements, details about the 

ontological analysis of skills will be presented in a dedicated paper. Here it 

suffices to give a guiding example through the attribute “Autonomy”. 

First, note that kills are not necessarily ontological qualities. The notion 

of “Autonomy” is important in the manufacturing area and it is considered 

as an independent property in ADACOR. Thus, it is included in the 

proposed manufacturing ontology. However, in other applications it might 

be given as a derived property (depending on, say, batteries power and 

energy consumption). DOLCE can deal with both cases and it furnishes the 

tools to coherently relate the different characterizations. 

The autonomy of a resource measures how long it can work without the 

need to re-fill its batteries. If AutL is the class of individual autonomy-

qualities, then the following constraint says that “Autonomy” is a quality 

defined for resources only  
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! 

AutL(q)"#x qt(q,x)$Resource(x)( )  

Literally the formula states that each individual autonomy-quality is a 

quality of a resource. The uniqueness of the resource is derived from the 

formalization of DOLCE itself. 

The specific relations “q is the autonomy-quality of resource x” and 

“resource x has autonomy-quale d at time t” are not part of the language and 

can be defined as follows 

! 

Autonomy(q,x) =def Resource(x)" AutL(q)"qt(q,x)  

! 

Autonomy(d,x,t) =def Resource(x)"#q Autonomy(q,x)"ql(d,q,t)( )  

 

Assume now that f is a function from the autonomy-quality space to the 

non-negative integers obtained by fixing some standard measurement 

method and unit for this property. Also, assume autonomy is expressed in 

hours and that relation Executes(x,y,t), which reads “resource x starts 

executing operation y at time t”, is given (see for instance (Borgo and 

Leitão, 2004)). Then, the language allows us to put constraints on the 

autonomy capacity of a resource by 

! 

Operation _ requires_ autonomy(x,y) =def

Operation(x)"#z,t,d Executes(z,x, t)" Autonomy(d,z,t)$ f (d) % y( )
 

)3,(__ !millingautonomyrequiresOperation  

 

From the definition x is an operation that requires an autonomy of at least 

y to be executed, and the other formula constrains operation millingα to be 

executed by resources with at least 3 hours autonomy. 
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6.4 The ADACOR - DOLCE Notion of Component 

This part focuses on the ADACOR concept “ComponentOf” (see section 

4.2) and the notion of process plan.  

From section 2.1, the structure of a product is included in the product 

model. Assume that the production of a product consists simply in 

assembling its components. A component may be complex, i.e., itself 

decomposable into simpler components, or atomic. The idea is that all the 

elements that are assembled at some point of the production process are 

components of the product itself. The ADACOR notion “ComponentOf” is 

needed to provide this composition-hierarchy in the product model. The goal 

is to capture this informal description from an ontological viewpoint in order 

to avoid misinterpretations of the product model. For this, the predicate 

Component_of is introduced in DOLCE 

 

! 

Component _of (x,y)" Product(x)# raw _material(x)( )$Product(y)( ) 

! 

Component _of (x,y)"¬Component _of (y,x) (anti # symmetric)  

! 

Component _of (x,y)"Component _of (y,z)#

#Component _of (x,z) (transitive)
 

! 

"x#y Product(x)$¬raw _material(x)( )%Component _of (y,x)

(if x is a produced product, then it has components)
 

 

The first condition says that if x composes y, then x is either a product or 

raw material while y is a product. The second condition implies that a 

component cannot be a component of itself. The next formula states 
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transitivity: a component of a component of z is also a component of z. 

Finally, a constraint is added to the effect that only products which are also 

raw material have no component. The inverse relation “x has component y”, 

call it Has_component, is given by 

),(_),(_ xyofComponentyxcomponentHas !  

Regarding the notion of process plan, a graphical and mathematical 

representation of process planning information can be done using standard 

graph theory as in (Cho and Wysk, 1995). This allows us to represent 

processing precedence, alternative sequences and parallel actions. (Cho and 

Wysk, 1995) introduces an AND/OR based graph to represent the operations 

and their precedence relationship (Figure 3). 

 

o1 sa

o2

o3

o4so jo

ja

o5 o6

 

Figure 3. A Process plan representation example. 

There are five types of nodes: operation, split-or, split-and, joint-or, and 

joint-and. All paths following a split-and type node must be processed since 

they are always necessary for the production. A joint-and type node brings 

multiple paths back together after a split-and type node. Only one path 

following a split-or type node must be selected for execution. In this way, 
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one can represent operations alternatives. A joint-or type node is required to 

bring multiple paths together after a split-or type node. Figure 3 exemplifies 

an AND/OR based graph, where the process plan comprises the execution of 

operation o1 and the execution of one of two alternative set of operations: 

the first one comprises the execution of operation o2 or o3 followed by the 

execution of o4, and the second one comprises the execution of operations 

o5 and o6. 

Below a representation in DOLCE of the temporal sequence of 

operations in Figure 3 is given. To keep the formula simple, the “disjoint or” 

connective (indicated by symbol!& ) is used: a formula of form α !&  β reads 

“either α or β is true but not both”. Among the nodes, only operations need 

to occur in the formalization. Terms o1,…, o6 refer to o1,…, o6, respectively 

as occurring in Figure 3. Recall that the relation Executes(x,y,t) stands for 

“resource x executes operation y at time t”. In the formula, xi stands for a 

resource (say, a machine) and ti for the initial time of the execution6. 
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6 One can restate the formula using time intervals or adding more time constraints by taking 

into account the duration of the different operations.  
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7. CONCLUSIONS AND FUTURE WORK 

The ADACOR manufacturing ontology, described in the section 4, was 

implemented as part of a multi-agent manufacturing control system by using 

the JADE (Java Agent Development Framework) framework. The 

experience gained during the development phase, highlighted the difficulties 

to build, maintain and modify proprietary ontologies to be used by 

heterogeneous manufacturing control applications, especially those built 

upon distributed approaches such as multi-agent systems. This problem 

pushed for new approaches in the development of manufacturing ontologies 

to simplify the effort to build, maintain and modify the ontologies. The 

adoption of an established foundational ontology was suggested to overcome 

this problem and to improve the consistency of the overall system. 

In this paper, a classification of ADACOR concepts according to the 

DOLCE foundational ontology has been proposed resulting in the core 

ontology of section 6. This ontology improves and extends (Borgo and 

Leitão, 2004) and can be used within actual implementations of ADACOR 

and adapted to other architectures. The formal expressions generated by this 

ontology can be furnished together with the data exchanged among the 

agents and holons in this way guaranteeing the correct interpretation of the 

data. The formal expressions can be obtained either at development time (for 

general data) or at run-time throughout the available lightweight versions of 

DOLCE. A quick check through the same lightweight version of the system 

ensures the correct meaning of the data is understood by the receiver. 
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Roughly, every time a term or a set of data are ontologically ambiguous, a 

flag is set to mark the data; both the sender and receiver can check the 

possible meanings and start a negotiation process if needed.  

When the ontology is completed to cover all the concepts and relations of 

ADACOR, a series of tests will be executed to evaluate in real applications 

the reliability of the core ontology as well as its usefulness in the 

manufacturing area. In spite of some efforts to develop ontologies in areas 

related to manufacturing, as of today no available (or even proposed) formal 

ontology seems capable to cover the all domain.  

The core ontology presented in this paper is well-founded because built 

according to a foundational ontology (DOLCE), because adopting formal 

semantics, and because following the methodology of formal ontology. This 

fact makes the proposed core ontology conceptually transparent and 

semantically explicit, two conditions crucial for information communication, 

sharing, and retrieval. However, this system is only an initial step in the 

realization of our goal since only entities performing the manufacturing 

scheduling and control operations have been considered and no test in real 

applications has been carried out yet. Also, specifications of additional 

information beyond process data, for instance resource commitments, costs, 

delivery times and machine failures need to be investigated further.  

Manufacturing enterprises normally suffer for lack of generality, reliable 

intra/inter communications and re-usability of their systems. Since the 

proposed here approach presents some innovations, such as formal 

specification, independence from implementation and platforms, generality 
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and re-usability, if successful it will support the development of 

heterogeneous and distributed manufacturing scheduling and control 

systems, allowing a later integration of information systems at intra-

enterprise and inter-enterprise levels. 
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