
The process of building or
engineering ontologies1 for use in
information systems remains an arcane
art form, which must become a rigor-
ous engineering discipline. One of the
principal requirements for developing a
true ontology engineering practice
is a general, domain-independent
methodology that provides guid-
ance not only on what kinds of
ontological decisions need to
be made, but on how these
decisions can be evaluated.

The OntoClean methodology
has been under development for a few
years, and seeks to provide this kind of
guidance based on highly general onto-
logical notions drawn from philosophi-
cal ontology, especially what is now
called “analytic metaphysics.” Among
other things, we use our methodology
to validate taxonomies by exposing

inappropriate and inconsistent model-
ing choices.

The OntoClean methodology is
based on formal notions, which are gen-
eral enough to be used in any ontology
effort, independently of a particular
domain. We use these notions to define
a set of metaproperties which, in turn,

are used to characterize relevant
aspects of the intended meaning of
the properties, classes, and rela-

tions that make up an ontology. In
addition, the metaproperties impose

several constraints on the taxo-
nomic structure of an ontology,

which help in evaluating the choices
made.

Essence and Rigidity
The first formal notion we will discuss
is essence. A property of an entity is
essential to that entity if it must hold
for it. This is a stronger notion than
one of permanence, that is, a property
of an entity is not essential if it just
happens to be true of it, accidentally,
for all time. For example, consider the
property of being hard. We may say
that it is an essential property of ham-
mers, but not of sponges. Some
sponges (dry ones) are hard, and some

COMMUNICATIONS OF THE ACM February 2002/Vol. 45, No. 2 61

Nicola Guarino and Christopher Welty

EVALUATING ONTOLOGICAL
DECISIONS with

ONTOCLEAN

Explosing common

misuses of the

subsumption

relationship and

the formal basis

for why they

are wrong.

1
The computer science use of the term “ontology” has under-

gone some evolution since it was borrowed from philosophy by
John McCarthy in the late 1970s, and today—as a subject
area—it is normally taken as nearly synonymous with knowledge
engineering in AI, conceptual modeling in databases, and
domain modeling in OO design. We believe it is important, in
light of this shift in meaning, to maintain that “ontology” is not
simply a new word for something computer scientists have been
doing for 20–30 years; ontology is hundreds, if not thousands,
of years old, and there are many lessons learned in those cen-
turies that we may borrow from philosophy along with the term.

62 February 2002/Vol. 45, No. 2 COMMUNICATIONS OF THE ACM

particular sponge may be hard for its entire existence,
however this does not make being hard an essential
property of that sponge. The fact is that it could have
been soft at some time, it just happened that it never
was.

A special form of essence is rigidity: a property is
rigid if it is essential to all its instances. For example,
being a person is usually conceptualized as rigid, while
we have seen that being hard is not. Rigidity is a subtle
notion: every entity that can exhibit the property must
exhibit it. So, every entity that is a person must be a per-
son, and there are no entities that can be a person but
aren’t. Notice that these definitions are restricted to
meaningful properties (not necessarily true nor neces-
sarily false), so trivial cases are excluded.

Obviously there are also properties that are not essen-
tial to all their instances. Of these we distinguish prop-
erties that are essential to some entities and not essential
to others (semi-rigid) from prop-
erties that are never essential (anti-
rigid). For example, the property
being a student is typically anti-
rigid—every instance of student is
not essentially a student (may also
be a non-student), whereas the
property being hard is semi-rigid,
since there are instances (ham-
mers) that must be hard and
instances (sponges) that may be hard but also may not.

Rigidity is an important notion, every property in an
ontology should be labeled as rigid, non-rigid, or anti-
rigid. In addition to providing more information about
what a property is intended to mean, these metaprop-
erties impose constraints on the subsumption relation,
which can be used to check the ontological consistency
of taxonomic links. One of these constraints is that
anti-rigid properties cannot subsume rigid properties.
For example, the class student cannot subsume the class
person if the former is anti-rigid and the latter is rigid.
To see this, consider that every instance of student may
cease being a student, while no instance of person can
cease being a person. If all persons are necessarily stu-
dents (the meaning of subsumption), this would create
an inconsistency.

Identity and Unity
Although very subtle and difficult to explain without
experience, identity and unity are the most important
philosophical notions we use in our methodology.
They are different notions, although strictly related
and often confused with each other. In general, iden-
tity refers to the problem of being able to recognize
individual entities in the world as being the same (or
different), and unity refers to being able to recognize

all the parts that form an individual entity.
What are identity criteria? They are difficult for even

experienced conceptual modelers to appreciate because
they are typically not part of the implemented system
and are overlooked. In point of fact, identity criteria are
conditions used to determine equality (sufficient con-
ditions) and that are entailed by equality (necessary
conditions).

It is perhaps simplest to think of identity criteria over
time. For example, how do we recognize a person we
know as the same person even though they may have
changed? It is also very informative, however, to think
of identity criteria at a single point in time. This may,
at first glance, seem bizarre. How can you ask, “are these
two entities the same entity?” If they are the same then
there is one entity, it does not even make sense to ask
the question.

The answer is not that difficult. One of the most
common decisions that must be
made in ontological analysis con-
cerns identifying circumstances in
which something that is appar-
ently seen as one entity is actually
two (or more). Consider the fol-
lowing example, drawn from
actual experience: a proposed class
time duration whose instances are
things like “one hour” and “two

hours,” and a class time interval referring to specific
intervals of time, such as “1:00–2:00 next Tuesday” and
“2:00–3:00 next Wednesday.” One proposal was to
make time interval a kind of (subclass of) time duration,
since all time intervals were seen as time durations.
Seems to make intuitive sense, but how can we evalu-
ate this decision?

In this case, an analysis based on the notion of iden-
tity can be very informative. According to the identity
critera for time durations, two durations of the same
length are the same duration. In other words, all one-
hour time durations are identical—they are the same
duration and therefore there is only one “one hour”
time duration. On the other hand, according to the
identity criteria for time intervals, two intervals occur-
ring at the same time are the same, but two intervals
occurring at different times, even if they are the same
length, are different. Therefore, the two example inter-
vals given would be different intervals, but the same
duration. This creates a contradiction: if all instances of
time interval are also instances of time duration (as
implied by the subclass relationship), how can they be
two instances under one class and a single instance
under another?

This is one of the common confusions of natural
language when used in describing the world. When we C

A
R

EN
 R

O
SE

N
B

LA
TT

say “all time intervals are time durations” we really
mean “all time intervals have a time duration”; the
duration is a component of an interval, but it is not the
interval itself. Therefore, we cannot model the relation-
ship as subclass. More examples of such confusions are
provided later.

A second notion extremely useful in ontological
analysis is unity. Unity refers to the problem of
describing the way the parts of an object are bound
together, such that we know in general what is part
of the object, what is not, and under what condi-
tions the object is a whole.

Unity can tell us a lot about the intended meaning
of properties or classes based on whether their instances
are wholes. For some classes, all their instances are
wholes, for others none of their instances are wholes.
For example, the class “water,” found in some com-
monsense ontologies, does not represent whole objects.
An instance of this class is an amount of water, but it is
not a whole, since it is not recognizable as an isolated
entity. On the other hand, “ocean” may be a class that
does represent whole objects, since an instance of this
class, such as “the Atlantic Ocean,” is recognizable as a
single entity.

This leads us again to interesting problems with sub-
sumption. It may make sense to say that “ocean” is a
subclass of “water,” since all oceans are water. However,
if we claim that instances of the latter are not wholes,
and instances of the former always are, then we have a
contradiction. Problems like this again stem from the
ambiguity of natural language, oceans are not “kinds
of” water, they are composed of water.

In addition to specifying that a class represents
wholes, it is also useful to analyze the specific condi-
tions that must hold among the parts of a certain entity
in order to consider it a whole. We call these conditions
unity criteria, and distinguish with suitable metaprop-
erties the classes that carry a common unity criterion
for all their instances (such as “ocean”) from those that
do not (like “water”).

The Benefits of Ontological Analysis
While the OntoClean methodology is still under
development, the core is quite stable and is being used
in several industrial and academic settings to validate
taxonomies. The OntoClean core is based on attach-
ing to each property (class) in an ontology suitable
metaproperties that describe its behavior with respect
to the ontological notions previously described. After
analyzing each property, the modeler gains a number
of important insights into the structure of the ontol-
ogy and the nature of what is being represented.

One of the first benefits of this analysis is the identi-
fication of a backbone taxonomy. The backbone taxon-

omy consists of all the rigid properties in the ontology,
organized according to their subsumption relation-
ships, and represents a view of the ontology showing all
the most important properties—those that cover the
entire domain (or universe of discourse). This is
because we assume every entity must have identity cri-
teria and must have a rigid property that describes those
criteria. The backbone taxonomy gives a jump start to
the integration process, since every entity must instan-
tiate at least one property in the backbone. Backbone
properties are the most important to analyze first—
those that represent the invariant, essential aspects of
the domain. Moreover, if we have to integrate two dif-
ferent ontologies, we can start comparing their rigid
properties, trying to establish a common backbone that
will constitute a basic set of stable properties within the
merged domain.

Another benefit of this analysis, and the subject of
the rest of this article, is the discovery of inconsistent
uses of subsumption in the taxonomy. Deciding
whether one property should subsume another is one of
the most important ontological decisions a modeler
must make in building an ontology, and providing a
formal foundation for evaluating these decisions has
proved an important milestone in the practice of con-
ceptual modeling.

Subsumption Misused
The subsumption (or subclass, is-a, and so forth) rela-
tion that is the basis of a taxonomy is an extremely
useful tool for imparting structure on an ontology. It
is by far the most commonly used structuring prim-
itve, and in many cases, such as thesauri and object-
oriented languages, it is the only one. It is, however,
easily and often misused. Formally, we take it to mean
that all instances of the subclass are necessarily
instances of the superclass.

The OntoClean methodology provides a formal,
consistent and straightforward way to explain some of
the most common misunderstandings in conceptual
modeling regarding the taxonomic or subsumption
relation.

Instantiation
Perhaps the most confusing of all distinctions is
between the two relations subsumption and instantia-
tion. We have often found the subsumption relation-
ship misused when instantiation was actually
intended. The canonical example of this is
species/animal. While most introductory courses
teach the difference between classes, such as Mammal
or Human, and instances, such as Chris, they stop
short of explaining how second-order classes, such as
Species, would fit into the picture. Human is a subclass

COMMUNICATIONS OF THE ACM February 2002/Vol. 45, No. 2 63

of Mammal, and Chris is a Human and therefore a
Mammal. Is Human also a subclass of Species?

When we perform the analysis described on all these
classes, we find that the identity criteria of Species are
quite different from that of Human. Intuitively, species
seem to be identified by their position in a biological
taxonomy (for example, genus and differentia). On the
other hand, we can assume that instances of Human are
identified, in the simplest case, through the location in
space/time of their bodies; two humans are different if
they are at different places at the same time.

If Human was a subclass of Species, it would inherit
its identity criteria. This can’t be the case, since genus
and differentia do not help in distinguishing one
human from another. Therefore, Species cannot sub-
sume Human. In fact, Human turns out to be an
instance of Species, and subsumption is not instantiation.

Meta is Betta
The prefix “meta” acutally means “after.” As with the
term “ontology,” its meaning in computer science is
not quite correct and fairly vague. Meta seems to
have something to do with levels of representation, as
in a metalanguage, which is typically understood to
be a language in which languages are specified. When
we refer to a notion like “rigidity,” we consider it a
metaproperty in that rigidity is a property of proper-
ties, and not a property of objects in the world. In
this sense, the notion of meta is very similar to the
notion of instantiation, refering to a level of predica-
tion beyond the ground instances in a model.

We often find subsumption misused to represent
metalevel relationships of this kind. For example, it
may be tempting to create a class called “rigid class” and
have it subsume all classes that are rigid, such as
Human.

As with the Species example, a quick look at identity
criteria reveals that this relationship cannot be.
Instances of “rigid class” are classes, which can be iden-
tified in various ways (intensionally, in terms of the
properties that define the class, or extensionally, in
terms of their members). In any case, these identity
criteria cannot be applied to the instances of Human,
so being rigid is a metaproperty of the class Human
and subsumption is not meta.

Part/Whole
It is often difficult for beginners in ontological analy-
sis to distinguish between the part-of and the subclass
relation. This is due to the fact that subclass is analo-
gous to subset, and a subset of a set is a part of it. This
confusion can be overcome when we realize the differ-
ence between the parts of a set and the parts of its
members. Understanding the proper meaning of the

part-of relation is often what ontological analysis is all
about.

However, even people who understand the distinc-
tion, often misuse subsumption to represent part-of;
they are both partial ordering relations after all, and
when we draw diagrams showing subclass relation-
ships we get a picture that looks the same as a diagram
representing the decomposition of something.

To understand these problems, again we can apply
our analysis. Take two classes like Car and Engine : is
Engine a subclass of Car? We can approach this one in
many ways since it is so obviously wrong; a useful
strategy is to focus on the essential properties involved:
among the essential properties of a car there are some
functional properties, like being able to accommodate
people. An engine has also certain functional properties
as essential properties, like being able to crank and gen-
erate a rotational force. Since, however, the essential
properties of cars do not apply to engines, one cannot
subsume the other. The proper relationship here is
part and subsumption is not part.

Disjunction/Type Restriction
An often-used “work-around” to the problem in the
example here with car parts is creating artificial classes
representing different levels of decomposition. For
example, rather than claiming that engines are a subclass
of cars, we have frequently found a class like car part
subsuming engine, and a restriction or axiom requiring
that all the parts of cars be car parts. This brings us to
another common misuse of subsumption to represent a
disjunction of classes for a type restriction.

To see how this is incorrect, rigidity analysis can be
most useful. No instance of a car part is necessarily a car
part (we could take an engine from a car and put it in
a boat, making it no longer a car part but a boat part),
so we have to make that class anti-rigid. The class
engine itself is rigid, however, since we can’t imagine an
entity that is an engine becoming a non-engine. Being
an engine is essential to it. An anti-rigid class, such as
car part, can not subsume a rigid one, and so we have
a conflict.

This type of mistake is particularly common in
object-oriented and frame-based models, where value
restrictions are an important part of modeling. These
anti-rigid classes are created to satisfy a modeling need
to represent disjunction, for instance, “any car part is
either an engine, or a wheel, or a seat, …” It should be
clear that this is different from saying “all engines are
car parts,” since, in fact, they are not. Of course, most
modeling systems do not provide for disjunction, so
modelers believe they are justified using these tricks,
but if the intention is to make meaning as clear as pos-
sible then subsumption is not disjunction.

64 February 2002/Vol. 45, No. 2 COMMUNICATIONS OF THE ACM

Polysemy
The most common misuse of subsumption in linguis-
tics is to represent the multiple meanings (polysemy)
of a term. For example, “book” is a polysemous term
with at least two meanings: a bound volume with a
size, weight, position, and so forth; an abstract entity
with an author, title, and possibly many manifesta-
tions. When we say, “this book is heavy” we typically
refer to the bound volume, whereas when we say, “I
read this book” we are typically not talking about a
particular bound volume, but about the abstract
entity that the bound volume is a manifestation of.

In some linguistic ontologies, such as Mikrokosmos
[7], we often find subsumption misused to represent
this polysemy; the polysemous class is placed below all
its possible meanings in a taxonomy. This may have
some linguistic motivations, but is incorrect from the
ontological point of view.

To see how this is incorrect, we can usefully employ
identity or unity analysis. Bound volumes are identi-
fied, simply, by their location in space/time, so that two
bound volumes cannot occupy the same space at the
same time. The abstract notion of book is independent
of space and time, being identified by author, title, date,
and other criteria. Clearly no instance can meet both of
these identity criteria; they belong to two different
classes of entity, though there is a close relationship
between them. No book is both a bound volume and
an abstract entity; subsumption is not polysemy.

Constitution
The final common misuse of subsumption is to rep-
resent the fact that one thing is constituted of another.
In the example given during the discussion of unity,
we talked about ocean being subsumed or not by
water. We examined the unity conditions and found
that instances of the class water are not wholes,
whereas instances of the class ocean are. Examples of
this abound, as between the class human and living-
matter, or between company and group-of-people. In
each case, one class of entities is constituted of entities
in the other class, but not subsumed by it; subsump-
tion is not constitution.

Conclusion
The OntoClean methodology is in use in several
places. OntologyWorks (www.ontologyworks.com)
has designed a system that automates checking con-
sistency of ontologies once their formal metaproper-
ties have been expressed. They use the OntoClean
methodology to perform a variety of commercial
database integration tasks. Document Development
Corporation (www.docdev.com) uses OntoClean as
part of the knowledge engineering process for captur-

ing and reusing knowledge assets in corporate docu-
ments such as contracts and proposals. At IBM
Research, the methodology core was used in the
SOALAR project to build ontologies of business
engagements. At the Technical University of Madrid,
OntoClean is being integrated with Methontology, a
methodology for building ontologies based on soft-
ware engineering principles. At the Italian National
Research Council Laboratories (LADSEB-CNR and
ITBM-CNR), in Pradova and Rome, OntoClean is in
use in several projects including the development of
an upper-level ontology based on a restructuring of
WordNet, and the development of a core ontology for
financial knowledge interchange.

This work was partly supported by the Eureka Project IKF (E!2235, Information and
Knowledge Fusion), the Italian National project TICCA (Tecnologie Cognitive per l’In-
terazione e la Cooperazione con Agenti Artificiali), and a Research Committee grant
from Vassar College.

References
1. Guarino, N. and Welty, C. Identity and subsumption. In, R., Green, Ed.

Semantic Relations. Kluwer, 2001.
2. Guarino, N. and Welty, C. Identity, unity, and individuality: Towards

a formal toolkit for ontological analysis. In Proceedings of ECAI-2000: The
European Conference on Artificial Intelligence. IOS Press, Berlin, Germany,
2000.

3. Guarino, N. and Welty, C. A formal ontology of properties. In R. Dieng,
Ed., Proceedings of 12th Int. Conf. on Knowledge Engineering and Knowl-
edge Management, Springer Verlag, 2000.

4. Hayes, P.J. Naive physics I: Ontology for liquids. In J.R. Hobbs and R.
C. Moore, Eds. Formal Theories of the Commonsense World. Ablex, Nor-
wood, New Jersey, 1985, pp. 71–108).

5. Miller, G.A. WordNet: A lexical database for English. Commun. ACM,
38, 11 (Nov. 1995), 39–41.

6. McCarthy, J. Circumscription—A form of non-monotonic reasoning.
Art. Int. 5, 13 (1980), 27–39.

7. Nirenburg, S., Carbonell, J., Tomita, M., and Goodman, K. Machine
Translation: A Knowledge-Based Approach. Morgan Kaufmann Publishers,
Sant Mateo, NJ, 1992.

8. Quine, W.V.O. Ontological Relativity and Other Essays. Columbia Uni-
versity Press, New York, London, 1969.

9. Smith, B. and Welty, C. Formal Ontology and Information Systems. ACM
Press, 2001.

10. Simons, P. Parts: A Study in Ontology. Clarendon Press, Oxford,1987.
11. Sowa, J.F. Conceptual Structures. Information Processing in Mind and

Machine, Reading. Addison-Wesley, MA, 1984.
12. Storey, V.C. Understanding semantic relationships. Very Large Databases

J. 2 (1993), 455–488.

Nicloa Guarino (guarino@ladseb..pd.cnr.it) is a senior research
scientist at the Institute for System Theory and Biomedical Engineering
of the Italian National Research Council (LADSEB-CNR) in Padova,
Italy.
Christopher Welty (welty@cs.vassar.edu) is an assistant professor
of computer science at Vassar College in Poughkeepie, NY.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2002 ACM 0002-0782/02/0200 $5.00

c

COMMUNICATIONS OF THE ACM February 2002/Vol. 45, No. 2 65

