
Concurrency with partial information
S. Borgo

Computer Science, Indiana University, Bloomington, IN 47405 (USA)

LACL, Universit�e de Paris XII, 94010 Cr�eteil Cedex (FR)

stborgo@indiana.edu

Abstract

The aim of this paper is to introduce a new formalism for multi-agent systems that captures

(true) concurrency and independence. We begin describing a complete and decidable proposi-

tional multi-modal logic. The language, similar to Propositional Dynamic Logic in many aspects,

di�ers from usual modal logic: modal operators are non-atomic (they are built out of basic ac-

tions) and capture concurrency at the syntactic level. Quanti�ed logics are obtained by allowing

quanti�ers to occur in the modal operators. The semantics of quanti�ed formulas uses both

set-theoretic and game-theoretic notions (here introduced only informally.)

1 Introduction

The problems of multi-agent systems [1, 2] furnish interesting applications of information

independence and concurrency issues. The relationship between agents, their actions, and

the e�ective consequences of their knowledge is at the very center of many research areas

across computer science, philosophy, logic, linguistics, social science, and economics.

In this paper we introduce a new formalism for multi-agent systems with strong em-

phasis on information issues. True concurrency, con
ict, and causality have a central role

in our work.

By agent we mean a rational and autonomous entity that has the power to execute

actions. Our notion of rational agent is very broad, for instance, it includes computational

as well as biological entities. By rationality wemean the ability to choose actions to achieve

a given goal under the constraints imposed by the system [2]. Through actions, agents

modify the state of the system, possibly causing some sentences to change their truth-

value, and try to reach their goal. By state of the system we refer to the usual notion of

global state. In our multi-agent logics, the system state is not partitioned with respect

to agents, i.e., there are no local states for individual agents. In fact, the logics describe

what agents, acting autonomously or in groups, can do to force or forbid the system to

reach some given state.

The language contains a set of atomic actions which are combined to form modal

operators. Generally speaking, the actions available to an agent depend on the state of

the system at that point and on the concurrent actions performed by other agents. Note

that time is not considered explicitly in the logics and there is no reasoning about history.

The logics consider only the present and the future states.

Our formalism is part of the traditional modal approach to multi-agent systems as

opposed to representational approaches. In particular, there is no reference to the internal

structure of agents. Speci�c logics describing agent's (complex) attitudes can be found in

[1, 3] and a broader analysis of (complex social) agents in [4].

In next section we informally present our multi-agent logics through an example. We

give a detailed introduction of the propositional logic in section 3 and, in the following

section, state completeness and decidability. After relating our system to Propositional

Dynamic Logic in section 5, we give a (very) short description of one quanti�ed extension

of the logic. In section 7 we discuss our research and mention some related work.

2 A Guiding Example

Consider two non communicating agents �1, �2 and two boolean variables X1, X2.

Agent �1 can change the value of X1 and agent �2 can change the value of X2.

The set of available (constants for) actions is f1; 0; �g.
After agent �i executes the action denoted by 1, Xi has value 1.

After agent �i executes the action denoted by 0, Xi has value 0.

� denotes the \null" action; whenever �i executes the \null" action, the value of Xi does

not change.

The system has four distinguished states sij (0 � i; j � 1), where state si;j corresponds

to (X1 = i, X2 = j). In the language, si;j is described by proposition 'i;j.

Consider the following 2-step run of the system:

� Initial state: (X1 = 0 and X2 = 0)

(I) agent �1 performs action 1 and agent �2 action �

� (X1 = 1 and X2 = 0)

(II) agent �1 perform action 1 and agent �2 action 1

� (X1 = 1 and X2 = 1)

Step (I) corresponds to formula

�
1
�

�
'10, where the �rst row shows the action of agent

�1 and the second row the action of agent �2, '10 characterizes the state after this step.

The modal operator in this formula has the shape of a 2 � 1 matrix built out of basic

actions and it corresponds to the concurrent execution of the actions occurring in it.

Formula

�
1
�

� �
1
1

�
'11 captures the full run. (Note that we use squared brackets for

the operators. This notation resembles deliberately the use of square brackets in modal

logic. Although in this example all operators are (total) functions, this is not a general

assumption, that is, in general :
�
a

b

�
:' does not imply

�
a

b

�
'.)

Suppose now that the second action for agent �1 has not been chosen, that is, the 2-step

run is determined as before but with no information about the action �1 executes at (II).

If �1 prefers to move to a state where '01 holds, i.e., to s01, she faces this problem: what

action should I execute at (II) to force the system to reach state s01 ?

To capture this situation we look at '01 as a goal for agent �1. Formula

�
1
�

� �
9z
1

�
'01,

where the quanti�er ranges over the set of actions, says that agent �1 has to choose an

action for z. The �rst operator in

�
1
�

�
is built out of constants, so the two agents �1

and �2 have no choice to make, they need to perform actions 1 and �, respectively. As a

result of these actions the system moves from state s00 to state s10. At this point, it is

public knowledge the e�ect of operator

�
1
�

�
, and the agents move to consider the second

operator fully aware of being in state s10. Now �1 has to choose a value for z and �2

has to execute 1. �1 can choose to perform action 0, that is, choose 0 for z. This way,

she forces the system to state s01. Similarly, if �1 chooses �. Instead, if �1 chooses 1 for

z, then the formula becomes

�
1
�

� �
1
1

�
'01, which is false and does not satisfy her goal.

Clearly, 0 or � are her only options to reach state s01.

The general case arises allowing quanti�ers in any position of the modal operator.

Suppose that both agents want to reach s01 in a 2-step run starting at s00 and that none

of their actions has been �xed. In this case, all of the entries of the operator are quanti�ed.

We obtain the following formula: �
9x
9y

� �
9z
9w

�
'01 (1)

In this formula, both agents �1 and �2 have '01 as �nal goal in the two steps of the run.

Note that in this simple example there are several combinations of actions that bring

them to the desired state.

If agent �1, when choosing her �rst action, has no particular feeling for reaching state

s01 or even desires to avoid it1, the following expression gives the correct description:�
8x
9y

� �
9z
9w

�
'01 (2)

Here we can �nally recognize the speci�c role of existential and universal quanti�ers.

Roughly speaking, existential quanti�ers mark entries where the agent's choice stems

from its wanting to make the formula true. The universal quanti�ers instead mark entries

where the agent chooses with no commitment to the truth-value of the formula or, in

another reading, with the desire to make the formula false.

The �rst operator in (2) tells us that agent �1 may cause the system to move to a state

from which it is not possible to satisfy

�
9z
9w

�
'01 while �2 tries to do the very opposite.

The second operator tells us that at the second step both �1 and �2 want to end up in

s01. In the given system, both formulas (1) and (2) are true since the agents can always

force the system to reach state s01 if they want. This is not always the case.

In full generality, we may have any combination of quanti�ers in a modal operator. A

sequence of modal operators like in�
Q1x

Q2y

� �
Q3z

Q4w

�
' (Qi 2 f8;9g) (3)

is evaluated from left to right one operator at a time. When choosing the action for the

�rst operator in the sequence, agent �1 does not know what �2 is doing at this stage.

1These two readings of the universal quanti�er correspond to di�erent logics.

Other information may be shared. For instance, in the quanti�ed system we present in

section 6 it is assumed that agent �1 knows �2's attitude toward the rest of the formula

that is, what quanti�ers Q2 and Q4 are. Analogously, switching �1 and �2.

Once the values of x and y are chosen, the �rst operator is determined and the system

evolves to the next state as indicated by that operator. This change is known to all

the agents. The new state becomes the present state in the evaluation of the rest of

the formula

�
Q3z

Q4w

�
'. In particular, both agents are fully aware of what changes their

combined �rst actions caused before deciding their actions for the second operator.2

From the point of view of a transition system, formula (3) corresponds to the transition

from the initial state, sinit, to the �nal state, sfin, through an intermediate state, s0 (after

the instantiation of variables x and y, s0 is the present state for the rest of the formula):

r

sinit

-

�
Q1x
Q2y

�
r

s
0

-

�
Q3z
Q4w

�
r

sfin

So far, we have informally presented a formalism for concurrent actions in a multi-agent

system where agents are free to choose according to their desires. Although this allows us

to describe an interesting set of problems, we have not taken advantage of all the elements

in the formalism.

In our everyday experience, most of the time agents must choose and perform a sequence

of actions without knowledge of what other agents are doing during the same period of

time. To state that agents �1 and �2 choose two (n) successive actions with no knowledge

of each other's choices, we write our formula using two-column (n-column) operators like

�
Q1x Q3z

Q2y Q4w

�
(4)

The intended reading is that agent �1, while choosing an instance for x and z, has no

knowledge of �2's choices for y and w. Similarly for �2. The agents become aware of the

e�ects of their combined actions only after both of them have executed both choices. In

a transition system, this operator corresponds to the transition from sinit to sfin without

any intermediate state s0.

With this extension of the language, we enrich the meaning of the modal symbols `['

and `]' with respect to more traditional logics. In systems of modal logic brackets are

used to represent grouping and are generally associated with the meaning of the necessity

modality. In our formalism, the brackets maintain these roles and also receive an epistemic

touch. In an operator of form

�
Q1x Q3z

Q2y Q4w

�
', the brackets mark a situation where the

agents perform a sequence of actions all the while receiving no feedback either about the

evolution of the system or about other agents' actions. These brackets are like epistemic

2Operator

�
a

b

�
may reach states di�erent from the states reachable by, say,

�
a

�

�
followed by

�
�

b

�
.

Intuitively, the result of concurrent actions can be di�erent from the result of any \linear" sequence of

those same actions. This feature is known as true concurrency.

boundaries, and the agents, during the \time" spanned by the modal operator, act like

isolated agents.

In formula (4), none of the agents knows what the precise consequences of her �rst

actions are. The system changes depending on the e�ect of all the actions executed, if

an agent does not know what the other agent executes and cannot observe the changes

in the system, she has no way of knowing the concrete e�ects of her own actions. This

happens in everyday situations. For example, when two people need to use the same

phone line at the same time: one, say, wants to connect to the internet using a modem

while the other decides to call a friend. These people start using the phone line (perhaps

in di�erent rooms) and only when they actually listen to the phone after dialing or check

the modem activity to see why the connection does not go through, do they discover the

disappointing output of their combined sequences of actions.

Thus, in general quanti�ed modal operators are not equivalent to sequences of simpler

operators: �
Q1x Q3z

Q2y Q4w

�
' 6�

�
Q1x

Q2y

� �
Q3z

Q4w

�
' (5)

Nevertheless, the equivalence holds when only constants occur:�
a c

b d

�
' �

�
a

b

� �
c

d

�
' (where a; b; c; d denote �xed actions.)

In these logics, we always assume that actions in the same column of an operator are

performed concurrently by di�erent agents, and all actions in a row are executed by the

same agent in that order. From now on, we posit a �xed number k of agents.

3 Multi-Agent Propositional Logic

3.1 Syntax

The language contains denumerable many constants denoting actions �; a0; a1; a2; : : : (� is

a distinguished constant denoting the \null" action) and atomic sentences p0; p1; p2; : : :

We write Const for the set of constants, a; b; c; : : : for arbitrary constants, and p; q; : : : for

arbitrary atomic sentences.

Besides the propositional operators : and ! (from which _;^, and $ are de�ned in

the usual way), new unary modal operators (multi-agent operators) are introduced. A

modal operator [Mn], where n � 1, is syntactically a matrix with k rows and n columns

whose entries are constants (all the operators and matrices have k rows unless otherwise

stated; we drop index n when not relevent or when it is clear from the context). We call

cOP the set of all modal operators in the logic. Given any k � n matrix M (n � 1), we

write [M] if it is in cOP. The k � 1 matrix whose entries are all � is always in cOP and

is called the null operator.

Although for theoretical purposes one would let cOP be the set of all possible operators

built out of elements in Const, in this introduction to the logic we take a broader view

and assume that cOP is simply a subset of all possible operators. We assume that the

set of operators contains only those combinations of actions that are actually compatible

in the situation one wants to capture. For instance, if ai corresponds to action \write in

the i-th memory", then a system with two agents cannot meaningfully execute operator�
ai

ai

�
. Taking cOP to be a subset of all possible operators, we leave open the possibility

of discharging such an operator already at the syntactical level.

cOP is closed under juxtaposition: given modal operators [A] and [B], both in cOP,

operator [C], obtained by juxtaposition of [A] and [B], is also in cOP. We write [A j B]
for the juxtaposition of [A] and [B] in this order. For instance, assume k = 2 and let

[A] =

�
a1 a3

a2 a4

�
, [B] =

�
a5

a6

�
, then [A j B] =

�
a1 a3 a5

a2 a4 a6

�
and it is in cOP if both [A]

and [B] are.

In full generality, cOP is any set of modal operators (in the language) containing the

null operator and closed under juxtaposition.

A modal operator with n columns is called an n-operator. There is no operator in the

logic with zero columns. Nevertheless, to simplify some de�nitions, we refer to the matrix

of dimension k� 0 as the empty operator. If A is a �xed matrix, then operators obtained

by juxtaposition of A are called A-iterated. An operator [B] in cOP is a suboperator of [M]

if there exist [A] and [C] in cOP (or empty), such that [M] = [A j B j C] and [M] 6= [B].

The set of formulas (sentences in the propositional logic) is de�ned as follows:

1. all atomic sentences are formulas

2. :' is a formula if ' is a formula

3. '! is a formula if both ' and are formulas

4. [M]' is a formula if [M] is in cOP and ' is a formula

3.2 Semantics

A multi-agent model is a 4-tuple
D
W;P ; fRk�n j n 2 N+g ; [[�]]

E
such that:

� W is a non-empty set of states;

� P is a set of actions, one action for each constant of the language.3 In particular,

P contains ", the \null" action;

� for all n 2 N
+ and for all matrices �, if there exists [A] 2 cOP with � = [[A]] (see

below), then Rk�n(�) �W �W . The relations satisfy the following properties:

a) �x Rk;n(�), Rk;m(�0), then Rk;n(�) ÆRk;m(�0) = R
k�(n+m)(� j �0);4

b) let � be the k � 1 matrix

0
B@ "

...
"

1
CA, then Rk�1(�) = f(w;w) j w 2 Wg;

3In other words, each element in the universe of actions P has a name in the language.
4
Æ stands for the relational composition.

� [[�]] is a valuation function mapping atomic sentences to sets of states; constant

� to action "; other constants to elements in P n f"g; modal operators [A] ="
a1;1 : : : a1;n
: : : : : : : : :
ak;1 : : : ak;n

#
to [[[A]]] =

0
@ [[a1;1]] : : : [[a1;n]]

: : : : : : : : :

[[ak;1]] : : : [[ak;n]]

1
A. We write [[A]] for [[[A]]].

(Note that the juxtaposition of [[A]] and [[B]] is equivalent to [[A j B]].)

For s 2 W , we write M; s j= ' to mean that sentence ' is true at s in model M. The

notion is de�ned as follows:

1. M; s j= pi if s 2 [[pi]]

2. M; s j= '! if M; s j= ' impliesM; s j=

3. M; s j= :' if not M; s j= '

4. M; s j= [M]' if [M] 2 cOP and for all s0 such that (s; s0) 2 Rk;n([[M]]),M; s
0 j= '

A model is characterized by the atomic transitions in the usual way. However, an

atomic transition may be associated with an operator with several columns. This happens

whenever the multi-column operator at stake has no suboperators in cOP.

The de�nitions of satis�ability and validity of sentences are as in standard modal logic.

Let M be a model and ' a sentence. If M; s j= ' for some state s, we say that ' is

satis�able in M. If ' is satis�able in some model M, we say that ' is satis�able. If

M; s j= ' for all states s, we say that ' is valid in M. If ' is valid in all models, we say

that ' is valid.

3.3 Axiomatics

We need to provide rules only for the modal operators since : and! are standard boolean

connectives and are characterized by propositional logic in the usual way.

The null operator is determined by the null schema:

(NS) '$ [N1]', where [N1] is the 1-operator whose entries are all �.

All operators in cOP satisfy (K) and necessitation (RN) [5]

(K) [M]('!)! ([M]'! [M]) ; (RN)
'

[M]'

Given an operator [M], de�ne the dual operator hMi by :[M]:. Then, rules (K) and
(RN) imply that the system is normal.

In the characterization of modal operators we add the (operator) composition schema:

(CS) For every [A]; [B] 2 cOP , [A][B]'$ [A j B]'.

Schema (CS) is a sort of composition principle for modal operators. Its semantic coun-

terpart is given by the composition requirement on the relations in the model. (CS) ties

the interpretation of constant operators to the interpretation of their suboperators.

rs
-

[a a]
r

s
0

r s
00

-

[a a a]

Figure 1: A transition system not satisfying (BP). (Simple loops are not shown)

Applicative concerns may suggest that more or less restricted sets cOP be adopted.

Furthermore, the constraints on cOP a�ect the deductive properties of the whole system.

Among the properties that are natural to consider, there is the atomicity property:

(AP) Let [Cn+1], n � 1, be an operator in cOP such that [Cn+1] = [A1 j Bn]. Then,

[A1] is in cOP and so is [Bn].

This property says that every n-operator can be obtained by juxtaposition of 1-operators.

Clearly, (AP) is very strong. Generally speaking, in the logic one can formalize a proce-

dure at the syntactic level simply by introducing an n-operator that has no suboperators

in cOP. Such an operator forces the system to evolve through a �xed path once the pro-

cedure is undertaken. This feature is particularly relevant when modeling, for instance,

security protocols.

In contrast to this, property (AP) guarantees that any operator with 2 or more columns

splits into suboperators thus preventing the purely syntactical characterization of proce-

dures we hinted at above. On the other hand, assuming (AP) one obtains a simple system

and has the possibility of reducing every complex evolution to a sequence of independent

single steps.

Often it suÆces to consider properties weaker than (AP). The block (operator) property

turns out to be central to our approach:

(BP) Let [D] be in cOP such that [D] = [A j B j C] with [B] in cOP. Then, [A]; [C]

are in cOP or empty.

(BP) states that if an operator contains a suboperator in cOP, then the two pieces of

the matrix on the left and on the right of the suboperator are also operators in cOP.

Without (BP) one might have operators5 [a a]; [a a a] in cOP and, at the same time,

[a] 62 cOP. Since these operators are interpreted by [[[a]] [[a]]] and [[[a]] [[a]] [[a]]], respec-

tively, one includes also frames as in Fig. 1, that is, frames where the interpretation of the

two operators have no connection whatsoever. In our reading of the logic such a frame

should be rejected. One cannot justify why after the execution of [a a], the system cannot

evolve through another execution of action a considering that it can evolve using [a a a]

from the very beginning.

In contrast to (AP), (BP) allows us to associate di�erent \meanings" with the very

same action according to the context in which it occurs. In a system satisfying (BP) but

not (AP), the co-presence of, say, [b a] and [c a] in cOP implies neither the inclusion of

5For the sake of simplicity, we give the example in a one-agent system.

simpler operators nor any relationship between the states reachable by the two operators.

In this way, action a may have di�erent meanings depending on the actions that had been

performed at the previous stage.

Similarly, sometimes we want to say that an agent begins to execute a protocol only if

she is sure she will complete it (this happens, for instance, with some installation programs

that do not allow the user to exit the process once it is started). In this case, it makes

sense for modelling purposes to have operators that list all the (ordered) actions in the

protocol and that cannot be obtained as combinations of smaller operators. A system

satisfying (BP) is capable of such characterizations.

For these reasons, in the multi-agent propositional logic we always assume the closure

of the operator set under (BP).

The axiomatization of the multi-agent logic is given by any complete set of axioms and

rules for propositional logic, and axiom-schemata (NS), (K), (CS), and (RN).6

It is easy to establish that this system is sound.

4 Completeness, Decidability, and Complexity

One can build the canonical standard model (for multi-relational models) adapting the

usual construction in modal logic to our axiomatic system. This is possible since the

di�erent modalities are independently axiomatized and the only schema involving more

than one operator at a time, i.e. (CS), states that one needs to deal only with a base of

operators for the set cOP.

Theorem 4.1 The multi-agent propositional logic has the �nite model property: if ' is

satis�able then it holds in a model with no more that 2O(j'j)
states.

Corollary 4.1 The satis�ability problem for the multi-agent propositional logic is decid-

able.

Note that the block property (BP) is not dispensable.

In a one-agent logic, consider the set of axioms given in section 3.3 and drop (BP). Let

operators [a a] and [a a a] be in cOP and assume there is no operator [a]. Then for all

formulas ' the con
uence axiom holds:

[a a a][a a]'$ [a a][a a a]'

One can produce an in�nite number of operators commuting this way, for instance, con-

sidering operators with a prime number of occurrences of a. If these operators are in cOP

and cannot be generated by simpler operators, then they are semantically independent,

thus the logic resembles the product of in�nite normal modal logics K.7 It is known [6]

that any logic which is the product of three or more normal systems K is undecidable

and non-�nitely axiomatizable.

The following results are established using standard technics [7]

6Schema (R), that is, [M](' ^) $ ([M]'^ [M]) is derivable in the logic [5].
7The commutativity and the con
uence axioms hold for every product logic.

Theorem 4.2 (Completeness) If a sentence is valid, then it is provable in the logic.

Theorem 4.3 The satis�ability of a formula ' can be established in exponential time on

the length of '.

5 Relationship to Propositional Dynamic Logic

The propositional logic we introduced is a multi-modal language with features similar to

those of Propositional Dynamic Logic (PDL) [7].

The idea of using actions as indices for modalities, the possibility of combining actions,

the �rst condition on relations in multi-agent models, and the composition schema (CS)

are all elements already introduced in PDL. Nonetheless, the two systems are quite dif-

ferent in other aspects. Condition (AP) is always satis�ed in PDL but not in our logic

and PDL cannot express the connection between actions and agents. The two approaches

diverge considerably in their quanti�ed versions as one can see in next section.

In a system with only one agent, our propositional system with (AP) can be considered

a fragment of PDL where construct \;" is substituted by juxtaposition \j". In extending

our multi-agent logic with PDL constructs like \[" and \�", one can decide to add these

at the operator level as in

�
a

c

�
[
�
b

c

�
and/or at the entry level as in

�
a [b
c

�
. These

two options may generate languages with di�erent characteristics. For instance, applying

\�" to single entries of modal operators one obtains an asynchronous version of the logic.

6 A Multi-Agent Quanti�ed Logic

We brie
y introduce a simpli�ed version of the Multi-Agent Basic Logic (MBL) which is

just one system in the family determined by our formalism. The reader can �nd a formal

introduction to multi-agent quanti�ed systems in [8]. For the sake of simplicity, here cOP

is taken to be the set of all operators built out of constants in the language, and neither

relations nor functions are considered.

First, we add to the language of the propositional logic a denumerable list of variables

for actions x0; x1; x2; : : : A new set qOP of unary modal operators is obtained substituting

one or more constants in an operator of cOP with quanti�ed variables, that is, 8xi or 9xi
for some i. We require that no variable occurs more than once in a quanti�ed operator.

Let us write A(i; j) for the element of [A] at entry (i; j). An operator [An] 2 cOP is

said to be an instance of an operator [Mn] (possibly with quanti�ers) if all the constants

in [Mn] equals the constants in the corresponding entries of [An], i.e.,Mn(i; j) = An(i; j)

for all constants Mn(i; j).

Formulas inMBL are inductively generated as in section 3.1 adding the following clause:

[Mn]' is a formula if [Mn] 2 qOP and ' is a formula.

A model for MBL is de�ned as in the propositional case. The semantics on non-

quanti�ed formulas is as before. For lack of space, we describe the semantics of formulas

with quanti�ed operators only informally.

Consider the set IN of possible instances of [M]. Consider the subset T of all operators

[A] 2 IN such that M; s j= [A]' and let T 6= ;. A formula [M]' is set to be true if the

agents can force [M] to be instantiated by operators in T only.

To instantiate [M], we proceed as follows. Whenever there is an existential quanti�er in

row i, agent �i picks any action that occurs in the corresponding entry of some operator

in T. This is justi�ed by the fact that the agent wants to end up with an operator in this

set. Whenever there is an universal quanti�er in row i, an action is selected randomly.

These rules determine an agent strategy. In particular, there might be several strategies

for an agent.

Consider the set of instances for [M] obtained combining one strategy for �1, one

strategy for �2, : : : , one strategy for �k. The formula turns out to be true if and only if

this set of operators is a subset of T.

7 Conclusions and Related Work

We have presented a formal language that can express true concurrency in a system with

independent agents. The formalism is apt to capture several real-life situations where

the agents' knowledge and their (perhaps changing) attitude toward a given goal are

important.

A formula C' in this logic, where C is a constant modal operator, describes the evo-

lution of the multi-agent system similarly to the description of the evolution of a 1-agent

system provided by a formula in Propositional Dynamic Logic (PDL).

In contrast, a formulaQ', where Q is a quanti�ed modal operator, \posits" the problem

of moving to a state where ' holds. The quanti�ed operator describes also the number

of actions each agent has to execute and the attitude of the agents toward the posited

goal. According to the constraints in Q, the agents independently decide which actions

to execute and the choices determine the evolution of the system. Thus, the combined

choices of all the agents a�ect the set of reachable states.

The connection between quanti�ed logics in our formalism and epistemic issues (knowl-

edge, strategy, information exchange) is important. We have developed several quanti�ed

systems describing di�erent types of agent. The systems di�er mainly in the reasoning

skills of the agents and in the amount of information available to the agents. Applications

to concrete problems (communication, security, biological systems) are under develop-

ment. On the proof-theoretical side, these quanti�ed systems are generally undecidable.

Research on multi-agent systems is rapidly growing and has received new stimuli from

the mixture of logic and game-theory.

Parikh introduced Game Logic (GL) in [9] to reason about program correctness (a

survey including new results of Pauly can be found in [10]).

An extensive study of the relationship between logic, game theory and language has

been carried out by Ahti Pietarinen. In his work on epistemic logic, Pietarinen considers

also operators with several columns [11]. Such operators should not be confused with

those introduced in this paper.

Finally, [12] and [13] are closely related to the logics presented above. The latter paper

presents an interesting extension of modal logic along the lines of Hintikka's work in

�rst-order logic.

Acknowledgements

Research partially supported by NSF grant CCR-0105651. The author is grateful to

D. Leivant and A. Carbone for the interesting discussions on the topic and for their

support. The paper was written in part while the author was at the Laboratory for

Applied Ontology (ISTC-CNR) at Trento (IT) and at the Ladseb-CNR at Padova (IT).

References

[1] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi, Reasoning about Knowledge,

MIT Press, 1995.

[2] M. J. Wooldridge and N. R. Jennings, Intelligent Agents: Theory and Practice,

Know. Eng. Review, 10(2):115{152, 1995.

[3] W. van der Hoek, B. van Linder, and J.-J. Ch. Meyer, An Integrated Modal Approach

to Rational Agents, In Foundations of Rational Agency, 14 ALS. Kluwer, 1999.

[4] C. Castelfranchi, Modelling Social Action for AI Agents, Arti�cial Intelligence,

103(1-2):157{182, 1998.

[5] B. F. Chellas, Modal Logic: An Introduction, Cambridge Univ. Press, 1980.

[6] R. Hirsch, I. Hodkinson, and A. Kurucz, On Modal Logics BetweenK�K�K and

S5� S5 � S5, Journal of Symbolic Logic, 67:221{234, 2002.

[7] D. Harel, D. Kozen, and J. Tiuryn, Dynamic Logic, MIT Press, 2000.

[8] S. Borgo, Multi-Agent Logics Based on Information Independence and Concurrency,

(submitted).

[9] R. Parikh, The Logic of Games and its Applications, Annals of Discrete Mathematics,

24, 1985.

[10] M. Pauly, An Introduction to Game Logic, In M. Faller, S. Kaufmann, and M. Pauly,

editors, Formalizing the Dynamics of Information, pages 69{84. CSLI, 2000.

[11] A. Pietarinen, Games and Logics of Knowledge for Multi-agent Systems, In Mexican

International Conference on Arti�cial Intelligence 2002, number 2313 in LNAI, 2002.

[12] R. Alur, T. Henzinger, and O. Kupferman, Alternating-time Temporal Logic, In

de Roever W.-P., L. H., and P. A., editors, Compositionality - The Signi�cant Dif-

ference, LNCS 1536, pages 23{60, 1999.

[13] J. C. Brad�eld, Independence: Logics and Concurrency, In CSL'00, LNCS 1862,

pages 247{261, 2000.

