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Abstract

We study a system of modal logic for representing and reasoning in

multi-agent systems. Building on dynamic action logic and Henkin

quantifiers, we introduce a class of operators that present important

features for capturing concurrency, independence, collaboration, and

co-ordination between agents. The main goal of the paper is to intro-

duce the formal semantics of these operators and to show how they

can model different types of agents. This yields a way to directly com-

pare a variety of phenomena in multi-agent systems. Some examples

are given.

1 Introduction

For about 20 years we have witnessed an increasing interest in the formal
study of phenomena comprising several entities which present independent
and autonomous behavior like software agents, human beings, biological
entities, social organizations, robots and stock markets [We199].

In this research area, the issue of (true) concurrency has special interest
since it puts at the center phenomena where several entities act simultane-
ously perhaps affecting each other. This issue is coupled with the need to
formalize group collaboration as well as group dynamics. Another challenge
is the formalization of the independence of an agent from the others and
from the groups of which it is a member. Modelling the choices an agent
makes or can make depending on its “internal” status, its beliefs about
the external world, its knowledge about (and relationship with) other enti-
ties/agents is at the center of many representation problems.

The usual logical machinery often requires the coexistence of logical op-
erators (dynamic, temporal, epistemic, and deontic) in one and the same
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language [vHVe202, vHWo303]. This strategy is not satisfactory because
of the complexity of the logical systems thus obtained [Be0+02, vHWo303].
Furthermore, these logics are hard to compare to the point that the unifor-
mity of the very phenomena at stake is lost in the different formalizations.
An example is given by logics like ATL [Al2He2Ku102], CL, ECL [Pa702],
ATEL [vHWo302], and STIT logic [Ho601, Br2He3Tr05] which deal with
roughly the same type of scenario [Go2Ja204, Wö04].

Our work focuses on the formalization of multi-agent systems with par-
ticular emphasis on concurrency, independence, collaboration, and coordi-
nation issues. Our ideal scenario comprises a fixed set of agents that indi-
vidually or in group, isolately or co-ordinated, take actions simultaneously
and in this way determine the transitions between states of the system. The
main goal of the paper is to show that the language we have developed has
several natural interpretations which allow us to capture different types of
agents while maintaining the very same syntax. The novelty is given by a
new type of operators that combines modality with quantification. For this
reason, these operators are called quantificational modal operators.

In this approach, we take a general perspective and do not limit our
work to a specific notion of agent (and so we are not going to give one).
Note that, for presentation purposes, we often describe the agents as having
some degree of rationality. This is not necessary but it helps in convey-
ing the meaning of the operators. Also, in this paper we do not discuss
proof-theoretical properties of the resulting logics. These interpretations
correspond to quite different axiomatic systems and here we lack the space
for their analysis. The interested reader can find in [Bo105b] an axiomatic
presentation of one of these systems. Finally, note that in this study we
shall always stick to two-valued semantics.

Structure of the paper. Section 2 first introduces the propositional frag-
ment of the logic by defining the constant modal operators and, secondly,
extends them with free variables. In Section 3, we present the full language
by introducing the quantificational modal operators and then study alter-
native interpretations for one-column operators. In Section 4 we briefly
discuss the extension of these semantics to multi-column operators. The
following section looks at a couple of examples. Finally, Section 6 relates
our work to other logical approaches and adds some final remark.

2 Basic modalities for MAS

The modalities we want to study can be seen as an extension of Dynamic
Action Logic, that is, the application of Dynamic Logic (DL) [Ha1Ko6Ti100]
to model actions. Similarly to DL, our basic operators, called constant
modal operators, are modalities indexed by constant identifiers (denoting
actions). However, these operators differ from those of DL in two aspects:



Quantificational Modal Operators 51

syntactically they require several constant identifiers to individuate even the
simplest modalities, and semantically they are not associated to a unique
interpretation.

In a system of two agents, say A1 and A2, our modal operators have
the shape of a 2 × n matrix (n > 0) where the first row lists the (constants
denoting the) actions performed by agent A1, in the order of their execution,
and the second row lists the actions performed by agent A2. For instance
the expression [ c1 c3

c2 c4
] is a modality corresponding to the state transition

identified by the concurrent execution of action c1 (by agent A1) and c2
(by agent A2) followed by the concurrent execution of action c3 (by agent
A1) and c4 (by agent A2). Each entry of the matrix denotes an action and
the combination of these actions characterises the meaning of the modal
operator by identifying, in the usual Kripke style semantics, the accessibility
relation associated with that operator.

More generally, an operator in the shape of a k×n matrix is a modality
for a system with k agents. It is always assumed that the number of rows in
the operators matches the number of agents in the system (as a consequence
all the operators in a language have the same number of rows). Also, each
agent is associated to the same row in all operators.

We now state this formally:
Let PropId be a non-empty countable set, the set of proposition identi-

fiers. Let ActId (disjoint from PropId) be a non-empty countable set whose
elements are called action identifiers. These are the individual constants
of the language. Following standard modal logic, complex formulas are
generated inductively from proposition identifiers through the connectives
of implication (→) and negation (¬), and the modal operators described
below. As usual, we shall make use of the standard conventions for ∧,∨,↔.

Fix an integer k ≥ 1 which, informally, is the number of agents in the
system. A constant modality marker1 for k is a k × n-matrix (n ≥ 1)

M =

a11 a12 ··· a1n

a21 a22 ··· a2n

...
...

...
ak1 ak2 ··· akn

where aij ∈ ActId (aij , amn not necessarily distinct).
A constant modal operator for k is an expression [M ] where M is a

constant modality marker for k.

The set of k-formulas (formulas for short) is the smallest set Fk satisfying:

I) PropId ⊆ Fk (the elements of PropId are called atomic formulas),

II) If ϕ and ψ are in Fk, then so are ¬ϕ and ϕ→ ψ,

1 Elsewhere we have been calling these constant modality identifiers.
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III) If [M ] is a constant modal operator for k and ϕ is in Fk, then [M ]ϕ is
in Fk also.

The semantics is as follows:
Fix a set Act of actions, we call k-action an expression in the shape

of a k × n matrix (n ≥ 1) over Act. A k-agent Kripke frame is a triple
K = 〈W,Act;R〉 where W is a non-empty set (the set of states), Act is a
non-empty set (the set of actions), and R is a function mapping k-actions

(over Act) of size k × 1 to binary relations on W , R

(

α1

...
αk

)

⊆W ×W.

A k-agent Kripke structure is a tuple M = 〈W,Act;R, J·K〉 where
〈W,Act;R〉 is a k-agent Kripke frame and J·K is a function (the valuation
function) such that JpK ⊆W for p ∈ PropId and JaK ∈ Act for a ∈ ActId.

Let us write A1 for the first agent, . . . ,Ak for the kth agent. If agent A1

performs the action denoted by a1, agent A2 the action denoted by a2, . . . ,

agent Ak the action denoted by ak, we write





a1

a2

...
ak



 for the modal operator

describing the evolution of the system which is determined by the concurrent
execution of actions Ja1K, . . . , JakK by agents A1, . . . ,Ak, respectively. That

is, the interpretation of





a1

a2

...
ak



 is k-action

Ja1K
Ja2K
...

JakK

.

Function J·K is extended inductively to multi-column operators in the
language as follows: if [A] is a multi-column operator obtained by juxtapo-
sition of constant modality markers B and C (i.e. [A] = [BC]), then we put
R(JAK) = R(JBK) ◦R(JCK). More formally,

u
v

a11

a21

...
ak1

}
~ =def

Ja1K
Ja2K
...

JakK

;

u
v

a11 a12 ··· a1n

a21 a22 ··· a2n

...
...

...
ak1 ak2 ··· akn

}
~ =def

u
v

a11

a21

...
ak1

}
~

u
v

a12

a22

...
ak2

}
~

...

u
v

a1n

a2n

...
akn

}
~

Note that we write JMK instead of J[M ]K.
The truth value of a formula is defined inductively:

1. Let p ∈ PropId, then M, s |= p if s ∈ JpK

2. M, s |= ¬ϕ if M, s 6|= ϕ

3. M, s |= ϕ→ ψ if M, s 6|= ϕ or M, s |= ψ

4. M, s |= [A]ϕ if M, t |= ϕ for all t ∈W such that (s, t) ∈ R(JAK)
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A k-agent Kripke model for a set of formulas Σ in the language is a
k-agent Kripke structure M such that all formulas ϕ ∈ Σ hold in all states
of M (i.e., are valid in M).

As anticipated, the language here presented modifies the basic fragment
of DL. However, the major novelty, we believe, lies in the change of per-
spective it pushes for: we need k action identifiers (or multiples of k) to
describe the evolution of the whole system since only the combination of all
concurrent actions can provide this information. Also, this formalism pro-
vides a more acceptable notion of action since the outcome of the execution
of α ∈ Act by an agent is not determined by α alone.

Now we extend the constant operators by allowing the occurrence of
free variables. This extension is a first step to introduce quantificational
operators, a move we shall motivate in next section.

Fix a new set Var = {x, y, z, . . .} of variables. Let ℑ be an environment
function from the set Var to the set Act and let a modality marker be any
k×nmatrix defined as before but this time with condition ai,j ∈ ActId∪Var
(for all relevant indices i, j). The extension of the set of k-formulas Fk to
include these modalities is trivial. Their interpretation requires the new
function ℑ, that is, now relation |= is defined over the triple M, s,ℑ. For
instance, clause 4. becomes: M, s,ℑ |= [M ]ϕ if M, t,ℑ |= ϕ for all t ∈ W

such that (s, t) ∈ R(JMK) where JxK = ℑ(x) when x ∈ Var. The remaining
clauses are analogous to 1–3 above.

3 Quantificational modal operators

Our next goal is the introduction of quantificational modalities in the logic
of Section 2. The basic idea is to enrich modality markers with a form of
generalized quantifiers introduced by Henkin in [He161].

Henkin quantifiers are matrices of standard quantifier prefixes2 such as

(

∀x1 ∃x2 ∃x3

∃y1 ∀y2 ∃y3

)

. (1.1)

Syntactically these are unary operators, that is, if (H) is a Henkin quan-
tifier and ϕ is a formula, then (H)ϕ is a formula as well. There is no re-
striction on the number or position of the quantifiers ∀ and ∃ in the matrix
but no variable may occur more than once.

It is well known that Henkin quantifiers are more expressive than stan-
dard quantifiers [Kr2Mo495] and we take advantage of their strength to
ensure row independence in the modalities (which, in turn, models the
independence of the agents from each other). Consider a modality with

2 We follow common practice and use the term ‘Henkin quantifiers’ although these are,
properly said, Henkin prefixes. Also, note that the matrix form can be relaxed as we
do in formula (1.3) below.



54 S. Borgo

constants and free variables (as described at the end of Section 2), say

[

x1 a x3

y1 y2 y3

]

p0. (1.2)

The occurrence of a free variable in entry A(i, j) of the matrix suggests
that the jth action that agent Ai is going to perform has not been fixed. One
can leave it undetermined meaning that this action depends on the model’s
environment function. Alternatively, one may want the agent herself to
decide which action to perform. In the latter situation, we want to model
whether the agent decides in favor or against the realization of p0 since p0

is implicitly ‘proposed as a goal’ by that modal formula. For this reason,
we combine modal operators and (a version of) Henkin quantifiers as in the
following expression

(

∃x3

∃y1 ∀y2 ∃y3

) [

x1 a x3

y1 y2 y3

]

p0 (1.3)

where, of course, each agent is associated to the same row in both the Henkin
quantifier and the modality. In this expression, a free variable xh in position
(i, j) indicates that the agent Ai at step j performs the action ℑ(xh), i.e.,
the action determined by the model’s environment function. A constant c in
position (i, j) indicates that the agent Ai at step j performs the action JcK.
Finally, a quantified variable xh in position (i, j) indicates that the agent
Ai chooses what to perform at step j and the specific quantifier marks the
attitude of that agent (at this time-step) toward formula p0. More precisely,
if ∃xh occurs, at time-step j agent Ai chooses an action with the intention
of making p0 true. Instead, if ∀xh occurs, the same agent chooses an action
randomly.3

Here we propose a restriction of this language that consists in merging
Henkin quantifiers and modality markers into a unique operator, called
quantificational modal operator. Thus, instead of formula (1.3) we write

[

x1 a ∃x3

∃y1 ∀y2 ∃y3

]

p0. (1.4)

Following the above discussion, we shall say that p0 is a goal for agent Ai

at time j if an existentially quantified variable occurs at position (i, j) of
the modality, and that p0 is not a goal (at that time for that agent) if an
universally quantified variable occurs instead.

Definition 3.1. A quantificational modality marker is a k× n matrix with
each entry containing an action identifier, a variable, or a quantified variable

3 Informally, she chooses according to her goals. The occurrence of ‘∀’ tells us that p0 is
not a goal for this agent when choosing at this position in the matrix. Thus, from the
local perspective given by the formula one can think that the agent chooses randomly
at time-step j. A view that further justifies our adoption of the symbols ∀ and ∃.
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provided a variable occurs at most once in a marker. A quantificational
(modal) operator is an expression [M ] whereM is a quantificational modality
marker.

We write QOP for the set of quantificational modal operators, OP for
the quantificational operators where no variable occurs quantified.

The set Fk of k-formulas is defined as in Section 2 but in clause III)
we now use the larger class of quantificational operators. The scope of
the modal operator is the formula to which it applies. The scope of a
quantifier in a modal operator is the scope of the modal operator itself.4

Note that we inherit from the Henkin quantifiers the general proviso on
variable occurrence in quantificational modality markers (and equivalently
in quantificational modal operators).

It remains to discuss the semantics of this language. Below, we inves-
tigate alternative interpretations for the quantificational operators starting
with one column modalities. We anticipate, at the informal level, that the
interpretation in a structure M = 〈W,Act;R, J·K〉 of a quantificational op-

erator, say
[

x1 a ∃x3

∃y1 ∀y2 ∃y3

]

, takes two steps. In the first step one interprets

formula
(

∃x3

∃y1 ∀y2 ∃y3

)

ϕ with ϕ =
[

x1 a x3

y1 y2 y3

]

p0. The second step amounts

to the evaluation of the formula
[

x1 a x3

y1 y2 y3

]

p0 obtained by using the values

chosen at the first step for the interpretation of the bound variables. The
precise formulation in different cases (all restricted to one-column operators)
is given below. Note also that we restrict our examples to two-agent sys-
tems. However, the argument is easily generalized to an arbitrary number
of agents.

3.1 Risk-averse co-ordinated agents

We begin with an interpretation that follows from the classical meaning
of the quantifiers ∃ and ∀. This view relies on what actions exist without
considering agents’ strategies or capacities.

Fix a structure M for two agents, say A1 and A2, and let JbK = β. First,

we look at
[

∃x

b

]

p0. This formula holds at a state s if and only if there exists

an action α such that p0 is true at all states t with (s, t) ∈ R
(

α

β

)

. Such a

formula is read: “there exists an action α such that after agent A1 executes
α and (concurrently) agent A2 executes β, p0 holds”. Similarly, formula
[

∀x

b

]

p0 corresponds to: “for any action α, after agent A1 executes it and

4 It follows from the previous discussion that a quantified variable in the modal operator
stands for a quantifier prefix (bounding the occurrences of the variable in the scope of
the modality) and for a bound occurrence of that very variable (whose value is needed
in this position to interpret the modal operator itself).
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(concurrently) agent A2 executes β, p0 holds” since it is true at a state s if

and only if for all actions α, p0 is true at all states t with (s, t) ∈ R
(

α

β

)

.

If we assume that the agents form a coalition or, more generally, are

coordinated whenever they both have p0 as goal, we have that
[

∃x

∃y

]

p0 is

true if there exist actions α and β (not necessarily distinct) such that p0

holds in all states reachable through
(

α

β

)

. The meaning of formula
[

∀x

∀y

]

p0

is now obvious: it is true if p0 is true in any state reachable from s via any
transition.

An important issue arises when considering operators where both quan-

tifiers occur as, for instance, in formula
[

∀x

∃y

]

p0. To establish the truth

value of this formula at a given state we have two options. One can verify
that a value β for y exists such that p0 is true in all states reachable through
(

α

β

)

for any α. An alternative is to state the formula true if for every action

α, there exists β such that p0 is true in all states t with (s, t) ∈ R
(

α

β

)

.

By embracing the first interpretation, one extends the semantics of Sec-
tion 2 with the following clause for quantificational one-column operators
(for multi-column operators further issues must be addressed, see Section 4):

51. Let [X ] be a quantificational operator with existentially
quantified variables x1, . . . , xr and universally quantified
variables y1, . . . , ys (r, s ≥ 0). Then M, s,ℑ |= [X ]ϕ if:
there exist α1, . . . , αr ∈ Act such that for all β1, . . . , βs ∈
Act, if Γ is the k-action obtained by substituting αi for ∃xi,
βj for ∀yj , and JchK for each action identifier or free variable
ch in [X ] (for all relevant indices i, j, h), then for all (s, t) ∈
R(Γ), M, t,ℑ∗ |= ϕ where ℑ∗(xi) = αi, ℑ

∗(yj) = βj , and
ℑ∗(z) = ℑ(z).

This semantic clause puts strong constrains on the (one-column) modal
operators to the point that it suffices to enrich the basic language of Sec-
tion 2 with the quantifiers of standard first-order logic to eliminate the need
of quantificational modalities. Indeed, clause 51 corresponds to the inter-
pretation obtained by replacing quantified variables in the operator with a
sequence of standard quantifiers as shown, in a two-agent system, by the
following function τ1:

p
τ17−→ p (for p atomic) (11)

¬ϕ
τ17−→ ¬τ1(ϕ) (21)

ϕ→ ψ
τ17−→ τ1(ϕ) → τ1(ψ) (31)
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[

∀x
∀y

]

ϕ
τ17−→ ∀x, y

[

x
y

]

τ1(ϕ) (41)
[

∃x
∀y

]

ϕ
τ17−→ ∃x∀y

[

x
y

]

τ1(ϕ) (51)
[

∀x
∃y

]

ϕ
τ17−→ ∃y∀x

[

x
y

]

τ1(ϕ) (61)
[

∃x
∃y

]

ϕ
τ17−→ ∃x, y

[

x
y

]

τ1(ϕ) (71)

We dub the agents satisfying clause 51 the risk-averse co-ordinated
agents: “risk-averse” because they choose independently of others’ deci-
sions as τ1 makes clear in (51) and (61). They are “co-ordinated” because,
whenever they have a common goal, if possible they execute actions that
combined allow them to reach that goal: case (71). Indeed, if agents A1 and
A2 aim at making a formula true, then they behave like a coalition.

Note that the following formula-schema holds for clause 51:







...
∀x
...






p0 →







...
∃x
...






p0.

3.2 Isolated agents

Let us go back to formula
[

∃x

b

]

p0. We now want to interpret this formula as

saying that at a state s agent A1 can choose an action α such that p0 is true

at t for all (s, t) ∈ R
(

α

β

)

. That is, this time formula
[

∃x

b

]

p0 corresponds

to reading “agent A1 can choose an action such that after agent A1 executes
it and (concurrently) agent A2 executes β, p0 holds”.

Regarding formula
[

∀x

b

]

p0, informally here we read it as follows: “no

matter the action that agent A1 can choose, after agent A1 executes it and
(concurrently) agent A2 executes β, p0 holds”. Since we do not put re-
strictions on the actions an agent can choose or execute, all the actions are
possible and must be considered to evaluate the truth value of this formula,
i.e., we end up with the following reading: “after agent A1 executes some
action and (concurrently) agent A2 executes β, p0 holds”.

The meaning of
[

∀x

∀y

]

p0 is quite natural at this point: “no matter which

action agent A1 executes and (concurrently) which action agent A2 executes,
p0 holds in the reached states”. That is, with the above assumptions, the
notion of ‘choice’ does not affect the meaning of ‘∀’. For operators where

both quantifiers occur, consider first
[

∀x

∃y

]

p0. Here if the agents choose
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independently (not knowing each other’s doing), for the formula to be true
the second agent has to find an action β such that for all actions α and all

(s, t) ∈ R
(

α

β

)

, p0 holds at t. Analogously, for
[

∃x

∀y

]

p0.

Finally, formula
[

∃x

∃y

]

p0 is true if the agents can choose actions, say α

and β (possibly the same), such that p0 is true at any state t such that

(s, t) ∈ R
(

α

β

)

, i.e. “for all choices α made by A1 and all choices β made by

A2, after A1 has executed α and A2 has (concurrently) executed β, p0 holds”.
From our reading, we know that A1 and A2 have p0 as (common) goal and,
similarly to Section 3.1, we may further establish that they co-operate (or
not). However, now we are not in a position to provide a formal definition
yet. It remains to be explained what it means that the very agents ‘can
choose’.

For the time being, let us assume that

1) all elements in the quantificational modal operators (in particular, all
action identifiers) are known to all agents

2) all agents choose independently and without communicating (in partic-
ular, they do not co-operate nor co-ordinate)

The goal is to extend the semantics of Section 2 to formulas with quantifi-
cational operators in such a way that these assumptions are captured.

First, we fix a new function C, called choice function. The intent is that C
codifies the behavior of the agents by providing the choices the agents make.
Function C takes as arguments: (1) the modal operator, (2) its scope formula
and (3) the variable x, which implicitly gives the agent’s index i.5 Also,
since the choices of the agents may depend on their knowledge about the
state of the system and other agents’ actions, we furnish C with two further
arguments: (4) the actual state w and (5) subsets of {1, . . . , k}×Var×Act.
The reason for this last argument will be discussed in Section 3.3. On
input ([M ], ϕ, x, w,K), with K ⊂ {1, . . . , k} × Var × Act, C returns pairs
(x, α) ∈ Var × Act.6 Thus, given a variable x in row i of a formula ϕ, C
provides the agent Ai’s choice(s) for this variable taking into account other
information like the actual state. (Since argument (5) is not relevant in this
section, for the time being we take K = ∅.)

5 More generally (as will be seen later), C takes sets of variables as third argument thus
we should write {x}.

6 For each x occurring in the third argument, C returns one or more pairs (x, α) with
α ∈ Act. Admittedly, one may want to generalize the choice function even further to
capture some special case. However, the one we have introduced here suffices for a
large class of multi-agent systems.
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52. Let [X ] be a quantificational operator with existentially
quantified variables x1, . . . , xr and with universally quan-
tified variables y1, . . . , ys (r, s ≥ 0). Then, M, s,ℑ |= [X ]ϕ
if: for all α1, . . . , αr ∈ Act such that αi ∈ C([X ], ϕ, xi, s,∅)
and for all β1, . . . , βs ∈ Act, if Γ is the k-action obtained
by substituting αi for ∃xi, βj for ∀yj , and JchK for each
action identifier or free variable ch in [X ] (for all relevant
indices i, j, h), then for all (s, t) ∈ R(Γ), M, t,ℑ∗ |= ϕ

where ℑ∗(xi) = αi, ℑ
∗(yj) = βj , and ℑ∗(ch) = ℑ(ch).

Let ~α = α1, . . . , αr and ~α′ = α′
1, . . . , α

′
r be two r-tuples in Act. A fusion

of ~α and ~α′ is a r-tuple ~α′′ = α′′
1 , . . . , α

′′
r , where α′′

i ∈ {αi, α
′

i}.

Proposition 3.2. If both ~α and ~α′ satisfy the condition in clause 52, then
any fusion of ~α, ~α′ satisfies it as well.

Informally, this property shows that the agents described by clause 52 can-
not communicate and, consequently, we say that the agents described by
this clause are isolated.

Unlike in the previous section, in the semantics given by 52 formulas













...
∃x
...
∀y
...













p0 →













...
∃x
...
∃y
...













p0 ;













...
∃x
...
a
...













p0 →













...
∃x
...
∃y
...













p0 (1.5)

are not valid since the choice function C may be sensitive to the occurrences
of quantifiers in [X ]. This result is motivated by the following scenarios.

Two people, R1 and R2, are celebrating some achievement. R1 brought
a cake for the occasion. We write p0 for “the cake is sliced.”

In the first scenario, R2 does not care about cutting the cake and this
is known to R1. A formula that correctly models this situation contains
a quantificational operator with an existential quantifier in the first row
(the row associated to R1). The different attitude of R2 is described by the
occurrence of an universal quantifier in the second row. The formula is:
[

∃x

∀y

]

p0. Things change if R2 also wants the cake to be cut. This second

scenario is described by the formula
[

∃x

∃y

]

p0.

We now use these scenarios to prove that formula
[

∃x

∀y

]

p0 →
[

∃x

∃y

]

p0

fails. In the antecedent
[

∃x

∀y

]

p0, R1 has the goal of getting the cake cut.

Since the other agent does not have such a goal, R1 chooses to execute
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Figure 1. The ‘cake slicing’ frame (The actual state is double circled.)

the action ‘cut the cake’ which ensures the satisfaction of p0 in the next
state. In the consequent, R1 and R2 have the same goal and this is common
knowledge because of point 1) of page 58. Since they both have the same
goal, R1 chooses not to cut the cake to let R2 do the honors. For the same
reason, R2 decides not to cut the cake. Since nobody performs the action of
cutting the cake (recall this is a single time-step with concurrent actions)
the consequent formula turns out to be false. (Clearly, one can reformulate
the example using an action like ‘write in memory slot #321’ which fails
whenever two agents try to perform it at the same time.)

Let us see how function C looks for these agents.
The attitude of both agents can be described by the informal rule “cut

the cake unless somebody else is willing to do it”. In a structure as depicted
in Figure 1 where p0 is false at s and true at s′, and the possible actions
are c, ε (c stands for “cut the cake” and ε for “do nothing”), function C is
given by

• C([ ∃x

∀y

]

, p0, x, s,∅
)

= {(x, c)}

(agent R1, who has to decide the value of x, chooses c since agent R2

is not committed to get the cake cut as recognizable by the universal
quantifier in the second row);

• C([ ∃x

∀y

]

, p0, y, s,∅
)

= {(y, c), (y, ε)}

(agent R2 may perform any action since p0 is not her goal);

• C([ ∃x

∃y

]

, p0, x, s,∅
)

= {(x, ε)}

(agent R1 decides not to cut the cake: R2 is going to ensure it since it
is her goal as recognizable by the existential quantifier in the second
row);

• C([ ∃x

∃y

]

, p0, y, s,∅
)

= {(y, ε)}

(agent R2 decides not to cut the cake: R1 is going to ensure it since
it is her goal as recognizable by the existential quantifier in the first
row).
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Function C provides a new parameter in the interpretation of the quan-
tificational operators. Clause 52 is thus a schema that matches a variety of
k-agent systems depending on the parameter C and relationship |= should
have C as index. Note that, due to the complexity of behaviors that functionC may encode, it is not possible to discharge quantificational operators in
this semantics. The analogous of function τ1 of Section 3.1 that is faithful
for 52 may not exist.

Clause 52 is more general than 51. In particular, C can formally capture
cooperation. The collaboration among the agents is obtained by taking the
whole set of variables of the collaborating agents as third argument for C.
That is, C provides the variable instantiations for all the agents at once by
outputting a set {(x1, α1), . . . , (xr , αr)}. We do not discuss the import of
assumptions 1) and 2) further. Instead, below an alternative semantics is
given since it sheds light on another issue.

3.3 Optimistic co-ordinated agents

In the discussion of Section 3.1, we mentioned two interpretations for the
operators where both universal and existential quantifiers occur. One leads
to clause 51. The other interpretation is rendered by a different function,
here called τ3, whose definition follows from that of τ1 provided cases (51)
and (61) are substituted by

[

∃x
∀y

]

ϕ
τ37−→ ∀y∃x

[

x
y

]

τ3(ϕ) (53)
[

∀x
∃y

]

ϕ
τ37−→ ∀x∃y

[

x
y

]

τ3(ϕ), (63)

respectively.

Here is the semantic clause that matches function τ3:

53. Let [X ] be a quantificational operator with existentially
quantified variables x1, . . . , xr and universally quantified
variables y1, . . . , ys (r, s ≥ 0). Then
M, s,ℑ |= [X ]ϕ if: for all β1, . . . , βs ∈ Act, there exist
α1, . . . , αr ∈ Act such that if Γ is the k-action obtained
by substituting αi for ∃xi, βj for ∀yj , and JchK for each
action identifier or free variable ch in [X ] (for all relevant
indices i, j, h), then for all (s, t) ∈ R(Γ), M, t,ℑ∗ |= ϕ

where ℑ∗(xi) = αi, ℑ
∗(yj) = βj , and ℑ∗(z) = ℑ(z).

This clause captures the simple possibility for a given formula to be true.
For instance, consider the paper/scissor/stone game. If p0 stands for “A1

wins”, then formula
[

∃x

∀y

]

p0 is valid according to this latter semantics and
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tells us that one has always a chance to win a play of this game. However,
the same formula is false for 51 since that clause requires the existence of a
winning strategy for each possible play.

As before, one can restate clause 53 using function C explicitly. In
this case the fifth argument of C is crucial. This argument provides ex-
tra knowledge that the agents have while making their choices. In clause
53, the agents choosing for the existentially quantified variables are aware
of the choices made for the universally quantified variables even though
they are done concurrently. This information is provided by set K =
⋃

h{(h, y1, β1), (h, y2, β2), . . . , (h, ys, βs)} where h ranges over the indeces
of the agents associated to a universally quantified variable (such a gener-
ality allows us to directly extend the function to multi-column operators).
Co-ordination is ensured by providing the whole set of variables x1, . . . , xr

as third argument as we have seen in the reconstruction of 51 within clause
52.

We dub the agents satisfying 53 the optimistic co-ordinated agents.

We conclude this section with an observation. The difference between
clause 51 and 53 corresponds to the difference between α-ability (effective-
ness) and β-ability applied to coalitions (cf. [vHWo305] and the references
therein). It is fairly easy to rewrite schema 52 and the conditions on pa-
rameter C to capture β-ability.

4 Knowing the past, reasoning about the future

Consider a constant two-column7 operator
[

c1 c3

c2 c4

]

, call it [C]. From the

definition of the valuation function and clause 4 of Section 2, multi-column
constant operators split into simpler operators without loss of information.
The following formula is valid

[

c1 c3

c2 c4

]

ϕ ≡
[

c1

c2

] [

c3

c4

]

ϕ.

This equivalence does not hold for quantificational operators though, i.e.
in general

[M1M2]ϕ 6≡ [M1][M2]ϕ (M1,M2 ∈ QOP). (1.6)

One reason is that the order of instantiation of quantified variables may

change in the two formulas. For instance, evaluating formula
[

∃x1 ∀x2

∀y1 ∃y2

]

ϕ

with clause 51 we instantiate first variables x1, y2 and only later x2 and y1.
The instantiation order for the same clause becomes x1, y1, y2, x2 when we

7 We give examples using two-column operators. The generalization to n-column oper-
ators is often straightforward although some care is needed.
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consider formula
[

∃x1

∀y1

] [

∀x2

∃y2

]

ϕ. This is not so for other semantic alterna-

tives and one is free to adopt or reject a constraint like (1.6) by selecting
an appropriate semantics.

It should be clear by now that to establish the truth value of a formula
where the constant operator [C] occurs, it is necessary to consider all the
action identifiers (and their positions) occurring in [C]. For instance, know-
ing that c1, c3 are the actions executed by agent A1 (in that order) does not
suffice to know which states are reachable.

Informally, the formula
[

c1 ∃x
c2 c4

]

p0 means: “first, agent A1 executes c1

and (concurrently) agent A2 executes c2, then agent A1 chooses and executes
an action and (concurrently) agent A2 executes c4”. In the light of the
previous section, one can interpret the existential quantifier in different
ways. The set of choices for x will depend on what agent A1 knows about

the formula itself and in particular about operator
[

c1 ∃x
c2 c4

]

. For if she is

aware of the presence of c1, c2, c4 and of their positions, she can use the
semantic clauses to verify if there is an action that executed after c1, forces
the system to states satisfying p0. Agent A1 might rely on default rules (or
preferences) when she lacks some information about the components of the
operator.

To establish the truth value of the formula, it is important to state what
agent A1 knows (or does not know) about the operator. Several options are
possible. For instance, assuming perfect recall, one can assume that agent
A1 is aware that c1 is in position (1,1) of the modality marker since she
has just executed that action. If A1 and A2 are totally isolated agents, then
one can assume that agent A1 has no information about what A2 has done
earlier, that is, she has no knowledge on the content of position (2,1) of the
operator. Analogously for A2. If A1 and A2 are isolated but can observe each
other’s doings, at entry (1, 2) agent A1 knows that c2 is in position (2,1).
For the simple reason that A1 and A2 act concurrently, agent A1 does know
what A2 is going to execute as second action only if they are co-ordinating
or action c4 is public knowledge.8 We conclude pointing out that also the
quantifiers occurring in the operator may be hidden. After all, an agent
may be aware or unaware of the changes of attitude in the other agents at
different times including, perhaps, her own (past or future) changes.

8 Most of these features are captured using the fifth argument of function C. Also,
note that in Section 2 we implicitly assumed that the action identifiers in the quan-
tificational operator are known to all the agents, they are public knowledge. This
assumption is dropped here. Indeed, one may have a commitment to do a specific
action ci at some point and prevent other agents from knowing it or knowing when
that action will take place. The semantic clauses we introduced can be modified to
mirror these cases.
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5 Modeling with quantificational operators

Our first example is in the area of planning. There are two agents, say
Anthony (A1) and Bill (A2), and a project that must be finished by a certain
time. Let us say that there are 3 time-steps before the deadline (step-1, step-
2, and step-3) and that Anthony cannot work at the project at time-step 1
since at that time he has to meet his doctor. We use action identifier a for
the action Anthony does at this step. Later, he is working full time on the
project. Regarding Bill, he will work on the project except at the time-step
2 when he has to meet with the office manager. Bill does not know what the
meeting is about. We represent this case in our language with the following
formula (ϕ stands for “the project is finished”):

[

a ∃x ∃z
∃y ∀u ∃v

]

ϕ (1.7)

The first row describes Anthony’s attitude toward the project during
the three time-steps, while the second row describes Bill’s attitude. Note
that the universal quantifier marks the time-step when Bill acts without
regards for the project since his action at that time depends on what his
office manager asks him to do. If Anthony and Bill are risk-averse and co-
operative agents, all the actions that instantiate variables x, z, y, v should be
chosen together as described by clause 51, where we now allow [X ] to be a
multi-column quantificational operator (the clause applies to multi-column
operators without change). If the two agents work independently from each
other (non co-operative agents), then we should adopt clause 53 (which also
extends to multi-column operators).

We may want to model the case where the agents have a predefined plan
for the first two time-steps only. For instance, suppose they agreed on a plan
the day before when they knew they where going to be in different places
during time-steps 1 and 2 without the possibility of sharing information.
Also, let us assume that after time-step 2 they meet so that the decision
about the third time-step can be postponed to that time. This situation is
described by formula

[

a ∃x
∃y ∀u

] [

∃z
∃v

]

ϕ.

Note the change of the order in which quantified variables are instantiated:
the value of u is known when choosing a value for z and v (Section 4).

The second example we consider comes from robotics. Here there are
two agents whose goal is to pick up an object but none of them can do it
alone. If ϕ stands for “the object is lifted”, the situation is described by
formula

[

∃x
∃y

]

ϕ ∧ ¬
[

∀x
∃y

]

ϕ ∧ ¬
[

∃x
∀y

]

ϕ. (1.8)

Consider interpretation 51. If (1.8) is true, the agents can execute actions
that make ϕ true (first conjunct) but the first or the second agent cannot
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bring about ϕ without the collaboration of the other agent (second and third
conjuncts). It is possible to make a stronger claim adding the following as

conjuncts:
[

∀x
∃y

]

¬ϕ,
[

∃x
∀y

]

¬ϕ. These tell us that each agent can force ϕ to

be false, i.e., each can prevent the system from reaching any state where ϕ
holds.

6 Related work and conclusions

We looked at the variety of semantics for quantificational operators ex-
tending the work in [Bo105a]. [Bo103] provides an interpretation for the
quantificational modal operators that relies entirely on game-theoretic se-
mantics. [Bo105b] studies the formal properties of an interpretation along
the lines of 51. in the framework of standard Kripke semantics.

The formalism we adopted has been influenced by the notion of Henkin
(branching) quantifiers [He161, Wa270]. Note that there is an ontologi-
cal discrepancy between the notion of agent in multi-agent systems (where
agents are internal components) and the formal notion of player as used
in game-theory (players are external components that act to interpret the
formalism); a distinction that has not received enough attention in the lit-
erature.

A modal version of Hintikka Independent-friendly logic [Hi1Sa496], which
comprises Henkin quantifiers, has been proposed in [Br0Fr402b]. The aim
of the authors is to isolate a notion of bisimulation (model equivalence) that
corresponds to their modal system. Related to our work is also the logic
ATL [Al2He2Ku102] and its extension ATEL [vHWo302]. The relationship
is better analyzed through Coalition Logic (CL) introduced in [Pa702]. The
connections between CL and ATL are presented in [Go201, Go2Ja204]. In-
terestingly, the encoding of CL into our formalism enables the use of Kripke
structures for CL. (More precisely, CL is semantically equivalent to a frag-
ment of our logic with the semantics given by clause 51, cf. [Bo107]). Other
frameworks, like KARO [vLvHMe398] and the variety of systems following
the BDI approach [Ra3Ge191] or the Intention Logic [Co1Le190], adopt com-
binations of different modalities or exploit full first-order logic. These are
very expressive systems and differ in their motivations from our approach.
We refer the reader to [vHVe202, vHWo303, vDvHKo407] for overviews on
this area of research.

We have shown how to produce different interpretations for modal op-
erators built out of action identifiers, variables, and quantified variables.
Our stand is that when there is a number of practical constraints to cap-
ture, semantic pluralism could help. We showed how the same language
can distinguish and characterize different systems in a flexible way making
it possible to describe uniformly what might seem a plethora of heteroge-
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neous cases. Then, formal and reliable comparisons of apparently disparate
phenomena become possible at the semantical level. Our approach has some
drawbacks as well. The quantificational operators inherit some restrictions
of Dynamic Logic, in particular the rigid structure in finite steps. (Exten-
sions with constructs on action identifiers or temporal modalities have not
been studied yet.) On the technical side, although adding quantificational
modal operators does not make the resulting logic necessarily undecidable,
this happens in many cases when equality (over action) is present. For in-
stance, one can see that the theory in [Bo103] is undecidable by embedding

first-order logic augmented with a binary predicate via A(x, y) 7−→
[

x
y

]

p0,

for some atomic p0. For an example in the opposite sense, [Bo105b] gives a
complete and decidable logic for the class of multi-relational Kripke frames.
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