A Multi-agent Modal Language for Concurrency
with Non-communicating Agents

Stefano Borgo

Computer Science, Indiana University, Bloomington, IN 47405 (USA)
LACL, Université de Paris XII, 94010 Creteil Cedex (FR)
stborgo@indiana.edu

Abstract. We introduce a formal language for multi-agent systems based
on new modal operators. The modal operators express concurrency at
the syntactic level. Operators containing quantifiers describe the evolu-
tion of a system where each agent has knowledge of other agents’ attitude
toward a goal but not of their actions. This result is obtained without
introducing standard epistemic operators. The semantics presents a mix-
ture of Tarskian and game-theoretical elements. We apply game-theory
to interpret the quantified modalities and to determine which informa-
tion is available to the agents as well as their reasoning capabilities.

Keywords: modal logic, multi-agent systems, independence, concurrency, game-
theoretic semantics

1 Introduction

Nowadays, multi-agent systems [6, 13] are at the center of many research areas
like computer science, philosophy, mathematics, linguistics, social science, and
economics. The approaches to multi-agent systems (MAS) vary considerably in
these areas but even if one limits the analysis to logical systems, one finds that
different languages are applied to very similar problems. Generally speaking,
these languages contain a variety of modal operators; epistemic operators are
included to express the knowledge of the agents, deontic operators to express
obligations, and so on. It is now common to find complex languages for multi-
agent systems with the result that we need to deal with complex and different
structures for phenomena that do not seem very different. This highlights, we
believe, a need for logical tools explicitly developed to describe multi-agent sys-
tems.

Starting from this observation, in [3] we motivated the introduction of a new
modal language for multi-agents systems and described in details the proposi-
tional system with its main properties.

In this paper, we continue to develop this approach introducing one quantified
extension of the propositional system. Our aim is to present a new expressive
tool, namely quantified modalities, that can deal with some features peculiar
to any system with several entities like software agents, biological substances,

or human beings. We hope to obtain a language which, using only one type of
operator, can already express many features of systems in MAS, in particular
concurrency and information independence among the agents. The formalism,
it is believed, is well suited for description of agents and multi-agent systems
properties as well as for reasoning within such systems.

Such a language may provide the starting point for the development of uni-
form languages for MAS. In this way it may become possible to reduce the
number of modalities in the language thereby avoiding the need for combining
operators from disparate logical approaches (dynamic, temporal, deontic, epis-
temic logic and the like). Indeed, it is well known that the formal interaction of
these operators is often quite complex [2].

The formalism we are going to introduce describes an evolving system with a
fixed number of independent agents. We do not give a precise definition of agent.
For our purposes, it suffices to say that an agent is a rational and autonomous
entity that has the power to choose and execute actions. Our notion of rational
agent is deliberately broad. (It includes computational and human agents as well
as biological substances.) By state of the system we refer to the usual notion of
global state. The system state is not partitioned with respect to the agents,
i.e., there are no ”local” states for individual agents. Time is not considered
explicitly and there is no reasoning about history. The formalism considers only
the present state and the future.

For lack of space, in this paper we are not going to attempt a deductive
characterization of the language nor to provide applications of the formalism.

In section 2 we give an example to show the potentiality of the formalism.
Section 3 presents one quantified modal logic based on the operators introduced
in the example. In the next section, we give the semantics. We conclude with a
brief discussion of the literature in section 4.

2 A guiding example

Suppose that Friday morning Bill finally agreed to go tonight to a ballet that
his wife Laure would love to see.

Since Bill is not interested in ballet, he would be happy to change the evening
plans. However, he made a promise that if nothing comes up to prevent them
from going, he will accompany her. According to his attitude, in the afternoon
Bill does whatever he needs to do without thinking about the ballet. When he
is with his wife Laure tonight, he will go with her to the ballet as agreed. Only
some important problem could force him to change this schedule.

Laure loves ballets. She is enthusiastic about tonight’s plan and she really
wants to attend this one with Bill. Also, she is so into it that this afternoon
she does everything she can think of to avoid possible obstacles. In particular,
choosing what to do in the afternoon, she takes into account the fact that Bill
is not enthusiastic as she is and so she cannot really count on him to avoid
possible obstacles. However, she knows his attitude and, in particular, she knows

he will not find any excuse tonight unless there is a problem (at that point
unavoidable). Furthermore, as much as she loves Bill, she knows she will consent
to do something different in the evening if, for some reason, Bill will not be able
to attend the ballet.

This being the circumstances, we wonder how the situation evolves and if
Bill and Laure will attend the ballet this Friday. Of course, for this we need
to state the possible evolutions of the system and the actions available to our
agents. To introduce these elements, we begin with an informal description of
our quantified modal operators.

In order to state that Bill and Laure choose two successive actions with no
knowledge of each other’s choices, we write a 2 X 2 matrix with squared brackets
like the following®

[%;z 825} where Q; is either V or 3 (1)

We use the first row to list in the right order the variables Bill has to instantiate
(choose a value for them). In particular, first Bill chooses a value for z (in our
example corresponding to what he does in the afternoon), then a value for z (in
the example, his action for the evening). Similarly, the second row lists, in the
right order, the variables reserved for Laure.

The intended reading is that Bill, while choosing an instance for xz and z,
has no knowledge of Laure’s choices for y and v, and vice versa. The agents
become aware of the effects of their combined actions only after both of them

have chosen and executed their actions.

The situation of Bill and Laure is described by formula [gg gi] (where

the first column is related to what the agents do in the afternoon, the latter to
what they do in the evening (a column is a sort of time-step), and ¢ stands for
“Bill and Laure attended the ballet”.

The first row describes Bill’s attitude during the day (not committed in the
afternoon but wanting to please Laure in the evening doing everything he can
to go to the ballet) while the other describes Laure’s attitude (wanting to go
in the afternoon but ready to give up in the evening to please Bill). Here we
can recognize the specific role of existential and universal quantifiers. Roughly
speaking, existential quantifiers mark entries where the agent chooses wanting
to make @ true, i.e., looking for an action that leads to this result. The universal
quantifiers, on the contrary, mark entries where agents choose with no commit-
ment to the truth-value of ¢, i.e., the agent can select any action. In general, it
is intended that the agents choose and execute their actions simultaneously at
each column.

We now introduce constant operators describing the possible evolutions of
the system. Then, using this information, we discuss the options for Bill and
Laure.

! In general, we use a 2 X n matrix for a sequence of n successive actions and a k x n
matrix if the system has k agents.

Suppose that the actions available to the agents are: a = “visiting Bill’s
parents”, b = “going shopping”, ¢ = “working at the office”, d = “going to the
theater”; and that the possible combinations in the social environment are (these

operators are possible instances of the quantified operator {gg gi])

o [od] [ea] [o)][5) (o]
A [l a] [l [ea] e o

That is, if in the afternoon at least one of them goes for the traditional visit
to Bill’s parents on Friday (action a), then they are free to spend the evening
by going to the theater or shopping together (actions b and d). However, if in
the afternoon neither goes to pay a visit to Bill’s parents, then they have both
to go there for the evening. Furthermore, going to the theater is allowed in the
evening but not in the afternoon, while working at the office is allowed in the
afternoon only.

What should Laure choose to do in the afternoon? Since she wants to go to the
theater together with Bill, she looks at the operators where the second column
has only d’s. There are five operators with this characteristic, these describe all
the system evolutions compatible with Bill and Laure attending the ballet.

Certainly, Laure wants one of these to be used to instantiate the quantified
modality. Among these five operators, the second and the third require Bill to
perform action a in the afternoon. Since at least one of the entries in the first
column has to be action a and since Laure cannot trust Bill to do it during the
afternoon, she will do a herself. This means that she is going to choose a as value
for y. Executing a in the afternoon, Laure restricts the possible instances to the

. . a d b d cd||abd b b cb
following sublist [a d] , [a d} , [a d] [a d] , [a d} , [a d] .

Since Bill is willing to make formula ¢ true when choosing a value for z, he
has to choose d if this is possible. Thus, Laure’s first choice and Bill’s second
choice will necessarily isolate one instance for the quantified modal operator
among these [Z Ell] , [2 gﬂ , [g Ell] . That is, Laure has a strategy to reach her

goal, no matter what Bill does in the afternoon.

Notice that the case presented above has several interesting features of multi-
agent systems: concurrency, independence in choosing actions, knowledge of some
behavioral factors, ignorance of other agents’ actions, commitment (or indiffer-
ence) to a goal, change of attitude toward a goal, and so on, and that these are
all captured in the given setting by a unique quantified operator.

With operators like (1) we have enriched the meaning of the modal symbols
‘[’ and ‘]” with respect to more traditional logics. In systems of modal logic,
even elaborated as Dynamic Logic [7], brackets are used to represent grouping
and are generally associated with the meaning of the necessity modality. In our

formalism, the brackets mantain these roles and also receive an epistemic touch.

In an operator of form [%25 825 , the brackets mark a situation where the

agents perform a sequence of actions all the while receiving no feedback either
about the evolution of the system or about other agents’ actions. These brackets
are like epistemic boundaries, and the agents, during the time spanned by the
modal operator, act like isolated agents.

In the next section we formally introduce the language and its semantics. It
is always assumed that actions in the same column of an operator are performed
concurrently by different agents and all actions in the same row are executed,
in the order they occur, by the same agent. In the rest of the paper, we posit a
fixed number k of agents.

3 Multi-agent Basic Logic (MBL)

We fix countably many constants denoting actions ag, a1, . . ., variables zg, x1, ...,
and atomic sentences pg, p1,... Const is the set of constants in the language,
Var the set of variables. (Sometimes we write a, b, ¢, . .. for arbitrary constants.)

Beside the propositional operators = and — (from which V, A, and < are
defined in the usual way), there are unary (constant) modal operators (multi-
agent operators). A modal operator [M,], where n > 1, is syntactically a matrix
with k& rows and n columns whose entries are constants. We call ¢cOP the set
of constant modal operators (from now on, all the operators and matrices have
k rows unless otherwise stated, sometimes we drop the index n). Given any
kE xn (n > 1) matrix M, we write [M] if it is in cOP.

We call vOP the set of all modal operators obtained from an operator in cOP
putting at least one free variable in one entry of the operator but no quantified
variables. We call ¢qOP the set of all modal operators obtained from an operator
in ¢cOP U vOP such that at least one entry contains one quantified variable. It is
required that no variable, quantified or not, occurs more than once in an oper-
ator. Thus, operators in vOP are like operators in ¢cOP with the only exception
that some or all entries have form x;. Instead, operators in gOP are like operators
in ¢cOP U vOP with the only exception that some or all entries have form Vz;
or Jx;. When necessary, we refer to entries containing Vx; or dx; as quantified
entries while a constant entry is any entry containing a constant. Furthermore,
we write M (i,) or [M](4,j) for entry (i,j) in operator [M]. Operators in ¢qOP
are said quantified and operators in vOP are said free. Constant operators are the
operators in cOP. Note that cOP, vOP, and qOP are pairwise disjoint. Finally,
we put OP = ¢cOP U vOP U qOP.

An operator [4,] € cOP is said to be an instance of an operator [M,] if all
the constants in [M,,] match the constants in the corresponding entries of [A,].
(We abuse the notation and sometimes talk of instances of matrices as well.)

For the sake of simplicity, in this paper we assume cOP is total, that is, it
contains all possible operators with constants in Const. As a consequence, cOP

is closed under juxtaposition: let £ = 2 and [A] = {g; gi], [B] = [gz], then

the juxtaposition of [A] and [B] is operator [C] = [A | B] = [Z; ZZ gg}

Formulas are inductively generated by the following clauses:

all atomic sentences are formulas

. ¢ — 1 is a formula if ¢ and v are formulas

. y = z is a formula if y, z are constants or variables
- is a formula if ¢ is a formula

[M,)¢ is a formula if ¢ is a formula and [M,,] €OP

CU =

The scope of a column operator is the formula to which it is applied and the
scope of a quantifier in an operator is the same as the scope of the operator itself.
An occurrence of a variable x is said to be bound in a formula if either it occurs
quantified in a modal operator? or it lies within the scope of an operator where
x occurs quantified. Otherwise, the occurrence is said to be free. A sentenceis a
closed formula, i.e., a formula with no free occurrences of variables.

A model for MBL is a 4-tuple (W, P; {R¥*" | n.€ N*}; []) such that:

— W is a non-empty set of states;

P is a set of actions in 1-1 correspondence with the constants of the language;
for all n € NT and for all matrices I, if there exists [4] € cOP with I = [A]
(see below), then RF¥*"(I") C W x W and, given R*"(I") and R*™(I"), we
have R*"™(I') o RE™(T'") = RF*(+m)(T | T);

[-] is a valuation function mapping atomic sentences to sets of states; dis-

1,1 --- a17n‘|
oLt | to

k.1 --- Ak.n

tinct constants to distinct elements in P; operators [A] =

) [[a1.71]] v [[al.,n]])
matrices [[A]] = : : . We write [A] for [[4]].

[ara] - [ann]

Given an environment <, that is, a function from variables to P, if A =

al.,l e aLn bl.,l e bl,n

S is an element of vOP, we write [S(A)] for © ...+ |, where
g1 ... akn ka N bk,n

bi; = S(ai,;) if a;; is a variable, [a; ;] otherwise. Given a formula or operator

X, let xsup be obtained from x substituting each free occurrence of a variable x

(including those in modal operators) with constant a such that S(z) = [a].

k-Game Structure. Each formula with quantified operators receives a truth-
value through a game, called k-game, played by the agents in the system. Here
we describe the rules of the k-game.

2 A quantified entry, for instance Vz;, in an operator stands for the quantified variable
Vz; as well as for a bound occurrence of z;.

Fix a model M, a state s, an environment . A k-game over sentence [N, is
a sequence of choices that singles out a constant k x n operator. Let ([N,]¢) sup =
[My]e.

To begin the k-game, we fix k matrices M1, ... M*1 one matrix per agent,
called information-matrices. In MBL an agent i knows only the attitude of other
agents, thus at the beginning of the game M*%! (the matrix containing the infor-
mation available to agent i) is as [M,,] except that only the variables occurring
in row ¢ are shown; in other words, M®! has all entries of row 4 and all constant
entries as in [M,], but in the remaining entries it shows V (3) where [M,,] has
Va (3z), see Fig. 1. Also, put ¢»! = ¢ for all i.

Ve 3z b | Ve dz b vV 3 b
Jy a Yw|’ 3 a V|’ [Ty a Vw
Fig. 1. A 3-column operator and the corresponding M !, M?! in the 2-game.

The k-game in MBL begins with index j = 1 according to the rules given
below. When all the choices for (1,7),...,(k,7) have been made, the index in-
creases by one and the k-game continues according to the same rules. Let j be
fixed. At entry (i,7), with i = 1,...,k, agent ¢ chooses a constant as follows:

— if entry (4,4) of M%7 is constant a, then agent i chooses a for (i, ;). MHI+!
is put equal to M%7 and ¢+ equal to ™.

— if entry (i,) of M*J is Vx (or 3z), agent i chooses a constant, say a, for z.
M5+ is put equal to M*/ with a substituted for Vo (or 3z) and ¢+ is
put equal to ¢ with a substituted for the free occurrences of z.

3

Note that entry (i,7) of the information-matrix M%J is always equal to entry
(i,7) of [M,]. Furthermore, M*J*1 is always equal to M*J with the choice made
for (i,7) shown. Formula 7 is used by agent i when deciding its j-th action.
The formula represents the original ¢ as modified by previous choices made by
agent ¢ itself. Other agents’ choices are not known by agent ¢ and so they do
not affect formula 7. This explains why only variables that occur in entries
(i,1),...,(i,j — 1) are instantiated in ¢®/ by the corresponding values while
other variables are left unchanged.

The k-game in MBL ends when j = n + 1. The output of the k-game is the
unique constant operator A such that, for all ¢ and j, A(¢, j) contains the choice
made at (¢,) during the k-game.

There are a few issues pervading all of game-theory. Among these knowledge
and memory are particularly important. These are key elements to understand
our semantics. In the framework presented here, the agent in charge of choosing
for the given entry has perfect knowledge of the general elements of the k-game,
that is, M, s, 3, and of all the information in M*J. Also, from the description

% The constant constrains the interpretation of [M,] and is used to instantiate all the
occurrences of x in the scope of [M,], if any.

above, each agent is perfectly aware of the changes due to its previous choices
(through ¢"7). These facts affect the agent strategy as we show next.

i-Strategies and Semantics. Having the structure of the k-game, we turn to
the strategies for the agents, i.e., we explain how choices in quantified entries are
made. A rational agent playing a k-game in MBL needs a strategy, that is, a rule
telling at every step which choice(s) better fits its goal. Note that the strategy
for agent ¢, or i-strategy, depends on the knowledge of agent ¢ in the k-game.

In MBL we focus on choices for making a formula true. Thus, i-strategies in
MBL define what to do at existentially quantified entries, i.e., where an agent
has the (explicit) goal of making the formula true. Instead, at universally quan-
tified entries we assume the agent chooses according to some unspecified goals.
Not knowing these latter goals, we cannot characterize choises at universally
quantified entries. We model this situation assuming that random choices are
made at all entries containing an universal quantifier.

Given an instance [A] for [M], [A](4, j) is said to instantiate variable z of [M] if
zoceurs at [M](i, 7). Given a function ffrom Const* (the set of finite sequences of
constants) to Const, we write [M] s for the set of instances [A] of [M] such that for
any existentially quantified entry [M](h, k'), f(h,< a1,...,ap—1 >) = [A](h, ')
with < ai,...,ap—1 > the empty string for h’ = 1 and a, = [A](h,r) for all
1 <7 < k. (In other words, f says how to move at existential entries: it takes
as arguments the row-index and any initial part of that row of [A] and outputs
the next value in that row.)

Fix M, s, and & and assume =y, has been defined on any formula [A]p
with [A] € ¢cOP U vOP. An i-strategy for [M]e in MBL, with [M] € qOP, is a
function f; : Const* — Const such that for all [A] € [M]y,, M, s, Eumpr [A]e*
where ¢* is obtained from ¢ as follows:

(a) any constant a of [A] instantiating some variable z in row ¢ of [M] is substi-
tuted for all free occurrences of z in ¢;

(b) if z occurs in [M] at row j (j # i), then some constant a of [A] instantiating
a variable of [M] not in row ¢ is substituted for all free occurrences of z in .
Proviso: the overall number of variables for which a is substituted in ¢ cannot
be higher than the total number of variables a itself instantiates in [A].

The definition of i-strategy determines how an agent would play the k-game
over [M]y if that very agent had to choose at all existential entries of [M]. (One
can easily formulate a kind of k-game capturing this particular case.) Condition
(a) forces any existentially quantified variable at row i of [M] and its occurrences
in ¢ to be correctly substituted by the corresponding value in [A]. Condition (b)
ensures that the remaining variables are assigned some value that occurs in the
output of the k-game. Each entry in the output [A] can be associated with at
most one variable in [M] and, according to his information-matrix, our agent ¢
does not know which constant instantiates which variable, thus the extra proviso
guarantees a meaningful substitution.

Given k functions fy : Const* — Const, [M]y, . . is the set of instances
[A] of [M] such that for (i,j) existentially quantified entry of [M], f;(i, < a1,

cooyaj—1 >) = [A](3, j) with < a1, ...,aj—1 > as in the description of i-strategy.
(In short, function f; is used at all existential entries of row ¢ only, 1 <i < k.)
The semantics for MBL is as follows:

M s, S):MBL p; if s € [[pA]

M, s, S Enpr ti = to if 1 = {5 where £ is [t] if t € Const, I(t) otherwise

M, S, &):]MBL @ — ’Lﬁ if M,Sf:s‘):MBL [2) implies M,Sf:s‘ ':]MBL ’lb

M,S,%):MBL a2 if not M,S,% ':MBL [%2)

. Let [M] € cOP U vOP. M,s,S Eupr [M]e if (s,s") € RE([S(M)])

implies M, s, S EmBL ¢

6. Let [M] € qOP. M, s, Empr [M]e if both the following conditions hold:

a) for all i there is an i-strategy for the k-game over M, s, S, and [M]yp;

b) for all sets {f1,..., fe} where f,. is a r-strategy as in a), [M|¢s, .. 5y #
0, and [A] € [M]{flvwwfk} implies M, s, ':]MBL [A]’lb with 1 like ¢
except that all the occurrences of the variable in [M](h, j) are substituted
by constant A(h,j) and all the free occurrences of some variable z not
bounded in [M] are substituted by constant a with &(z) = [a].

ANl

4 Related Work

Researchers in multi-agent systems have been developing tools for concurrency
and information issues for several decades but only recently features of infor-
mation independence and information sharing with a broad prospective have
been considered. This happens in particular in systems where logic and game
theory merge. In this respect, we have been influenced mostly by Henkin [8]
and Hintikka [9]. Nevertheless, our quantified modalities differ from branching
quantifiers as used in linguistics and logic: on the one hand the notions of player
and agent are quite different, on the other hand the gist of k-games lies in the
operators themselves and not in the formulas to which these are applied.

Several approaches tackle issues relevant to our work. We mention a few.

R. Parikh introduced Game Logic in [10] to reason about program correct-
ness. This system shows how to construct complex games out of simpler ones
and its semantics does not use the formal notion of game. M. Pauly developed
this work further and also presented a new system called Coalition Logic [11].
Although not shown in this paper, our approach generalizes the idea behind both
Game Logic and Coalition Logic providing tools for a finer analysis of games.

An extensive study of the relationship between logic, game theory, and lan-
guage has been carried out by Ahti Pietarinen. The analysis of epistemic issues
is central to his work [12] where he introduces multi-agent systems to capture
multi-person (or multi-self) games like two-agent games with imperfect memory.
In comparison, our approach considers epistemic features only at the level of
semantical parameters.

The logic ATL introduced by Alur et. al. in [1] can be captured in our lan-
guage (dropping the temporal operators). ATL is a very interesting system with
good deduction properties. Compared to our language, it cannot express multi-
column operators with different quantifiers occurring in the same row.

[4] presents an extension of modal logic along the lines of Hintikka’s work on
IF-logic. The semantics is given through “local states”. Our system has similar
features and is applicable to a wider class of agents including agents acting
on each other like biological substances. In [5], a system called IF modal logic
is introduced and interpreted over runs of particular transition systems. The
resulting language is quite interesting. The link between equivalences induced
by the logic and those provided by the model is still unclear.

Finally, we conclude by pointing out that full MBL is a very rich language
in expressive power. Although clearly undecidable, there are several ways to
extract manageable subsets. Furthermore, a logic system with the quantified
modalities of sect. 3 can be associated to different k-games, agent strategies, or
semantic clauses; thus it may enjoy different properties and describe a variety
of multi-agent systems. One can also express cooperation and communication
among agents tuning the notion of k-game accordingly. In short, the semantics
we have associated with this language should be considered as one possibility
among many. In the future, we plan to expand these observations and to study
the proof-theoretical properties of the interpreted languages obtained in this
way.

References

1. R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic. In
de Roever W.-P., L. H., and P. A.| editors, Compositionality - The Significant Dif-
ference, LNCS 1536, pages 23—60. Springer-Verlag, 1999.

2. B. Bennett, C. Dixon, M. Fisher, U. Hustadt, E. Franconi, I. Horrocks, and
M. De Rijke. Combinations of modal logics. Artificial Intelligence Review, 17(1),
2002.

. S. Borgo. Concurrency with partial information. In CIMCA ’03, to appear, 2003.

. J. C. Bradfield. Independence: logics and concurrency. In CSL’00, LNCS 1862,
pages 247-261, 2000.

5. J. C. Bradfield and S. B. Froschle. On logical and concurrent equivalences. Electronic

Notes in Theoretical Computer Science, 52 (1), 2002.

6. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press, 1995.

7. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.

. L. Henkin. Some remarks on infinitely long formulas. In Infinitistic Methods, Perg-

amon Press, pages 167-183, 1961.

9. J. Hintikka. Principles of Mathematics Revisited. Cambridge University Press, 1996.

10. R. Parikh. The logic of games and its applications. Annals of Discrete Mathematics,
24, 1985.

11. M. Pauly. A Modal Logic for Coalitional Power in Games. J. of Logic and Com-
putation, 12(1):149-166, 2002.

12. A. Pietarinen. Reasoning about focussed knowledge in multi-agent systems. In
Workshop on Cognitive Agents and Multi-Agent Interaction, 2001.

13. M. J. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice.
Know. Eng. Review, 10(2):115-152, 1995.

S

oo

