
Modal Operators with Adaptable Semantics for
Multi-agent Systems

S. Borgo

LOA (ISTC-CNR), via Solteri 38, 38100 Trento, Italy
borgo@loa-cnr.it

Abstract. We look at extensions of modal logic for representation and
reasoning in the area of multi-agent systems. Building on dynamic logic
and Henkin quantifiers, we study an unusual type of operators that
present important features for capturing concurrency, independence, col-
laboration, and coordination between agents. The main goal of this paper
is to study the semantics of these operators and to show how it can be
adapted to capture different types of agents. The formalism allows a
formal comparison of a variety of multi-agent systems.

1 Introduction

For about 20 years we have witnessed an increasing interest in the formal study
of multi-agent systems (MAS) comprising several entities which present indepen-
dent and autonomous behaviors. The standard logical machinery has proven to
be able to capture (although in a scattered way) many characteristics of (MAS).
However, it often requires the coexistence of disparate modalities (dynamic, tem-
poral, epistemic, deontic) in the same language. This strategy is not satisfactory
because of the complexity of the logical systems obtained. Furthermore, these
logics are hard to compare to the point that the uniformity of the very phenom-
ena at stake is lost in the different formalizations. The goal of this paper is to
show that the language we have developed has several natural interpretations
which allow us to capture different types of agents while maintaining the very
same syntax. We introduce a new type of operators that combine modality with
quantification and that we dub quantificational modal operators.1 Our work is
not limited to a specific notion of agent (and we are not going to give one), we
consider this to be an advantage of our approach. For presentation purposes,
we often describe the agents as having some degree of rationality. This is not
necessary but it helps in conveying the meaning of the operators. For results on
some proof-theoretical aspects see [4].

Structure of the paper. In section 2 we introduce the constant modal operators
and in section 3 the Henkin quantifiers. In section 4 we modify these for our
purposes. Quantificational (one-column) operators are studied in section 5 and
multi-column operators in 6. Section 7 presents examples while section 8 relates
this formalism to other logical approaches in the literature.
1 The name was suggested to us by Daniel Leivant.

2 Basic Modalities for MAS

Our logic is a modification of (Elementary) Dynamic Logic (DL) [6] as used
in MAS. The basic operators, called constant modal operators, are modalities
indexed by constant identifiers denoting actions (not programs). We use several
constant identifiers to isolate even the simplest constant modality so to represent
the concurrent activity of the agents. In a system with two agents only, say A1

and A2 (taken in this order), our modal operators have the shape of a 2 × n
matrix (n > 0) where the first row lists the actions performed by A1 (in the
order of their execution) and the second row lists the actions performed by A2.
For instance, [c1 c3

c2 c4], with ci’s action identifiers, is a modality corresponding to
the transition given by the concurrent execution of action c1 (by agent A1) and
c2 (by agent A2) followed by the concurrent execution of action c3 (by agent
A1) and c4 (by agent A2). That is, each entry of the matrix denotes an action
and the combination of these actions characterizes the meaning of the modal
operator.

More generally, an operator in the shape of a k × n matrix is a modality for
a system with k agents. It is always assumed that the number of rows in the
operators matches the number of agents in the system (as a consequence all the
operators in the language have k rows). Also, each agent is associated to the
same row in all operators. We now state this more formally.

Let PropId be a non-empty countable set, the set of proposition identifiers.
Let ActId be a disjoint non-empty countable set whose elements are called action
identifiers. These are the individual constants of the language. Formulas are
built inductively from proposition identifiers through implication (→), negation
(¬), and the modal operators described below. As usual, we shall make use of
the standard conventions for ∧,∨, and ↔. Let A1, . . . , Ak be the agents in the
system.

Let aij ∈ ActId (not necessarily distinct), then a constant modality identifier

for k is a k × n-matrix (n ≥ 1) M =
a11 a12 ··· a1n
a21 a22 ··· a2n...

...
...

ak1 ak2 ··· akn

. A constant modal operator

for k is an expression [M] where M is a constant modality identifier for k.
The set of k-formulas (formulas for short) is the smallest set F satisfying:

I) PropId ⊆ F (the elements of PropId are called atomic formulas)
II) ¬ϕ and ϕ→ ψ are in F if both ϕ and ψ are in F

III) [M]ϕ is in F if [M] is a constant modal operator for k and ϕ is in F

Given a set Act of actions, a k-action is any k × n matrix (n ≥ 1) over Act.
A k-agent Kripke Frame is a triple K = 〈W,Act ;R〉 with W a non-empty set

(the set of states), Act a non-empty set (the set of actions), and R a function

mapping k-actions over Act to binary relations on W : R

(
α1...
αk

)
⊆W ×W.

A k-agent Kripke Structure is a tuple M = 〈W,Act ;R, J·K〉 where 〈W,Act ;R〉
is a k-agent Kripke frame and J·K is a function such that JpK ⊆W for p ∈ PropId
and JaK ∈ Act for a ∈ ActId .

If A1 performs the action (denoted by) a1, A2 the action a2, . . . , agent Ak the

action ak, we write

 a1
a2

...
ak

 for the modal operator describing the evolution of the

system due to the concurrent execution of actions Ja1K, . . . , JakK by, respectively,

A1, . . . , Ak. That is, the interpretation of

 a1
a2...
ak

 is the k-action

Ja1K
Ja2K
...

JakK

.

The valuation function is extended to multi-column operators as follows: if
[A] is a multi-column operator obtained by juxtaposition of operators [B] and
[C] (i.e. [A] = [BC]), then put R(JAK) = R(JBK) ◦ R(JCK). In other words,
u

v
a11
a21

...
ak1

}

~ =def

Ja1K
Ja2K
...

JakK

and

u

v
a11 a12 ··· a1n
a21 a22 ··· a2n

...
...

...
ak1 ak2 ··· akn

}

~ =def

u

v
a11
a21

...
ak1

}

~

u

v
a12
a22

...
ak2

}

~ . . .

u

v
a1n
a2n

...
akn

}

~ extend

function J·K to all modality identifiers. Note that we write JMK for J [M] K.

The truth-value of a formula is defined inductively:

1. Let p ∈ PropId , then M, s |= p if s ∈ JpK
2. M, s |= ¬ϕ if M, s 6|= ϕ
3. M, s |= ϕ→ ψ if M, s 6|= ϕ or M, s |= ψ
4. M, s |= [M]ϕ if for all t ∈W such that (s, t) ∈ R(JMK), we have M, t |= ϕ

A k-agent Kripke model for a set of formulas Σ in the language is a structure
M for k such that all formulas ϕ ∈ Σ hold in all states of M.

This language is a modification of (Elementary) Dynamic Logic. What really
changes is the general perspective. We are no longer using a single constant to de-
scribe the evolution of the whole system. Only the combination of all concurrent
actions provides this information.

Finally, we extend the constant operators by allowing free variables to occur
in them. The reason for this choice will become clear later. Let = be an envi-
ronment function from a set of variables Var to Act and let a modality identifier
be any k × n matrix as before but this time with the less restrictive condition
ai,j ∈ ActId ∪ Var (for all relevant indices i, j). The extension of F to include
these modalities is trivial. Their interpretation requires the new environment
function =. For the formulas of type [M]ϕ where [M] contains free variables, the
interpretation is given by the clause 4. above provided we extend the valuation
function by defining, for all x ∈ Var , JxK = =(x).

3 Henkin Quantifiers

Henkin quantifiers [7, 8] are matrices of quantified variables, e.g.
(

∀x1 ∃x2 ∃x3
∃y1 ∀y2 ∃y3

)
and were proposed by Henkin as an extension of first-order logic. Syntactically,
these are unary operators as the standard quantifiers. There is no restriction on
the number or positions of the quantifiers ∀ and ∃ in the matrix but no variable
may occur more than once in the same operator.

Henkin furnishes a semantic interpretation in terms of game semantics and
another (equivalent to the first) using Skolem functions. Let us see the latter
through an example. We write ϕx1,x2,...

a1,a2,... for the first-order formula ϕ with the
free occurrences of xi replaced by ai. The formula(

∀x1 ∃x2 ∃x3
∃y1 ∀y2 ∃y3

)
ϕ (1)

is true in structure (M, V) if the formula ∀x1y2 ϕ
x2, x3, y1, y3

g1(x1), g2(x1), g3, g4(y2) is true
where g1 and g2 are obtained by Skolemization from formula ∀x1∃x2x3ϕ, i.e.
formula (1) with the second row of the Henkin quantifier erased; and analogously
g3 and g4 are obtained from formula ∃y1∀y2∃y3ϕ. Note that one cannot use
formula ∃g1, g2, g3, g4∀x1, y2 ϕ

x2, x3, y1, y3
g1(x1), g2(x1), g3, g4(y2) since here the choice of g3

and g4 is not independent from g1 and g2 (a similar problem arises for any
permutation of the functions in the prefix ∃g1, g2, g3, g4).

In the game-theoretic semantics a Henkin quantifier (H) is used as the board
of a game with k couples of players (V1,F1), . . . , (Vk,Fk) where Vi is the ith-
verifier and Fi the ith-falsifier. The game consists of a set of choices (see below)
and the purpose is to assign a truth-value for the formula (H)ϕ. For this, pair
(Vi,Fi) plays a (sub)game on row i of (H) choosing how to instantiate the
variables in this row. Since the outcome of the whole game results from the
choices made and since the verifiers win if (H)ϕ turns out to be (always) true,
the falsifiers win otherwise, we see that Vi and Fi play with opposite goals in
the subgame i:
- Vi instantiates variables to obtain an environment in which ϕ is true;
- Fi instantiates variables to obtain an environment in which ϕ is false.

In practice, subgame on row i is a sequence of choices. The players proceed
from left to right considering one entry at a time. Vi chooses whenever there
is an existentially quantified variable in the entry, Fi in the opposite case. It is
crucial to note that every move in the subgame of row i is public to Vi and Fi

only. That is, these choices are never known to players in other rows. Finally,
formula (H)ϕ is true in (M, V) if ϕ is true in any (M, V ′) where V ′ differs from
V in as much as it associate all variables occurring in row i of (H) with their
values in a play of the corresponding subgame on row i. It is false, otherwise.
The reader should convince himself that formula (H)ϕ is true in a model (M, V)
if and only if there exists a strategy2 that guarantee the verifiers to win any play
of this game.

Fix a model (M, V) and let (V1,F1), (V2,F2) be players, we now apply
game-theoretic semantics to (1). All the players are perfectly aware of the syn-
tactic and semantic components: M, V , the semantic clauses, formula (1). On
row 1 the subgame begins with F1 choosing the value of x1 (since ∀x1 occurs
first), and proceeds with V1 choosing the first time the value of x2 and then the

2 Such a strategy is called a winning strategy for (H)ϕ and consists in functions
f1, . . . , fk, called choice-functions, such that if we give fi the existential variable
at stake and the previous choices in row i as arguments, then it returns a value (if
any) that Vi can choose to win.

value of x3. Note that V1, since moving after F1, knows the value of x1 when
choosing the value of x2. Furthermore, V1 knows the values of both x1 and x2

when choosing a value for x3. On row 2, first V2 chooses the value of y1, then
F2 chooses the value of y2 (knowing what has been chosen for y1). The subgame
finishes with V2 choosing the value of y3 (knowing the values of both y1 and y2).
Clearly, the choices for x1, x2, x3 are made without knowing the values chosen
for y1, y2, y3 and vice versa. Once the two subgames are over, the chosen values
are used to define environment V ′ defined by: V ′(x) = V (x) for all x not in the
Henkin quantifier; V ′(y) = α for y in row i and α its value in the i subgame.
Finally, the truth-value of (1) is true if V1 and V2 have a strategy to ensure
that for all V ′ output of a game in (1), ϕ is true in 〈M, V ′〉. It is false otherwise.

4 Henkin Quantifiers Revisited

In the game-theoretic semantics of Henkin quantifiers two teams of players in-
stantiate variables to determine an environment for the evaluation of the given
formula. Since we are concerned with agents, we modify Henkin’s interpretation
by assuming that, instead of teams of players, the agents of a multi-agent system
are in charge of choosing the variables’ values. In other terms, we assume that
each agent plays the subgame on its row by instantiating the variables there oc-
curring. The distinction between existential and universal quantifiers is preserved
assuming that the agent chooses values with different aims at different stages.
That is, agent Ai chooses aiming at making the formula true (like Vi would do)
wherever there is an existentially quantified variable, and aiming at making the
formula false (like Fi) wherever there is a universally quantified variable.

Unfortunately, this change alone does not do justice of the role of the agents
in MAS. Indeed, here the agents can choose (in part) the environment they are
in but this is not done through a notion of action. There is an obvious mismatch
since the agents’ decision abilities are not applied to determine their own actions.

We overcome this problem by moving to the semantics of section 2 where we
can pair Henkin quantifiers and modality operators as in the following formula(

∀x1 ∃x2 ∃x3
∃y1 ∀y2 ∃y3

) [
x1 x2 x3

y1 y2 y3

]
p0 (2)

In this formula we apply Henkin quantifiers to open modal formulas to form
sentences. The matching position of the quantified variable in the Henkin quan-
tifier and the free occurrence of the same variable in the modal operator (and
so the matching size of the operators) is here crucial. Note that here ∀ and ∃
range over actions since the goal is to instantiate the free variables in the modal
operators. We now study these quantifiers in the Kripke semantics approach by
taking Act as domain of quantification.

From sections 2 and 3, formula (2) is interpreted in two steps. First, we
provide a game-theoretic interpretation of

(
∀x1 ∃x2 ∃x3
∃y1 ∀y2 ∃y3

)
applied to formula[

x1 x2 x3
y1 y2 y3

]
p0 by allowing the agents to independently choose from Act the val-

ues of the variables in their rows.3 Let α be the value for z in the game and
=′ be the environment defined by =′(z) = α if z occurs in the Henkin quan-
tifier, =′(z) = =(z) otherwise. The second step consists in the evaluation of
formula

[
x1 x2 x3
y1 y2 y3

]
p0 according to the environment =′. Informally, this matches

the orderly execution by the agents of the actions they have just planned.

5 Quantificational Modal Operators

Let ActId, PropId, and Var be as in section 2 with p0 ∈ PropId . As before, we
will informally write “the action a”, with a ∈ ActId , to mean the action denoted
by a, i.e., the action JaK ∈ Act .

Since (2) presents two types of operators with a common structure, we can
actually merge them in a unique operator without loss of information by writ-
ing formula

[
∀x1 ∃x2 ∃x3
∃y1 ∀y2 ∃y3

]
p0. The interpretation of this formula is that of (2): a

first step provides instances of the quantified variables in the modality via sub-
games. A second step provides the evaluation of the modal operator obtained by
substituting for each variable in the modality its value in the subgame.

Since we want to model also agents that are committed to do some action,
we need to allow both action identifiers and quantified variables to occur in an
operator. This brings us to the following

Definition 1. (Quantificational identifiers and operators)
A quantificational modality identifier for k is a k × n matrix (n > 0) with each
entry containing a constant, a variable, or a quantified variable. A quantifica-
tional (modal) operator for k is an expression [M] where M is a quantificational
modality identifier for k.
qOP stands for the set of quantificational operators for k (k fixed by the context).

The set F of k-formulas is defined as in section 2 now allowing the bigger
class of quantificational operators in clause III). From our discussion, the scope
of the modal operator is the formula to which it is applied and the scope of a
quantifier in a modal operator is the scope of the modal operator itself.4 As for
Henkin quantifiers, a variable can occur only once in a quantificational operator.

5.1 Henkin’s Isolated Agents

This section focuses on the interpretation of quantificational modal operators.
Consider formula

[
∃x
b

]
p0 in a system with agents A1 and A2.5 This formula

3 The game is a trivial modification of the game described previously. It consists of
subgames (as before) where, at each entry, the agent embraces the aim indicated by
the occurring quantifier. The agents have no knowledge of the choices made at other
rows.

4 Formally, a quantificational entry, say ∀x, stands for the quantified variable ∀x as
well as for a bound occurrence of x.

5 The examples generalize easily to k agents.

holds at a state if agent A1 can choose an action a such that
[

a
b

]
p0 is true at

that state. Then, formula
[
∃x
b

]
p0 stands for “agent A1 can choose an action

such that after the concurrent execution of it by A1 and of b by A2, p0 holds”.
Analogously, formula

[
∀x
b

]
p0 states: “no matter the action chosen by agent A1,

after A1 has executed it and (concurrently) A2 has executed b, p0 holds”. The
intuition is that all the instances obtained by a choice of A1 need to be considered
to state the truth-value of this formula.

Building on the previous cases, the meaning of the remaining one-column
operators is easily determined. The natural reading of

[
∀x
∀y

]
p0 is: “no matter

which action a agent A1 executes and which action b agent A2 executes, p0 holds
in the reached states”. Formula

[
∃x
∃y

]
p0 is true if the agents can independently

choose actions, say a and b, such that
[

a
b

]
p0 is true, i.e. “for any choice a

made by A1 and any choice b made by A2, after A1 has executed a and A2 has
(concurrently) executed b, p0 holds”. Note that the expressions “for any choice
a” and “for all a” characterize different sets of actions. Of the remaining one-
column operators, consider

[
∀x
∃y

]
p0. Since the agents choose independently, i.e.

not knowing each other doing, for the formula to be true the second agent has
to find an action a for y such that

[
∀x
a

]
p0 is true according to what said above,

that is, no matter what the other agent chooses.

To capture formally this interpretation, let us assume that function g fur-
nishes the actions chosen by the agents. The intent is that g codifies the behavior
of agent Ai when taking as argument the formula to be evaluated (the modal-
ity plus its scope formula) and the variable in row i (which implicitly gives the
agent’s index); on this input, g returns (one or more) actions in Act which corre-
sponds to agent Ai’s choices. Then, the semantics of section 2 is extended with
the following clause for quantificational one-column operators:6

51) Given a formula [X]ϕ where [X] is a quantificational operator with
variables x1, . . . , xr existentially quantified and y1, . . . , ys universally
quantified; M, s.= |= [X]ϕ if for all given α1, . . . , αr ∈ Act such that
αi ∈ g([X], ϕ, xi) and for all β1, . . . , βs ∈ Act , if Γ is the k-action
obtained by substituting, in [X], JahK for ah ∈ ActId ∪Var , αi for ∃xi,
and βj for ∀yj (for all relevant indices h, i, j), then for all (s, s′) ∈ R(Γ),
M, s′,=′ |= ϕ with =′ defined by: =′(xi) = αi,=′(yj) = βj , and =′(z) =
=(z) for the remaining cases.

We dub the agents described by this semantic clause Henkin’s isolated agents;
“Henkin’s” because of the overall semantics, and “isolated” for the lack of com-
munication among the agents (the above clause prevents the possibility of coor-
dination plans among agents).

6 Clause 51) can be seen as a schema since varying g we capture different MAS.

Formulas
[
∃x
∀y

]
p0 →

[
∃x
a

]
p0 ;

[
a
∀y

]
p0 →

[
∃x
∀y

]
p0 are valid in this seman-

tics. Interestingly, and perhaps surprisingly, formulas
[
∃x
∀y

]
p0 6→

[
∃x
∃y

]
p0 and[

∃x
a

]
p0 6→

[
∃x
∃y

]
p0 fail in general. In the first case, for example, let p0 stand for

“have the cake sliced.” In the case of
[
∀x
∃y

]
p0, agent A2 would do action “cut

the cake” no matter what the other agent does since the latter is not committed
to this goal. In the case of

[
∃x
∃y

]
p0, agent A1 (knowing agent A2 has the same

goal) may be polite and let A2 cut. Similarly, agent A2 may not do it to let A1

the honor. Then, nobody cuts the cake (nobody chooses that action) and the
formula turns out to be false.

5.2 Risk-averse Coordinated Agents

So far our reading of ∀ and ∃ was driven by Henkin’s work. We now investigate
the interpretation one obtains when adopting the classical meaning for ∃ and ∀.
Here we take formula

[
∃x
b

]
p0 to be true at a state s if and only if there exists an

action a such that
[

a
b

]
p0 is true at s. In this reading, the quantificational formula

stands for “there exists an action such that after the concurrent execution of it by
A1 and of b by A2, p0 holds”. Analogously, formula

[
∀x
b

]
p0 reads: “for any action

a, after A1 has executed it and (concurrently) A1 has executed b, p0 holds”. It
follows easily that formula

[
∃x
∃y

]
p0 is true if there exist actions a and b (not

necessarily distinct) such that
[

a
b

]
p0 holds, while formula

[
∀x
∀y

]
p0 is true if for

all actions a and b,
[

a
b

]
p0 is true. An interesting case is given by operators in

which both quantifiers occur, for instance
[
∀x
∃y

]
p0. To establish the truth value

of this formula at a given state we have two choices: either we verify that a value
b for y exists such that

[
∀x
b

]
p0 is a true formula according to our interpretation

above. Or we verify that no matter which action a is substituted for x, formula[
a
∃y

]
p0 is true in M at s.

Here we consider the first interpretation only. To capture it formally, we
adopt the semantics of section 2 with the following clause for quantificational
one-column operators:

52) Given a formula [X]ϕ where [X] is a quantificational operator with
variables x1, . . . , xr existentially quantified and y1, . . . , ys universally
quantified; M, s,= |= [X]ϕ if there exist α1, . . . , αr ∈ Act such that
for all β1, . . . , βs ∈ Act , if Γ is the k-action obtained by substituting,
in [X], JahK for ah ∈ ActiId ∪ Var , αi for ∃xi, and βj for ∀yj (for all
relevant indices h, i, j), then for all (s, s′) ∈ R(Γ), M, s′,=′ |= ϕ with =′

defined by: =′(xi) = αi,=′(yj) = βj , and =′(z) = =(z) in the remaining
cases.

We dub the agents satisfying this clause risk-averse coordinated agents: “risk-
averse” because they never take chances relying on other agents choices, and

“coordinated” because they always agree on a combination of actions good for
reaching common goals (if any).

In this semantics
[
∃x
∀y

]
p0 →

[
∃x
∃y

]
p0 and

[
∃x
a

]
p0 →

[
∃x
∃y

]
p0 are valid.

6 Knowing the Past, Reasoning about the Future

Consider a constant two-column operator7 [c1 c3
c2 c4], call it [X]. From clause 4.

of section 2, constant operators split into simpler operators without loss of in-
formation, that is [c1 c3

c2 c4]ϕ ≡ [c1
c2] [c3

c4]ϕ. This equivalence does not hold for
quantificational operators though, i.e. in general

[M1M2]ϕ 6≡ [M1][M2]ϕ (M1,M2 ∈ qOP) (3)

To establish the truth-value of a formula where the constant operator [X]
occurs, it is necessary to consider all action identifiers (and their positions)
occurring in [X]. For instance, the information that c1, c3 occur in the first row
in this order (i.e., knowing the actions executed by agent A1), does not suffice
in general to know which states are reachable through [X].

Suppose now that we are dealing with formula
[

c1 ∃x
c2 c4

]
p0. It seems natural

to read the modality in this formula as follows: “first, agent A1 executes c1 and
(concurrently) agent A2 executes c2, then A1 chooses and executes an action and
(concurrently) A2 executes c4.” In light of the previous sections, one can interpret
the existential quantifier in different ways. Assume for a moment that I am agent
A1 and I am given the model M, the state at which the formula is evaluated,
and all the semantic clauses. Then, my choice for x will differ depending on
what I know about the formula itself and in particular about operator

[
c1 ∃x
c2 c4

]
.

For if I am aware of the presence of c1, c2, c4 and of their positions, I can use the
semantic clauses to verify whether there is an action that, when executed by me
after the execution of c1, forces the system to states satisfying p0. Assuming such
an action exists, it might not be possible to identify it if I lack some information
about the constant identifiers occurring in the operator.

This argument shows that to establish the truth-value of the formula, it
is important to state my knowledge (or lack of) about the operator. Several
options are possible. For instance, assuming perfect recall, one can assume that
I am aware c1 is in position (1,1) of the matrix since I have just chosen a value
for x. If A1 and A2 are isolated agents, then we should assume that I (agent
A1) have no idea of what A2 has done earlier, that is, I do not know what is
in position (2,1) of the operator. If A1 and A2 are non-communicating but can
observe each other’s doings, one can assume that I know what A2 has just done,
i.e., I know that c2 is in position (2,1). Finally, for the simple reason that A1

and A2 act concurrently, I might know what A2 is going to execute as second

7 Our examples use mostly two-column operators. The generalization to n-column
operators is generally straightforward.

action only if we are coordinated agents or if it is publicly known that agent A2

has to execute c4 at this point.8

In this paper, we do not enter into the formalization of the semantics for
multi-column operators. However, it is possible to extend clauses 51) and 52)
to multi-column operators by allowing [X] to be any operator in qOP. We will
make use of this fact in the next section.

7 Modeling with Quantificational Operators

Our first example is in the area of planning. There are two agents, say Anthony
(A1) and Bill (A2), and they are in charge of a project which should be turned
in by a certain time. Let us say that there are 3 time-steps before the deadline
(step-1, step-2, and step-3) and that Anthony cannot work at the project at
step-1 since he is committed to do something else (perhaps he has to go to the
bank or to meet with the company accountant). We use a for the action Anthony
does at this step. Later, he is working full time on the project. Regarding Bill,
the office manager already asked him to go to his office at the time corresponding
to step-2 (but he did not say what the meeting is about). We represent this case
in our language with the formula

[
a ∃x ∃z
∃y ∀u ∃v

]
ϕ, where ϕ stands for “the project is

finished”. The first row describes Anthony’s attitude toward the project during
this time, while the second row describes Bill’s attitude. Note that the universal
quantifier marks the time-step when Bill acts without regards for the project
since his action at that time depends on what his office manager asks him to do.
Assuming Anthony and Bill are risk-averse cooperative agents, all the actions
that instantiate variables x, z, y, v should be planned together as described by
clause 52) provided it is extended to multi-column quantificational operators as
indicated earlier.

We may want to model the case where the agents have a predefine plan for
the first two time-steps only. For instance, suppose they discussed a plan the
day before when they knew they where going to be in different places during
time-steps 1 and 2 without the possibility of sharing information. Also, let us
say that later they meet, share they achievements and decide together what to
do for the remaining time. This situation is described by formula

[
a ∃x
∃y ∀u

] [
∃z
∃v

]
ϕ

using clause 52) to ensure coordination.

The second example we consider comes from robotics. Here there are two
agents whose goal is to pick up an object but none of them can do it alone. If ϕ
stands for “the object is lifted”, the situation is described by formula

[∃x
∃y

]
ϕ ∧[∀x

∃y

]
¬ϕ∧

[∃x
∀y

]
¬ϕ. The reader can easily verify that this formula is true in 52).

8 In the previous discussion of one-column operators we implicitly assumed that the
constant identifiers are known to all the agents, they are public knowledge, so to
speak. Here we drop this assumption as well. Indeed, one may have a commitment
to do a specific action ci at some point and prevent other agents from knowing it
(an issue raised in modeling security). The semantic clauses we have introduced for
one-column operators can capture these cases as well.

Of course, these examples can be captured in other formalisms as well, in
particular through different languages that include some type of epistemic oper-
ators [11]. However, we remark that (i) the formulas one obtains in our language
are very simple and (ii) through our language agents in different systems can be
compared immediately by looking at the adopted semantics.

8 Related Work and Conclusions

This paper continues the work presented in [2–4]. In [2] the general approach is
given by focusing on the propositional case and its properties. In [3] we studied an
interpretation along the lines of 51) exploiting fully game-theoretic framework.
[4] looks at the formal properties of one of these logics. Differently from these
papers, here we have looked at the variety of semantics for our operators and
their relationships.

The formalism we adopted has been influenced by the notion of Henkin
(branching) quantifiers and their interpretation in game-theory [7]. Nonethe-
less, branching quantifiers have no modal interpretation and do not allow for
semantic alternatives. Furthermore, there is an ontological discrepancy between
the notion of agent in MAS (agents are internal components of the system) and
the formal notion of player in game-theory (players are external components
that act to interpret the formalism).

Somehow related to our work is [1]. The basic features of the logic there
presented (without the temporal modalities) are captured through our modal
operators using an interpretation similar to 52). Our formalism captures Coali-
tion Logic [9] as well. Other frameworks, following the BDI approach [10] or the
Intention Logic [5], adopt combinations of different modalities. These are very
expressive systems and differ in their motivations from our approach. We refer
the reader to [11, 12] for overviews of this area of research.

We have shown how to produce different interpretations for modal operators
built out of action identifiers, variables, and quantified variables. Our stand is
that when there is a number of practical constraints to capture, semantic plural-
ism should be sought. In this way, the same descriptive tool can distinguish and
characterize different phenomena in a flexible way making possible the uniform
description of what might seem a plethora of heterogeneous cases. Then, formal
and reliable comparisons of apparently disparate phenomena become possible.
Our quantificational modal operators, although limited in several ways, give a
first answer to this search for semantic pluralism in the area of multi-agent sys-
tems.

Among the features of these quantificational modal operators, the follow-
ings are particularly relevant: (a) true concurrency is captured already at the
syntactic level; (b) they can express independence among agents; (c) they are nat-
urally associated with different semantics making possible the characterization
of different agents; (d) they model partial knowledge and communication among
agents. There are drawbacks as well. The quantificational operators inherit the

restrictions of (Elementary) DL, in particular the rigid structure in finite steps.
Extensions using constructs on action identifiers have not been studied yet. On
the technical side, although adding quantificational modal operators does not
make the resulting logic necessarily undecidable, this happens in many cases
when equality is present. For instance, one can see that the theory in [3] is unde-
cidable since we can embed first-order logic augmented with a binary predicate
(the translation is given by: A(x, y) 7−→ [x

y] p0 for some atomic p0). For an ex-
ample in the opposite sense, a slight modification of clause 52) gives a complete
and decidable logic for the class of multi-relational Kripke frames [4].

Acknowledgments The author has been partially supported by the Provincia
Autonoma di Trento. Thanks to Daniel Leivant and Alessandra Carbone for
their comments on an earlier draft of this paper.

References

1. R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic. In
de Roever W.-P., L. H., and P. A., editors, Compositionality - The Significant
Difference, LNCS 1536, pages 23–60. Springer-Verlag, 1999.

2. S. Borgo. Concurrency with partial information. In M. Mohammadian, editor,
CIMCA ’03, pages 170–181, 2003.

3. S. Borgo. A multi-agent modal language for concurrency with non-communicating
agents. In CEEMAS ’03, LNAI 2691, pages 40–50, 2003.

4. S. Borgo. Quantificational modal logic with sequential kripke semantics. Journal
of Applied Non-Classical Logics, 15(2):137–188, 2005.

5. P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42:213–261, 1990.

6. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
7. L. Henkin. Some remarks on infinitely long formulas. In Infinitistic Methods, pages

167–183. Pergamon Press, Warsaw, 1961.
8. M. Krynicki and M. Mostowski. Henkin quantifiers. In M. Krynicki, M. Mostowski,

and S. L.W., editors, Quantifiers: Logics, Models and Computation, pages 193–262.
Kluwer Academic Publishers, 1995.

9. M. Pauly. A modal logic for coalitional power in games. J. of Logic and Compu-
tation, 12(1):149–166, 2002.

10. A. Rao and M. Georgeff. Modeling rational agents within a bdi-architecture. In
J. F. Allen, R. Fikes, and E. Sandewall, editors, Principles of Knowledge Repre-
sentation and Reasoning (KR’91), pages 473–484. Morgan Kaufmann, 1991.

11. W. van der Hoek and R. Verbrugge. Epistemic logic: a survey. In L. Petrosjan and
V. Mazalov, editors, Game Theory and Applications, pages 53–94. Nova Science
Publishers, 2002.

12. W. van der Hoek and M. J. Wooldridge. Towards a logic of rational agency. L. J.
of the IGPL, 11(2):135–159, 2003.

