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Abstract

We investigate the problem of finding informative su-
perordinates in a broad-coverage taxonomy of nominal
concepts. We present results from a study which shows
that speakers often exhibit strong preferences on what
superordinate is more informative, together with a solid
bias for specific classes. We then define the task of iden-
tifying the properties that characterize such concepts in
the taxonomy as a ranking problem. We identify sev-
eral such properties which are related to properties of
basic concepts. While these properties provide accurate
sources of information for identifying the most useful
superordinate, their interaction remains obscure.

Introduction

Lexical meaning is often summarized as category mem-
bership: a “convertible” is a “car”, a “trombonist” is
a “musician”, “irritation” is a “feeling”, etc. Within
taxonomic organizations a nominal concept belongs to
all its superordinates; e.g., “rattler” belongs to “viper”,
“snake”, “reptile”, “vertebrate”, “animal”, “organism”.
However, certain superordinates such as “snake” tend
to be more important than others. Arguably the rele-
vance is context-dependent; if a “rattler” was found on
an asteroid one would probably wonder how an “ani-
mal” managed to get there, more than how a “snake”
did. Nonetheless, in hierarchical categorization schemes
people tend to prefer useful and efficient classes, in terms
of information content, i.e., concepts where the trade-off
between size of the category and similarity of its mem-
bers is optimal (Gluck & Corter, 1985). Such concepts
are called basic (Brown, 1958; Rosch et al. 1976) and
are well-studied in humans (Murphy, 2002).

In this paper we address two aspects relevant to ba-
sic categories. In the first part we investigate for what
fraction of nouns in naturally occurring language there
is a corresponding “favorite” superordinate. The goal is
to estimate, at least as a first crude approximation, the
extent of this phenomenon. We examine this issue with
a naming task in which we collected data from English
speakers concerning their preferences about different su-
perordinate levels. We used a broad-coverage nominal
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Figure 1. A simplified portion of the Wordnet taxonomy of
nominal concepts above the noun ‘“rattler”.

taxonomy, and several hundred nouns found in a corpus.
We found that for a large fraction of nouns, more than
84%, there is a superordinate which is significantly more
informative than the others; participants were mostly
unsure about nouns referring to abstract concepts such
as relations and states. In the second part of the paper
we use the outcome of our study as a gold standard and
we investigate the properties that characterize informa-
tive superordinates. We frame the problem of choosing
the “best” superordinate for a noun as a ranking task.
We investigate word-specific properties — those that can
be extracted from a word’s orthography, from corpus
data, and from hierarchical knowledge relating words —
to try to characterize informative superordinates.

We found that word length provides the weakest pre-
dictor, while entropy and frequency, and especially func-
tions that measure the association between the noun and
the superordinate such as mutual information, are more
accurate. Finally, most surprisingly, we found that the
best predictor is the concept specificity; i.e., people have
a strong preference for specific concepts. This finding
suggests a simple hypothesis: that the data might be ex-
plained by a model that combines specificity and other



properties of basic categories. However, we show that the
interaction of the different information sources is com-
plex and the choice of the superordinate might depend
on subtle semantic and cultural factors.

Basic Categories and Information

The superordinates of a noun such as "rattler” (viper,
snake, reptile, vertebrate, animal, and organism) are
not equally useful. The choice of one extreme or the
other has both advantages and shortcomings. Broad
classes such as “organism” are easy to discriminate, e.g.,
from “artifacts”, but are not very informative because
they have very dissimilar subordinates like “animal” and
“plant” (cf. Figure 1). In contrast, specific classes such
as “viper” contain very similar subordinates but are hard
to discriminate; e.g., it is harder to distinguish a “viper”
from an “asp” than an “animal” from an “artifact”. It
seems intuitive that there should be an intermediate level
where an optimal balance between discriminative power
and similarity of the subordinates is achieved.

A level with such properties is called a basic level in
human categorization (Brown, 1958; Rosch et al., 1976).
Basic categories are intermediate-level classes typically
expressed by phonologically simple (short) and frequent
words; e.g., “chair” “tree” and “snake”. The basic-
level is of great importance to human tasks like nam-
ing (Rosch et al. 1976), forming mental images (Tversky
& Hemenway, 1984), and reasoning about objects’ func-
tions and other attributes (Sloman & Ahn, 1999). Basic
categories are most useful because they are accurate at
predicting distinctive attributes of their members and,
at the same time, possess high category resemblance.
The basic level provides the most natural contrast be-
tween categories and is the most useful for induction.
These properties can be expressed with information the-
oretical, i.e., entropy-based, measures (Gluck & Corter,
1985; Corter & Gluck, 1992) which quantify a category’s
power to reduce uncertainty about the features of its
members — or the category utility. Gluck and Corter
(1985; Corter & Gluck, 1992) show that this model is
consistent with people’s performances in category learn-
ing experiments. Informativeness does seem to be a par-
tial explanation for the basic-level. The basic-level refers
to a hierarchical level that is picked out by a variety of
different language-related tasks, in this sense it repre-
sents an empirical phenomenon. Informativeness serves
as an explanation of the basic-level, almost all theories of
the basic-level appeal to informativeness which provides
a natural and useful explanatory notion.

The information-theoretical interpretation of the ba-
sic level can be formalized precisely and implemented in
computational models (cf. (Fisher, 1988) for an imple-
mentation of the category utility model). Among other
applications, this is relevant to natural language pro-
cessing systems; e.g., in language generation. Basic-level
terms are crucial for generating utterances that, not only
sound natural, but also obey Gricean maxims of dis-
course (cf. (Dale & Reiter, 1995)); e.g., the choice of
“look at the Canis familiaris” vs. “look at the dog”
or “look at the pitbull” has different pragmatic conse-

artifact 34  substance 9 event 4
person 32 attribute 9 possession 4
plant 24 cognition 9 time 3
animal 23 food 8  process 3
act 20 group 8 phenomenon 2
communication 17  body 6 feeling 2
state 11  object 5 relation 2
location 10 quantity 4  shape/motive 1

Table 1. Number of test words per supersense category.

quences. Other applications in principle include all those
that involve semantic classification tasks such as lexical
disambiguation or named-entity recognition, which cur-
rently focus on repertories of, respectively, excessively
narrow and excessively broad classes.

Speakers’ Hierarchical Preferences

We ran a study in which we collected data about people’s
preferences within hierarchical classification schemes.
The goal was to estimate the fraction of nouns with a
consistently preferred superordinate and provide data
to determine which nouns showed such consistency and
what the properties are of preferred superordinates.

Description of the Data

We found all nouns in the Brown corpus (Francis &
Kucera, 1982), a balanced corpus of about a million
words, that have an entry in Wordnet (Fellbaum, 1998),
a large ontology which contains 115,000 nouns which be-
long to about 80,000 concepts called synsets hierarchi-
cally organized according to the “is a kind of” relation
(e.g., “pen” is-a “writing implement”). We searched for
single words and compounds such as “real estate” or
“psychological warfare”!. We found 12,218 such nouns,
roughly 80% are common nouns. We associated each
noun with its most common synset according to Word-
net; e.g., the first synset of rattler is “snake” while the
second is “freight-train”.? Each synset in Wordnet is
also tagged with a label corresponding to the categories
used by lexicographers to organize the development of
the database. There are 26 such categories which we
call supersenses (cf. (Ciaramita et al., 2003)); e.g., “per-
son”, “animal”, “plant”, “artifact”, “location”, “feeling”
etc. To select a set of words representative of the overall
composition of the Wordnet lexicon we binned the word-
synset pairs according to their supersense label. For each
supersense ss; we randomly selected a number of word

|ss;|

senses equal to [NZ |s5v|]7 where N is the total num-
J J

ber of test words and |ss;| is the number of synsets with
supersense label ss;. For example, 14% of the synsets
are “artifacts” while 0.05% are “motives”, respectively
the larger and smaller supersense.?

We decided to test 250 common nouns, the number
of words that we estimated could be tagged in an hour.

LFor this purpose we used the functions “getindex()” and
“morphstr()” from the Wordnet library “wn.h”.

2This information was compiled by the Wordnet lexicog-
raphers based mainly on estimations from the Brown corpus.

3We only chose synsets that have no hyponyms, i.e., leaf-
nodes, 62870 of the synsets in Wordnet (79%).
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Figure 2. Histograms of relative frequencies from the speakers

data for all 2,228 test word-superordinate pairs (above) and for
the 301 superordinates that participants chose the most (below).

Table 1 summarizes the number of words per each super-
sense category generated for this value of N. In addition
to the common nouns we selected a set of 51 proper
nouns, which are also in Wordnet, for the supersense
categories “person” “group” and “location”. These three
categories alone cover more than 80% of all proper nouns.
These 301 common and proper nouns represented our
sample of nouns appearing in naturally occurring lan-
guage. In a pilot study we tested 10 participants on
a different set of 213 nouns. We learned that some of
the participants didn’t know several of the words. Dur-
ing the development of the final data set we excluded
obscure nouns and nouns for which the first sense ac-
cording to Wordnet was clearly not the most frequent
sense in current use; e.g., “hot dog” as “exhibitionist”
instead of “sandwich”.

Description of the Test

Participants were presented one test word at a time
on a computer monitor in randomized order. Together
they saw a numbered list of candidates, also random-
ized, the superordinates of the test word. Each super-
ordinate was expressed by one noun, the first in the list
for that synset;* e.g., one test noun is “turmoil” and
the list of candidates is: “state”, “disorder” and “distur-
bance”. Participants were asked to choose which term
they would use to answer the question “What kind of
thing is this?”.> The total number of candidates, i.e.,
test word-superordinate pairs was 2228, or 7.4 candi-
dates per word on average. Participants were explicitly
told that there were no wrong answers — all candidates
provided a correct explanation — and they could imag-
ine a situation in which somebody, who didn’t know the
meaning of the word, asked the question to which they
had to answer using only one of the words in the list.

4This ordering was also compiled by the lexicographers.
5Or “Who is this?” if the test word was a person’s name.

Results

We tested 12 Brown graduate and undergraduate stu-
dents on all 301 nouns and computed the relative fre-
quency of the preferences obtained by each superor-
dinate; e.g., for “turmoil”, “state” was chosen twice,
P(state)=0.16, “disorder” 4 times, P(disorder)=0.33,
and “disturbance” 6 times P(disturbance)=0.5. The
upper portion of Figure 2 plots an histogram of the
distribution of relative frequencies for all test word-
superordinate pairs; a large fraction of superordinates
have a relative frequency of 0, i.e., were never selected.
In particular, very general candidates such as “entity”,
“abstraction” or “psychological feature” are by and large
ignored. The lower portion plots the distribution of rela-
tive frequencies of the 301 candidates that obtained most
votes. A large fraction of the favorite superordinates ob-
tained more than half of the votes, about 70% of these
have a relative frequency of 0.6 or higher.

Statistical Analysis

To estimate the fraction of nouns for which there was
one clear favorite superordinate, and evaluate the con-
sistency of the experimental data, we performed a sta-
tistical analysis. First we used the K statistic (c.f. Di

Eugenio & Glass, 2004). K = %(PE()E), where P(A)

is the agreement between participants and P(E) is the
expected agreement at chance. Unfortunately K proved
inadequate to our case. The data consists of a single
row of values for each noun, often characterized by very
skewed distributions of votes. These cases yield odd val-
ues for K; e.g., if a category has 11 votes P(A) = 0.83,
P(E) = 0.84 and K = —0.0625. For values of K close
to 0 agreement is assessed as close to chance, while a
generally accepted cutoff for “moderate” agreement is
0.67 (Agresti, 1992); although, determining significance
levels for K is problematic in itself (Fleiss (1981) for ex-
ample indicates the interval 0.40-0.75 as an indicator of
“fair to good agreement, beyond chance”). In our case
the K statistic fails to provide a meaningful assessment
of the agreement rate because the expected agreement
at chance tend to be unreasonably large especially when
the distribution of votes is more skewed; i.e., when there
is more agreement. Di Eugenio and Glass (2004) call
this the “prevalence” problem with K .5

Based on these considerations, we developed an alter-
native analysis of the data. The aggregated data for each
word defines a multinomial random variable which is the
result of an experiment consisting of n = 12 trials, the
number of participants, with k possible outcomes, the
number of superordinates. We indicate with k; the cat-
egory that obtained more votes from the data. If there
is no agreement among participants one would expect

SComputing P(E) as 1/k, where k is the number of cat-
egories, thus the theoretical expected agreement at chance,
does not solve the problem. The outcomes of K are more
meaningful but still suspicious; e.g., in the case of “tabloid”
9 participants chose “print_media” (75%), 2 chose “journal-
ism” and 1 “medium”; this yields a value of K of 0.51 which
is still below the commonly accepted threshold for moderate
agreement. For completeness we report the average K value
on all nouns which was equal to 0.47.



w k| ki/P(k1) P(Hy) | Sig
altruism 8 | unselfishness/0.42 | 0.095 | NO
forum 4 | meeting/0.75 0.002 | YES
sidewinder | 13 | snake/0.917 0 YES

Table 2. Three examples of the results of the significance test:
w is the test word, k is the number of candidates, P(k1) is
the probability of the highest-scoring category from the data.
P(Hy) is the probability of Ho estimated with the simulation.

the distribution of votes to be “approximately” uniform.
Within this model one can define a null hypothesis ac-
cording to which the probability of each outcome is the
same; i.e., Hy : p1 = p2 = ... = px. A multinomial exper-
iment under Hy can be performed by generating one of
the k possible categories at random n times. From the
outcome of this experiment the probability of the most
likely category is computed. If this value is greater or
equal to P(k;) then it is possible, under Hy, to gener-
ate a distribution that is consistent with the data. After
repeating this experiment, the fraction of times Hj is
consistent yields the significance level at which Hy can
be rejected. We ran this experiment 10,000 times.

Notice that in this model a simulated distribution is
consistent with Hy not just when the distribution is
close to uniform, but, more conservatively, when sam-
pling under Hj it is possible to generate a distribution
with one “spike” that is consistent with the experimen-
tal data. For example, the following is the data for
the noun “apostle”: “entity/0”, “living-thing/0”, “or-
ganism /07, “causal_agent/0”, “object/0”, “advocate/1”,
“person/3”, “believer/3”, “supporter/5”. This is hardly
a uniform distribution of votes, 5 categories out of 9
have no votes and there is one with more than 40% of
the votes. However, this is a non-significant case with
P(Hy) = 0.062, because more than 5% of the times it
is possible to generate a distribution where the proba-
bility of the category with more votes, whichever it is,
is greater or equal to P(supporter). Table 2 illustrates
three more cases with different significance levels.

Discussion

For 84.4% of the words Hj is rejected with p < 0.05;
i.e., 84.4% of the time there was a superordinate which
was chosen as more informative by a large enough num-
ber of participants. We found 249 different most infor-
mative superordinates, the most frequent are “person”
(11), “plant part” (8), “plant” (7), “animal” (4). The
words on which there is less agreement all refer to ab-
stract concepts: “act”, “cognition”, “communication”,
“quantity”, “relation”, “state”, and “time”, with aver-
age P(Hp) = 0.11. Tt is possible that the organization
of such classes within a taxonomic structure does not re-
flect how people tend to categorize them. The opposite is
true of proper nouns. Participants were, in general, abso-
lutely positive of what kind of thing (or who) each proper
noun was; e.g., Baltimore is a “city” (much more than
an “urban area”, “municipality”, “location”, “district”
etc.), Elvis Presley is a “rock-star” (much more than a
“musician”, “singer”, “performer”, “entertainer”, etc.),
and Scotland Yard is a “law enforcement agency” (much

more than a “police”, “organization”, “administrative
unit” etc.). On average P(Hp) was equal to 0.0317, 0.038
for common nouns alone. This results prove that for a
large fraction of nouns, which are instances of very dif-
ferent semantic categories from “artifacts” and “plants”
to “substances” and “groups”, there is one superordinate
which is clearly more informative than the others for a
significant number of participants. This means that the
capacity for recognizing the most informative taxonomic
level has quite broad conceptual coverage. Furthermore,
while different people might have different preferred su-
perordinates, participants showed a solid agreement on
which superordinate might be the most informative for
somebody else, i.e., in a shared context.

Ranking Superordinates

We now investigate the properties that characterize the
most informative superordinates of nouns.

Preliminaries

One way of formalizing the task of recognizing the most
informative categories in a taxonomy is as a ranking
problem. We adapt here a notation used for the prob-
lem of re-ranking parse trees (Collins, 2000). In our case
there are n = 301 test words, for each word w; there
are k; possible superordinates of concept c¢;, the leaf-
concepts w; belongs to. We define as ¢;; the jth su-
perordinate of ¢; and ¢;; the highest scoring candidate
according to the results of the experiment; i.e., the most
informative superordinate. The goal in a ranking prob-
lem is to find good scoring functions F(c;;); i.e., func-
tions that assign a score to ¢;; that is higher than the
score for the other candidates c;;. More precisely we are
interested in functions that minimize a ranking loss func-
tion, which counts the number of the time a candidate
¢ij # i1 is scored by F'(.) higher than ¢;1:

RankLoss = Z ZHF(CH) < F(ci5)] (1)

i j>2
where [.] is the indicator function.

Basic scoring functions

We define a set of scoring functions based on known
properties of basic categories. In particular we are in-
terested in properties that can be extracted from cor-
pus data or from the taxonomy. Basic categories are
typically expressed by short frequent words (Rosch et
al., 1976). They dominate many subordinate categories
very similar to each other (Gluck & Corter, 1985), hence
if we consider a concept as a random variable whose pos-
sible outcomes are its children concepts then this vari-
able should be characterized by high entropy. For ex-
ample, a concept like “tree”, which dominates several
kinds of trees, many of which have similar frequencies
(oak, pine, elm, redwood, etc.), has a higher entropy
than “entity” which dominates very dissimilar things.
The information-theoretical interpretation of the basic
level leads also to a characterization of good superordi-
nates as those which provide the greatest reduction in



Ranking function
Score | L H FR LR PMI SD
RA 444 59.1 616 704 79.0 87.0
EM 12.0 249 26.2 359 46.5 56.1

Table 3. Results of all the ranking functions.

uncertainty about the target noun, or that are strongly
correlated with the noun. Thus, we also introduce two
functions that implement this intuition. Finally we no-
ticed from the participants’ data that preferred superor-
dinates are often low-level classes and we define a feature
also for this notion. We denote with w; a test word, with
c; its word sense, with c;; one of the superordinates of
c¢; and with w;; the first noun in the synset c;;. The
following are the basic features we used to build scoring
functions:

1. FR(c;j): frequency of w;;
2. L(c;5): number of characters of w;;

3. H(cij): entropy of ¢  calculated  as
— > Plcijr)log P(ciji);  cije is a child of ¢,

.\ _ _ counts(cijk)
and P(C'Uk) T >, counts(cijr)

4. PMI(c;;): point-wise mutual information between w;
and w;;

L(H.)
L(H2)

5. LR(c;j): likelihood ratio —2log
6. SD(c;;): length of the shortest path from ¢; to ¢;;

Frequencies in (1) are collected using “Yahoo!”. For
(3) we used frequencies from the Brown corpus for all
words in Wordnet (plus a smoothing count of 1) and
added the counts of each word to all its superordinates.
Functions (4) and (5) are designed to capture how much
the frequencies of two words are correlated. Point-wise
mutual information measures how much information one
word contains about another word, it is computed as

I(w;j,w;) = log #Pw(wji) Function (5) formulates
a log-likelihood chi-squared statistic comparing the hy-
pothesis that the distributions of w; and w;; are in-
dependent (H;) against the hypothesis that they are
dependent (Hz). The frequencies for (4) and (5) were
also computed from “Yahoo!”. For (6) we measured the
distance in edges of the shortest path between ¢; and
ci;." Each of these functions implicitly defines a rank-
ing by assigning a score to each concept. For example,
PMI(garbage,waste) = 2.9, while PMI(garbage,material)
= 1.4. Using PMI “waste” is ranked higher than “mate-
rial” with respect to the noun “garbage”.

Evaluation

The accuracy of each ranking function is evaluated by
computing its ranking error on the experimental data.

"Wordnet’s nominal taxonomy is not a tree since there
exists many concepts with more than one parent, to find the
shortest path we used Dijkstra’s algorithm.

Since each word can have a different number of cate-
gories and there are a few cases in which there are two
correct answers, i.e., two highest scoring classes, we com-
puted the ranking error rate with the following variant
of Equation 1 which is used for multi-label ranking prob-
lems (Schapire & Singer, 2000):

ki

> IF(ea) < Fley)] @)

j>2 7"

1
Ep=—
n

where |¢;1| is the number of correct answers for word
w; and Z; = |¢;1|(k; — |ein]). For word length (2), and
distance (6), we used the negative of these values because
we prefer short words and low classes. In Table 3 we
report ranking accuracy, RA = (1 — Er)*100, and also
the fraction of times the correct answer is the top scoring
superordinate, or ezact match (EM).

Length (L) provides the worst ranking function. Par-
ticipants don’t always prefer short nouns as their an-
swers. Entropy (H) and frequency (FR) are consider-
ably more accurate, 59.1% and 61.6% ranking accuracy,
24.9% 26.2% exact match accuracy. Likelihood ratio
(LR), RA=70.4%, EM=35.9%, and particularly mutual
information (PMI), RA=79%, EM=46.5%, capture even
more robust regularities in the data. A good super-
ordinate is likely to be characterized by a strong dis-
tributional correlation with the noun and, even more,
by the reduction in uncertainty which provides with re-
spect to the target noun. Finally, the evaluation shows
that distance (SD) is the most reliable ranking function:
RA=87%, EM=56.1%. People often find the most in-
formative levels to be among the most specific superor-
dinates, 82% of the times the preferred superordinates
is within two categories above the noun. This is even
more surprising considering that participants saw a list
of superordinate terms in randomized order.

Discussion

The most informative superordinates are characterized
by well-known properties of basic levels; 83.3% of the
time the output of at least one of the ranking functions
is the same as the correct answer. There might be a
model which combines the individual sources of informa-
tion and fits the experimental data more accurately. A
simple way of combining different ranking functions is by
defining a new function which combines the predictions
of the individual functions as a weighted sum yielding the
posterior probability of a superordinate c;; given a set
of scoring functions F={FR, L, H, PMI,LR,SD} (Flo-
rian & Yarowsky, 2002):

> per AFTankr(cij) (3)

P(C”‘f) = > D per ArTankr(cij)

where A is a vector of parameters adjusted to weigh
each function individually in order to maximize accuracy.
We adjusted A with a line search using as development
data the results for the 213 words of the pilot study.
Unfortunately this method doesn’t work, RA=86.8%),
EM=58.6%, which is comparable to the distance mea-
sure but not better. The problem is that the different



functions are all strongly correlated. This fact can be
verified by comparing the individual functions outcomes;
i.e., success or failure in predicting the true superordi-
nate of a noun. The pairs of functions with highest co-
efficient of correlation are SD and PMI (p = 0.538), FR
and LR (p = 0.527), L and FR (p = 0.4227) etc. Because
of this high degree of correlation, and because there is a
strong bias for specificity, the simple combination model
is forced to put so much weight on the distance feature
that the others rarely make a difference.®

Given the specificity bias, an interesting question is
when do people decide to use a more general class? In-
terestingly a measure that is correlated with the partic-
ipants’ use of a more general superordinate is when the
different functions predict conflicting categories. This
uncertainty can be measured using entropy; e.g., for the
noun “remembrance” the six functions predict 5 times
“memory” (the correct class) and once “ability”, thus the
entropy is low (0.65), in this case participants chose the
most specific superordinate. Entropy of the predictions
and presence of a generalization are positively correlated
(p = 0.18). Uncertainty in this case indicates that there
is no obvious most informative candidate. In such cases,
often the preferred superordinate can be associated with
at least one of the identified properties. However, the
specific choice seems to involve complex semantic and
cultural inferences triggered by the superordinate term.
For example, “person” is used for nouns such as “abo-
rigine” and “alcoholic”, it is possible that participants
in these cases avoid the use of terms with strong cul-
tural connotations such as “primitive” or “drunkard”
(but “trouble shooter” is a “repairman”). General terms
are also used when the alternatives presuppose some
technical knowledge; e.g., “plant” instead of “rhododen-
dron” for “azalea” (but “flower” for “chrysanthemum”)
and “animal” instead of “placental” for “anteater” (but
“bear” for “grizzly”). Further research will be necessary
to gain a better understanding of these issues.

Conclusion

We investigated the coverage and properties of informa-
tive superordinates using statistics from a corpus of word
frequencies and associations. We found that for a vast
fraction of nouns humans have converging preferences
about which superordinate is more informative. In little
more than half of the cases the most informative class
is the most specific one. Informative superordinates are
characterized by properties of basic concepts such as fre-
quency and association measures, however a complete
understanding of the determinants of the basic-level will
require appealing to principles beyond orthography, fre-
quency, and hierarchical structure. For example, causal
knowledge and pragmatic principles are also relevant.
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