Levels for Conceptual Modeling

Claudio Masolo

Laboratory for Applied Ontology, ISTC-CNR, Trento, Italy masolo@loa-cnr.it

OntoCom @ ER - November 2011

1 Isa and inheritance

- *Abstraction (specification)*: starting from a given domain, objects are grouped in classes according to the properties (attributes) they have in common:
 - ▶ more *general* a class is, *less* properties its instances share;
 - ▶ more *specific* a class is, *more* properties its instances share.
- Inheritance has no problems if we consider this basic intuition.

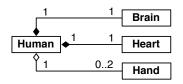
2 Difficulties with isa and inheritance /1

• Overriding. Statue → AmountOfMatter but the price of statues could be different from the price of mere amounts of matter.

 $\texttt{Employee} \to \texttt{Person}$ but the phone number of an employee could be different from his/her personal one.

- Hiding/blocking. Student \rightarrow Person but Student has no Weight. Employee \rightarrow Person but Employee has no HomePhone.
- Multiple inheritance: conflicting attributes + ambiguous inheritance. Attributes/methods may be declared in different superclasses.
 WorkingStudent → Employee and WorkingStudent → Student but room of John when employee ≠ room of John when student.
 Quacker → Person and Republican → Person but Nixon as

quacker \rightarrow person and kepublican \rightarrow person but with quacker is pacifist while as republican is not.


3 Difficulties with isa and inheritance /2

- Counting. Suppose Customer → Person and Customer has the additional (w.r.t. Person) attribute CustomerCode. In addition, suppose that the same person, say John, is a customer of different companies.
 - ▶ We cannot *count* persons to count customers, what do we count then?
 - Customer codes seem to *identify* customers, i.e. customers have an unique code while a person that is a customer of different companies has different codes. Then which objects (of the domain) customer codes identify?

4 General questions

- Are the previous difficulties symptomatic of isa overloading/misusing?
- Is it possible to find an alternative (with respect to Isa and taxonomies) mechanism to *structure* classes (object types) that
 - ▶ is general as Isa is,
 - ▶ it is compatible with Isa,
 - ▶ allows for a controlled inheritance mechanism,
 - does not suffer of the previous difficulties?

5 Parthood (aggregation)

- Each human necessarily has exactly one brain, exactly one heart, and at most two hands (hands are not necessary for humans).
- Some proposals consider a further distinction: humans have necessarily *specific* brains but not *specific* hearts (heart transplantation).
- Some proposals manage attribute inheritance through parthood.
- Less addressed question: is it enough to have a brain and an heart (and maybe two hands, one trunk, etc.) to have an human?

6 Constitution and change

- Statues are constituted by amounts of matter.
- Statue → AmountOfMatter, i.e. are statues amounts of matter?
 - Problem. Statues can *change* their material supports across time (note that this is not migration).
- AmoutOfMatter 1 → Statue, i.e. are amounts of matter part of statues?
 - ▶ Problem. *Extensionality* of parthood:

 $\mathsf{PP}xy \to \exists z (\mathsf{P}zy \land \neg \mathsf{O}zx)$

7 Roles again /1

- Are the following entities individuals objects?
 - 1. 'The president of Italy'
 - 2. 'The director of the Berlin Philharmonic"
 - 3. 'The Amazon customer #125678'
- General vs. specific dependence: persons that 'represent' (1) and (2) can change trough time while (3) is always related to the same person.

8 Roles again /2

- Customer \rightarrow Person and President \rightarrow Person?
 - Migration problems + presidents can be represented by different persons at different times.
 - Are the instances of Person just customers, students, etc., i.e. is Person an abstraction from Customer, Person, etc.?
- Person ¹→ Customer and Person ^{*}→ President?
 - Extensionality: what makes the difference between a person and a customer (similarly for presidents)?
 - **1.** The property of being enrolled in an university: properties, tropes, relators, or ... must be introduced in the domain.
 - "[A]n object is implemented by multiple instances which represent its many faceted nature. Those instances are linked together through aggregation." (Al-Jadir & Leonard, 1999)

9 General idea

- Follow a multiplicative approach that puts change at the core of the analysis and generalizes parthood to account for:
 - ▶ hearts are *aggregations* of, but different from, pluralities of cells;
 - ▶ the Amazon customer #125678 is different from Claudio;
 - ▶ today, the president of Italy is only *represented* by Napolitano;
 - statues are *constituted* by, but different from, amounts of matt., paperweights are *constituted* by, but different from, pebbles.
- No properties, roles, or relators are necessary.
- Persons are not mereologically included in customers or presidents.

10 Grounding /1

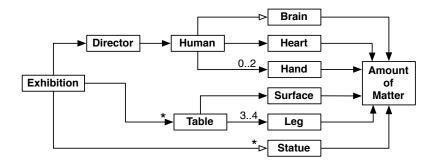
- Intuitively, *x* grounds *y* at *t* if, at *t*, to exist, *y* requires *x* but, vice versa (at *t*) *x* does not require *y*.
- In between *pure existential dependence* and *constitution*.
 - ▶ In \Box (Ey \rightarrow Ex) there are no specific link between x and y.
- The paper proposes a FOL characterization of grounding.

11 Grounding /2

- To exist, customers require both companies and persons (and the relation *customer-of* between them).
- Grounding aims at capturing only the specific existential dependence between customers and persons.

Intuition:

- relations are *directed*;
- there is a difference between "John is a *customer of* Amazon" and "Amazon is a *supplier for* John";
- there is a change in perspective from John seen as a customer of Alitalia to Alitalia seen as a supplier for John;
- ► the *customer* is spatially co-located with John, while the *supplier* is spatially co-located with Alitalia.


12 Specific vs. generic grounding between classes

- T_1 is specifically grounded on T_2 ($T_1 \triangleright T_2$), if every T_1 -object is grounded on a single T_2 -object during its whole life; e.g. Customer \triangleright Person.
 - Often motivated by emergent properties;
 - Customer is now a *rigid* type.
- T_1 is generically grounded on T_2 ($T_1 \triangleright T_2$), if every T_1 -object is grounded on on some, but not necessarily the same, T_2 -object; e.g. Statue \triangleright AmountOfMatter.
 - ▶ Often motivated by different persistence conditions.
 - ▶ Grounding does not necessarily require reduction.
- These definitions can be extended to take into account cardinality constraints.

13 Inheritance through grounding

- Isa and grounding are different from the inheritance mechanism.
- If inheritance helps in "factoring out shared specifications", then attributes can be inherited not only through isa but also through grounding (that actually establishes a strict existential dependence between the instances of grounded types).
- Grounded types are rigid and *disjoint* therefore the inheritance of attributes through grounding can be completely controlled.

14 An example of levels

• Isa can be added, but it is internal to a single level.

15 Conclusions and further work

- I just sketched a different perspective on organizing object types that could be quite helpful in solving some classical problems of inheritance through isa.
- From my point of view, the idea of grounding (and existential dependence) is quite powerful, and it provides a new perspective on *abstraction* that I did not explore:
 - are parts abstracted from (and therefore dependent on) wholes, i.e. *whole to parts* instead of *parts to whole*?

E.g., *brains depend on humans* instead of *humans depend on brains*, brains are *carved out* from humans by an abstraction process.

▶ What about *perspectives on a given object*?