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Abstract. This paper gives a formalization of the various modeling constructs
that support the design of temporal DBMS. We conduct a deep investigation on
evolution constraints, eventually devising a model-theoretic semantics for a full-
fledged model with both timestamping and evolution constraints. Furthermore, we
also show how to express temporal constraints using a subsetof first-order tem-
poral logic, i.e.,DLRUS , the description logicDLR extended with the temporal
operatorsSinceandUntil. The proposed formalization is meant both to clarify the
meaning of the various temporal constructors appeared in the literature and to show
the possibility to perform automated reasoning on temporalconceptual models.

1 Introduction

This paper aims at continuing the research efforts in the Conceptual Modeling community
to model temporal information systems. An analysis of many proposals for temporal
models (aiming in particular at helping designing temporaldatabases) and a summary of
results achieved can be found in a good survey by Jensen and Snodgrass [15]. The main
features of a temporal modeling language can be summarized as:

– Timestamping. The data model should obviously distinguish between temporal and
atemporal modeling constructs. This is usually realized bytemporal marking of classes,
relationships and attributes. In the database, these markings translate into atimes-
tampingmechanism, i.e., attaching lifecycle information to objects and relation-
ship instances, and time-varying values to attributes. Lifecycle information expresses
when and how an object belongs to a class. Time-varying attributes store values to-
gether with when they hold (usually referring to valid time).

– Evolution Constraints. Model-levelconstraints rule the permissible evolution (change
of membership status) of an object along its lifespan phases. For example, an object
that is an active member of a class may become an inactive member of the same
class.Application-levelconstraints ruleobject migration, i.e., the possibility for an
object to change its class membership from one class to another. For example, an ob-
ject in the Student class may later migrate to become an object of the Faculty class.
Complementary aspects of evolution are modeled throughgeneration relationships,
which describe the fact that objects in a class are generatedby other objects in an-
other (possibly the same) class. For example, in a cadastre database, splitting of a
parcel translates into the fact that the original parcel generates two (or more) new
parcels.



The contribution of this paper is to give a formalization of the various temporal con-
structs with particular attention to evolution constraints. Indeed, while timestamping as-
pects have been extensively discussed [2, 3, 8, 10, 16, 19], aclear formalization of evolu-
tion constraints is still missing, despite the fact that in the literature such constraints have
been advocated as useful for modeling the behavior of temporal objects [3, 18, 12, 11, 17,
19]. The proposed formalization relies on a model-theoretic semantics aiming at both for-
mally clarifying the temporal constructs and to support reasoning over them. Concerning
the reasoning aspects, we adopt a description logic approach, best suited for reasoning
on conceptual models [6]. On the other hand, we do not addresshere well known issues
related to the implementation of temporal specifications within a DBMS.

The formalization proposed here builds on previous effortsto formalize temporal con-
ceptual models. Namely, we rely on previous work to define theERV T model [3], a tem-
poral EER model based on a model-theoretic semantics.ERV T is equipped with times-
tamping capabilities and both a linear and a graphical syntax. In this paper we conduct
a deeper investigation on evolution constraints, eventually devising a model-theoretic se-
mantics for a full-fledged model with both timestamping and evolution constraints. Fur-
thermore, we also show how to express temporal constraints using a subset of first-order
temporal logic, i.e., the temporal description logicDLRUS [4]. DLRUS is a combi-
nation of the expressive and decidable description logicDLR (a description logic with
n-ary relationships) with the linear temporal logic with temporal operatorsSince(S) and
Until (U) which can be used in front of both concepts and relations. The choice of extend-
ing DLR is motivated by its ability to give a logical reconstructionand an extension of
representational tools such as object-oriented and conceptual data models, frame-based
and web ontology languages [5–7]. In this paper, we useDLRUS to capture the tempo-
ral constraints useful to design a temporal database in a succinct way while reasoning
techniques1 can be used to derive new constraints.

The paper is organized as follows. The next two Sections recall the characteristics of
the description logic and the temporal conceptual model on which we build our proposal.
Section 4 discusses the evolution constraints we address. Section 5 illustrates the mod-
eling requirements that lead us in elaborating, in Section 6, the formal definition of our
evolution framework. Section 7 concludes the paper.

2 The Temporal Description Logic

As a language for expressing temporal conceptual schemas weuse theDLRUS [4] tem-
poral description logic, which combines the propositional temporal logic withSinceand
Until and the (non-temporal) description logicDLR [5]. DLRUS can be regarded as a
rather expressive fragment of the first-order temporal logic L{since, until} (cf. [8, 13]).

The basic syntactical types ofDLRUS areclasses(i.e., unary predicates, also known
asconcepts) andn-ary relationsof arity ≥ 2. Starting from a set ofatomic classes(de-
noted byCN ), a set ofatomic relations(denoted byRN ), and a set ofrole symbols
(denoted byU ) we hereinafter define inductively (complex) class and relation expres-
sions as is shown in the upper part of Fig. 1, where the binary constructs (u,t,U ,S) are
applied to relations of the same arity,i, j, k, n are natural numbers,i ≤ n, andj does not
exceed the arity ofR.

The non-temporal fragment ofDLRUS coincides withDLR. For both class and
relation expressions all the Boolean constructs are available. The selection expression

1 Even if full DLRUS is undecidable interesting subsets of it are decidable [4].
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Fig. 1. Syntax and semantics ofDLRUS .

Ui/n : C denotes ann-ary relation whose argument namedUi (i ≤ n) is of typeC;
if it is clear from the context, we omitn and write(Ui : C). The projection expres-
sion∃≶k[Uj]R is a generalisation with cardinalities of the projection operator over the
argument namedUj of the relationR; the plain classical projection is∃≥1[Uj ]R. It is
also possible to use the pure argument position version of the model by replacing role
symbolsUi with the corresponding position numbersi. To show the expressive power of
DLRUS we refer to the next Sections whereDLRUS is used to capture various forms of
temporal constraints.

The model-theoretic semantics ofDLRUS assumes a flow of timeT = 〈Tp, <〉,
whereTp is a set of time points (or chronons) and< a binary precedence relation on
Tp, is assumed to be isomorphic to〈Z, <〉. The language ofDLRUS is interpreted in
temporal modelsoverT , which are triples of the formI

.
= 〈T , ∆I , ·I(t)〉, where∆I

is non-empty set of objects (thedomainof I) and ·I(t) an interpretation functionsuch
that, for everyt ∈ T , every classC, and everyn-ary relationR, we haveCI(t) ⊆ ∆I

andRI(t) ⊆ (∆I)n. The semantics of class and relation expressions is defined in the
lower part of Fig. 1, where(u, v) = {w ∈ T | u < w < v} and the operators2+

(always in the future) and2− (always in the past) are the duals of3
+ (some time in

the future) and3− (some time in the past), respectively, i.e.,2
+C ≡ ¬3

+¬C and
2

−C ≡ ¬3
−¬C, for both classes and relations. For classes, the temporal operators
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+, ⊕ (at the next moment), and their past counterparts can be defined viaU andS:

3
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+Ct3
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A knowledge baseis a finite setΣ of DLRUS axioms of the formC1 v C2 andR1 v

R2, with R1 andR2 being relations of the same arity. An interpretationI satisfiesC1 v
C2 (R1 v R2) if and only if the interpretation ofC1 (R1) is included in the interpretation
of C2 (R2) at all time, i.e.CI(t)

1 ⊆ C
I(t)
2 (RI(t)

1 ⊆ R
I(t)
2 ), for all t ∈ T . Various

reasoning servicescan be defined inDLRUS . A knowledge base,Σ, is satisfiableif
there is an interpretation that satisfies all the axioms inΣ (in symbols,I |= Σ). A class
C (or relationR) is satisfiableif there isI such thatCI(t) 6= ∅ (respectively,RI(t) 6= ∅),
for some time pointt. A knowledge base,Σ, logically impliesan axiom,C1 v C2, and
write Σ |= C1 v C2, if we haveI |= C1 v C2 wheneverI |= Σ. In this latter case,
the conceptC1 is said to besubsumedby the conceptC2 in the knowledge baseΣ. A
conceptC is satisfiable, given a knowledge baseΣ, if there exists a modelI of Σ such
thatCI(t) 6= ∅ for somet ∈ T , i.e.Σ 6|= C v ⊥.

3 The Temporal Conceptual ModelERV T

In this Section, the temporal EER modelERV T [2, 3] is briefly introduced.ERV T sup-
ports valid time for classes, attributes, and relationships. ERV T is equipped with both
a linear and a graphical syntax along with a model-theoreticsemantics as a temporal
extension of the EER semantics [7].

An ERV T schema is a tuple:Σ = (L, REL, ATT, CARD, ISA, DISJ, COVER, S, T, KEY),
such that:L is a finite alphabet partitioned into the sets:C (class symbols),A (at-
tribute symbols),R (relationshipsymbols),U (role symbols), andD (domain sym-
bols). ATT is a function that maps a class symbol inC to anA-labeled tuple overD,
ATT(E) = 〈A1 : D1, . . . , Ah : Dh〉. REL is a function that maps a relationship symbol
in R to anU-labeled tuple overC, REL(R) = 〈U1 : C1, . . . , Uk : Ck〉, andk is thearity
of R. CARD is a functionC ×R×U 7→ N× (N∪{∞}) denoting cardinality constraints.
We denote withCMIN(C, R, U) andCMAX (C, R, U) the first and second component of
CARD. In Figure 2,CARD(TopManager, Manages, man) = (1, 1). ISA is a binary rela-
tionshipISA ⊆ (C×C)∪(R×R). ISA between relationships is restricted to relationships
with the same arity.ISA is visualized with a directed arrow, e.g.Manager ISA Employee

in Figure 2.DISJ, COVER are binary relations over2C × C, describing disjointness and
covering partitions, respectively.DISJ is visualized with a circled “d” andCOVER with
a double directed arrow, e.g.Department, InterestGroup are both disjoint and they
coverOrganizationalUnit. The setC is partitioned into: a setCS of snapshot classes
(theS-markedclasses in Figure 2)2, a setCM of M ixed classes(theunmarkedclasses in
Figure 2), and a setCT of temporary classes(theT-markedclasses in Figure 2). A similar
partition applies to the setR. S, T are binary relations overC×A containing, respectively,
the snapshot and temporary attributes of a class (seeS, T marked attributes in Figure 2).
KEY is a function that maps class symbols inC to their key attributes,KEY(E) = A. Keys
are visualized as underlined attributes.

2 We adopt an EER style where classes are in boxes and relationships inside diamonds,ISA are
directed lines, generalized hierarchies could be disjoint(circle with a ’d’ inside) or covering
(double directed lines).
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Fig. 2. An ERV T diagram

The model-theoretic semantics associated with theERV T modeling language adopts
the snapshot3 representation of abstract temporal databases and temporal conceptual
models [8]. Following this paradigm, the flow of timeT = 〈Tp, <〉, whereTp is a set
of time points (or chronons) and< is a binary precedence relation onTp, is assumed to
be isomorphic to either〈Z, <〉 or 〈N, <〉. Thus, standard relational databases can be re-
garded as the result of mapping a temporal database from timepoints inT to atemporal
constructs, with the same interpretation of constants and the same domain.

Definition 1 (ERV T Semantics).LetΣ be anERV T schema. Atemporal database state
for the schemaΣ is a tupleB = (T , ∆B ∪ ∆B

D, ·B(t)), such that:∆B is a nonempty
set disjoint from∆B

D; ∆B
D =

⋃
Di∈D ∆B

Di
is the set of basic domain values used in the

schemaΣ; and ·B(t) is a function that for eacht ∈ T maps:

– every domain symbolDi into a setDB(t)
i = ∆B

Di
.

– Every classC to a setCB(t) ⊆ ∆B.
– Every relationshipR to a setRB(t) of U-labeled tuples over∆B—i.e., letR be an

n-ary relationship connecting the classesC1, . . . , Cn, REL(R) = 〈U1 : C1, . . . , Un :

Cn〉, then,r ∈ RB(t) → (r = 〈U1 : o1, . . . , Un : on〉∧∀i ∈ {1, . . . , n}.oi ∈ C
B(t)
i ).

We adopt the convention:〈U1 : o1, . . . , Un : on〉 ≡ 〈o1, . . . , on〉, when U-labels are
clear from the context.

– Every attributeA to a setAB(t) ⊆ ∆B × ∆B
D.

B is said alegal temporal database stateif it satisfies all of the constraints expressed
in the schema. In particular, in the following we will show how B supports defining the
semantics of timestamping.

3.1 Timestamping

We illustrate timestamping just for classes. Similar ideasare used inERV T to associate
timestamping to both relationships and attributes.

3 The snapshot model represents the same class of temporal databases as thetimestampmodel [15,
16] defined by adding temporal attributes to a relation [8].



ERV T is able to distinguish betweensnapshotconstructs—i.e. constructs which bear
no explicit specification of a given lifespan [14], which we convey by assuming a global
lifespan (see Section 6.1) associated to each of their instances—temporaryconstructs—
i.e. each of their instances has a limited lifespan—ormixedconstructs—i.e. their in-
stances can have either a global or a temporary existence. Inthe following, a class, rela-
tionship or attribute is called temporal if it is either temporary or mixed. The two temporal
marks,S (snapshot) andT (temporary), introduced at the conceptual level, capture such
temporal behavior. The semantics of timestamping can now bedefined as follows:

o∈CB(t) → ∀t′∈T .o∈CB(t′) Snapshot Class
o∈CB(t) → ∃t′ 6= t.o 6∈CB(t′) Temporary Class

The two cases are captured by the followingDLRUS axioms, respectively:

C v (2+C) u (2−C) Snapshot Class
C v (3+¬C) t (3−¬C) Temporary Class

The distinction between snapshot, temporary and mixed constructors has been adopted
in ERV T to avoidoverloadingthe meaning of un-marked constructors. Indeed, a mere
distinction between temporal (using a temporal mark) and atemporal (leaving the con-
structor un-marked) constructors may be ambiguous in the meaning of un-marked con-
structors. In this setting, un-marking is used to model bothtruly atemporal constructs
(i.e., snapshot classes whose instances lifespan is alwaysequal to the whole database
lifespan), as well as legacy constructs (forupward compatibility) where the construct is
not marked as temporal because the original data model did not support the temporal
dimension. The problem is that, due to the interaction between the various components
of a temporal model, un-marked constructors can even purposely represent temporary
constructs. As an example, think of anISA involving a temporary entity (as superclass)
and an un-marked entity (as a subclass). Since a designer cannot forecast all the possible
interactions between the (temporal) constraints of a givenconceptual schema, this ulti-
mately means thatatemporality cannot be guaranteedand this is true even for the upward
compatibility.ERV T is stricter in imposing a snapshot mark to force both atemporality
and upward compatibility. Furthermore,ERV T relies on a reasoning mechanism that in
the aboveISA example would acknowledge the designer of the change from un-marked
to temporary; e.g. a temporary mark is deduced for bothAreaManger andTopManager
in Figure 2 (see [3] for an exaustive list of deductions involving timestamps). This point
of view is also reflected when mappingERV T into a relational schema where both tem-
porary and un-marked constructors are mapped into a relation with added timestamp
attributes, while snapshot constructors do not need any additional time attribute (for full
details on theERV T relational mapping see [1]).

4 Evolution Constraints

Evolution constraints are intended to help in modeling the temporal behavior of an object.
This section briefly recalls the basic concepts that have been proposed in the literature to
deal with evolution, and their impact on the resulting conceptual language.

Status[18, 9] is a concept associated to temporal classes to describe the evolving
status of membership of each object in the class. In a generictemporal setting, objects
can be suspended and later resumed in their membership. Fourdifferent statuses can be
specified, together with precise transitions between them:



– Scheduled. An object is scheduled if its existence within the class is known but its
membership in the class will only become effective some timelater. For example, a
new project is approved but will not start until a later date.Normally, each scheduled
object will eventually become an active object.

– Active. The status of an object is active if the object is a full memberof the class. For
example, a currently ongoing project is an active member, attime now, of the Project
class.

– Suspended. This status qualifies objects that exist as members of the class, but are
to be seen as inactive members of the class. Being inactive means that the object
cannot undergo some operations (e.g., it is not allowed to modify the values of its
properties). For example, an employee taking a temporary leave of absence can be
considered as a suspended employee. A suspended object was in the past an active
one.

– Disabled. It is used to model expired objects in a class. A disabled object was in the
past a member of the class. It can never again become a non-disabled member of that
class (e.g., an expired project cannot be reactivated).

Transitions[11, 12, 18] have been introduced to model the phenomenon calledobject
migration. A transition records objects migrating from asourceclass to atarget class.
At the schema level, it expresses that the instances of the source class maymigrateinto
the target class. Two types of transitions have been considered:dynamic evolution, when
objects cease to be instances of the source class, anddynamic extension, otherwise. For
example, we could specify a dynamic evolution between the class of Undergraduate stu-
dents and the class of Postgraduate students, while a dynamic extension could model the
transition between the class Students and the class Employees (assuming an employee,
formerly a student, may migrate back and become a student again).

Generationrelationships [18] express that (sets of) objects in a target class may be
generated from (sets of) objects in a source class. The same class may serve as source
and target class. While transitions involve object instances bearing the same oid, object
instances linked by generation relationships necessarilybear different oids. Depending
whether the source objects are preserved (as member of the source class) or disabled,
we distinguish between aproductionand atransformation, respectively. For example, a
transformation relationship,Give, betweenOrange andJuice specifies that oranges
are transformed into orange juice. Cardinality constraints can be added to specify the
cardinality of sets involved in a generation (e.g., no more than 5 oranges for 1 juice).

Cross-Timerelationships [19, 17, 18] describe relationships betweenobjects that do
not exist at the same time and possibly not at the time the relationship is asserted. There
are many examples of these relationships, consider, for example, a relationship “biogra-
phy” between an author and a famous person already dead, or the relationships “grand-
parent” that holds even if the grandparent passed away before the grandchild was born,
and could be asserted even when either the grandparent or thegrandchild do not exist
anymore.

5 Modeling Requirements

This Section illustrates the requirements that are frequently advocated in the literature on
temporal data models. These requirements are not so obviouswhen dealing with evolving
objects. The formalization carried out in this paper is mainly motivated by providing a
data model able to respect these requirements also in presence of evolving objects.



– Orthogonality. Temporal constructs should be specified separately and indepen-
dently for classes, relationships, and attributes. Depending on application require-
ments, the temporal support must be decided by the designer.

– Upward Compatibility. This term denotes the capability of preserving the nontem-
poral semantics of conventional (legacy) conceptual schemas when embedded into
temporal schemas.

– Snapshot Reducibility. Snapshots of the database described by a temporal schema
are the same as the database described by the same schema, where all temporal con-
structs are eliminated and the schema is interpreted atemporally. Indeed, this property
specifies that we should be able to fully rebuild a temporal database by starting from
the single snapshots.

Orthogonality affects mainly timestamping [18] andERV T already satisfies this prin-
ciple by introducing temporal marks that could be used to specify the temporal behavior
of classes, relationships, and attributes in an independent way.

Upward compatibility and snapshot reducibility are strictly related. Considered to-
gether, they allow to preserve the meaning of atemporal constructs. In particular, the
meaning of classical constructs must be preserved in such a way that a designer could
either use them to model classical databases, or when used ina genuine temporal setting
their meaning must be preserved at each instant of time.

6 Formalizing Evolving Objects

The proposed formalization is based on a model-theoretic semantics and a correspondent
set of axioms expressed using the temporal description logic DLRUS . This will give us
both a formal characterization of the temporal conceptual modeling constructs, and the
possibility to use the reasoning capabilities ofDLRUS to reason over temporal schemas.
The model-theoretic semantics we illustrate here for the various evolution constraints is
an extension of the one developed for the modelERV T , introduced in Section 3.

6.1 Status Classes

The evolution in the membership of an object to a temporal class is reflected in the chang-
ing values of the status of the object in the class. This evolution obeys some rules that
give rise to a set of constraints. This Subsection specifies these constraints.

Let C be a temporal (temporary or mixed) class. We capture status transition of mem-
bership inC by associating toC the followingstatus classes: Scheduled-C, Suspended-C,
Disabled-C. In particular, status classes are represented by a fixed hierarchy (Figure 3)
that classifies theC instances according to their actual status. To preserve upward com-
patibility we do not explicitly introduce an active class, but assume by default that the
name of the class itself denotes the set of active objects. i.e.,Active-C ≡ C. We can as-
sume that the status classes are created automatically by the system each time a class
is declared temporal. Thus, a designer is not forced neitherto introduce nor to manipu-
late status classes: (s)he can be aware only of active classes while status classes can be
completely transparent to him/her.

Note that, since membership of objects into snapshot classes is global, the notion of
status classes does not apply to snapshot classes.



Top S

Exists-C

Scheduled-C

Disabled-C

C T Suspended-C

d

d

Fig. 3.Status classes.

To capture the intended meaning of status classes, we define ad-hoc constraints and
then prove that such constraints capture their evolving behavior as described in the lit-
erature [18, 9]. First of all, disjointness andISA constraints between statuses can be de-
scribed as illustrated in Figure 3, whereC is marked as a temporary class whileTop is
supposed to be snapshot4. Other than hierarchical constraints, the intended semantics of
status classes induces the following rules that are relatedto their temporal behavior:

(EXISTS) Existence persists until Disabled.
o ∈ Exists-CB(t) → ∀t′ > t.(o ∈ Exists-CB(t′) ∨ o ∈ Disabled-CB(t′))

(DISAB1) Disabled persists.
o ∈ Disabled-CB(t) → ∀t′ > t.o ∈ Disabled-CB(t′)

(DISAB2) Disabled was Active in the past.
o ∈ Disabled-CB(t) → ∃t′ < t.o ∈ CB(t′)

(SUSP) Suspended was Active in the past.
o ∈ Suspended-CB(t) → ∃t′ < t.o ∈ CB(t′)

(SCH1) Scheduled will eventually become Active.
o ∈ Scheduled-CB(t) → ∃t′ > t.o ∈ CB(t′)

(SCH2) Scheduled can never follow Active.
o ∈ CB(t) → ∀t′ > t.o 6∈ Scheduled-CB(t′)

DLRUS is able to fully capture the hierarchical constraints of Figure 3 (see [3] for more
details). Moreover, the above semantic equations are captured by the followingDLRUS

axioms:

(EXISTS) Exists-C v 2
+(Exists-C t Disabled-C)

(DISAB1) Disabled-C v 2
+Disabled-C

(DISAB2) Disabled-C v 3
−C

(SUSP) Suspended-C v 3
−C

(SCH1) Scheduled-C v 3
+C

(SCH2) C v 2
+¬Scheduled-C

As a consequence of the above formalization, scheduled and disabled status classes can
be true only over a single interval, while active and suspended can hold at set of intervals
(i.e., an object can move many times back and forth from active to suspended status and
viceversa). In particular, as a logical consequence from the above axioms we have:

4 A similar diagram holds whenC is an unmarked, i.e. mixed, class.



(SCH3) Scheduled persists until active:Scheduled-C v Scheduled-C U C. Together with
axiom (SCH2), we can conclude thatScheduled-C is true just on a single interval.

(SCH4) Scheduled cannot evolve directly to Disabled:Scheduled-C v ⊕¬Disbled-C.
(DISAB3) Disabled was active but it will never become active anymore:

Disabled-C v 3
−(C u 2

+¬C).

In the following we show the adequacy of the semantics associated to status classes
to describe:a) the notions oflifespan, birthanddeathof an object;b) the behavior of
temporal classes involved inISA relationships;c) the object migration between classes;
d) the relationships that involve objects existing at different times (both generation and
cross-time relationships).

Isa vs. status When anISA relationship is specified between two temporal classes, say
B ISA A, then the following constraints must hold between the respective status classes:

1. Objects active inB must be active inA;
2. Objects suspended inB must be either suspended or active inA;
3. Objects disabled inB must be either disabled, suspended or active inA;
4. Objects scheduled inB cannot be disabled inA;
5. Objects disabled inA and active inB in the past must be disabled inB.

The formalization of status classes provided above is not sufficient to guarantee prop-
erties (1-5)5. We need to further assume that the system behaves under thetemporalISA

assumption: Each time anISA between two temporal classes holds (B ISA A), then an
ISA between the respective existence status classes (Exists-B ISA Exists-A) is auto-
matically added by the system. Now, we are able to prove that points (1-5) above are
entailed by the semantics associated to status classes under the temporalISA assumption.

Proposition 1. LetA, B be two temporal classes such thatB ISAA, then properties (1-5)
are true.

Proof.

1. Obviously true sinceB ISA A holds, and bothA, B are considered active.
2. Let o ∈ Suspended-BB(t0), sinceSuspended-B ISA Exists-B, and (by temporal

ISA assumption)Exists-B ISA Exists-A, then,o ∈ Exists-AB(t0). On the other
hand, by (SUSP), ∃t1 < t0.o ∈ BB(t1), and then,o ∈ AB(t1). Then, by (SCH2),
o 6∈ Scheduled-AB(t0). Thus, due to the disjoint covering constraint between active
and suspended classes, eithero ∈ AB(t0) or o ∈ Suspended-AB(t0).

3. Leto ∈ Disabled-BB(t0), then, by (DISAB2), ∃t′ < t0.o ∈ BB(t′). By B ISA A and
A ISA Exists-A, then,o ∈ Exists-AB(t′). By (EXISTS) and the disjointness between
existing and disabled classes, there are only two possibilities at point in timet0 > t′:
(a) o ∈ Exists-AB(t0), and thus, by (SCH2), o ∈ AB(t0) or o ∈ Suspended-AB(t0);

or
(b) o ∈ Disabled-AB(t0).

4. Leto ∈ Scheduled-BB(t0), then, by (SCH1), ∃t′ > t0.o ∈ BB(t′), and byB ISA A,
o ∈ AB(t′). Thus, by (DISAB1) and the disjointness between active and disabled
states,o 6∈ Disabled-AB(t0).

5 We let the reader check that points 2 and 5 are not necessarilytrue.



5. Leto ∈ Disabled-AB(t0) ando ∈ BB(t′) for somet′ < t0, then,o ∈ Exists-BB(t′).
By (EXISTS) and the disjointness between existing and disabled classes, there are
only two possibilities at point in timet0 > t′: eithero ∈ Exists-BB(t0) or o ∈
Disabled-BB(t0). By absurd, leto ∈ Exists-BB(t0), then by temporalISA assump-
tion,o ∈ Exists-AB(t0), which contradicts the assumption thato ∈ Disabled-AB(t0).

Please note that, as far as disjointness between classes is considered, this constraint
just involves active classes. Thus no further constraints need to be specified.

Lifespan Here we define the lifespan of objects belonging to a temporalclass, to-
gether with other related notions. In particular, we define EXISTENCEC , L IFESPANC ,
ACTIVEC , BEGINC , BIRTHC and DEATHC as functions depending on the object mem-
bership to the status classes associated to a temporal classC.

The existence timeof an object describes the temporal instants where the object
is either a scheduled, active or suspended member of a given class. More formally,
EXISTENCESPANC : ∆B → 2T , such that:

EXISTENCESPANC(o) = {t ∈ T | o ∈ Exists-CB(t)}

The lifespanof an object describes the temporal instants where the object is an active
or suspended member of a given class (thus, LIFESPANC(o) ⊆ EXISTENCESPANC(o)).
More formally, LIFESPANC : ∆B → 2T , such that:

L IFESPANC(o) = {t ∈ T | o ∈ CB(t) ∪ Suspended-CB(t)}

Theactivespanof an object describes the temporal instants where the object is an active
member of a given class (thus, ACTIVESPANC(o) ⊆ L IFESPANC(o)). More formally,
ACTIVESPANC : ∆B → 2T , such that:

ACTIVESPANC(o) = {t ∈ T | o ∈ CB(t)}

The functions BEGINC and DEATHC associate to an object the first and the last appear-
ance, respectively, of the object as a member of a given class, while BIRTHC denotes
the first appearance as an active object of that class. More formally, BEGINC , BIRTHC ,
DEATHC : ∆B → T , such that:

BEGINC(o) = min(EXISTENCESPANC(o))
BIRTHC(o) = min(ACTIVESPANC(o)) ≡ min(L IFESPANC(o))
DEATHC(o) = max(L IFESPANC(o))

We could still speak of existencespan, lifespan or activespan in case of snapshot
classes, but EXISTENCESPANC(o) ≡ L IFESPANC(o) ≡ ACTIVESPANC(o) ≡ T .

6.2 Transition

Dynamic transitions between classes model the notion of object migration from a source
to a target class. Two notions of dynamic transitions between classes are considered in
the literature [18, 12, 11]:dynamic evolution, when an object ceases to be an instance
of a source class, anddynamic extension, when an object is still allowed to belong to
the source. Concerning the graphical representation, as illustrated in Figure 4, we use a
dashed arrow pointing to the target class and labeled with either DEX or DEV denoting
dynamic extension and evolution, respectively.

In a temporal setting, objects can obviously change their membership class. Specify-
ing a transition between two classes means that:



C1 C2DEX/DEV

Fig. 4.Dynamic Transition

1. We want to keep track of such migration;
2. Not necessarily all the objects in the source participatein the migration;
3. When the source class is a temporal class, migration involves only objects “existing”

in the class (i.e., scheduled, active and suspended objects). Thus, disabled objects
cannot take part in a transition.

In the following, we present a formalization that satisfies the above requirements. For-
malizing dynamic transitions as relationships would result in binary relationships linking
the same object that migrates from the source to the target class. Thus, a more natural
choice seems to describe them as classes denoted by eitherDEXC1,C2

or DEVC1,C2
for

dynamic extension and evolution, respectively. More formally, in case of adynamic ex-
tensionbetween classesC1, C2 the following semantic equation holds:

o ∈ DEX
B(t)
C1,C2

→ (o ∈ Exists-C1B(t) ∧ o ∈ Scheduled-C2B(t) ∧ o ∈ C
B(t+1)
2 )

And the equivalent set ofDLRUS axioms is:

DEXC1,C2
v Exists-C1

DEXC1,C2
v Scheduled-C2 u⊕C2

In case of adynamic evolutionbetween classesC1, C2 the source object cannot belong
to the source class till the migration is in place. Thus, the following semantic equation
holds:

o ∈ DEV
B(t)
C1,C2

→ (o ∈ Exists-C1B(t)∧o ∈ Scheduled-C2B(t)∧o ∈ C
B(t+1)
2 ∧

∀t′ ≥ t + 1.(o ∈ C
B(t′)
2 → o 6∈ C

B(t′)
1 ))

And the equivalent set ofDLRUS axioms is:

DEVC1,C2
v Exists-C1

DEVC1,C2
v Scheduled-C2 u⊕C2

DEVC1,C2
v 2

+(C2 → ¬C1)

Please note that, in caseC1 is a snapshot class, then,Exists-C1 ≡ C1. Finally, we
formalize the case where the source (C1) and/or the target (C2) totally participate in a
dynamic extension (at the conceptual level we add mandatorycardinality constraints):

o∈C
B(t)
1 → ∃t′ > t.o∈DEX

B(t′)
C1,C2

Source Total Transition

o∈C
B(t)
2 → ∃t′ < t.o∈DEX

B(t′)
C1,C2

Target Total Transition

The above cases are captured by the followingDLRUS axioms, respectively:

C1 v 3
+DEXC1,C2

Source Total Transition
C2 v 3

−DEXC1,C2
Target Total Transition

In a similar way we deal with dynamic evolution constraints.
An interesting set of logical consequences of the above proposed modeling of dy-

namic transitions is:
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Fig. 5. Production and transformation generation relationships.

1. The classesDEXC1,C2
andDEVC1,C2

are temporary classes (actually, they are instan-
taneous).
Indeed, leto ∈ DEX

B(t)
C1,C2

, theno 6∈ C
B(t)
2 ando ∈ C

B(t+1)
2 , thus,o 6∈ DEX

B(t+1)
C1,C2

.

Note that, the timet such thato ∈ DEX
B(t)
C1,C2

records when the transition event hap-
pens. Similar considerations apply forDEVC1,C2

.
2. Objects in the classesDEXC1,C2

andDEVC1,C2
cannot be disabled asC2.

Indeed, sinceDEXC1,C2
v ⊕C2, i.e. objects inDEXC1,C2

are active inC2 starting
from the next point in time, then by property (DISAB3),DEXC1,C2

v ¬Disabled-C2.
The same holds forDEVC1,C2

.
3. The target classC2 cannot be snapshot (it becomes temporary if all of its members

are involved in the migration).
This is a direct consequence of the semantics of transitionswhere the migrating ob-
ject cannot be a member of the target class before the transition happens.

On the other hand, a logical consequence of dynamic evolution (in addition to the ones
stated above) is that the source class,C1, cannot be snapshot (and it becomes temporary
if all of its members are involved in the migration). Indeed,an object evolving fromC1

to C2 ceases to be a member ofC1.

6.3 Generation Relationships

Generation relationships [18] represent processes that lead to the emergence of new in-
stances starting from a set of instances. Two distinct generation relationships have been
introduced:production, when the source objects survive the generation process;transfor-
mation, when all the instances involved in the process are consumed. At the conceptual
level we introduce two marks associated to a relationship:GP for production andGT
for transformation relationships (see Figure 5). Furthermore, an arrow points to the target
class.

We model generation as binary relationships connecting a source class to a target
one:REL(R) = 〈source : C1, target : Scheduled-C2〉. The semantics ofproduction
relationships, R, is described by the following equation:

〈o1, o2〉 ∈ RB(t) → (o1 ∈ C
B(t)
1 ∧ o2 ∈ Scheduled-C2B(t) ∧ o2 ∈ C

B(t+1)
2 )

Thus, objects active in the source class produce objects active in the target class (possibly
the same as the source class) at the next point in time. Noticethat, the use of status classes
allow us to preserve snapshot reducibility. Indeed, for each pair of objects,〈o1, o2〉, be-
longing to a generation relationshipso1 is active in the source whileo2 is scheduled in
the target. TheDLRUS axiom capturing the production semantics is:



R v source : C1 u target : (Scheduled-C2 u⊕C2)

The case oftransformationis captured by the following semantic equation:

〈o1, o2〉 ∈ RB(t) → (o1 ∈ C
B(t)
1 ∧ o1 ∈ Disabled-C1B(t+1) ∧

o2 ∈ Scheduled-C2B(t) ∧ o2 ∈ C
B(t+1)
2 )

Thus, objects active in the source generate objects active in the target at the next point in
time while the source objects cease to exist as member of the source. TheDLRUS axiom
capturing the transformation semantics is:

R v source : (C1 u⊕ Disabled-C1) u target : (Scheduled-C2 u⊕C2)

Logical consequences of the above formalization are:

1. The target class,C2, cannot be snapshot (it becomes temporary if total participation
is specified).
Indeed, let〈o1, o2〉 ∈ RB(t), then,o2 6∈ C

B(t)
2 ando2 ∈ C

B(t+1)
2 .

2. A generation relationship,R, is temporary.
Indeed, let〈o1, o2〉 ∈ RB(t), then, sinceo2 6∈ Scheduled-CB(t+1)

2 , then,〈o1, o2〉 6∈
RB(t+1).

3. If R is a transformation relationship, then,C1 cannot be snapshot.
Indeed,C1 will be disabled at the next point in time.

6.4 Cross-Time Relationships

Cross-time relationshipsrelate objects that are members of the participating classes at
different times. The conceptual model MADS [18] allows forsynchronizationrelation-
ships to specify temporal constraints (Allen temporal relations) between the lifespan of
linked objects.Historical marksare used in the ERT model [17] to express a relation-
ships between objects not existing at the same time (both past and future historical marks
are introduced).

This Section formalizes cross-time relationships with theaim of preserving the snap-
shot reducibility of the resulting model. We explain this with a concrete example. Let
Biography be a cross-time relationship linking the author of a biography with a fa-
mous person no more in existence. Snapshot reducibility says that if there is an instance
(say,bio = 〈Tulard, Napoleon〉) of theBiography relationship at timet0 (in par-
ticular, Tulard wrote a bio on Napoleon on 1984), then, the snapshot ofBiography at
time t0 (1984 in our example) must contain the pair〈Tulard, Napoleon〉. Now, while
Tulard is a member of the classAuthor in 1984, we cannot say thatNapoleon is
member of the classPerson in 1984. Our formalization of cross-time relationships pro-
poses the use of status classes to preserve snapshot reducibility. The biography example
can be solved by asserting thatNapoleon is a member of theDisabled-Person
class in 1984.

At the conceptual level, we mark withP,=,F (standing for Past, Now and Future, re-
spectively) the links of cross-time relationships. Furthermore, we allow for the compound
marksP,= andF,=, while just specifying= doesn’t add any constraint. Assuming thatR
is a cross-time relationship between classesC1, C2, then, the semantics of marking the
C1 link is:



Person AuthorBiography
P

(a)

Person GFather
P,=

(b)

Employee ProjectWork
F,=

(c)

Fig. 6. Cross-Time Relationships

r = 〈e1, e2〉 ∈ RB(t) → e1 ∈ Disabled-C1B(t) ∧ e2 ∈ C
B(t)
2 Strictly Past (P)

r = 〈e1, e2〉 ∈ RB(t) → e1 ∈ (C1 t Disabled-C1)B(t) ∧ e2 ∈ C
B(t)
2 Past (P,=)

r = 〈e1, e2〉 ∈ RB(t) → e1 ∈ Scheduled-C1B(t) ∧ e2 ∈ C
B(t)
2 Strictly Future (F)

r = 〈e1, e2〉 ∈ RB(t) → e1 ∈ (C1 t Scheduled-C1)B(t) ∧ e2 ∈ C
B(t)
2 Future (F,=)

The correspondingDLRUS formalization is:

R v U1 : Disabled-C1 u U2 : C2 Strictly Past (P)
R v U1 : (C1 t Disabled-C1) u U2 : C2 Past (P,=)
R v U1 : Scheduled-C1 u U2 : C2 Strictly Future (F)
R v U1 : (C1 t Scheduled-C1) u U2 : C2 Future (F,=)

The diagram (a) of Figure 6 shows the modeling of theBiography example assuming
that a biography is written just on dead persons. The diagram(b) shows how to use past
marks to represent theGrandFather relationship assuming that the grandfather can
be either alive or dead for the relationship to hold. Finally, diagram (c) shows the use
of the future mark to model the fact that an employee can work on a project before the
project officially starts. Note that marks can be added to both participating classes. For
example, adding the markF,= on the grandchild link allows for representing the case
where grandparent holds even when the grandchild is not yet born.

Interesting logical consequences of the given formalization hold when strict con-
straints are specified (let assume thatC1 participates with a strict past or future mark):

1. BothC1 and the cross-time relationship are temporary.
2. The lifespan of objects inC1 is strictly before (strictly after for future marks) of the

lifespan of linked objects inC2.

7 Conclusions

In this paper we proposed a formalization of the various modeling constructs that sup-
port the design of temporal DBMS with particular attention to evolution constraints. The
formalization, based on a model-theoretic semantics, has been developed with the aim
to preserve three fundamental modeling requirements: Orthogonality, Upward Compat-
ibility and Snapshot Reducibility. The introduction of status classes, which describe the
evolution in the membership of an object to a temporal class,allowed us to maintain
snapshot reducibility when characterizing both generations and cross-time relationships.



Starting from the model-theoretic semantics assigned to the temporal conceptual con-
structs, we have been able to show how temporal constraints can be equivalently ex-
pressed using a subset of first-order temporal logic, i.e.,DLRUS , the description logic
DLR extended with the temporal operatorsSinceandUntil. Overall, we obtained a tem-
poral conceptual model that preserves well established modeling requirements, equipped
with a model-theoretic semantics, and with the possibilityto perform automated reason-
ing by mapping the conceptual model into a description logictheory.
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