Modeling the Evolution of Objects in
Temporal Information Systems

Alessandro Artale
Faculty of Computer Science — Free University of Bolzano-Bozen

artale@inf.unibz.it
http://www.inf.unibz.1t/artale/

Joint work with:
Christine Parent—Université de Lausanne
Stefano Spaccapietra—EPFL Lausanne

LOA’05 — 14 July 2005

D

Introduction: Motivations

e Give a formalization based on set-theory of the various temporal constructs
with particular attention to evolution constraints.

— Clarify the meaning of the various temporal constructs;
— Verify whether standard modeling requirements are verified;

— Formal definition of quality criteria: Entity/Relationships/Schema consistency,
Entity/Relationships Subsumption, Logical Implication;

— Make explicit the implicit constraints in a model using the notion of logical
implication.

)

Introduction: Modeling Requirements in a Temporal Setting

e Orthogonality. Temporal constructs should be specified separately and indepen-
dently for classes, relationships, and attributes.

e Upward Compatibility. Preserve the non-temporal semantics of legacy conceptual
schemas when embedded into temporal schemas.

e Snapshot Reducibility. A snapshot of the temporal database is described by the
same schema without temporal constructs interpreted atemporally.

— We should be able to fully rebuild a temporal database by starting from the single
temporal snapshots.

©)

Introduction: Temporal Conceptual Constructors

e Timestamping.
The data model should distinguish between temporal and atemporal modeling
constructs.

— Realized by temporal marking of classes, relationships and attributes.

e Evolution Constraints.
1. Object Migration: The possibility for an object to change its class membership;

2. Dynamic Relationships. Either generate objects starting from other objects, or
link objects existing at different times.

(4)

Outline

e Modeling Timestamping

e Modeling Evolution Constraints
— Status Classes
— Transitions
— Generation Relationships

— Cross-Time Relationships

©®)

ERvr. A Conceptual Model with Timestamps

o &Ry IS equipped with both a linear and a graphical syntax along with a model-
theoretic semantics.

e At the syntactical level, ER vy supports timestamping of entities, relationships,
and attributes using two different marks:
® Snapshot constructs: Each of their instances have a global lifetime;

® Temporary constructs: Each of their instances has a limited lifetime.

(6)

The Model-Theoretic Semantics for ERv 7

A temporal database state for an £R- schema T is a tuple B = (7, AB U AE, .BO):

o 7 = (7,,<), is the flow of time, where 7, is a set of time points (or chronons) and
< Is a binary precedence relation on 7;

e AB isanonempty set of abstract objects;
e AL is the set of basic domain values;

e -B() js a function that for each ¢t € 7 maps:
— Every domain symbol D; into a set Df(t) = AP C AL,
— Every class C to a set CB(t) C AB,

— Every n-ary relationship R connecting the classes Ci, ..., C, to a set RB®),
where r € RB®) — (r = (Uy : 01,...,Up t 0n) AVi € {1,...,n}.0; € CPY).
— Every attribute A to aset AB(*) C AB x AE.

()

A Semantics for Timestamps

Employee @ Works-for
) \

(1n)

(1.1)

AreaManager | | TopManager /@
(1,1)

e 0c(0BW) L eT. 0eCBI)
Employee T (O"Employee) M (O Employee)

o rc RBW) sy cT.rec RB®)

Manager _
/&\ Project Resp-for @ Organisational Unit

PN

Department @ InterestGroup

Responsible-for L (D+Responsib1e-for) M (O Responsible-for)

©)

A Semantics for Timestamps

Employee ® Works-for @
) \

(1n)

(1.1)

AreaManager | | TopManager /@
(1,1)

e 0c(0BW) L eT. 0eCBI)
Employee T (O"Employee) M (O Employee)

o rc RBW) sy cT.rec RB®)

Manager @
/&\ Project Resp-for @ Organisational Unit

PN

Department @ InterestGroup

Responsible-for L (D+Responsib1e-for) M (O Responsible-for)

e 0cCBM) 5 3¢ £t o CBW)
Manager C (T —Manager) LI (¢~ —Manager)

e reRB®) _ 3¢ £t .r g RB()
Works-for C (Ot —Works-for) LI (&~ —Works-for)

©)

Name(String) @

Timestamping Attributes

? Salary(Integer) @

—O

Employee @

A

Manager

PN

AreaManager | | TopManager

(1.1)

(1n)

Project

Works-for
<ot

ProjectCode(String)

(1.1)
Manages

@— Organisational Unit

Department InterestGroup

o (0 - CB(t) JAN <07 alz.> = A?(t)) — \V/t/ c 7' <07 a’i> c A?(t’)
Employee C VName.String [(= 1 Name) 1 (= 1 O*Name)

Employee L —|(: 1 D*Salary)

9)

Logical Consequences Involving Timestamps

Employee ® Works-for @
A \

(1,n)
Manager @ : (1n
Project & Resp-for @ OrganisationalUnit @
/Q)\ (1,1) /&\
’ AreaManager & II TopManager & Manages &
(1,1) Department @ | | InterestGroup &

The following are some of the classical cases of logical implications found in the
literature:

e Sub-entities of temporary entities must be temporary.

e A schema is inconsistent if exactly one of a whole set of snapshot partitioning
sub-entities is temporary.

e Participants of snapshot relationships must be snapshot entities when they participate
at least once.

e A relationship is temporary if one of the participating entities is temporary.

(10)

Outline

e Modeling Timestamping

e Modeling Evolution Constraints
— Status Classes
— Transitions
— Generation Relationships

— Cross-Time Relationships

(11)

Evolution Constraints: Status Classes

Describe the evolving status of membership of each object in the class. Four different
statuses can be specified, together with precise transitions between them:

e Scheduled. An object is scheduled if its existence within the class is known but its
membership in the class will only become effective some time later.

e Active. The status of an object is active if the object is a full member of the class.

e Suspended. This status qualifies objects that exist as members of the class, but are
to be seen as inactive members of the class.

e Disabled. It is used to model expired objects in a class.

(12)

A Semantics for Status Classes

Top @

A

=/

Exists-C Disabled-C

A

Scheduled-C

\l/

c @ Suspended-C

(13)

A Semantics for Status Classes
Top @

A

=/

Exists-C

Disabled-C

A

Scheduled-C

\l/

c @

(EX1sTS) Existence persists until Disabled.

0 € Exists-CB®) — V¢’ > t. (0 € Exists-CB(*) v o € Disabled-CB(*))

Suspended-C

Exists-C C O"(Exists-C LI Disabled-C)

(DisaBl) Disabled persists.

0 € Disabled-CB(®) — V¢ > ¢t o € Disabled-CB(*)

Disabled-C C OTDisabled-C

(DisaB2) Disabled was Active in the past.

0 € Disabled-CB(®) — 3¢/ < t.0 € ¢B()

Disabled-C C &7 C

(13)

A Semantics for Status Classes (Cont.)
Top @

A

-/

Exists-C Disabled-C

A
\l/

Scheduled-C c @ Suspended-C

(SusP) Suspended was Active in the past.
0 € Suspended-C8(®) — 3¢’ < t.0 € ¢B()
Suspended-C C &7 C

(ScH1) Scheduled will eventually become Active.
0 € Scheduled-CB®) s 3¢’ > t. 0 € ¢B®)
Scheduled-C C OTC

(ScH2) Scheduled can never follow Active.
o€ CB®) V' > t. 0 ¢ Scheduled-cB(*")
C C O"—Scheduled-C

(14)

Logical Consequences from Status Classes

Top @

A

-/

Exists-C || Disabled-C &

A

\l/

Scheduled-C &

c @

Suspended-C &

(TEmMP) Scheduled, Suspended and Disabled are temporary classes.

(ScH3) Scheduled persists until active.
Scheduled-C C Scheduled-C U/ C.

(ScH4) Scheduled cannot evolve directly to Disabled

Scheduled-C L. ©—Disbled-C.

(DisaB3) Disabled was active but it will never become active anymore

Disabled-C C &~ (CmO*T—cC).

(15

Outline

e Modeling Timestamping

e Modeling Evolution Constraints
— Status Classes
— Transitions
— Generation Relationships

— Cross-Time Relationships

(16)

Evolution Constraints: Transitions

Dynamic Transitions between classes model the notion of object migration from a
source to a target class.
1. Dynamic Evolution, when an object ceases to be an instance of a source class;

e Example. “An area manger can become a top manger while ceasing to be an
area manager.”.

AreaManager - — — - DEV — — —| TopManger

2. Dynamic Extension, when an object is still allowed to belong to the source.

e Example. “An employee can become a manger.”.

Employee |- — — — - DEX — — — —| Manger

(17)

A Semantics for Transitions

Specifying a transition between two classes means that:
1. We want to keep track of such migration;
2. Not necessarily all the objects in the source participate in the migration;

3. When the source class is a temporal class, migration involves only objects “existing”

In the class (i.e., scheduled, active and suspended objects). Thus, disabled objects
cannot take part in a transition.

(18)

A Semantics for Transitions (Cont.)

e \We introduce two classes denoted by either DEX ¢, ¢, OF DEV¢, ¢, TOr dynamic
extension and evolution, respectively.

e Semantics for dynamic extension between classes C, Cs.
0 € DEXg\"), — (0 € Exists-C;5(") Ao € Scheduled-C,5") Ao € Oy)

DEXc,,c, C Exists-C; [Scheduled-C, M GC,.
e Semantics for dynamic evolution between classes C, Cs.
0 € DEVE"), — (0 € Exists-C{5(") Ao € Scheduled-C,5M o € CF A

V' >t+1.(o € Cf(t,) —o0¢ C’f(t,)))
DEV¢, ¢, C DEX¢, ¢, 107 (Cy — =C1)

(19)

Logical Consequences from Transitions

. The classes DEX¢, ¢, and DEV ¢, ¢, are temporary classes (actually, they are
Instantaneous).

. Objects in the classes DEX ¢, ¢, and DEV ¢, ¢, cannot be disabled as Cs.

. The target class C's cannot be snapshot (it becomes temporary if all of its members
are involved in the migration).

. The source class C'; cannot be snapshot when it is involved into a dynamic evolution
(it becomes temporary if all of its members are involved in the migration).

. Dynamic evolution cannot involve sub-classes (Note: this implication doesn’t hold
for dynamic extension).

(20)

Outline

e Modeling Timestamping

e Modeling Evolution Constraints
— Status Classes
— Transitions
— Generation Relationships

— Cross-Time Relationships

(21)

Evolution Constraints: Generation Relationships

Generation relationships represent processes that lead to the emergence of new instances
starting from a set of instances.

1. Production Relationships, when the source objects survive the generation process

(GP marked).

2. Transformation Relationships, when all the instances involved in the process are
consumed (GT marked).

Orange <::::§EEE:E§E::::>

Juice

Y

(22)

A Semantics for Generation Relationships
We model generation as binary relationships connecting a source class to a target one:
REL(R) = (source : (7, target : Scheduled-C,)

e Semantics for Production Relationships
(01,09) € RB®) (01 € Cf(t) A 09 € Scheduled-CoB® A o, € Cg(tﬂ))
R C source : C1 MNtarget : (Scheduled-Cy M ®C5)

e Semantics for Transformation Relationships

(01,00) € RB® —5 (0, € CPY A 0, € Disabled-C,Bt+D A

0 € Scheduled-C,B51 A 0y € C2UHD)

R C source : (C1 M @Disabled-Cy) MNtarget : (Scheduled-C, M & o)

(23)

Logical Consequences from Generation Relationships

1. The target class, C5, cannot be snapshot (it becomes temporary if total participation
IS specified).

2. A generation relationship, R, is temporary.

3. If R is a transformation relationship, then, C'; cannot be snapshot.

(24)

Outline

e Modeling Timestamping

e Modeling Evolution Constraints
— Status Classes
— Transitions
— Generation Relationships

— Cross-Time Relationships

(25

Evolution Constraints: Cross-Time Relationships

Cross-time relationships relate objects that are members of the participating classes at
different times.

e We formalize cross-time relationships with the aim of preserving the snapshot
reducibility.

e Example:
— Biography C Author X Person

— bio = (Tulard, Napoleon) and bio € Biography?B(198%)

(26)

Evolution Constraints: Cross-Time Relationships

Cross-time relationships relate objects that are members of the participating classes at
different times.

e We formalize cross-time relationships with the aim of preserving the snapshot
reducibility.

e Example:
— Biography C Author X Person
— bio = (Tulard, Napoleon) and bio € Biography?B(198%)

e Snapshot Reducibility would imply the following constraints:
— Tulard € AuthorB(1984)

— Napoleon € PersonB(1984)

(26)

Evolution Constraints: Cross-Time Relationships

Cross-time relationships relate objects that are members of the participating classes at
different times.

e We formalize cross-time relationships with the aim of preserving the snapshot
reducibility.

e Example:
— Biography C Author X Person
— bio = (Tulard, Napoleon) and bio € Biography?B(1984)

e Snapshot Reducibility would imply the following constraints:
— Tulard € AuthorB(1984)

— Napoleon € PersonB(1984)

e Solution. Use status classes to preserve snapshot reducibility.

— Napol eon is a member of the Di sabl ed- Per son class in 1984.

(26)

A Semantics for Status Classes

Person w Author

Person @
R:

e Strictly Past (P).
r = (e1,es) € RB®) — ¢, € Disabled-C;B®) Ae, € Cf(t)
R E U1 . DiS&blGd'Cl [U2 . C2.

e Past (P,=)
r = <€1, 62> e RB() e1 € (Cl LI Disabled-Cl)B(t) N ey E Cf(t)
R E Uj_ . (Cl LI Disabled-Ci) [U2 . C2

(27)

A Semantics for Status Classes (Cont.)

F=
Employee @ Project

e Strictly Future (F)
r = <61, 62> e RB®) e; € Scheduled-CiB(t) N\ ey € C2B(t)
R E U1 . Scheduled-C1 [U2 . C2

e Future (F=)
r = <61, 62> e RB() e1 € (01 LI Scheduled-Cl)B(t) N ey E CQB(t)
R E U1 . (C1 LI Scheduled-Ci) [U2 . C2

(28)

Further Work

o £Rvyr Vs. Temporal DB.

— &Ry with just timestamping can be translated into a relational models with
Timestamps [Bassel:MSc-Thesis’02];

— How does the translation change in presence of evolution constraints?

e Reasoning.
— &Ry with evolution constraints is undecidable [Artale: TIME’04];

— &Ry with Timestamping on Entities plus Temporal IC on Entities is decidable
[Artale:et:al:JELIA’02];

— Does reasoning on £Ry 7 with full Timestamping but without Temporal IC
become decidable?

x Hint. Check the decidability of the epistemic description logic S5 x ALC Q7.

(29)

