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Philosophical Prolegomena

The BDI or Belief-Desire-Intention Model of Agency is concerned with formally
modelling practical reason – i.e. with formalizing psychological and philosoph-
ical (mainly coming from the philosophy of mind and of action) accounts and
explanations of agency, action, intention, belief, will, deliberation, means-end
reasoning, etc. Practical reason is embodied in agents (say, humans) capable
of pursuing and thus commiting to a feasible goal (a particular action) through
careful planning of the means, of the preliminary conditions and actions con-
ducing to that goal. A brief overview of these notions will help us to better
grasp them. A more thorough discussion can be found in Searle (cf. [14]) and,
overall, Bratman (cf.[2]).

Beliefs, Desires, Intentions

Desires, intentions and beliefs are said to be intentional mental states (as op-
posed to, say, pain or pleasure). The latter are assumed to describe our perceiv-
ing the reality – through sense data. They encompass our (common-sense or
subtle and theoretical) knowledge about the world (be it external or internal).
Together they form what is called a conceptual scheme. They are subject to
revision, meaning that they can change (can be rejected or added) The former,
that is, desires and intentions, can be seen as creatures of more or less the same
kind, albeit with some subtle differences. For desires consist in our willing a
certain state of affairs (or possible world) to obtain, while intention is more con-
cerned with our committing ourselves to obtain this state of affairs otherwise
called goal.

Deliberation

By deliberation we understand what the literature calls the practical syllogism –
our inferring an intention from a a set of beliefs and desires. That is, the choice
of a feasible desire. A decision consists in the last step of this inference by which
we choose one among a myriad of desires and potential intentions and is thus a
notion closely knit to that of intention. An action is (intuitevely) defined, if at
all, as the execution, effect or consequence of a decision (what is executed). It

v



vi PHILOSOPHICAL PROLEGOMENA

can be intentional, if immediate consequence of an intention

Planning

By planning we understand the drawing of a certain sequence of decisions (i.e.
means-end reasoning) to attain a goal, for that may not be simple affair and
may require a big number of decisions and actions to be performed. We can
also say that intentions are partial-plans, for they determine the decisions that
compose them.

Practical Reason

Hence, practical reason or will consists in the combination of deliberating and
planning. We can now state the important facts that hold (according to BDI

theory) in the realm of practical reason:

• Desires and beliefs range over states of affairs, while intentions range over
actions and by extension, plans.

• Intentions are persistent, whereas desires can be dropped at any time.

• Intentions need not be holded forever.

• Intentions drive means-end reasoning.

• Beliefs constrain desires.

• Intentions constrain future deliberation and planning.

• Intentions influence beliefs upon which future practical reason is based.

• Intentions imply a degree of commitment to a goal.

• Intentions, beliefs and desires are required to be consistent. Beliefs are
required to be consistent with other beliefs. Intentions with goals and
beliefs and goals (analogously) with beliefs and intentions. We can thus
say (so to speak) that the former are strongly consistent while the latter are
weakly consistent 1. This condition is assumed to imply that of rationality.

• Intentions, beliefs and desires need not be complete or, to put it simply,
all-encompassing 2.

• Beliefs are subject to revision.

• Intentions and hence plans can be reconsidered.

1Hence, formally, any theory representing them through modal or non modal formulae has
to be consistent.

2Again, the theory need not be complete nor decidable.
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Agents

We are now capable of saying what is an agent in the most general case. By it
we understand an entity (a moral or a legal person, a computer program) that
is capable of reacting to a certain environment through its performing a certain
number of actions over which it can exert some kind of control. Or equivalently,
that has some kind of will – i.e. a practical reason, and thus mental states, as
well as the capability both of deliberating and planning. We say further that
an agent is rational if his actions, decisions, plans and intentions are consistent
or coherent with his beliefs and desires (meaning by that, not contradictory)3.
There are three main types of agents, following their commitment strategies,
namely:

• Blindly-minded agents are agents that are blindy over-commited to their
basic beliefs and intentions or desires, which they never put in question
nor revise. They can be seen as bold, or better, as fanatical agents. They
follow a single, identical, plan under all situations, under all states of
affairs (even though the surrounding world may change).

• Single-minded agents are agents whose (derived) intentions may change
due to belief revision. They are thus cautiously commited to their inten-
tions. They can be seen as cautious agents. They are able to modify a
plan if needed.

• Open-minded agents are agents that revise their beliefs and that change
both their desires and derived intentions accordingly. They are thus under-
commited to their intentions. These are over-cautious and hesitating
agents. They can modify a plan or just build one anew.

Historical Remarks

Historically, this theory was first conceived by Aristotle in his Ethica Nichoma-
chea and De Anima. According to him, practical reason is analog to theoret-
ical reason. Practical reason (tò logistikón) is structured as follows: Sensation
(áısthesis) gives rise (through imagination and memory) to desire (órexis) – as
concepts or ideas alike by the understanding. Desires are then moulded into as-
sertive action (into intention) through decision (proháıresis) – like judgements
do with concepts. Finally deliberation (boūlēsis) enhances decision-making by
applying beliefs or knowledge to bare desire and to intention by means of a prac-
tical syllogism (syllogismós pragmatikós) between beliefs, desires and intentions
– like theoretical syllogisms. Finally, desires are irrational (alogikós) and there-
fore shared with animals while decision and deliberation is rational (logikós)

3This is really a necessary but not sufficient condition of rationality, but we prefer to follow
the philosophical tradition on this point.
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4. Little is said though about planning or means-end reasoning. Kant’s essay
Metaphysical Foundations of the Morals and Hume’s Treatise on Human Nature
provide further refinements to Aristotle’s doctrine. A more recent development
can be found in Davidson’s Essays on Actions and Events.

A Useful Scheme

The following table summarizes the relationships that exist between the terms
used, on the one hand, on the philosophical accounts of agency, and the terms
found, on the other, in the description of real-world implementations and in
their formal specification. These analogies are important in that they help us to
understand which are the concepts that the formal operators and actual software
architectures capture and will be henceforth very useful. Note that goals are
not sensu stricto equivalent to desires, because goals depend on desires and
overall on intentions – the latter are necessary but not sufficient conditions of
the former 5.

Philosophy Belief Desire Intention Agent
Theory Belief Goal Intention Agent

Practice KB Event Running Plan Embedded System

4It goes by itself that this characterization of practical reason is somewhat outdated, for
animals are also capable of deliberating and of deciding up to some point – rationality is,
again, quite a difficult concept to grasp.

5One may want, by way of a whim, to become a car racer, but that does not imply our
having that as a goal, since whims usually wane away quickly!



Chapter 1

Rao and Georgeff’s BDI

Logics

We develop here in detail Rao and Georgeff’s version of BDI logics as defined
in [12], and which provide the common basis upon which all the contemporary
accounts (mainly focused in MAS) are built. We will concentrate on their syntax
and their basic semantics.

BDI logic are a family of temporal/doxastic/epistemic logics, i.e. a kind of
modal logics. Temporal logics were developed mainly as a formal validation tool
for dynamic systems. That is, as an a posteriori means to model (to formally
represent) a dynamical system (intuitevely a software platform or environment
whose state may change or evolve through time) in order to prove that it veryfies
some critical properties (like mutual exclusion and the queueing of parallell,
concurrent, processes consuming the same ressource). This technique is called
model-checking, for it builds a model M from both the formal description or
representation of the system, a logical temporal theory, say, Γ, and the temporal
statement A that encodes the property, and then checks if M |= Γ implies M |=
A and thus if Γ |= A. In the present case, it proves to be quite a fine tool to model
in the above sense a software agent and by extension, to capture our intuition
of (and thus formalize) our philosophical and psychological accounts of agency.
It can be thought as a simplified version of LORA (Logic for Rational Agents)
in which we do not quantify any more over agents. It models therefore decision-
making in individual agents and drops thier being able to collaborate in view of
a common goal. And as an extension of CTL (Computational Tree Logic), since
worlds are trees to which epistemic and doxastic operators of intention, belief
and goal have been added, giving way to three distinct accesibility relations. As
in the case of propositional alethic modal logic we deal with a whole family of
logics, capturing different properties of the accessibility relations through the
addition of axioms. We assume that the base system is similar to the KD45
system, which is assumed to best capture the notions of belief and knowledge –

1



2 CHAPTER 1. RAO AND GEORGEFF’S BDI LOGICS

i.e. accessibility should be serial (D), transitive (4) and euclidian (5)1 For more
details, we send the reader to Rao and Georgeff’s report (cf. [12]).

The idea that this theory follows can be summarized by a little diagram. The
logics serve to characterize kripke-style models that in thier turn are assumed
to capture (formally) the concepts and notions discussed in the first section.
This has to be bore in mind throughout the whole chapter, however complex
the corresponding intuitive notion may be:

Formal Theory Formal Models Empirical Agent

1.1 Syntax

As already said, BDI comprises both the usual CTL modalities plus epistemic
and doxastic ones. Moreover, The set of formulae is divided in two, those of
state formulae and those of path formulae – i.e. of formulae capable of being
true at solely one instant and formulae capable of being true along a whole
(possibly infinite) sequence of instants.

Definition 1.1.1 The set F of the formulae of BDI logic is defined by the gram-
mar:

• < sort >::= O|E.

1The due axioms are thus:
(K) 2(A → B) → (2A → 2B),
(D) 2A → 3A,
(4) 2A → 22A and
(5) 3A → 23A.
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• < object − var >::= xO
1 |...|x

O
n , n ≥ 0.

• < event − var >::= xE
1 |...|x

E
m, m ≥ 0.

• < pred >::= P1|...|Pk, k ≥ 0.

• < variable >::=< object − var > | < event − var >.

• < atom >::=< pred > (< var >, ..., < var >).

• < state−form >::= succeeded(< event−var >)|failed(< event−var >)
| < atom > |¬ < FS > | < state − form > ∨ < state − form >

|∃x<sort> < state − form > |Bel < state − form >

|Go < state−form > |In < state−form > |optional < path−form > .

• < path − form >::=< state − form > |¬ < path − form >

| < path − form > ∨ < FP > | < path − form > U < path − form >

|3 < path − form > |© < path − form > .

• < form >::=< state − form > | < path − form >.

Notice that the language is two-sorted. Variables of the form xO (i.e. of
type O) range over a set of objects, while those of the form xE range over a
set of events. To simplify things a little, the former will be called variables and
the latter event variables. No constants or function symbols are introduced to
simplify the semantics. The remaining functors are introduced as follows:

Definition 1.1.2 We put:

• A → B =df ¬A ∨ B.

• A ∧ B =df ¬(¬A ∨¬B).

• ∀xSA =df ¬∃xS¬A.

• inevitableA =df ¬optional¬A.

• 2A =df ¬3¬A.

• done(xE) =df succeded(xE) ∨ failed(xE ).

• succeeds(xE ) =df inevitable(© succeded(xE )).

• fails(xE ) =df inevitable(© failed(xE )).

• does(xE) =df inevitable(© done(xE )).

• ⊥ =df A ∧ ¬A.

• > =df ¬⊥.

Intuitively, modal operators like © are read as ’next’, 2 as ’always’, U as
’until’, Bel as ’believes’, In as ’intends’ and Go as ’has as a goal’ or ’desires’.
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Remark 1.1.1 Any formula containing an ocurrence of the inevitable modality
and an action predicate (or likewise β of inevitable) will be called an A-formula
(likewise, a E-formula). A-formulas or E-formulas will be called O-formulas
and written α, β, γ, etc. (lower-case Greek letters). The ’does’ predicate is an
expedient to speak about actions, in which events obtain.

1.2 Semantics

The main idea governing BDI logics model theory is to conceive worlds as
complex structures, i.e. time trees, rather than simple states. This formalizes
reasonably well planning and decision-making. For planning assumes a span of
possibilities to assess. Each time point or instant constitutes a different state
of affairs that can cause branching sequences of effects and that presupposes
a single sequence of causes. Hence time, relatively to an instant t0, is linear
regarding the past and branching regarding the future. This will allow us in
turn to quantify over both their paths and their nodes. Before saying what is a
model we need to define what is a possible world.

Definition 1.2.1 Let T be a set ot time points, ≺ be a total, transitive and
backward-linear relation over T, called the branching time relation and E be a
set of events. A world is a structure w = (Tw,≺w, Sw, Fw) where:

• Tw ⊆ T .

• ≺w=≺� Tw.

• Sw : Tw × Tw → E.

• Fw : Tw × Tw → E.

• Sw , Fw are injective and such that Dom(Sw ) ∩ Dom(Fw) = ∅.

An order can be defined between worlds, namely:

Definition 1.2.2 Let T be a set ot time points, ≺ be a total, transitive and
backward-linear relation over T, called the branching time relation and E be a
set of events. Let w, w′ be two worlds. Then w v w′ iff

• Tw ⊆ Tw′ .

• ≺w⊆≺w′ .

• Sw′ = Sw � Tw′ .

• Fw′ = Fw � Tw′ .

Now we can define models:

Definition 1.2.3 A model is a structure M = (DO , DE , T, W ;≺, I, B, G; Φ)
where:
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• DO is a non-empty set called domain of objects.

• DE is a non-empty set called domain of events.

• T is a non-empty set of time points.

• ≺⊆ T × T is the branching time relation.

• W is a non empty set of worlds over T.

• I ⊆ W × T × W an intention accessibility relation.

• B ⊆ W × T × W a belief accessibility relation.

• G ⊆ W × T × W a goal accessibility relation

• Φ : SR×W×T →
⋃

i∈ IN
℘(Di

O) is an interpretation function for predicate
symbols.

• We denote by C their class.

The following two properties will prove quite useful:

Definition 1.2.4 Let M be a model. An ordered couple (w, t) ∈ W ×T is called
a situation and will be henceforth written wt.

Definition 1.2.5 Let M be a model. A fullpath is a possibly infinite sequence
of situations, noted < wt1, wt2, ... > such that for all i ≥ 0, (ti, ti+1) ∈≺w.

Remark 1.2.1 We note that:

• Worlds are trees, i.e. non-directed, connected and acyclic graphs. In other
words, the (binary) relation ≺ defines a tree structure over the set of time
points.

• We shall note Bw
t the set of belief-accessible worlds, i.e. Bw

t = {w′ ∈
W |(w, t, w′) ∈ B}. And similarly for I and G.

The following fact is also relevant:

Fact 1.2.1 Let Path(w) denote the set of all paths of a world w, for any given
world w in a model M. Then, for any two worlds w and w’ in a model M we
have that w v w′ iff Path(w) ⊆ Path(w′).

Given a model M , the accessiblity relations can satisfy a certain number
of properties. They can, on the one hand, satisfy the properties that any bi-
nary relation can verify, like seriality, transitivity, symmetry, etc. And on the
other hand, they can hold inclusion relations between them, since we are in a
multi-modal framework. Normal inclusion is just set-theoretical inclusion. But
structural inclusion holds between the paths of the worlds, that are time trees,
and is somehow relativized, moreover, to a given time point:
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Definition 1.2.6 Let M be a model and let R, R’ ∈ {I, B, G}. Then: R ⊆struct

R′ iff for any w, w′ ∈ W and any t ∈ Tw, w′ ∈ R′w
t implies that there is some

w′′ ∈ Rw
t such that w′′ v w′.

This latter semantic property is known usually as strong realism, the former
(usual inclusion) being known as realism.

Now, to build a semantics the symbols, beginning with the variables, must
be mapped to models:

Definition 1.2.7 An assignation is a function v : V → DO ∪ DE such that:

v(xS) =

{

d ∈ DO if S = O

e ∈ DE otherwise.

Given v an assignation function, we shall note as usual v∗ the assignation
that coincides with v but over the (first-order) variable x of type O. And
analogously for those of type E (i.e. event variables). Note that the language
does not contain any constant symbol. Next, in order to define truth and validity
we need a satisfaction relation between models and formulae. It will be defined
relatively to an assigation v and a situation wt or a fullpath < wt1 , wt2, ... >

and written |=v
wt

or |=v
<wt0

,wt1
,...>.

Definition 1.2.8 The satisfaction relation is defined by induction on F as fol-
lows – first on path formulas and then on state formulas:

• M |=v
wt

P (x1, ..., xn) iff (v(xO
1 ), ...v(xO

n )) ∈ Φ(P, w, t).

• M |=v
wt

¬A iff M 6|=v
wt

A.

• M |=v
wt

A ∨ B iff M |=v
wt

A or M |=v
wt

B.

• M |=v
wt

∃xOA iff M |=v?

wt
A for some d ∈ DO .

• M |=v
wt

∃xEA iff M |=v?

wt
A for some e ∈ DE

• M |=v
<wt0

,wt1
,...> A iff M |=v

wt0
A.

• M |=v
<wt0

,wt1
,...> ©A iff M |=v

<wt1
,...,> A

• M |=v
<wt0

,wt1
,...> 3A iff for some i ≥ 0 such that M |=v

<wti
,...,> A.

• M |=v
<wt0

,wt1
,...> AUB iff either of these conditions hold:

1. For some i ≥ 0 such that M |=v
<wti

,...> B and for all

0 ≤ j < i, M |=v
<wtj

,...,> A.

2. For any j ≥ 0, M |=v
<wtj

,...> A.

• M |=v
wt0

optionalA iff for some fullpath < wt0 , wt1, ... >,

M |=v
<wt0

,wt1
,...> A.
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• M |=v
wt

succeded(xE) iff for some time point t′, Sw(t′, t) = v(xE).

• M |=v
wt

failed(xE ) iff for some time point t′, Fw(t′, t) = v(xE).

• M |=v
wt

BelA iff for any w′ ∈ Bw
t , M |=v

w′

t
A.

• M |=v
wt

InA iff for any w′ ∈ Iw
t , M |=v

w′

t
A.

• M |=v
wt

GoA iff for any w′ ∈ Gw
t , M |=v

w′

t
A.

The usual definitions of scope of a quantifier or a connective hold. The
same thing applies to substitutions, sub-formulae, free and bound variables. A
formula is thus said to be a sentence exactly when it contains no free variables.
Truth and validity are then defined as usual.

Definition 1.2.9 Let A be a sentence, then:

• A is said to be true in a time point t relatively to a a world w and a model
M iff for any assignation v we have that M |=v

wt
A. In which case we write

M |=wt
A. We can also say, alternatively, that A is true in a situation wt

relatively to a model M , and then extend this notion to fullpaths.

• A is said to be true in a world w relatively to a model M iff for any time
point t in w we have that M |=v

wt
A. In which case we write M |=w A.

• A is said to be true in model M iff A is true in any world w relatively to
M . In which case we write M |= A. We then extend this notion to set of
sentences.

• A is said to be valid in a class C ′ ⊆ C of models iff A is true in any model
of the class. In which case we write C ′ |= A.

• A is said to be valid iff A is valid in any in any model class. In which
case we write |= A.

Which allows us to prove immediately for instance that:

Proposition 1.2.1 |= >UA ↔ 3A.

Definition 1.2.10 Let Γ be a set of sentences and A a sentence. We say that
A is a consequence of Gamma and write Γ |= A iff for any class C ′ ⊆ C we
have that C ′ |= Γ implies that C ′ |= A.

Thanks to this, we can prove, for example, the semantic counterpart of the
modus ponens rule:

Proposition 1.2.2 Γ |= A → B and Γ |= A implies that Γ |= B.
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1.3 An Example

In this example we will build a model M1 satisfying the formula:

In(optional(3(does(eating)))) → Go(optional(3(does(eating))).

And exhibiting the strong realism property – i.e. structural inclusion of
accessibility relations relatively to a situation:

I

G

B

M1

w0 w1

w2

does(eating) does(eating)

t0

t1

t2 t3

t0

t1

t2 t4
t3

Clearly

M1 |=v0

w0t1
In(optional(3(does(eating)))

and

M1 |=v0

w0t1
Go(optional(3(does(eating))).

Note by the way that:

• w2 v w1.

• w0 6= w1.
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• t0 ≺ t1 ≺ t2 ≺ t3 ≺ t4.

That is, that the intention modality is so to speak constraining future desires
(goals) and beliefs.

1.4 Some Correspondence Theory

Correspondence theory treats about the relationships that exist between model
classes and modal formulae. Indeed, modal formulae can capture the properties
of the accesiblity relation associated to its main modality – i.e they prove to be
equivalent to a condition on the models, that can be dubbed its forml meaning.
By adding them as (proper) axioms to a modal logical system we can thus con-
strain the class of models associated to it by some suitable semantics. That is,
define a subclass of models, namely that in which they are valid. The following
table summarizes the equivalences (their proofs can be found in [17] and [10])
for the belief, desire and intention modalities. We leave aside the greatest part
of the temporal modalities (to which no accessibility relation is associated) ex-
ecept inevitably, for α in G-B and I-G stands for an O-formula, true along the
sub-trees (or paths) that have a given time point as root:

Name Modal Formula Scheme Condition on Model
BK Bel(A → B) → (BelA → BelB) B non empty.
BD BelA → ¬Bel¬A B is serial.
B4 BelA → BelBelA B is transitive.
B5 ¬Bel¬A → Bel¬Bel¬A B is euclidian.

IK In(A → B) → (InA → InB) I non empty.
ID InA → ¬In¬A I is serial.
GK Go(A → B) → (GoA → GoB) G non empty.
GD GoA → ¬Go¬A. G is serial.
G-B GoA → BelA G ⊆ B.
I-G InA → GoA I ⊆ G.

G-B* Goα → Belα G ⊆struct B.
I-G* Inα → Goα I ⊆struct G.

We will give a proof of the last equivalence in order to better display the idea
behind. To begin, we need a useful lemma whose proof is given by Wooldridge
(cf. [17]):

Lemma 1.4.1 Let M be a model, wt a situation and α an A-formula. Then, if
M |=v

wt
α and for any world w’, w′ v w, M |=w′

t
α.

Theorem 1.4.1 Let M be a model. Then M |= Inα → Goα iff in every M we
have that I ⊆struct G.

Proof The right-left sense is the easiest. The left-right sense is more subtle.
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(⇐) Suppose that there is a model M0 satifying strong realism and such that
for some world w0 and time point t0 in M0 and some assignation v0 we have
that:

(∗)M0 |=v0

w0t0

Inα

and

(∗∗)M0 6|=v0

w0t0

Goα.

Now, (∗∗) implies that there is some w1 ∈ Gw0

t0
such that 6|=v0

w1t0

α. Which,

since M0 satisfies strong realism, entails that that there is some w2 ∈ Iw0

t0
such

that w2 v w1. But, if w2 ∈ Iw0

t0
, then, by (∗∗) it follows that |=v0

w2t0

α. Hence,

by Lemma 1.4.1, |=v0

w1t0

α. Contradiction. 2

(⇒) We prove it by contraposition. We will build a model M0 (and an assig-
nation v0) that does not satisfy strong realism and that will prove to be a
counter-model of some instance of Inα → Goα. Lets put α = inevitably(3⊥).

I G

w1 w2

w0

¬(inevitably(3⊥))inevitably(3⊥)

t0

t2

t0

t3

t2

t0

>

⊥ >

We can clearly see that
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M0 |=v0

w0t1

Inα

and
M0 6|=v0

w0t1

Goα

Which closes the proof. 2

1.5 Axioms and Proof Theory

As a formal system (Hilbert-type), BDI logics, as any other family of first-order
multi-modal logics, contains all first-order axioms (and theorems) and is closed
by the rules of modus ponens and necessitation. Modalities are distributive over
implication. Moreover, the deduction theorem holds for them. A proof of a
formula A from a set of hypotheses Γ is the usual finite sequence of formulae
where each term is either in Γ, an axiom, or the result of applying a deduction
rule to former terms, and where A is the last term. The deducibility relation
` is defined in terms of it. Theorems are formulae whose set of hypotheses is
empty. We will not insist on these notions, but take them for granted. For more
details, see Padmadahban (cf. [8]).

1.6 Soundness, Completeness, General Remarks

As BDI logics are mainly a modelling tool of agency, they do not need to be
complete. They are however presumably sound 2. Axiom schemata can presum-
ably define different subclasses of models. They are, moreover, undecidable, as
any other first-order logic. We will not insist either in developing a more detailed
account, because that will require to go beyond this simple presentation. See [8]
for results that hold only with respect to Kripke structures and that require our
restricting ourselves to a language without temporal operators. We shall only
say that any of the usual modal (alethic) axiom schemata has its belief, inten-
tion or desire counterpart, written, say, GT (i.e. GT = GoA → A).Modalities
can be further de dicto or de re modalities.

BDI logics provide a logical specification (in the sense that computer sci-
entists and engineers give to this term) of a software agent architecture. The
need for a temporal logic comes from the fact that this system is assumed to be
dynamic in nature. See Wooldridge (cf. [16]) for further insight.

2As is usual in modal logic, completeness and soundness is relative to some class C ′ ⊆ C.
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Chapter 2

BDI Systems – An Informal

Overview

BDI axiom schemata can be given too an intuitive meaning – for they indeed
intend to capture formally (though not exacly), to model (in a broad sense) the
concepts developed in the prolegomena about desires, intentions, goals, beliefs,
actions and agency.

Goals are understood to be desires and no distinction is made between belief
and knowledge (i.e. justified true belief, and a properly speaking different epis-
temic modality) and envelops further all kinds of knowledge whether theoretical
or perceptual. We divide the axioms into three distinct groups:

2.1 Basic Axioms – BA system

Name Modal Formula Scheme Intuitive property

BK Bel(A → B) → (BelA → BelB) Belief implication closure
BD BelA → ¬Bel¬A Belief consistency
B4 BelA → BelBelA Belief positive introspection
B5 ¬Bel¬A → Bel¬Bel¬A Belief negative introspection
IK In(A → B) → (InA → InB) Intention implication closure
ID InA → ¬In¬A Intention consistency

GK Go(A → B) → (GoA → GoB) Goal implication closure
GD GoA → ¬Go¬A. Goal consistency

G-B* Goα → Belα Desire-belief compatibility
I-G* Inα → Goα Intention-desire compatibility

The compatiblity axioms deserve further commentary because they are in-
volved in capturing the constrainment of future beliefs and desires by (present)
intentions. This feature is modelled by structural inclusion (cf. the table sum-
marizing BDI correspondence theory) – by the fact that intention accessible
worlds contain both desire and belief accessible worlds, time being defined by

13
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the ≺ order relationship over instants. The model from example in the preceding
chapter illustrates this property in detail.

2.2 Intention Axioms – IA system

Name Axiom Scheme Intuitive property
A11 InA → Bel(InA) Intention introspection
A12 GoA → Bel(GoA) Goal introspection
A13 InA → Go(InA) Desires about intentions

A14 ∀xE(In(does(xE )) → does(xE) Intentions leading to ac-
tions

A15 ∀xE(done(xE)) → Bel(done(xE)) Awareness of primitive
events

A16 InA → inevitable(3(¬InA)) No infinite deferral prop-
erty

2.3 Commitment Axioms

Name Axiom Scheme Intuitive property

C1 In(inevitable(3A)) → Blind-mindedness
inevitable(In(inevitable(3A))UA) property

C2 In(inevitable(3A)) → Single-mindedness
inevitable(In(inevitable(3A)) property
U(A ∨ ¬Bel(optional(3A)))

C3 In(inevitable(3A)) → Open-mindedness
inevitable(In(inevitable(3A)) property
U(A ∨ ¬Go(optional(3A)))

2.4 The Systems

These are three:

1. BDI1 = BA + IA+C1.

2. BDI2 = BA + IA+C2.

3. BDI3 = BA + IA+C3.

The intuitive idea behind is that BA+IA formalize the concept or notion of
deliberation, and by the same token the relationships that mental states (belief,
desire, intention) bear upon each others. C1, C2, C2 model or describe planning,
or at least the degree of commitment necessary for means-end reasoning.
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2.5 Some Properties

The following follows immediately from the axioms:

Proposition 2.5.1 ` InA → BelA

The following follows immediately from Proposition 2.3 and the axioms:

Proposition 2.5.2 We have:

• ` (GoA ∧ In(A → B)) → GoB.

• ` (BelA ∧ In(A → B)) → BelB.

• ` (BelA ∧Go(A → B)) → BelB.

2.6 Brief Comparison with other Accounts and

Systems

2.6.1 Padmanabhan

Consider the next table proposed by Padmanabhan in [10]. E2 is an important
property, that captures Bratman’s assymetry thesis, that is, the fact that one
may intend something without being aware of it:

Name Modal Formula Scheme Intuitive property

E1 ¬(InA ∧Bel¬A) Intention-belief consistency
E2 InA ∧ ¬BelA Intention-belief incompleteness
E3 BelA ∧ ¬GoA Transference property
E4 InA ∧Bel(A → B) Side effects property

∧¬InA

Now, while E1 and E3 can be added to BA + IA, the addition of either E2
or E4 leads to a contradiction. For instance:

Proposition 2.6.1 BA + IA + E2 ` ⊥.

Proof

1. InA → BelA – Proposition 2.3

2. ¬(GoA ∧ ¬BelA) – 1,PL

3. InA ∧ ¬BelA – E2

4. ⊥ – 2,3,PL 2

But this will mean that the system is inconsistent, something we do not
want – it would turn our system trivial and, furthermore, reduce its models to
an empty class, in other words, a useless modelling tool. So, basic BDI logics
don’t admit the assymmetry thesis.
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Conclusions

1. We ignore if full BDI logics are sound or complete, although we assume
that they are sound. They are, anyway, undecidable.

2. Different axioms convey different properties of agents.

3. Many axioms are counter-intuitive. For instance, axiom I−G∗ is supposed
to capture (through strong realism) future constrainment of goals and
beliefs (regarding actions) by present intentions. But this implies too that
any action that is desired or intended is believed, while a real-world agent
can perform many actions mindlessly (even though they depend on some
broader intention).

4. Agents suffer from logical omniscience (due to the closure of their beliefs
under implication) and from a far too great measure of coherence.

5. The theory has proven uselful as an specification tool of real-world agents,
like the OASIS system (an experimental agent for air traffic, cf. [13]).

6. Not all of Bratman’s provisi and thesis hold – like the assymmetry thesis.

7. BDI logics model only deliberation and not means-end reasoning. This
is somehow a handicap, because planning is an essential part of practical
reason. Woolridge in [17] remedies to this by introducing action modalities
and action operators which lets us define conditional and iterative control
structures.

17
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Annex. Software Agents

2.7 General Description

Sotware agents are embedded reactive systems. They run on a previously or
outwardly defined dynamic environment (as, say, a process) whose state can
change through time deterministically or non-deterministically modyfing it –
i.e. they consume environment variables and their output consists in updating
or modifying them. Their aim is to execute autonomously a certain number of
tasks of a system. For example, in a client/server architecture (i.e. a network)
they may take care of the handling of the clients’ requests or routing, or, again,
of the servers’ task schedules.

What is interesting about them is their providing us of a very simple instance
of agency. In it, the choice of an agent will depend on the environement in which
they will run. A blindly-commited agent will be more appropriate for, say, a
static environment. A single-minded agent will be better for a dynamic (and
overall deterministic) environment disposing of good memory and computation
resources – since deliberation and belief revision functions are quite greedy on
that account. While an open-minded agent can be better for a dynamic envi-
ronment with limited resources and whose states change far too often.

Moreover, while belief can be seen as the agent’s declarative knowledge (and
may involve a call to a knowledge base), the loops constitute the agent’s proce-
dural knowledge. This agents can have internal states stocked in local (in the
agent’s) variables.

The agent specified below will thus capture (albeit differently) the same kind
of concept to which BDI logics point. This section follows closely Wooldridge’s
accounts in [17] and [16].

2.8 Scheme of an Agent

An agent dynamically interacts with a global environment through a constant
feedback:

19
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Agent

Environment

2.9 Formal Definition

We begin by giving a formal definition of basic sotfware agents as processes
running in a system or environement. This in turns take us to define agents
having internal states – like BDI agents. This section is mainly based on [16].

Definition 2.9.1 Let S = {si|i ∈ IN} be a non empty set of states and A =
{αi|i ∈ IN} be a non empty set of actions. Then:

• R ⊆ ℘(IN → S ×A) is a set of alternating sequences of actions and states
called runs.

• RA ⊂ R is the set of runs that end with an action.

• RS ⊂ R is the set of runs that end with a state.

Remark 2.9.1 Runs are usually written as follows, for n ≥ 0:

s0
α0→ s1

α1→ . . .
αn−1

→ sn.

Definition 2.9.2 An environement is a structure En = (S, s0, τ ) where:

• S is a set of states.
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• s0 ∈ S is the initial state.

• τ : RA → ℘(S) is a state transformer function.

• We denote by EN their class.

We can now come to agents and systems (i.e. embedding systems – for
agents can be seen as systems too, although in a broader sense).

Definition 2.9.3 An agent is a function Ag : RS → A that maps runs ending
with a state to actions. We denote by AG their class.

The nature or kind of an agent will therefore vary according to the actual
definition of the function that characterizes it, which may include new parame-
ters. Agents in the general sense are also called standard agents and their class
can be denoted AGs. Agents together with enviroments define a system:

Definition 2.9.4 A system is a structure Sy = (Ag, En) where:

• Ag is an agent.

• En is an environment.

• we denote by SY their class.

The run of an agent is now defined in terms of the environment whose states
it modifies (and implicetely, relatively to a given system):

Definition 2.9.5 Let En = (S, s0, τ ) be a environement, ρ =< s0, α0, s1, α1, ... >

a run. ρ is said to be is the run of an agent Ag in the environement En iff

• e0 is En’s initial state.

• α0 = Ag(e0).

• For any i ≥ 0;
si ∈ τ (< s0, α0, ..., αi−1 >)

and
αi = Ag(< s0, α0, ..., si >).

• We denote their set by R(Ag, En).

• ρ is further said to be a terminated run if τ (ρ) = ∅.

Furthermore, an immediate equivalence relation can be defined over agents:

Definition 2.9.6 Let Ag and Ag’ be agents. Ag is said to be behaviourally
equivalent to Ag’, in symbols Ag ≡beh Ag′, iff for any environment En,

R(Ag, En) = R(Ag′, En).
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As already said, different kinds of agents are obtained through further refin-
ing the definition of the function they compute. BDI agents are, for instance,
state-based agents, that is, agents having a set I of internal states, that change
according to environmental input.

Definition 2.9.7 Let S be a set of states, A a set of actions, I a set of internal
states and P a set of percepts. Let see : S → P , next : I × P → I and
action : I → A be three functions. A state-based agent is then a function
Agst : S → A such that Agst(s) = action(next(ι, see(s))), for any i ∈ I. We
denote by AGst their class.

Remark 2.9.2 We can still speak of runs of agents in an environment En and
thus of R(Agst, En) by simply stating that, for any i ≥ 0:

αi = Agst(si)

instead of the above definition for (standard) agents.

Behavioral equivalence lets us define an order among agent classes:

Definition 2.9.8 Let AG and AG’ be two classes of agents. Then AG is said
to be as expressive as AG’, in symbols AG � AG′, iff for any Ag ∈ AG there is
Ag′ ∈ AG′ such that Ag ≡beh Ag′.

Which leads in its turn leads to the following important result:

Theorem 2.9.1 AGst � AGs.

(Proof) Let En be an environment. We have to show that for any state-based
agent Agst there is a standard agent Ags, such that, for any terminated run ρ:

(∗)ρ ∈ R(Agst, En) ⇐⇒ ρ ∈ R(Ags, En)

by induction on the maximum index n of runs (runs being of length 2n). Know-
ing that τ (ρ) = ∅, and that hence ρ ∈ RA.

• Let Agst be a state-based agent where action, next and see are as above
(and therefore injective). We define a function σ : RS → S by putting:

< s0, α0, ..., αm−1, sm >7→ sm.

Thus σ is a function that projects the last term of a state-finishing run. Let
ι0, ..., ιi (i ≥ 0) and p0, .., pj (j ≥ 0) be two enumerations of, respectively,
I and P . We then define n : P → I by putting:

n(pj) =

{

next(ιi, pj) if i = j

ιj otherwise.

Hence:
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Ags = action ◦ n ◦ see ◦ σ.

For indeed this is an standard agent, since Ags : RS → A. Ags has been
constructed by dropping, so to speak, the internal states together with the
percepts. Behavioural equivalence is then established by induction on n:

• n = 0. Then ρ = ε – the empty sequence. It is then clear that

ρ 6∈ R(Agst, En) ⇐⇒ ρ 6∈ R(Ags, En)

for no empty runs are allowed. The property is hence true. 2

• n = k + 1. By induction hypothesis, (∗) is true up to k. Consider then
ρ =< s0, α0, ..., sk+1, αk+1 > such that ρ ∈ R(Agst, En). Now, as En is
fixed, the following two conditions are true for both Agst and Ags:

– s0 is En’s initial state and

– sk+2 ∈ τ (ρ).

This means that we only need to prove that

(∗∗)Agst(sk+1) = Ags(< s0, ..., sk+1 >)

to have the equivalence – these two being nothing but subsequences of
ρ. So, assume that Agst(sk+1) = αk+1. By definition of Ags, Ags(<
s0, ..., sk+1 >) = αk+1, which finishes the proof. 2

2.10 Specification

We will provide now a very general specification (in pseudo-code) of such an
agent below (in fact, of a cautious agent), which contains two imbricated (even-
tually unbounded) loops. We start by giving the signature of the main functions
involved. The two following subsections are based in [17].

2.10.1 Signature of the Procedures

We start by giving the signature of the main functions involved. The functions
are grouped in two collections. The first contains the procedures belonging to
the deliberation loop and the second those groups those from the means-end
sub-routine. B is a set of beliefs, P of percepts, I of intentions and PL of plans.
While Bool is a set of boolean values – i.e. {true, false}.

1. The main loop: the deliberation procedures. They involve basic
decision-making.

• brf : ℘(B) × P → ℘(B) is belief revision function that updates the
agent’s set of beliefs according to new environmental input (by way
of percepts).
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• options : ℘(B) × ℘(I) → ℘(D) is a function that properly generates
the set of desires that take part in deliberation.

• filter : ℘(B) × ℘(D) × ℘(I) → ℘(I) is a decision-making function.

2. The sub-routine: the means-end procedures. They involve generat-
ing a plan and executing it while updating the ρ variable (and thus, of the
agent’s local environement) and hence veryfing (and eventually modifying)
the generated plan’s suitability all the way through.

• plan : ℘(B)×℘(I) → PL is a function that builds a plan (a sequence
of actions to be executed) from the (updated) beliefs and final inten-
tions attained while deliberating – i.e. the agent’s choice takes him
into an action course. The plan’s last action should cause the global
environment’s modification (i.e. the goal) conveyed by the filtered
intentions.

• empty : P → Bool is a boolean valued function that tests if the plan
has been completed and the goal attained.

• succeded : ℘(I) × ℘(B) → Bool is a function that tests whether the
goal has been attained or not.

• impossible : ℘(I) × ℘(B) → Bool is a function that tests whether
the goal can be attained or not. If it cannot, the means-end loop is
stopped (and we return to the main deliberation loop).

• reconsider : ℘(I) × ℘(B) → Bool is a function that test if it would
be wise or not to update beliefs and conditions throughout the exe-
cutions of the plan.

• sound : P × ℘(I) × ℘(B) → Bool tests if the plan is still sound
relatively to the updated beliefs and desires.

2.10.2 Pseudo-code Specification

The software agent is specifid as follows. Note that ρ is a variable that stocks
an input (a percept) from the outer (global) environement which is subject
to change and that π stands for plan, a finite sequence (or list) of actions to
perform, i.e. π =< α1, ..., αk >. Inputs (percepts) come from the global envi-
ronment and outputs (actions) are sent to it, thereby modifying it.

GENERICAL-AGENT ()
1 B ← {β1, ..., βn}; /*initial beliefs–knowledge base*/
2 I ← {ι1, ..., ιm}; /*initial intentions–desires*/
3 while true do /*deliberation loop*/
4 get ρ ; /*input*/
5 B ← brf (B, ρ);
6 D ← options(B , I );
7 I ← filter(B ,D, I ); /*derived intentions*/
8 π ← plan(B , I );
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9 while not [ or empty(π) /*means-end loop*/
10 or succeded(I ,B)
11 or impossible(I ,B) ] do

12 α← hd(π);
13 return α; /*output*/
14 π ← tl(π);
15 get ρ; /*update of ρ*/
16 B ← brf (B , ρ);
17 if reconsider(I ,B) then /*caution condition*/
18 D ← options(B , I )
19 I ← filter(B, D, I )
20 endif

21 if not sound(π, I ,B) then /*plan update*/
22 π ← plan(B , I );
23 endif

24 endwhile

25 endwhile
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