Ontology evaluation: Table 1

Measures (type)	Measurement functions/methods	Quality principles	Quality parameters
STRUCTURAL	$M = \langle D, S, mp, c \rangle$	_	_
Topology	_	computational integrity and efficiency, cognitive ergonomics, transparency	-
Breadth (related to the cardinality of levels – or "generations" - in a graph)	counting	cognitive ergonomics	-breadth
Absolute breath	$m = \sum_{j}^{L} N_{j \in L}$		
Average breadth	$m = \frac{1}{n_{L \subseteq g}} \sum_{j}^{L} N_{j \in L}$		
Max breadth	$m = N_{j \in L}$ $\forall i \exists j (N_{j \in L} \ge N_{i \in L})$		
Depth (related to the cardinality of paths in a graph)	counting	cognitive ergonomics	-depth
Absolute depth	$\sum_{j}^{P}{N}_{j\in P}$		
Average depth	$\frac{1}{n_{P\subseteq g}}\sum_{j}^{P}N_{j\in P}$		

Max depth	$m = N_{j \in P}$		
	$\forall i \exists j (N_{j \in P} \ge N_{i \in P})$		
Tangledness (related to multihierarchical nodes of a graph)	$m = \frac{n_G}{t_{\in G \land \exists a_1, a_2(isa(m, a_1) \land (isa(m, a_2))}}$	cognitive ergonomics, computational integrity, efficiency	-tangledness
Fan-outness (related to the "dispersion" of graph nodes)	counting	cognitive ergonomics	-dispersion
Absolute leaf cardinality	$m = n_{LEA \subseteq g}$		
Ratio of leaf fan-outness	$m = \frac{n_{LEA \subseteq g}}{n_G}$		
Weighted ratio of leaf fan-outness	$m = \frac{n_{LEA \subseteq g}}{\sum_{j=1}^{P} N_{j \in P}}$		
Maximal leaf fan-outness	$m = N_{j \in SIB}^{j \subseteq LEA}$ $\forall i \exists j (N_{j \in SIB}^{j \subseteq LEA} \ge N_{i \in SIB}^{i \subseteq LEA})$		
Absolute sibling cardinality	$m = \sum_{j}^{SIB} N_{j \in SIB}$		
Ratio of sibling fan- outness	$m = \frac{\sum_{j}^{SIB} N_{j \in SIB}}{n_{c}}$		
	0		

Weighted ratio of sibling fan-outness	$m = \frac{\sum_{j}^{SIB} N_{j \in SIB}}{\sum_{j}^{P} N_{j \in P}}$		
Average sibling fan- outness	$m = \frac{\sum_{j}^{SIB} N_{j \in SIB}}{n_{SIB}}$		
Maximal sibling fan- outness	$m = N_{j \in SIB}$ $\forall i \exists j (N_{j \in SIB} \ge N_{i \in SIB})$		
Average sibling fan- outness without metric space	$m = \frac{\sum_{j}^{SIB} N_{j \in SIB-MS}}{n_{SIB-MS}}$		
Average sibling fan- outness without lists of values	$m = \frac{\sum_{j}^{SIB} N_{j \in SIB-LV}}{n_{SIB-LV}}$		
Differentia specifica (related to the "rationale" behind sibling node sets)	selecting properties, counting	transparency	+specific differences

Ratio of sibling nodes featuring a shared	$\sum_{j\in SIB, \forall x_{x\in j} \exists \rho, \varphi(\rho(x,y) \land \varphi(y))}^{SIB}$		
uijjerenila specifica	$m = \frac{\sum_{j}^{SIB}}{\sum_{j}^{SIB} N_{j \in SIB}}$		
Ratio of sibling sets	$n_{SIB(DF)}$		
featuring a shared	$m = \frac{-\sin(DT)}{2}$		
differentia specifica	n _{sib}		
among elements			
Density (clusters of classes	clustering techniques	transparency	+patterns
with many non-taxonomical			
relations)			
Rationality patterns			
Core-ontology patterns			
Modularity (related to the	counting	transparency	+modularity
asserted modules of a			
graph)			
Modularity rate	$m = \frac{n_M}{m_M}$		
	n_s		
Module overlapping rate	$\sum n_{uoap} - \sum n_{uoadp}$		-overlapping
	$m = \frac{n}{2}$		
	$n_{\{sg_1,sg_2\}} - n_{\{sg_1 sg_2\}}$		
Logical adequacy	applying checkers, and counting	computational integrity	-
		and efficiency, cognitive	
		ergonomics, transparency	
Consistency ratio	$m = \frac{n_{Cons}}{m}$	computational integrity and efficiency	+logical consistency
	n_G		

Complexity (generic)	a complexity scale, e.g. the one used for description logics	transparency	+complexity
Anonymous classes ratio	$m = \frac{n_{Anon}}{n_G}$	cognitive ergonomics transparency	-anonymous classes (cog. ergonomics) +anonymous classes (transparency)
Cycle ratio	$m = \frac{\sum_{k}^{P} N_{k \in P}}{\sum_{j}^{P} N_{j \in P}}$	computational efficiency	-cycle ratio
Inverse relations ratio	$m = \frac{n_{InvR}}{n_R}$	cognitive ergonomics	+inverse rel. ratio
Class/relation ratio	$m = \frac{n_{G \in S}}{n_{R \in S}}$	cognitive ergonomics	+class/relation ratio
Axiom/class ratio	$m = \frac{n_{A \in S}}{n_{G \in S}}$	transparency	+axiom/class ratio
Individual/class ratio	$m = \frac{n_{I \in S}}{n_{GI \in S}}$	computational integrity (for some languages)	-individual/class ratio
Meta-logical adequacy	annotating properties, and counting	-	-
Meta-consistency ratio	$m = \frac{n_{MCons}}{n_G}$	assumed conceptual integrity	-meta-consistency
<i>Qualified density</i> (presence of meaningful conceptual-relation 'dense' areas)	degree distribution, small world, clustering coefficient	cognitive ergonomics	+patterns (dense areas)

Functional	_	_	+precision +recall +accuracy
Competence adequacy	extraction of expertise and matching	compliance with expertise	
Inter-subjective agreement	experiments on experts		
adequacy			
Resistance to counter-	experiments on experts		
examples			
User-satisfaction	dedicated polls		
Task adequacy (what tasks	competency questions (service-specification-based, gold-		
must be supported by the	standard-solution-based)		
ontology)			
Task specifity, based on	competency questions (explicit-task-based)		
exploitation plan			
Topic specificity, based on	"choose directory and annotate", "reengineer and match",		
exploitation plan	"extract and match"		
NLP adequacy	NLP techniques	compliance with expert	
		language	
Compliance with lexical	machine learning/dictionaries	compliance with expert	
distinctions		lexicon	
Compliance with textual	machine learning	compliance with expert	
patterns		documents	
Performance in question-	experiments on experts	compliance with expertise	
answering tasks		1 1	
Formal description of	extraction of expertise, matching, and counting	functional compliance	
compliance		-	
O_Precision (~ IR precision)	$n_{-k}^{O_k(L)}$		
	$OP = \frac{n_{TP}}{O(1)}$		
	$n_{TP}^{O_k(L)} + n_{FP}^{O_k(L)}$		

O_Recall, or Coverage (~ IR recall)	$OR = \frac{n_{TP}^{O_k(L)}}{n_{TP}^{O_k(L)} + n_{FN}^{O_k(L)}}$		
O_Accuracy	$OA = \frac{n_{TP}^{O_k(L)_W}}{n_{TP}^{O_k(L)_W} + n_{FP}^{O_k(L)_W}} \cdot \frac{n_{TP}^{O_k(L)_W}}{n_{TP}^{O_k(L)_W} + n_{FN}^{O_k(L)_W}}$		
Functional modularity	matching domain expertise with reusable expertise models	_	_
Ontological stratification, granularity (presence of stratification in modules, branchings, or operators)	assessing presence of foundational, core, and domain layers	cognitive ergonomics	
USABILITY-RELATED (presence of metadata)	dedicated polls, metadata schemas, automatic acquisition of structural and functional measurement data	Presence, completeness and reliability of annotations	_
Recognition annotations		Organizational fitness, generic accessibility, compliance to procedures for mapping, etc.	_
Graph measures			+graphs
Logic-type and			+annotations
computational complexity information			
Lexical annotation of ontology elements			+lexical annotations
Glosses about ontology elements			+glosses
User satisfaction and trust rating information			+user satisfaction
Provenance information			+reliability
Versioning information			+versioning annotations

Lifecycle, methods		+ methods employed
Efficiency annotations	Organizational fitness	
	generic accessibility	
Application history (task- or		+application history
topic-specificity applied to a		annotations
token scenario) information		
Commercial and legal		+trading, pricing,
semantics information		policy and disclaimer
		semantics annotations
Organizational design		+organizational
information		design annotations
Interfacing annotations	Generic accessibility,	+interfacing
	compliance to procedures	annotations
	for mapping, extension,	
	integration, adaptation	