
Pagina 1 di 53 6-09-2005  

Ontology evaluation and validation 
An integrated formal model for the quality diagnostic task 

 
Aldo Gangemi1, Carola Catenacci1, Massimiliano Ciaramita1, Jos Lehmann1 

 
contributions by: 

Rosa Gil2 (in section 2.2) 
Francesco Bolici3 and Onofrio Strignano3 (in section 2.4) 

 
1Laboratory for Applied Ontology, ISTC-CNR, Roma/Trento (Italy) 

{aldo.gangemi, carola.catenacci, jos.lehmann, m.ciaramita}@istc.cnr.it 
2Technology Department, Universitat Pompeu Fabra, Barcelona (Spain) 

rosa.gil@upf.edu 
3Research Centre on Information Systems, Università ‘Guido Carli’ LUISS (Italy) 

{fbolici, ostrignano}@luiss.it 
 

Introduction  
The need for evaluation methodologies in the field of ontology development and reuse 
showed up as soon as 1994 and it has been growing ever since [Sure 2004]. Yet, no 
comprehensive and global approach to this problem has been proposed to date.  
What we present here is a novel perspective that tries to integrate the varied (and 
differently aimed) ontology evaluation methods proposed so far. Particular efforts are 
devoted to considering as many as possible measures that can affect the quality of an 
ontology, and whose metrics can either be qualitative or quantitative, with the ultimate 
goal to design a formal model for ontology evaluation.  
The important topic of evaluation of tools for ontology realization is not addressed in the 
present contribution, and we plan to consider it in future work. 
Our contribution is structured as follows. In the first section, we introduce a metaontology 
(provisionally called here O2)  which characterizes ontologies as semiotic objects and that 
is meant to provide a meta-theoretical foundation to ontology evaluation and annotation.  
In the second section, such a metaontology is complemented with an ontology of ontology 
evaluation and validation (called οqυαl), which picks up ontology elements based on the 
metaontology, and provides quality parameters (and possible ordering functions) for them. 
In practice, we model ontology evaluation as a diagnostic task involving ontology 
descriptions, which, in turn, include the roles and functions of the elements in an ontology, 
the parameters assumed within those descriptions that denote the “quality” of an ontology, 
and some functions that compose those parameters according to a preferential ordering.  
We identify and discuss three distinctions over measure types for ontology evaluation 
which are based on O2, i.e. structural, functional and usability-related measures, and 
provide some examples of preferential order over measures.  
Finally, in the third section, we provide a comparing review of a selection of current 
literature on ontology evaluation. 
 



Pagina 2 di 53 6-09-2005  

1. A semiotic metaontology 
We consider an ontology a semiotic object, i.e. an object constituted by an information 
object and an intended conceptualization established within a communication setting. 
The basic intuition is that information is any pattern that can represent another pattern, 
whereas that representation is interpretable by some rational agent (this intuition comes 
back at least to C.S. Peirce [Peirce 1931]). 
An ontology is a special kind of information, whose patterns are graph-like structures, and 
whose represented patterns are intended conceptualizations, i.e. internal representations of 
(mainly) types of things. For example, one can typically define an ontology for subways, 
but one will hardly consider the London Underground graph an ontology (it would be 
eventually considered a model of an appropriate subway ontology). 
In semiotics, e.g. [Eco 1984], the information object (e.g. the OWL(DL) version of FOAF 
-Friend Of A Friend- ontology1) is said to play the role of expression, the intended 
conceptualization (e.g. the conceptual relation between persons, their addresses, and the 
knowledge of each other) is said to play the role of meaning, and the communication 
setting is said to play the role of context (e.g. the task, application, and usage context of 
FOAF). These roles are complemented by other communication elements defined by 
[Jakobson 1960] (Fig.1): one or more rational agent(s) (e.g. a FOAFer) who play(s) the 
role of interpreter, a medium (e.g. the Web) that plays the role of channel, and an 
encoding system (e.g. OWL) that plays the role of code. Moreover, when a medium is used 
to realize an information object through a channel, an information realization appears (e.g. 
a graphic visualization of the FOAF ontology on a screen). 
 

 
Figure 1. The communications roles in ontology engineering, adapted from [Jakobson 
1960]. Messages are information objects, communication contexts and conceptualizations 
are (cognitive) descriptions. Media and channels realize the messages. 
 
An ontology as a semiotic object has therefore several interdependent features that can be 
measured, with several possible quality parameters. Following the example, we could 
measure the abstract information contained in the FOAF ontology graph, the capability of 
that information pattern to mirror a “social relationships” pattern, the usability of FOAF 
ontology for a certain application, its accessibility by agents looking for abstract 
information of that kind, its provenance, etc. 
                                                
1 http://www.foaf-project.org. 



Pagina 3 di 53 6-09-2005  

 
We provide a minimal FOL formalization of an ontology as a semiotic object. For that 
purpose, we reuse our ontology of information objects (denoted by the prefix: “inf”) 
[Gangemi et al. 2004], built upon DOLCE (Descriptive Ontology for Linguistic and 
Cognitive Engineering, denoted by the prefix “dol”) [Masolo et al 2004] and 
ExtendedDnS (a theory of descriptions and situations, denoted by the prefix “edns”) 
[Gangemi et al. 2004]. 
Such meta-ontology, provisionally called here O2 (Fig.2), is complemented with an 
ontology of ontology evaluation (called οqυαl, Fig.3), which represents ontology elements 
based on the metaontology, and also allows the  representation of quality parameters (and 
possible ordering functions) for them. 
 
Structurally, an ontology is any graph whose nodes and arcs represent conceptualizations, 
independently from how these conceptualizations can be given a formal semantics. In 
(even) more informal terms, an ontology is a graph of metadata (i.e., from thesauri to 
taxonomies and axiomatized theories). 
We further stipulate that ontology graphs are directed along the arcs representing a 
subClassOf (or isa) relationship. 
Breadth- and depth-oriented measures on the graph are made on isa (taxonomical) 
relationships as well. 
On the contrary, density-oriented measures are made on non-isa relationships. 
We use acronyms as prefixes (see above for acronym explanation) to denote the ontology 
of reused predicates. 
  
In O2, an ontology graph OG is an edns:Information-Object, its possible formal semantics 
(the ontology semantics OS) is a dol:Abstract entity (a space), and its intended meaning 
(the ontology intended conceptualization OC) is a edns:Theory (intended as a kind of 
edns:description). 
Given an ontology, a formal semantic framework (e.g. model-theoretic semantics), a 
context of ontology production, and at least one context of ontology use, we can propose 
the following axioms to give a (first-order, reified) meta-theoretical foundation to ontology 
evaluation and annotation: 
 
(A1) OG(x) → edns:InformationObject(x) 
(A2) OS(x) → dol:Abstract(x) 
(A3) OC(x) → edns:Description(x) 
 
A1-A3 are based on the DOLCE and ExtendedDnS ontologies:  
- edns:InformationObject is a sub-class of non-agentive social objects and includes any 

symbolic entity, independently from its concrete realization 
- edns:Description is a sub-class of non-agentive social objects and includes the 

reifications of relations of any kind. By assuming that an intended conceptualization 
can be reduced to a conceptual relation, descriptions are used as ontology placeholders 
for intended conceptualizations 

- dol:Abstract is a primitive from DOLCE, and includes all entities that do not have a 
spatio-temporal localization (i.e. they are regions in an abstract space, e.g. values, sets, 
etc.). 

 
Ontologies as information objects vs. abstract spaces : 
 



Pagina 4 di 53 6-09-2005  

(A4) OG(x) → ∃y(inf:q-represents(x,y) ∧ OS(y)) 
 
A4 reuses the relation q-represents(x,y), defined in the information objects ontology, 
which encodes the fact that information objects can reify regions in abstract spaces. A4 
means that an ontology graph is supposed to have a mapping in an abstract space (a formal 
semantics in the typical case, e.g. if using OWL). 
Notice that the main difference between an abstract space and an information object is that 
the second has a spatio-temporal localization. E.g. given OWL, all ontologies that can be 
built according to the OWL datamodel always exist in an OWL abstract space, but a given 
OWL ontology has a social existence due to its time of creation, its creators, its usage, etc. 
On the other hand, A4 is too strong for the ontologies that are not defined in a logical 
language with an explicit formal semantics. Hence, we make the further assumption that 
any ontology can be reengineered in order to get (partly or completely) a formal semantic 
characterization. 
 
Ontology graphs express meaning : 
 
(A5) OG(x) → ∃y(edns:expresses(x,y) ∧ OC(y)) 
 
A5 reuses the relation expresses(x,y), defined in the ExtendedDnS ontology, which 
encodes the fact that information objects express intended meanings (in this context: 
descriptions). A5 means that an ontology graph necessarily expresses at least one intended 
meaning. 
Notice that in the real world, an information object (hence an ontology) can be used to 
provide additional expression to an existing conceptualization, for example, when 
profiling an ontology, or when formalizing a natural language explanation. 
 
Semantic adequacy: ontology formal semantics should catch intended meaning: 
 
(A6) OS(x) → (∃y,z(OC(y) ∧ OG(z) ∧ edns:expresses(z,y) ∧ inf:q-represents(z,x)) → 

edns:admitted-by(x,y)) 
 
A6 reuses admitted-by(x,y), a composed relation from the ExtendedDnS ontology, which 
encodes the fact that a description can define a logical parameter that can be valued by 
some value from a certain value set (i.e. a formal semantic space). A6 means that the 
formal semantics of an ontology is admitted by its intended meaning if the formal space is 
q-represented by an ontology graph that also expresses that intended meaning. 
In other words, A6 asserts that semantic adequacy of an ontology requires compliance to 
intended meanings, not just formal validity. 
 
(T1) OC(x) → (∃y,z(OS(y) ∧ OG(z) ∧ edns:expresses(z,x) ∧ inf:q-represents(z,y)) → 

edns:admitted-by(y,x)) 
 
From A6, and the axioms of ExtendedDnS and information objects ontology, we can infer 
that the intended meaning of an ontology graph that q-represents a formal space, also 
admits that formal space as a value for its logical parameter. 
 
(T2) OG(x) → (∃y,z(OS(y) ∧ OC(z) ∧ edns:admitted-by(y,z) ∧ edns:expresses(x,z)) → 

inf:q-represents(x,y)) 
 



Pagina 5 di 53 6-09-2005  

From A6, and the axioms of ExtendedDnS and information objects ontologies, we can 
infer that an ontology graph that expresses an intended meaning that admits a value from a 
formal semantic space, also q-represents that space. 
 
(D1) o-interprets(x,y) =df inf:interprets(x,y) ∧ edns:RationalAgent(x) ∧ OG(y) ∧ 

∃z(edns:internally-represents(x,z) ∧ OC(z) ∧ edns:expresses(y,z)) 
 
D1 defines a relation holding between rational agents and ontology graphs, and requires 
that the rational agent internally represents the ontology intended meaning expressed by 
the graph. 
 
(D2) o-encodes(x,y) =df o-interprets(x,y) ∧ ∃z(edns:creates(x,z) ∧ OC(z) ∧ 
edns:expresses(y,z)) 
 
D2 defines a sub-relation of o-interprets, in which the rational agent must be the creator of 
the intended meaning. 
 
(A7) OG(x) → ∃y(o-encodes(y,x)) 
 
A7 states that an ontology graph has at least one encoder. 
 
(T3) OG(x) → ∃y(o-interprets(y,x)) 
 
T3 holds after A7 and D2: an ontology graph has at least one interpreter. 
 
(D3) o-decodes(x,y) =df o-interprets(x,y) ∧ ∃z(o-encodes(z,y)) 
 
D3 defines a sub-relation of o-interprets, in which there must be a (not necessarily 
different) rational agent that is the creator of the intended meaning. 
 
(D4) profiles(x,y) =df edns:InformationObject(x) ∧ OG(y) ∧ ∃z,w,a(OC(z) ∧ 

edns:expresses(x,z) ∧ edns:expresses(y,z) ∧ edns:Description(w) ∧ 
edns:expresses(x,w) ∧ ¬(edns:expresses(y,w)) ∧ o-decodes(a,y) ∧ o-encodes(a,x)) 

 
D4 defines a relation holding between information objects, in which the second one is an 
ontology graph, while the first (the “ontology profile”) also expresses the same intended 
meaning as the second does, but it also expresses meta-level knowledge about the 
communication setting, and the profile is o-encoded by a rational agent that also o-decodes 
the ontology graph. 
The UML class diagram in Fig.2 summarizes the axioms given above as a design pattern: 
an ontology graph has an intended conceptualization and a formal semantic space admitted 
by the logical parameter of the intended meaning. The graph and the meaning are kept 
together by a rational agent. An agent can also provide a profile of the structural and 
functional properties of an ontology graph in order to enhance or to enforce its usability.  
 



Pagina 6 di 53 6-09-2005  

 
Figure 2. The O2 design pattern. Ontologies are graphs that express a conceptualization 
and can be profiled by additional information that expresses their usage context. An 
ontology graph has (“q-represents”) a formal semantics if it ithat can bes admitted by the 
conceptualization. These constraints are the sensible part of ontology evaluation: does the 
formal semantics catch the intended conceptualization (the “cognitive” semantics)? 
 
Based on O2, we identify three distinctions over measure types for ontology evaluation, 
i.e.: 
- structural measures, which focus on the syntax of ontology graphs (mainly, but not 
exclusively, without referring to its intended meaning, semantics, and context) and their 
possible formal (abstract) semantics (that can be considered an additional syntax) 
- functional measures, focusing on the relations holding between the ontology graph and 
its intended meaning (i.e. on the cognitive semantics). All these are precision/recall-based 
measures, but there are many specific issues concerning what data should be matched to 
obtain the measures 
- usability-profiling measures, focusing on the ontology profile, which typically addresses 
the communication context of an ontology (i.e. its pragmatics). These measures focus on 
ontology annotations, i.e. metadata about recognition, economical efficiency, and 
interfacing of an ontology. Annotations typically contain information about structural or 
functional properties of an ontology. 

 



Pagina 7 di 53 6-09-2005  

2. A model of ontology evaluation and validation (οqυαl) 
We model ontology evaluation and validation (together) as a diagnostic task (Fig.s 3,4) 
involving:  
- quality-oriented ontology descriptions (qoods), which provide the roles and functions 

of the elements from an ontology, and have elementary qoods (called “principles”) as 
parts 

- value spaces (“attributes”) of ontology elements, bearing typical dependencies on 
other spaces 

- principles for assessing the ontology fitness, which are modelled as elementary 
quality-oriented ontology descriptions, and are typically parts of a project-oriented 
qood 

- parameters (ranging over the attributes -value spaces- of ontologies or ontology 
elements), defined within a principle 

- parameter dependencies occurring across principles because of the interdependencies 
between the value spaces of the measured ontology elements 

- preferential ordering functions that compose parameters from different principles 
- trade-offs, which provide a conflict resolution description when combining principles 

with conflicting parameters (see section 2.5). 
 
The formal model of the ontology diagnostic task, called οqυαl, is based on the same 
ontology design pattern used for O2 (the Description<->Situation pattern from the 
ExtendedDnS ontology [Gangemi 2005]).2 
 
 

 
 
 
Figure 3. The ontology evaluation design pattern (οqυαl) 
 
Ontology descriptions, roles, parameters, and preferential orders are obtained by looking at 
the measure types that can be performed on an ontology, which can be characterized 
according to several methods. 
An example of how οqυαl can be applied is presented in Fig.4. 

                                                
2 An axiomatization similar to that given for O2 will be provided in the next version. 



Pagina 8 di 53 6-09-2005  

 

 
Figure 4. Applying οqυαl to a clinical use case. 
 
Before discussing the measure types, we clarify our model of the diagnostic task. 

2.1 Measure types 
Our analysis of ontology evaluation addresses the problem in terms of answers to three 
main questions:  
 
a) What to measure in an ontology? and how? the quality of an ontology may be 

assessed relatively to various dimensions. As explained above (see Section 1), by 
ontology we mean any kind of graph of metadata, and we propose to measure its 
quality relatively to three main groups of dimensions: structural, functional and 
usability-related dimensions. 

 
1) An ontology shows its structural dimensions when represented as a graph. In this 

form, the topological and logical properties of an ontology may be measured by 
means of a metric. The existence of these structural dimensions, however, can be 
considered independent from the metric is being used. 

2) The functional dimensions are related to the intended use of a given ontology and 
of its components, i.e. their function. Functional dimensions are things like 
agreement, task, topic, design, etc. Such dimensions become apparent in an 
ontology depending on the context, which in turn is given by the way in which the 
ontology is chosen, built, exploited, etc. In our intuition, functional dimensions are 
(relational, hence) extrinsic to the ontology graph. 

3) Finally, usability-related dimensions depend on the level of annotation of a given 
ontology. How easy it is for users to recognize its properties? How easy is to find 
out which one is more (economically, computationally) suitable for a given (series 
of) task(s)? 

 
Notice that these dimensions follow a partition into logical types: structurally, we look 
at an ontology as an (information) object; functionally, we look at it as a language 



Pagina 9 di 53 6-09-2005  

(information object+intended conceptualization), and from the usability viewpoint, we 
look at its meta-language (the profile about the semiotic context of an ontology). 
Therefore, the dimension types correspond to the constituents of an ontology as a 
semiotic object (with the notable issue of a possible mismatch between formal and 
cognitive semantics). 
Heterogeneous methods are needed,  and some measures can result from more than 
one method. See 2.2-2.4 for a list of measurement methods.  

 
b) Which parameters for the quality of an ontology? Each measure can have more than 

one quality parameter, depending on other parameters/measures, and the overall 
composition for a given ontology project implies a non-linear procedure to quality 
assessment.  
For example, in an ontology project we may want to combine measures like logical 
complexity and presence of dense areas (e.g. of design patterns). If high density is 
chosen as a quality parameter, then the parameter associated with high complexity is 
chosen too, because usually dense areas involve a lot of restrictions, sometimes with 
indirect cycles; in other words, high-density parameter depends on the high-
complexity parameter (see section 2.5). On the other hand, if the quality parameter is 
lower complexity, then the parameter associated with lower density is chosen too, 
because the first depends on the second.  
Actually, this is an application of a general pattern of parameter composition ranging 
on mutually dependent scalar spaces: when we compose two parameters p1 and p2 
ranging respectively on value spaces s1 and s2 with a scalar metric, and p1 ranges over 
the higher part of s1, and also depends on p2 ranging over the lower part of s2, then the 
converse is true, i.e. that a parameter p3 ranging on the higher part of s2 depends on a 
parameter p4 ranging on the lower part of s1. 
Hence, different trade-offs denote good/bad quality according to which criterion is 
preferred. οqυαl formalizes the observation that quality parameters are defined 
according to some principle, e.g. in the example, “high” parameters could be defined 
with reference to a transparency principle, while the “low” parameters could be 
defined with reference to a computational efficiency principle.  
When combining principles, the need for a trade-off typically arises, producing either a 
preference ordering function, or a relaxation of parameters. 
In our example project, the preference ordering function is:  
 

  

! 

pref (p
1

q
, p

2

r
, p
1

q
, p

2

r
,c)a pi

x
 

 
where q a and r are principles, 

! 

pi
x  is a parameter defined by a principle, and c is a local 

constraint (a “meta-parameter”), e.g. availability of resources, user overruling, good 
practice, etc. 
If no local constraint can be applied to create a preference ordering function, the trade-
off can resort to a relaxation of parameters. In our example project, either high density 
can be relaxed to e.g. medium-high density, or low complexity can be relaxed to e.g. 
medium-low complexity.  
 

c) Which examples? There are typical examples and patterns of good/bad quality for 
each measure. This version of the technical report does not include a complete set of 
examples, and even less of patterns. In the next version, more examples will be 
provided after the analysis of a sample set of ontologies. In future versions, we’ll 



Pagina 10 di 53 6-09-2005  

propose patterns of good/bad quality based on correlation between success stories, user 
satisfaction feedback, and measures. 

 

2.2 Measuring the structural dimension 
The structural dimension of ontologies focuses on syntax (e.g. graph structure), and and 
formal semantics. 
Here we propose our own treatment of structural dimensions. The idea is to define a 
general function like the following:  
 

! 

M = D,S,mp,c  
 
<D>=Dimension is the graph property or concept we want to measure: the intensional 
counterpart of the metric space.  
<S>=Set of graph elements is the collection of elements in the graph (which may be seen 
as the ontology structure).  
<mp>=Measurement procedure is the procedure executed to perform the measurement.  
<c>=Coefficient of measurement error adjusts for context-related variations on 
measurement procedure.  
 
The value of the function is a real number obtained by applying a measurement procedure 
mp for a dimension D to a set S of graph elements, modulo a coefficient c (if any), i.e.:  
 

! 

mpD,c,S yields
" # " " m $ %  

 
The usual measuring procedure is counting, i.e. a function that relates a set of elements  x 
∈ S to natural numbers. Sometimes a non-trivial algorithm is necessary to perform 
counting. 
Within the possible sets of graph elements, we’ll consider in particular the following sets: 
 

- The set of graph nodes G from a graph g, G ⊆ S 
- The set of root nodes ROO ⊆ G, where the root nodes are those having no outgoing 

isa arcs in a graph g. 
- The set of leaf nodes LEA ⊆ G, where the leaf nodes are those having no ingoing 

isa arcs in a graph g. 
- The sets of sibling nodes SIBj∈G connected to a same node j in a graph g through 

isa arcs. 
- The set of paths P where ∀j∈P ⇒ j⊆G, where a path j is any sequence of directly 

connected nodes in a digraph g starting from a root node x∈ROO and ending at a leaf 
node y∈LEA. 

- The set of levels (“generations”) L where ∀j∈L ⇒ j⊆G, where a generation j is the 
set of all sibling node sets having the same distance from (one of) the root node(s) 
r∈ROO of a digraph g. 

- The sets of graph nodes 

! 

N j"P  from a same path j in a digraph g 
- The sets of graph nodes 

! 

N j"L  from a same generation j in a digraph g 



Pagina 11 di 53 6-09-2005  

Measures for depth 
Depth is a graph property related to the cardinality of paths in a graph, where the arcs 
considered here are only isa arcs. This measure type only applies to digraphs (directed 
graphs). We distinguish the following depth measures. 
 
(M1) Absolute depth:  
 

! 

m = N j"P

j

P

#  

 
where 

! 

N j"P  is the cardinality of each path j from the set of paths P in a graph g. 
 
(M2) Average depth: 
 

! 

m =
1

nP"g
N j#P

j

P

$  

 
where 

! 

N j"P  is the cardinality of each path j from the set of paths P in a graph g, and 

! 

nP"g  
is the cardinality of P. 
 
(M3) Maximal depth: 
 

! 

m = N j"P

#i$j(N j"P % Ni"P )
 

  
where 

! 

N j"P  and 

! 

N
i"P  are the cardinalities of any path i or j from the set of paths P in a 

graph g. 
 

Measures for breadth 
Breadth is a property related to the cardinality of levels (“generations”) in a graph, where 
the arcs considered here are again only isa arcs. This measure only applies to digraphs. We 
distinguish the following breadth measures. 
 
(M4) Absolute breadth: 
 

! 

m = N j"L

j

L

#  

 
where 

! 

N j"L  is the cardinality of each generation j from the set of generations L in the 
digraph g. 
 
 (M5) Average breadth: 



Pagina 12 di 53 6-09-2005  

 

! 

m =
1

nL"g
N j#L

j

L

$  

 
where 

! 

N j"L  is the cardinality of each generation j from the set of generations L in a 
digraph g, and 

! 

nL"g  is the cardinality of L. 
 

(M6) Measure(maximal breadth, set of graph elements, counting, c)  = 
  

! 

m = N j"L

#i$j(N j"L % Ni"L )
 

  
where 

! 

N j"L  and 

! 

N
i"L  are the cardinalities of any generation i or j from the set of 

generations L in a graph g. 
 
 
Examples: 
 

 

Measures for tangledness 
Tangledness is related to the multihierarchical nodes of a graph, where the arcs considered 
here are again only isa arcs. This measure only applies to digraphs. 
 
(M7) Tangledness: 
 

! 

m =
n
G

t"G#$a1 ,a2 (isa(m,a1 )#(isa(m,a2 )
 

 
where 

! 

n
G
 is the cardinality of G, and 

! 

t"G#$a1 ,a2 (isa(m,a1 )#(isa(m,a2 )
 is the cardinality of the set of 

nodes with more than one ingoing isa arc in g. 

Example:  

Fig.5 shows some generic measures on an ontology graph. 



Pagina 13 di 53 6-09-2005  

 
Figure 5. Examples of measures over an ontology graph (http://dolce.semanticweb.org). 
The root node is here drawn leftmost. 

Measures for fan-outness 
Fan-outness is related to the “dispersion” of graph nodes, where the arcs considered here 
are isa arcs. We distinguish the fan-outness measures related to leaf node sets, and fan-
outness measures related to sibling node sets (“internal dispersion”). 
 
(M8) Absolute leaf cardinality: 
 

! 

m = nLEA"g  

 
where 

! 

nLEA"g  is the cardinality of the set LEA in the digraph g. 
 
(M9) Ratio of leaf fan-outness: 
 

! 

m =
nLEA"g

nG
 

 
where 

! 

nLEA"g  is the cardinality of the set LEA in the digraph g, and 

! 

n
G
 is the cardinality 

of G. 
 
(M10) Weighted ratio of leaf fan-outness: 
 



Pagina 14 di 53 6-09-2005  

! 

m =
nLEA"g

N j#P

j

P

$
 

 

where 

! 

nLEA"g  is the cardinality of the set LEA in the digraph g, and 

! 

N j"P

j

P

#  is the 

absolute depth measure for g. 
  
(M11) Maximal leaf fan-outness:  
 

! 

m = N j"SIB

j#LEA

$i%j(N j"SIB

j#LEA & Ni"SIB

i#LEA
)

 

 
where 

! 

N j"SIB  and 

! 

N
i"SIB  are the cardinalities of any sibling set i or j of leaf nodes, from 

the set of sibling sets SIB in a graph g. 
 
(M12) Absolute sibling cardinality:  
 

! 

m = N j"SIB

j

SIB

#  

 
where 

! 

N j"SIB  is the cardinality of a sibling set j from SIB in the graph g. 
 
 
(M13) Ratio of sibling fan-outness: 
 

! 

m =

N j"SIB

j

SIB

#

nG
 

 

where 

! 

N j"SIB

j

SIB

#  is the absolute sibling cardinality for the digraph g, and 

! 

n
G
 is the 

cardinality of G. 
 
(M14) Weighted ratio of sibling fan-outness: 
 



Pagina 15 di 53 6-09-2005  

! 

m =

N j"SIB

j

SIB

#

N j"P

j

P

#
 

 

where 

! 

N j"SIB

j

SIB

#  is the absolute sibling cardinality for the digraph g, and 

! 

N j"P

j

P

#  is the 

absolute depth measure for g. 
  
 
(M15) Average sibling fan-outness: 
 

! 

m =

N j"SIB

j

SIB

#

nSIB
 

 

where 

! 

N j"SIB

j

SIB

#  is the absolute sibling cardinality for the digraph g, and 

! 

n
SIB

 is the 

cardinality of the set SIB for g. 
 
(M16) Maximal sibling fan-outness: 
 

! 

m = N j"SIB

#i$j(N j"SIB % Ni"SIB )
 

 
where 

! 

N j"SIB  and 

! 

N
i"SIB  are the cardinalities of any sibling set i or j from the set of sibling 

sets SIB in a graph g. 
 
Some fan-outness measures can be provided for assessing the kind of sibling sets in an 
ontology. In particular, we are interested in two kinds: sibling sets that are based on a 
metric space, and sibling sets that are lists of values (but not from a metric space).  
These two kinds are interesting for quality assessment because they are often counter-
examples to the “badness” of a high fan-ouness. On the other hand, there can be counter-
counter-examples when a design pattern is assumed which suggests that values from 
metric spaces and lists have to be represented as individuals, and not classes. In this case, 
in fact, those value sets are no more sibling sets, because the instanceOf arc applies to 
them. 
 
(M17) Average sibling fan-outness without metric space: 
 



Pagina 16 di 53 6-09-2005  

! 

m =

N j"SIB#MS

j

SIB

$

nSIB#MS
 

 

where 

! 

N j"SIB#MS

j

SIB

$  is the absolute sibling cardinality (less metric spaces) for the digraph 

g, and 

! 

n
SIB"MS

 is the cardinality of the set SIB for g, less the sets of metric values. 
 
 
(M18) Average sibling fan-outness without lists of values: 
 

! 

m =

N j"SIB#LV

j

SIB

$

nSIB#LV
 

 

where 

! 

N j"SIB#LV

j

SIB

$  is the absolute sibling cardinality (less lists of values) for the digraph 

g, and 

! 

n
SIB"LV

 is the cardinality of the set SIB for g, less the lists of values. 
 
Measure M17 and M18 are meaningful only when metric values or lists of values are 
represented as classes. For metric spaces this is rarely practiced, specially becaue 
languages like OWL have separate domains for datatypes. 
 

Measures for differentia specifica 
 
Differentia specifica (Latin for “specific difference”, the provenance of this expression 
going back to Aristotle) is related to the “rationale” behind sibling node sets. The rationale 
behind a sibling node set can be measured by looking for arcs that do not represent isa 
relationships, and are shared by all siblings in the set (these arcs represent a common 
relational property).  
For a more relevant measure, we exclude from this measure the sibling nodes that 
represent values from a metric space of just a list (see (M17-18). We distinguish the 
following specific difference measures. 
 
(M20) Ratio of sibling nodes featuring a shared differentia specifica:   
 



Pagina 17 di 53 6-09-2005  

! 

m =

N j"SIB ,#xx" j$% ,& (%(x,y )'& (y ))

j

SIB

(

N j"SIB

j

SIB

(
 

 

where 

! 

N j"SIB ,#xx" j$% ,& (%(x,y )'& (y ))

j

SIB

(  is the absolute cardinality of siblings sharing a common 

relational property ρ for each sibling set j for the digraph g, and 

! 

N j"SIB

j

SIB

#  is the absolute 

cardinality of siblings for g. 
 
(M21) Ratio of sibling sets featuring a shared differentia specifica among elements: 
 

! 

m =
n
SIB(DF )

n
SIB

 

 
where 

! 

n
SIB(DF )

 is the cardinality of the set SIB(DF) including only the sibling sets whose 
elements share a specific difference. More precisely, an element x ∈ j (a sibling set from 
SIB(DF)) must have a same relational property ρ holding for different values from a same 
class ϕ; formally, for a sibling set j:

! 

"x # j $%,&(%(x,y)'&(y)). 

! 

n
SIB

 is the cardinality of 

the set SIB for g. 

Measures for density 
 
Density can be defined as the presence of clusters of classes with many non-taxonomical 
relations holding among them (wrt to overall ontology graph). For example, so-called 
core ontology patterns (for thematic roles in events, contracts, diagnoses, etc.) usually 
constitute dense areas in an ontology. The following measures can be established. 
 

(1) Various clustering techniques can be used to detect dense areas, and the absolute 
size and number of them can be measured. 

(2) A measure of the relevance of those areas for the overall ontology can be obtained 
by calculating the proportion of classes and properties in the ontology, which 
logically depend on the dense areas. 

(3) Dense areas can be -explicitly or implicitly- a specialization of ontology content 
patterns [Gangemi 2005]. 

Measures for modularity 
 
A module is any subgraph sg of a graph g, where the set of graph elements S’ for sg is 
such that S’ ⊆ S. 
Two modules sg1 and sg2 are disjoint when only ≥0 isa arcs ai connect sg1 to sg2, and each 
ai has the same direction. 



Pagina 18 di 53 6-09-2005  

Modularity is related to the asserted modules of a graph, where the arcs considered here 
are either isa or non-isa arcs. We distinguish the following modularity measures. 
The set of modules from a graph g is called here M. 
 
(M22) Modularity rate: 
 

! 

m =
n
M

n
S

 

 
where 

! 

n
M

is the cardinality of M, and 

! 

n
S
 is the cardinality of S (the set of graph elements). 

 
Example: 
 

 
 
(M23) Module overlapping rate: 
 

! 

m =

nuoap
n

" # nuoadp
n

"

n
sg1 ,sg2{ } # n sg1 |sg2{ }

 

 
 
where 

! 

nuoap
n

"  is the sum of the cardinalities of the sets of uniquely directed arcs between 

the members of each module pair p from M; 

! 

nuoadp
n

"  is the sum of the cardinalities of the 

sets of uniquely directed arcs between the members of each disjoint module pair p from M; 

! 

n
sg1 ,sg2{ } is the cardinality of the set of module pairs, and 

! 

n
sg
1
|sg

2{ } is the cardinality of the 
set of disjoint module pairs. 
 
Given an appropriate procedure, it’s possible to create a modularization of a non-
modularized graph.  

Measures for logical adequacy 
 
Logical adequacy is related to graphs having a formal semantics, where the arcs 
considered here are either isa or conceptual relation arcs. We distinguish the following 
logical adequacy measures. 
 
(M24) Consistency ratio:  
 

! 

m =
n
Cons

n
G

 

 



Pagina 19 di 53 6-09-2005  

where 

! 

n
Inc

is the cardinality of the set of consistent classes from g, and 

! 

n
G
 is the cardinality 

of the set of (class) nodes from g. 
 
Example 
 
 
(M25) Generic complexity:  a complexity scale, e.g. the one used for description logics 
 
Example 
 
Cf. D. Calvanese. Data Complexity of Query Answering in Description Logics, 
http://www.inf.unibz.it/~calvanese/papers-html/DL-2005.html. 
A useful tool to automatically check the complexity of OWL ontologies is SWOOP 
(http://www.umbc.edu). 
More specific measures can be made on particular constructs that affect the actual 
computational time. We consider here anonymous classes, cycles, and inverse properties. 
 
(M26) Anonymous classes ratio: 
 

! 

m =
n
Anon

n
G

 

where 

! 

n
Anon

is the cardinality of the set of anonymous classes, and 

! 

n
G
 is the cardinality of 

the set of (class) nodes from g. 
 
(M27) Cycle ratio: 
 

! 

m =

Nk"P

k

P

#

N j"P

j

P

#
 

 

where 

! 

N
k"P

k

P

#  is the absolute depth measure for the set of cyclic paths k1…n, ki ∈ P in the 

digraph g, and 

! 

N j"P

j

P

#  is the absolute depth measure for g. 

 
(M28) Inverse relations ratio: 
 

! 

m =
n
InvR

n
R

 

 
where 

! 

n
InvR

 is the cardinality of the set of inverse relations represents by arcs in g, and 

! 

n
R
 

is the cardinality of the set of relations represented by arcs in g. 



Pagina 20 di 53 6-09-2005  

 
Other measures related to logical constructs are relevant for ontology evaluation, in 
particular we treat here class/relation ratio and class/axiom ratio. 
 
(M29) Class/relation ratio: 
 

! 

m =
n
G"S

n
R"S

 

 
where 

! 

n
G"S

is the cardinality of the set of classes represents by nodes in g, and 

! 

n
R"S

 is the 
cardinality of the set of relations represented by arcs in g. 
 
(M30) Axiom/class ratio: 
 

! 

m =
n
A"S

n
G"S

 

 
where 

! 

n
G"S

is the cardinality of the set of classes represents by nodes in g, and 

! 

n
A"S

 is the 
cardinality of the set of axioms represented by subgraphs in g. 
 
(M31) Individual/class ratio: 
 

! 

m =
n
I "S

n
GI "S

 

 
where 

! 

n
G"S

is the cardinality of the set of classes represents by nodes in g, and 

! 

n
I "S

 is the 
cardinality of the set of individuals represented by special nodes in g. 

Presence of a reification vocabulary.  
The presence of individuals in an ontology is usually not very frequent, and limited to 
cases where nominals are used in axioms, e.g.  
 
Italian(x) =df Citizen(x) ∧ ∃y(bornIn(x,y) ∧ y=Italy) 
 
On the other hand, the individual/class ratio can be higher in presence of a reification 
vocabulary. This is typically the case e.g. when classes are to be used as values in an 
axiom, for example:  
 
NurseGuideline(x) =df Guideline(x) ∧ ∃y(hasTarget(x,y) ∧ y=MaximalNurseCollective) 
 
In this example, MaximalNurseCollective is an individual used to reify the collective of all 
persons having the role of nurse, and such individuals are ideally asserted as instances of 
the class Collective, which can be defined in an appropriate vocabulary intended for 
representing that kind of reified entities. 
 



Pagina 21 di 53 6-09-2005  

Measures for meta-logical adequacy 
 
Formal semantics can go beyond first-order, in order to attempt at representing functional 
adequacy as well (cf. 2.3).  
The major example of that attempt is OntoClean [Guarino&Welty 2004]. OntoClean aims 
to classify the classes of an ontology according to some meta-properties, e.g. rigidity, 
unity, dependence. OntoClean metaproperties try to reduce some functional measures to 
the measurement of adequacy wrt series of possible worlds (states of affairs). For 
example: 

- stability of a property across a series of temporal states for a same entity (rigidity) 
e.g. person vs. student 

- disjointness of sets of properties across a series of (different) topological states for 
a same entity or cluster (unity) e.g. dog vs. rubbish 

- stability of a property across a series of states featuring different relational 
properties for a same entity (dependence) e.g. dog vs. dogtail 

 
As we explain in 2.3, possible worlds can be used to check the quality of an ontology only 
in an ex-post way, e.g. by analyzing the history of a temporal database built according to 
the ontology that must be evaluated. This is unfit, since an ontology is supposed to be 
evaluated before its application, not afterwords. 
For this reason, OntoClean methodology suggests designers or experts to assign meta-
properties in advance, and then to use these assignments to check the meta-logical 
consistency of the taxonomy. For example, the principle of meta-level integrity (cf. 2.5) 
requires parameters for meta-consistency, e.g. a parameter by which no rigid class can be 
subsumed by an anti-rigid one, because a (temporally) stable class would result to depend 
on an unstable one. 
  
(M32) Meta-consistency ratio:  
 

! 

m =
n
MCons

n
G

 

 
where 

! 

n
MCon

 is the cardinality of the set of meta-consistent classes from g, and 

! 

n
G
 is the 

cardinality of the set of (class) nodes from g. 
 

Measures for degree distribution 
 
There is a number of statistical-analytical notions that are commonly applied to the 
analysis of graphs. For instance, the application of statistical analysis to a graph allows to 
isolate patterns in the form of dense areas. These areas may be characterized through the 
following notions: 
 
Degree distribution, which measures the probability of a vertex to have a certain degree 
(i.e. the sum of its out- and in- degrees).  When the probability of a vertex having a degree 
k (P(k)) follows a power-law distribution (P(k) ≈ k- r) -- as opposed to a Poisson 
distribution -- it is possible to conclude that the structure of (the system represented by) 
the graph is not random. Moreover, power law distributions are characterized by the γ 



Pagina 22 di 53 6-09-2005  

exponent and are called scale-free networks. In other words, they show the same 
properties independently of the scale at which they are observed. 
 
Small world: a graph is a small world if the average minimum path length d between 
vertices is short, usually scaling logarithmically with the total number of vertices. Graphs 
showing an average path length similar to random graphs of the same size and average 
degree are very likely small worlds, d ≈ drandom. 
 
Clustering coefficient: It measures the probability that two neighbors of a given node are 
also neighbors of one another. For random graphs it is a small quantity. However, CSs 
show a high clustering compared to random graphs, C >> Crandom. A high clustering 
confirms small-worldness. 
 
Now, the degree distribution might support the structural measuring of various types of 
systems, among which ontologies [3]. In particular, if graphs are used for modeling 
systems that developed over time without a central control (like the World Wide Web or 
large-scale collaborative ontologies) nodes (i.e. web-pages, respectively, concepts) with a 
high degree have probably become crucial to the very existence of the entire structure, and 
in the case of ontologies this possibly means that they are semantically crucial. On the 
other hand, the γ exponent may be taken as a sign of the “recursive” structure of (the 
system represented by) the graph. Similar considerations hold for small worlds and for the 
clustering coefficient.  
Degree distribution measures can be combined with measures related to dense areas. 
 

2.3 Measuring the functional dimension 
 
The functional dimension is coincident with the main purpose of an ontology, i.e. 
specifying a given conceptualization, or a set of contextual assumptions about a world. 
Such specifications, however, are always approximate, since the relationship between an 
ontology and a conceptualization is never straightforward (Fig.2). Hence, an appropriate 
evaluation strategy should involve a measurement of the degree of such approximation. In 
the semiotic view of ontologies, this amounts to measuring the extent to which a 
(syntactic) graph expresses a context-bound intended meaning, possibly with respect to a 
formal semantic interpretation.4 
The problem, hence, is to find ways of measuring the extent to which an ontology mirrors 
a given expertise, or competency: something that is “in the experience” of a given 
community and that includes not only a corpus of documents, but also theories, practices 
and know-hows that are not necessarily represented in their entirety in the available 
documents. This seems to imply that no automatized method will ever suffice to the task 
and that intellectual judgement will always be needed  However, both automatic and 
semi-automatic techniques can be applied that make such evaluation easier, less 
subjective, more complete and faster (cf. [Daelemans et al. 2004]). 

2.3.1 Formalizing functional measures 

                                                
3 http://dmag.upf.es/livingsw/ 
4 We remind here that we are considering also ontologies that are not given a formal interpretation, such as 
terminologies or thesauri. 



Pagina 23 di 53 6-09-2005  

We propose here some functional measures that are variants of the basic measures 
introduced by [Guarino 2004], which uses an analogy with precision and recall measures 
(cf. 2.3.3 for the definition in its original context). Precision and recall are measures 
which are widely used in information retrieval (cf. [Baeza-Yates & Ribeiro-Neto,1999]) 
and are defined as follows (TP=True Positive; FP=False Positive; FN=False Negative):  
 
Precision:  
 

! 

P =
n
TP

n
TP

+ n
FP

 

 
where 

! 

n
TP

 is the cardinality of the set of true positives, and 

! 

n
FP

 is the cardinality of the 
set of false positives. 
 
Recall: 
 

! 

R =
n
TP

n
TP

+ n
FN

 

 
In the context of ontology evaluation, the definition is adapted by choosing an appropriate 
domain for the positives resp. negatives from the matching between the ontology structure 
and the intended usage and meaning. 
In particular, [Guarino 2004] proposes a possible-world semantics to characterize that 
matching. Given a logical language L that implicitly commits to a conceptualization C, an 
ontology’s purpose is to capture all and only those models of L that are compatible with 
C.  
These models are called the intended models Ik(L), k being the commitment to a certain 
intepretation I for L. In this semantics, an ontology O using L is «a logical theory 
designed in such a way that the set Ok(L) of its models relative to C under the 
commitment k is a suitable approximation of the set Ik(L)». 
Given a conceptualization: 

! 

C = ",W ,R , where ∆ is a set of relevant entities, W a set of 
possible worlds, and R a set of intensional relations5, precision and recall are defined as 
follows (Fig. 6): 

 
O_Precision:  
 

! 

OP =
n
TP

O
k
(L )

n
TP

Ok (L ) + n
FP

Ok (L )  

 
i.e. the proportion of intended models 

! 

TP

Ok (L )  ⊆ Ik(L) (True Positives) over Δ, on the sum of 
all O models Ok(L), which can include False Positives 

! 

FP

Ok (L )  ⊄ Ik(L). 
 
O_Recall (renamed coverage by [Guarino 2004]):  

                                                
5 An intensional relation is a function from W to the set 

! 

2
D
n

 of all possible n-ary extensional relations on D. 



Pagina 24 di 53 6-09-2005  

 

! 

OR =
n
TP

O
k
(L )

n
TP

Ok (L ) + n
FN

Ok (L )  

 
i.e. the proportion of intended models 

! 

TP

Ok (L )  ⊆ Ik(L) (True Positives) over Δ, on the sum of 
all intended models Ik(L), which can include False Negatives 

! 

FN

Ok (L )  ⊆ Ik(L). 
In [Guarino 2004] the formulas for precision and covergae use directly Ik as a given set, 
and does not use positives and negatives; for example, the precision formula is: 

! 

n
Ok (L )" n

Ik (L )

n
Ok (L )

. But in realistic ontology projects, Ik is not a given set: we are only able to 

detect -indirectly at best- (a sample of) false positives and false negatives. For this reason, 
we prefer to maintain the analogy with IR, which is not based on the assumption that the 
expected set of results is given in advance. 
 
 

 
 
Figure 6. The relationship between an ontology and a conceptualization. 
 
In other words, an ontology can accept unintended models, resulting in lower precision, or 
can miss intended models, resulting in lower recall. Fig.7 is a picture of the possible cases 
resulting from this definition of precision and recall. 
 



Pagina 25 di 53 6-09-2005  

 
 
Figure 7. Precision and recall (coverage) of an ontology. The grey ovals includes all 
models allowed by the logical language. The yellow ovals include the intended models. 
The oval projections of rectangular spaces include the models allowed by an ontology. 
100% precision implies that all non-intended models are excluded; 100% coverage 
implies that all intended models are included. 

 
But this is not the whole story, since models can map different states of affairs. Usually, 
an intended conceptualization “prospects” a set of possible states of affairs, which can 
contain possible distinctions that are not expressible in an ontology (cf. the BWO example 
in the next section). This is a direct consequence of  the mismatch between cognitive and 
formal semantics (see section 1.). Such mismatch results in a decrease of factual precision 
and coverage while model-based precision and coverage remain stable. 
Factual precision/coverage is tentatively formalized through the notion of accuracy  
(inspired by [Guarino 2004] that does not provide a formula for it), which tries to measure 
the fitness to an intended conceptualization

! 

C = ",W ,R  by mapping states of affairs to 
possible worlds in W: 
 
O_Accuracy: 
 

! 

OA =
n
TP

Ok (L )W

n
TP

Ok (L )W + n
FP

Ok (L )W
"

n
TP

Ok (L )W

n
TP

Ok (L )W + n
FN

Ok (L )W  

 
i.e. the proportion of intended states of affairs 

! 

TP

Ok (L )W ⊆ Ik(L)W (True Positives) over the 
sum of all O states of affairs Ok(L)W, which can include False Positives 

! 

FP

Ok (L )  ⊄ Ik(L), 
multiplied by the proportion of intended states of affairs 

! 

TP

Ok (L )W  ⊆ Ik(L)W (True Positives) 
over the sum of all intended states of affairs Ik(L)W, which can include False Negatives 

! 

FN

Ok (L )  ⊆ Ik(L). 

An example: BWO 
We consider a simple axiomatic theory: the Blocks World Ontology (BWO), including: 
A signature: {On, Block} 
A set of axioms: 
(A1) On(x,y) → Block(x) ∧ Block(y) 
(A2) On(x,y) → ¬On(y,x)        (antisymmetry) 



Pagina 26 di 53 6-09-2005  

(A3) (On(x,y) ∧ On(y,z)) → On(x,z)       (transitivity) 
 
We could now consider the following model M for BWO, consisting of a set of 
propositions: 
(P1) On(red_block#1, blue_block#1) 
(P2) On(green_block#1, red_block#1) 
(P3) On(yellow_block#1, red_block#1) 
 

 
Fig.8. A typical state of affairs for M in BWO. 

 
A typical intended state of affairs S1 (representable as a possible world) for M is depicted 
in Fig.8: the red block is on the blue block, and the green and yellow blocks are on the red 
one.  
But how to be sure that there are no other states of affairs that are not intended, which can 
be compatible with M? And that there are no intended states of affairs that are not 
captured by M?  
In other words, does BWO catch all and only the intended meaning of the agent that 
defines or uses BWO? Also: how to know about that intended meaning? What are its 
boundaries? We will propose later that the intended usage must be considered firstly.  
We show with a further state of affairs that these questions deserve a non-trivial answer. 
Let’s consider a less typical state of affairs S2 for M (Fig.9). 
 

 
Fig.9. A less typical state of affairs for M in BWO. 
 



Pagina 27 di 53 6-09-2005  

S2 appears as less typical because S1 is closer to the conventions applied in classic AI and 
computer science examples, nonetheless S2 can even be more realistic: a plane surface is 
depicted which intuitively bears the weight of the blocks; a block (the green one) can lie 
on the red one without being strictly “on” the blue (it lacks a vertical alignment); the 
yellow block can hang through a pair of cables, without actually touching the red block, 
so being over it, but still “on” it, if M is the best approximation to S2 in BWO (since it 
admits a “disconnected” on). 
Therefore, S2 requires a richer theory to be distinguished from S1. This means that either 
(i) S2 is an intended state of affairs (it is expected by the intended conceptualization), but 
BWO is not accurate enough to distinguish it from others accounted by the same model 
(there is a false negative possible world); or (ii) S2 is not an intended state of affairs, but 
BWO is not accurate enough to exclude it (there is a false positive possible world). 
In both cases, the formal semantics does not comply with the intended conceptualization 
(the cognitive semantics, cf. 1.). 
Additional aspects may be lacking for some intended usage, e.g.: temporal and spatial 
constraints; the kind of space to be assumed; the color qualities of the blocks, etc. 
 
Precision, recall and accuracy have been adapted to formalize the functional fitness of an 
ontology. On the other hand, the purely formal characterization of P/R and accuracy is 
neutral with respect to what procedure is used to obtain the (false/true) positives resp. 
negatives. 
But such a procedure is needed, and it greatly influences what data can be obtained. 
Which models are intended? which states of affairs? are intended models decided with 
reference to intended states of affairs? or are intended states of affairs only a refinement 
of intended models?  
In realistic cases, sometimes an ontology is taken as a prescriptive set of rules, sometimes 
it is received as a guideline, and sometimes it is something to discuss or modify. These 
different attitudes change the scenario in which we are supposed to answer those 
questions. Unfortunately, the formalization does not help much, and can even be 
misleading without an explicit procedure. 
Simply stated, the applicability of functional measurement is key to the functional 
evaluation of ontologies. 

Applicability of functional measurement 
The applicability of functional measurement is based on a process of matching. While 
structural measurement analyses one structure (a graph), functional measurement analyses 
the correspondence between two structures: a graph, and something else, where this 
something else is extremely difficult to capture without being part of the application 
context.  
Formal semantics can help defining a task by providing an intepretation to a graph, but 
such interpretation depends on the commitment of (one or more) agent(s), and such 
commitment is motivated by a typical expertise for a task in that context. 

Intended conceptualization as (a schema of) expertise for some task 
We are proposing that an intended conceptualization corresponds to (part of) the expertise 
of ontology intended users, where the expertise’ boundary is provided by the task that 
should be accomplished with the help of the ontology. 
There is some disagreement on if expertise should be encoded in ontologies, or in 
knowledge bases [Guarino and Giaretta 1995]. Anyway, since a knowledge base depends 
on a schema (i.e. an ontology), at least the schema of an expertise should be encoded as 



Pagina 28 di 53 6-09-2005  

an ontology. This is the point we are making here: states of affairs can be prospected (are 
intended) only wrt to expertise for a task, then an ontology should be aimed at capturing 
at least the schema of that expertise. 
Another consequence of our proposal is that models are not “intended”: they can be 
admitted or not by the users’ conceptualization (cf. Fig.2), on the basis of said expertise. 
In other words, our semiotic perspective turns the problem upside-down: formalization 
comes as a tool to represent expertise and task, not as a requirement independent from 
expertise and task. 
Expertise and tasks need to be captured where they are enacted or deposited, then 
formalized. 
But, since expertise is by default in the cognitive “black-box” of rational agents, ontology 
engineers have to elicit it from the agents, or they can assume a set of data as a qualified 
expression of expertise and task, e.g. texts, pictures, diagrams, db records, terminologies, 
metadata schemas. 

2.3.2 Qualified expressions of intended conceptualization: some 
measurement methods 
Based on these assumptions, precision, recall and accuracy of an ontology graph can be 
measured against: a) experts’ judgment, or b) a data set assumed as a qualified expression 
of experts’ judgment. Therefore, we distinguish between black-box and glass-box 
measurement methods: 
 

(1) Agreement assessment (black-box) 
(2) User-satisfaction assessment (black-box) 
(3) Task assessment: what has to be supported by an ontology? (glass-box) 
(4) Topic assessment: what are the boundaries of the knowledge domain addressed by 

an ontology? (glass-box) 
(5) Modularity assessment: what are the building blocks for the design of an 

ontology? (glass-box) 
 
Black-box methods require rational agents, because they don't explicitly use knowledge of 
the internal structure of an expertise. 
Glass-box methods require a data set that “represents” that knowledge, and, on this basis, 
we can treat the internal structure of those data as if it is the internal structure of an 
expertise. 

Agreement assessment 
When experts’ judgment is taken into account, precision, recall and accuracy can only be 
measured through the proportion of agreement that experts have with respect to ontology 
elements; when a group of experts is considered, we may want to measure the consensus 
reached by the group’s members.  
Agreement assessment is a black-box measurement, since intended conceptualization is 
left in the experts’ mind, and we only measure their approval (or the proportion of 
consensus) on the set of ontology elements. This makes the measurement very reliable at 
design-time, while it needs a reassessment at reuse-time. 
Agreement assessment requires organized experts and their availability to take part in a 
trial. Many rhetorical and argumentation issues come into place when trying to measure 
consensual weights; e.g. discussing by “examples and counterexamples” is a typical 
technique. When a consensus-reaching methodology (e.g. [Uren et al. 2004], 
[DILIGENT]) or a modular design (see below) has been used in the ontology lifecycle, 



Pagina 29 di 53 6-09-2005  

this provides a preliminary measure for the evaluation of an ontology at design-time (but 
it should be reassessed at reuse-time). 

User-satisfaction assessment 
A more “black-boxish” method is the measure of user satisfaction, which can be carried 
out by means of dedicated polls, or by means of provenance, popularity, and trust 
assessment. 
User satisfaction provides an indirect measure of fitness to expertise and task, but requires 
a careful profiling procedure to establish the competency/subject area of the users 
involved in a poll, or in a network of trust. 

Task assessment 
A glass-box method type is based on the availability of data about the task intended for an 
ontology. Therefore, it deals with measuring an ontology according to its fitness to some 
goals, preconditions, postconditions, constraints, options, etc.  
This makes the measurement very reliable at design-time, while it needs a reassessment at 
reuse-time. 
Task assessment requires a task specification. Three approaches can be singled out: 
service-, solution-, and task-based. The first two specify the task indirectly, while the 
third is a direct specification. 
 
(1) Service-specification-based. The process model of an application can be used to 

evaluate the P/R of an ontology. For example, if a service requires a certain I/O 
pattern, the ontology should provide a vocabulary and axioms to the data involved in 
the I/O process, such that an appropriate application schema can be built, and the I/O 
process provides the expected results. Service specification can be a practical method 
to functional evaluation (in fact, it has been traditionally used in conceptual 
modelling), but it could miss the relevant social aspects of expertise, since a task is not 
equivalent to an application: requirements can need more expressivity than that 
provided for computational service specification.  
For example, an experiment has been carried out on the Oracle Human Resources 
(HR) schema (Fig.s 10,11) in the context of the EU WonderWeb project 
(http://wonderweb.semantiweb.org). The HR schema from the legacy application has 
been reengineered as an OWL ontology, showing just a few classes and properties 
(8/10) that actually refer to the HR domain, while more than 40 properties are 
provided just as foreign keys: they are mostly bound to the application requirement, 
not to the task requirements. After a careful remodelling, the number of classes and 
properties increased (15/16), but with no need for the additional properties for foreign 
keys. Incidentally, the remodelling changed the class/property ratio from approx. 1:6 
to approx. 1:1, which is closer to ontologies usually considered as “accurate”. This 
result is interesting here, because the remodelling process has considered HR from a 
social (organizational) perspective, not from a purely application-oriented perspective. 

(2) Gold-standard-solution-based: A validated corpus of answers for a certain task (either 
computational or cognitive) can be used to evaluate the accuracy of an ontology. The 
corpus is then used as a gold standard. This method checks the performance of an 
ontology-driven system with reference to those answers (cf. [Porzel et al. 2004]). This 
method is more effective than (1), but requires an intellectual pre-processing of 
competency questions (see (3)) on a local basis, and therefore it is not easily 
generalizable. 

(3) Explicit-task-based: Instead of matching an ontology to an application model or to a 



Pagina 30 di 53 6-09-2005  

pre-processed set of answers, we can directly match it to a task specification. A task 
specification must include references to a domain ontology (it combines with topic 
assessment, see next section). A task specification can be generic, then usable to a 
large variety of applications and requirements. A task specification should take into 
account the social context of prospective applications. 

 

 
Figure 10. The Human Resources schema reengineering in OWL. 
 

 
Figure 11. The Human Resources schema remodelled by means of a social ontology. 
 

There are several examples of specification frameworks for tasks (cf. [Gangemi et al. 
2004] for a review and an axiomatic theory of tasks and plans). We report here three 
very different approaches as a sample: 

a) Competency questions [Grüninger et al. 1996] are an informal method to 
profile the type of queries that users may want to make to a knowledge base 
specified according to an ontology. 

b) WSMO (Web Service Modelling Ontology) [Vasiliu et al. 2004] is a set of 
ontologies and specifications that can be used to formalize the profile, process-
model, choreography, and orchestration of web services. WSMO specs can 
refer to a domain ontology and can be general. 

c) COS (Core Ontology of Services) [Oberle et al. 2004] is an ontology that can 
be used to formalize the social service that motivates the implementation of a 
web service. COS specs are built as domain ontologies, can be very general, 



Pagina 31 di 53 6-09-2005  

and can use a built-in vocabulary for the social context of prospective 
applications. 

 

Topic assessment 
Another (complementary) non-black-box method type is based on the availability of data 
about the topic covered by an ontology.  
It deals with measuring an ontology according to its fitness to an existing knowledge 
repository (an information realization, cf. section 1.). This makes the measurement 
reliable both at design-time, and at reuse-time. 
Topic assessment requires a topic specification. Three approaches can be singled out. The 
first one is a grey-box approach, while the second and third are direct, glass-box 
approaches. 
 
(1) Choose directory and annotate: operated on a subject directory by annotating the 

ontology with a subject label: it’s a grey-box technique, because subject label do not 
actually reveal the internal structure of an expertise, but act like “placeholders” for it. 

(2) Reengineer and match: operated on metadata repositories, such as terminologies, 
informal diagrams, DB and OO schemas, etc. Reengineering is based on best practices 
(e.g. thesauri to OWL), formal translations (e.g. FOL to OWL), and a lot of 
customization. It requires enrichment of ontology with information objects that can be 
matched against information realizations (e.g. lexical occurrences in texts). Once 
reengineered, a source can be either imported or mapped: the degree of difficulty in 
devising such activities provides P/R measures of the ontology. A more directed 
measure can be obtained by considering the source as a gold-standard-model (cf. 
[Maedche&Staab 2002]). 
A special case of “reengineer and match” is the direct reuse of another ontology, 
without reengineering it.  

(3) Extract and match: operated on data repositories, such as linguistic or image corpora, 
databases, etc., by extracting information patterns and matching them to ontology 
graph. Extraction is based mostly on learning techniques. Matching is controversial, 
because it depends on the way data are parsed; e.g. a same text can be parsed in 
different ways, thus obtaining different patterns. E.g. in NLP, parsing terms (how 
complex?) vs. syntactic structures. E.g. parsing statistically vs. rule-based. An 
experiment with statistical parsing of syntactic patterns is [Ciaramita et al. 2005]. 
Other work is in e.g. [Brewster et al. 2004]. See next section for a review. 

 
The next section is dedicated to evaluation based on NLP techniques, which are currently 
the most investigated, and are combined with the other methods presented here, so that it 
deserves an independent presentation. 

2.3.3 Evaluation with NLP 
When the ontology is lexicalized; i.e., it defines, at least to some extent, what instances of 
classes and relations are called in natural language, and there exists a substantial amount 
of textual documents which contain information about the content of the ontology, 
Natural Language Processing (NLP) can support ontology evaluation in several ways. A 
typical such case is when the ontology directly supports information retrieval or text 
mining applications and thus concerns objects mentioned in web-pages or other large 
repositories of texts (e.g., newswire, biomedical or legal literature, etc.). One of the 
simplest examples of lexicalized ontology is the kind used for newswire information 



Pagina 32 di 53 6-09-2005  

extraction which is usually based on three classes: “person” (e.g., Mayor Giuliani, Kofi 
Annan, etc.), “location” (e.g., Houston, South East Asia, etc.), and “organization” (e.g., 
U.N., Enron, etc.). Sometimes these classes are also associated with relations such as “is-
located-in” (e.g., is-located-in(Enron,Houston)) or  “works-for” (e.g., works-
for(Kofi_Annan,U.N.)). 

Corpus-based ontology analysis 
If there is a corpus of documents which contains the kind of information conceptualized 
in the ontology, NLP can be used to identify mentions of instances (i.e. occurrences in 
text) of classes and relations (which is more complicated than string matching, e.g., 
gene/protein names and relation/paraphrases identification) which are mentioned in the 
text. A corpus-based analysis of the ontology can reveal important properties of the 
ontology that might not be discovered otherwise. Most importantly it allows to estimate 
empirically the accuracy and the coverage of the ontology.  

Distributional properties 
By identifying mentions of ontological instances in the corpus it is possible to count the 
frequency of classes (similarly for relations). The relative frequency of each class c (or 
relation) is the proportion of mentions of ontology instances which are equal to c; i.e., 
P(c) = count(c)/sum_i count(c_i). The relative frequency measures the importance of each 
class and provides a first simple measure of the ontology quality. For example, in 
newswire text the three classes above have somewhat similar frequencies, while if the 
corpus analysis reveals that one of the classes is much more unlikely than the others this 
means that there is something wrong with the instances of that class. There might be 
errors or an insufficient number. If the ontology has a hierarchical, i.e., is-a, structure it is 
also possible to estimate the frequencies of higher of superordinate concepts, the 
frequency of a class c then would be the sum of the frequencies of its descendants. The 
probability of a concept in a hierarchy can be computed as P(c) = sum_j{c_j is descendant 
of c} count(c_j)/sum_i count(c_i). Each class can be seen as a random variable, this can 
be useful to estimate the information-theoretical measures such as entropy H(c) = -sum_j 
{c_j is descendant of c} P(c_j)logP(c_j). Entropy and other information theoretic 
measures can be used to identify classes that are particularly useful or “basic” (Gluck & 
Corter, 1985).  Thus for example in a general purpose ontology, a concept such as “tree”, 
which has many descendants similar to each other, is likely more important than a concept 
such as “entity” which has very dissimilar descendants (e.g., organisms, artifacts, etc.). 
 
One problem with trying to estimate distributional properties of the ontology directly is 
that the existing lexicon associated with the ontology might be insufficient because it 
contains only the names that the experts have listed. Notice that creating such 
“dictionaries” requires not only domain expertise but also lexicographic expertise and it is 
a slow and expensive process. Therefore typically the starting ontology lexicon is quite 
limited. This issue introduces two important metrics: precision and recall.  

Precision and recall 
When occurrences of the ontology instances are identified in a corpus two important 
measures come to play an important role in evaluating properties of the ontology: 
“precision” and “recall” (see previous section for a definition taken from [Baeza-Yates & 
Ribeiro-Neto,1999]). A few preliminary concepts need to be defined: a “true positive” 
(TP) is an instance which is correctly labeled with one class defined by the ontology; e.g., 
“Alan Greenspan” in the example below: 



Pagina 33 di 53 6-09-2005  

 
1)  Word  Guessed/True Label Answer type 
  -------------------------------------------------------------------- 
  Fed  0/ORG   FN 
  chairman 0/0   TN 
  Alan  PER/PER  TP   
  Greenspan PER/PER  TP 
  was  0/0   TN 
  in  0/0   TN 
  Philadelphia LOC/LOC  TP 
  today  LOC/0   FP 
 .  0/0   TN 
 --------------------------------------------------------------------- 
 
A “false positive” (FP) is an instance which is incorrectly labeled with a class label; e.g., 
“today” labeled as a “location” in Example (1). Similarly, a “false negative” (FN) is 
instance of a class which is not recognized as such, e.g. “Fed” in example (1), while a 
“true negative” (TN) is correctly not recognized as an instance of a class; e.g., 
“chairman”, “was”, etc. in Example (1).  
 
Intuitively, precision measures the ability of a system in recognizing instances of a given 
class, while recall measures the coverage of the system, that is how many true instances 
were left out. Measuring precision and recall requires manual tagging of enough textual 
data to be able to compare the empirical lexicon so generated with the ontology lexicon. 
Typically, the lexicon that is defined by the experts has a good precision because it is 
unlikely that wrong instances were placed in any class/relation lists. However, the lexicon 
defined by the experts can be limited on several aspects: 
 
- It can have very low coverage, thus miss important instances 
- It is not a sample of the domain thus it can over-represent certain types of objects and 
under-represent others 
 
Precision and recall are often combined in a single score which is the 
harmonic average of P and R, called F-score: 
 

! 

F = (1+ " 2)
P # R

R + " 2P
 

Population and knowledge discovery 
NLP can be used for assisting experts in populating the objects defined by the ontology. 
Machine learning methods for supervised and unsupervised classification can be applied 
to corpus data to retrieve unknown instances of ontology objects. So far most of the work 
in this area has concentrated on the problem of finding new members of of a class of 
objects (cf. Riloff, 1996; Roark & Charniak, 1998), and on finding examples of structural 
relations such as is-a (Hearst, 1992,Pantel & Ravichandran, 2004) or part-of (Berland & 
Charniak, 1999). Recent work however has focused also on discovering class attributes 
(Almuhareb & Poesio, 2004) and arbitrary relation between classes (Ciaramita et al., 
2005). Automatic or semi-automatic population of ontology objects is valuable also in 
terms of evaluation. In fact, it is possible that new senses of already known instances are 



Pagina 34 di 53 6-09-2005  

discovered, for example because the instance is polysemous/ambiguous (e.g., 
“Washington” is a person and a location).  

Task-oriented evaluations 
Ontologies are developed to play a role in information and knowledge management tasks. 
The most reliable evaluation of an ontology is the quantification of its positive impact on 
the task performance. In language-related tasks, where ontologies can provide a crucial 
support for inference, it has been observed that ontology can improve a system's 
performance; e.g., in Information Retrieval (Welty et al.,  2003) and in automatic 
Question/Answering (Pasca & Harabagiu, 2001). For example, a taxonomical structure of 
nominal concepts can help a system to find the right answer for a question such as “What 
flowers did Van Gogh paint?”. Hence, a task-oriented evaluation provides first of all 
empirical means for comparing the performance of a system with and without ontological 
support. Secondly, it provides a straightforward way of comparing competing ontologies 
for the same task by comparing their performance.  
Furthermore, empirical appllications to high-level tasks such as question answering or 
information retrieval allow ontology developers to investigate error patterns of the 
ontology and therefore offer a way of understanding the behavior and limitations of 
current ontologies in supporting inference. Therefore task-oriented evaluations provide 
empirical support for further development and improvements of the ontology itself. 

2.3.4 Modularity assessment 
Another method type is based on the availability of data about the design of an ontology. 
Therefore, it deals with measuring an ontology according to its fitness to an existing 
repository of reusable components. This makes the measurement very reliable both at 
design-time, and at reuse-time. On the other hand, modularity can only be assessed easily 
on ontologies that have been designed with an appropriate methodology. 
Modularity assessment requires a specification of reusable components, for example, it 
requires (one or more) libraries of ontologies, with indications of their provenance, 
specificity, application history, etc. (cf. also the usability-profile section, 2.4). 
Modular designs are not independent: they require that a task and topic assessment has 
been performed in advance, at least at some level of generality in the case of reusable 
generic components. 
Modularity depends on topic assessment, because we need to know what theories are 
needed in a certain ontology project [Fernandez-Lopez et al. 2004].  
Modularity also depends on task assessment, because we need to know how much of a 
reusable theory is needed. This dependence causes a form of circularity: a reusable 
component has to be assessed against a task, but it is supposed to provide a ready-made 
solution to task assessment. For example, if we need a theory of calendar relations, we 
assume that the one we are going to reuse has a built-in task-oriented accuracy, seemingly 
quite generic. On the other hand, our ontology project’ task might require only a fragment 
of that calendar theory, thus dictating its own task over the reusable component.  
There is no trivial solution to this circularity, and a good practice is to isolate the fragment 
as much as possible, and to import it. This approach is applied more effectively if a 
reusable component spots its content design patterns, if any [Gangemi 2005]. 

Stratification 
A notable example of modularization architectures employs reference and core 
ontologies, which allow to factorize ontology projects, as well as their quality assessment. 



Pagina 35 di 53 6-09-2005  

For ontologies designed with a stratified modularization methodology (cf. Fig. 12), 
assessment is straightforward, provided that topic and task are clear enough. The typical 
architecture of stratification requires a foundational layer on which a core ontology is 
built or reused in accordance to the topic and task of the ontology projects, and domain 
ontologies are plugged into the core layer.  
For ontologies that have no (or a non-stratified) modular design, assessment is much more 
complex, and requires firstly a modularization procedure, and secondly an assessment 
with respect to their task and topic. This is typically needed in reengineering projects, e.g. 
with legacy thesauri or terminologies. 
For example, in the Fishery Ontology Service project [Gangemi, Keizer, et al. 2004], 
legacy fishery thesauri have been reengineered and modularized according to an informal 
legacy topic hierarchy and core ontology of fishery (Fig. 13). The resulting modules have 
been matched to existing components for the different topics and tasks addressed by the 
project. It resulted that, on one hand, the legacy ontologies had a defective 
modularization, which has been restored by mapping the legacy modules to a newly 
added core ontology; and, on the other hand, that existing reusable components were not 
able to provide a satisfactory matching to the very different modules arising from the 
modularization procedure.  
 

 
Figure 12. In an ontology for historical works of art, domain ontologies define a 
vocabulary that is typically stratified in foundational, core, and domain layers 
 
The results of this evaluation can be summarized by saying that in realistic projects, 
stratification is usually less ‘pristine’. Domain modules often contain bits and pieces of 
other domains (e.g. geology and law in fishery), thus requiring the reuse of general 
purpose ontologies like OntoWordNet, which are usually unsatisfactory with reference to 
agreement and task assessment. 
 



Pagina 36 di 53 6-09-2005  

 
Figure 13. The stratification resulting after modularity checking in the fishery ontology 
service project. Modules uncovered by existing reusable ontology components have been 
covered by using a reengineered version of WordNet (a sub-optimal solution). 
 
A final remark should be made on modular design based on organizational design, which 
is discussed in 2.4. This kind of modularity depends on the organization that employs the 
ontology rather than on off-the-shelf components. 

2.4 Measuring the usability-profile of ontologies 
Usability-profiling measures focus on the ontology profile, which typically addresses the 
communication context of an ontology (i.e. its pragmatics). An ontology profile is a set of 
ontology annotations, i.e. the metadata about an ontology and its elements.  
Annotations contain information about structural, functional, or user-oriented properties of 
an ontology. The structural and functional properties have been presented in 2.2 and 2.3. 
Some purely user-oriented properties (e.g. authorship, price, versioning, organizational 
deployment, interfacing, etc.) are introduced in this section when needed. 
Here we propose some analytical levels concerning usability profiling. The idea is to 
identify specific parameters to better understand the relations between users and 
ontologies. The identified analytical levels are recognition, efficiency, and interfacing.  
The added value of this analysis of usability levels is to explicitly match user needs and 
the ontology development process. Following these usability dimensions, it should be 
possible to involve a wider variety of users in the effective exploitation of ontologies. 
Moreover, usability levels are also useful to design specific ontologies for particular user 
communities. 

Recognition annotations 
The recognition level makes objects, actions, and options visible. Users need an easy 
access to the instructions for using ontology in an effective way, and an efficient process 
to retrieve appropriate meta-information. That is, give your users the information that they 
need and allow them to pick what they want. Hence recognition is about having a 
complete documentation and to be sure to guarantee an effective access. 
Another point is to not force users to recall information, unless absolutely necessary. 
Search engines have largely been successful because they shift a memory burden away 
from users. They store and recall information for users and then, when the results are 
displayed, users simply perform a recognition task. Since recognition is better than recall, 
and since overall performance improves, the usability is augmented. 



Pagina 37 di 53 6-09-2005  

What was the name of your fifth-grade teacher? A question such as this is a request to 
“recall” information from your long-term memory. If, in addition to this request, you are 
given a few hints or cues as to the desired name, the memory test becomes a “cued recall” 
test. If you are given a list of four names, one of which is the name of your teacher, the 
memory test becomes a “recognition” test (cf. [Kaakinen et al. 2002]). 
Ontologies are more usable if they can be recognized appropriately. But information 
about ontologies cannot be always got from their structure, and functionality tests cannot 
be replicated so easily. Therefore, ontology recognition requires an adequate set of 
annotations, which can be preliminarily classified as follows: 
 

1. Annotations (of the overall ontology) about the ontology structure 
• Graph measures 
• Logic-type and computational complexity 
• Meta-consistency 
• Modularization (e.g. owl:imports) 

2. Annotations about the ontology function (either at design-time or reuse-time) 
• Lexical annotation of ontology elements (incl. multilingual) 
• Glosses (e.g. rdfs:comment) about ontology elements 
• Agreement status 
• User satisfaction (e.g. 

http://smi.protege.stanford.edu:8080/KnowledgeZone/) and trust rating 
• Task/use case of the overall ontology (both originally and during its 

lifecycle) 
• Topic (e.g. rdf:about) of the overall ontology 
• Modularization design of the overall ontology 

3. Annotations about the ontology lifecycle (either of the overall ontology, or of its 
elements) 

• Provenance  
• Methods employed  
• Versioning (e.g. owl:versionInfo) 
• Compatibility (e.g. owl:incompatibleWith) 

 
The annotations from types 1. and 2. concern the structural and functional measures 
presented in previous sections. The annotations from type 3. are proper pragmatic 
informations (Fig.2), which profile the actual usage context of an ontology. 
Amount, completeness, and reliability of annotations are usability measures ranging on the 
above annotations. 
Notice that annotations can be resident in an ontology file, linked through a URI, 
dynamically produced when needed (e.g. by a local software component, or through a 
web service), or retrieved from an incrementally growing repository (e.g. from a portal 
that collects users’ feedback). Here we abstract out of these different availability systems. 

Efficiency annotations 
An interesting analytical level concerns the variety of ontology potential uses. Ontology 
should be designed in order to satisfy the needs of both experienced and inexperienced 
users. Moreover, it is useful to better understand those possible user behaviours that could 
drift the ontology use-pattern. Users should be able to achieve their goals in an efficient 
manner. In order to look at the user's productivity, an analogy to operating a microwave is 
used. 



Pagina 38 di 53 6-09-2005  

The microwave analogy. People cost a lot more money than machines, and while it 
might appear that increasing machine productivity must result in increasing human 
productivity, the opposite is often true. In judging the efficiency of ontology, we need to 
look beyond just the efficiency of the machine. For example, which of the following takes 
less time? Heating water in a microwave for one minute and ten seconds or heating it for 
one minute and eleven seconds? From the standpoint of the microwave, one minute and 
ten seconds is the obviously correct answer. From the standpoint of the user of the 
microwave, one minute and eleven seconds is faster. Why? Because in the first case, the 
user must press the one key twice, then visually locate the zero key, move the finger into 
place over it, and press it once. In the second case, the user just presses the same key–the 
one key–three times. It typically takes more than one second to acquire the zero key. 
Hence, the water is “processed” faster when it is “heated” longer. Other factors beyond 
speed make the 111 solution more efficient. For example, seeking out a different key not 
only takes time, it requires a fairly high level of cognitive processing. While the 
processing is underway, the main task the user was involved with–cooking their meal–
must be set aside. The longer it is set aside, the longer it will take to reacquire it.  
The managing-operating-balance principle. The principle learnt from the analogy is 
such that, since typically the highest expense in a business is labor cost, any time the user 
must wait for the ontology to respond before they can proceed, money is being lost. The 
balance between managing instructions and operating heating translates in ontology 
engineering to a balance between managing ontologies at an organizational level and 
operating ontologies.  
As a matter of fact, in order to maximize the efficiency of a business or an organization, 
we need to maximize everyone’s efficiency, not just the efficiency of a single group, 
therefore synchronization and management of distributed ontologies used by different 
groups is as much important as their local, individual deployment.  
Large organizations tend to be compartmentalized, with each group looking out for its 
own interests, sometimes to the detriment of the organization as a whole. Information 
resource departments often fall into the trap of creating or adopting ontologies that result 
in increased efficiency and lowered costs for the information resources department, but 
only at the cost of lowered productivity for the company as a whole.  
The organizational fitness principle. The managing-operating-balance principle boils 
down to some requisites (parameters) for the organization-oriented design of ontology 
libraries (or of distributed ontologies), which provide constraints to one or more of the 
following entities: organization architecture, (complex) application middleware, trading 
properties, cost, accessibility, development effort. These parameters are defined by the 
principle of organizational fitness, and are annotated as follows: 
 

1. Annotations (either on the overall ontology, or on ontology elements) about the 
organizational design of a modularized ontology, and about the middleware that 
allows its deployment 

2. Annotations about the commercial (trading, pricing) and legal (policy, disclaimer) 
semantics 

3. Annotations about the application history -with reference to development effort 
(task- or topic-specificity applied to a token scenario) of an ontology 

 
These annotations can also be considered within the pragmatic dimension of ontology 
engineering. 
Annotations 2. and 3. (but not 1.) can be applied to isolated ontologies.  
Presence, completeness, and reliability are usability measures ranging on the above 



Pagina 39 di 53 6-09-2005  

annotations. 
 

Interfacing annotations 
The interfacing level concerns the process of matching an ontology to a user interface. As 
far as evaluation is concerned, we are only interested in the case when an ontology 
includes annotations to interfacing operations. For example, a contract negotiation 
ontology might contain annotations to allow an implementation of e.g. a visual contract 
modelling language. If such annotations exist, it is indeed an advantage for ontologies that 
are tightly bound to a certain (computational) service. On the other hand, such annotations 
may result unnecessary in those cases where an interface language exists that maps to the 
core elements of a core ontology e.g. for contract negotiation. 
Presence, completeness, and reliability of interface annotations are further usability 
measures. 

2.5 Ontology validation: qoods, principles, parameters, and 
trade-offs 
Evaluation is important, but within a given project, we may want to validate an ontology 
according to the criteria that are relevant for that project. In practice, we may want to 
define quality parameters that range over some of the attributes obtained from structural, 
functional, or purely user-oriented measurement. 
In section 2.1 we have already introduced the distinction between qoods (quality-oriented 
ontology descriptions), principles (elementary qoods), value spaces, parameters, 
dependencies and preference functions between parameters, and provided an example of a 
trade-off, needed when composing principles with conflicting parameters. 
In this section, we give a still initial, but more detailed presentation of principles, some of 
their typical parameters, and an analytic case for a trade-off. 

Some principles and parameters 
Principles are defined here as structured descriptions of the quality of an ontology 
(“qoods”): they are considered elementary qoods because they usually define a limited set 
of parameters constraining ontology properties in order to support a common goal. 
Principles also lack conflicting parameters. 
Here is a list of some principles emerged in the practice of ontology engineering: 
 

• Cognitive ergonomics 
• Transparency (explicitness of organizing principles) 
• Computational integrity and efficiency 
• Meta-level integrity 
• Flexibility (context-boundedness) 
• Compliance to expertise 
• Compliance to procedures for extension, integration, adaptation, etc. 
• Generic accessibility (computational as well as commercial) 
• Organizational fitness 

 
The parameters defined by principles can be complex, but at the current state of research, 
they are usually simple scalars ranging on the measurement value spaces provided in 2.2-
2-4. 



Pagina 40 di 53 6-09-2005  

Here is a list of parameters defined by the principles introduced above: for 
comprehensibility, each parameter is presented with the name of measure on which it 
ranges, preceded by a + or – sign to indicate the scalar region constrained within the value 
space: 
 
Cognitive ergonomics. Intuition: this principle prospects an ontology that can be easily 
understood, manipulated, and exploited. Parameters: 
-depth 
-breadth 
-tangledness 
+class/property ratio 
+annotations (esp. lexical, glosses, topic) 
-anonymous classes 
+interfacing 
+patterns (dense areas) 
 
Transparency. Intuition: this principle prospects an ontology that can be analyzed in 
detail, with a rich formalization of conceptual choices and motivations. Parameters: 
+modularity 
+axiom/class ratio 
+patterns 
+specific differences 
+partitioning 
+accuracy 
+complexity 
+anonymous classes 
+modularity design 
 
Computational integrity and efficiency. Intuition: this principle prospects an ontology that 
can be successfully/easily processed by a reasoner (inference engine, classifier, etc.). 
Parameters: 
+logical consistency 
+disjointness ratio 
-tangledness 
-restrictions 
-cycles 
 
Meta-level integrity: Intuition: this principle prospects an ontology that respects certain 
ordering criteria that are assumed as quality indicators. Parameters: 
+meta-level consistency 
-tangledness 
 
Flexibility Intuition: this principle prospects an ontology that can be easily adapted to 
multiple views. Parameters: 
+modularity 
+partitioning 
+context-boundedness 
 
Compliance to expertise Intuition: this principle prospects an ontology that is compliant to 
one or more users. Parameters: 



Pagina 41 di 53 6-09-2005  

+precision 
+recall 
+accuracy 
 
Compliance to procedures for mapping, extension, integration, adaptation Intuition: this 
principle prospects an ontology that can be easily understood and manipulated for reuse 
and adaptation. Parameters: 
+accuracy(?) 
+recognition annotations (esp. lexical) 
+modularity 
-tangledness(?) 
 
Organizational fitness Intuition: this principle prospects an ontology that can be easily 
deployed within an organization, and that has a good coverage for that context. 
Parameters: 
+recall 
+organizational design annotations 
+commercial/legal annotations 
+user satisfaction 
+organizational design annotations 
 
Generic accessibility Intuition: this principle prospects an ontology that can be easily 
accessed for effective application. Parameters: 
+accuracy (based on task and use cases) 
+annotations (esp. policy semantics, application history) 
+modularity 
-logical complexity 

Preference and trade-offs 
Due to partly mutual independence of principles, the need for a preferential ordering of 
quality parameters required by different principles often arises (e.g. because of a conflict, 
or because two parameters from different principles are unsustainable with existing 
resources), and sometimes that ordering is actually a trade-off. Trade-offs are needed 
when two or more principles should be composed. OntoMetric [Lozano-Tello et al. 2004] 
is an example of a tool that supports measurement based on a preferential ordering. 
A trade-off is based on meta-parameters, e.g.: available resources, available expertise, 
business relations, tools, etc. 

An example in legal ontologies 
We explain with a simple example how trade-offs appear from principle composition. 
Transparency and compliance to expertise principles usually require content ontology 
design patterns (cf. [Gangemi 2005]), involving hub nodes (classes with several 
properties, cf. [Noy 2004]), then those principles require a high rate of dense areas 
parameter. But dense areas often need the definition of sets of (usually existential) axioms 
that potentially induce complex (in)direct cycles. Consequently, high rate of dense areas  
depends on a high complexity parameter. 
The content design pattern for the LimitViolation pattern is an example of such a case 
(Fig.14). 
 



Pagina 42 di 53 6-09-2005  

 
Figure 14. The LimitViolation pattern in UML, showing a potential indirect cycle: a 
description of limit violation defines violation parameters ranging on some value space 
(e.g., speed), also assigning (legal) roles and tasks to legally-relevant entities: control 
systems, vehicles, persons, actions, etc. A violation case conforms to the description if 
legally-relevant entities and values are classified by parameters, roles, and tasks. 
 
The LimitViolation pattern contains the following axioms (restrictions) that constitute a 
cyclical path, encoded here in OWL abstract syntax (corresponding to the red path in 
Fig.14): 
 
Class(LimitViolation partial restriction(defines someValuesFrom(ViolationParameter))) 
Class(ViolationParameter partial restriction(classifies someValuesFrom(ValueRegion))) 
Class(ValueRegion partial restriction(observedBy allValuesFrom(LegalControlSystem))) 
Class(LegalControlSystem partial restriction(classifiedBy someValuesFrom(LegalRole))) 
Class(LegalRole partial restriction(d-used-by someValuesFrom(LimitViolation))) 
Class(LimitViolation partial restriction(defines someValuesFrom(ViolationParameter))) 
Class(ViolationParameter partial restriction(classifies someValuesFrom(ValueRegion))) 
Class(ValueRegion partial restriction(observedBy allValuesFrom(LegalControlSystem))) 
Class(LegalControlSystem partial restriction(classifiedBy allValuesFrom(LegalRole))) 
Class(LegalRole partial restriction(d-used-by someValuesFrom(LimitViolation))) 
 
If an ontology project using the limit violation axioms is based on a qood that aims at both 
a transparency principle, and a computational efficiency principle, and we already know 
(2.1) that it requires a low rate of cycles parameter (cf. [Berardi et al. 2001] for the 
complexity of description logic ports of UML models), then we get a conflict of 
parameters (Fig.15).  
Therefore, a trade-off may be needed in an ontology project that uses the limit violation 
axioms. The trade-off can be applied by following two approaches.  
The first approach defines a preference ordering over the parameters, as shown in 2.1, 
which in the example leads either to accept the complexity, or to dismiss the pattern.  
The pattern is in this case essential to the ontology, then, if the low rate of cycles is also 
required because of e.g. available computational resources, we must resort to the second 
approach: relaxation of parameters.  
The possible methods to relax the parameters should act on either the reasoning 
algorithm, or the axioms. Since the first cannot be changed easily in most ontology 
projects, the best practice is to modify the model according to some tuning practices e.g. 
involving generalization over restrictions, which in our example can be done on one of the 
following axioms by substituting the class in the restriction with its superclass: 
 



Pagina 43 di 53 6-09-2005  

Class(ValueRegion partial restriction(observedBy allValuesFrom(ControlSystem))) 
Class(LegalControlSystem partial restriction(classifiedBy allValuesFrom(Role))) 
 

 
Figure 15. A qood (a diagnosis of an ontology project using the limit violation pattern) 
that composes two principles requiring conflicting parameters. 
 



Pagina 44 di 53 6-09-2005  

3. Related work: state of the art in ontology evaluation 
As opposed to the apparent simplicity of the four questions we have used to frame the 
problem of ontology evaluation (see Section 2.1), the available literature on the subject is 
more complex, fragmentary. Any given approach may address more or less specific 
versions of our questions, and often more than one of the dimensions we have treated is 
discussed at the same time. 
[Hartmann 2004] tries to systematically disentangle issues by providing a classification-
grid for ontology evaluation methods. Such grid is just as general as, though slightly less 
theoretical than our four questions. It allows to present ontology evaluation methods in 
terms of answers to the following questions: 

• What is the considered method/tool like? Subordinately: what is its goal (Goal)? 
What functions are supported by it (Function)? At which stage of development of 
an ontology may it be applied (Application)? 

• How useful is the method? Subordinately: for which type of users is it conceived 
(Users types: Knowledge Engineers, Project Managers, Application Users, 
Ontology Developers)? How relevant is it to practice (Usefulness)? How usable is 
it (Usability)? For which type of uses was it conceived in the first place (Use 
cases)? 

 
In the rest of this section, we review various approaches that are relevant to our work. In 
order to allow the comparison between different approaches, the two above groups of 
questions are used as background structure of our review. 

3.1 Evaluation by structure measuring 
There exists a number of mathematical theories of how to describe and measure 
(graphical) structures. The most general ones are Graph Theory and Metric Theory. These 
define notions that are certainly relevant to the problem of ontology evaluation, but their 
level of abstraction makes them unsuitable for direct application. As opposed to this 
situation, [Yao et al. 2005] defines a number of Cohesion Metrics that are specific to 
ontologies. 

Cohesion Metrics 
According to [Yao et al. 2005] cohesion traditionally refers to the degree to which the 
elements in a module belong together. In object-oriented software, cohesion refers to the 
degree of the relatedness or consistency in functionality of the members in a class; strong 
cohesion is recognized as a desirable property of object-oriented classes because it 
measures separation of responsibilities, independence of components and control of 
complexity. Research from software cohesion metrics shows that actually the most cited 
software cohesion metrics are theoretically based on concepts similar to those of objects. 
Because cohesion metrics are intended to measure modularity, metrics similar to the 
software cohesion metrics can be defined to measure relatedness of elements in 
ontologies. 
The authors propose to see ontology cohesion metrics as part of a measure for ontology 
modularity: ontology cohesion refers to the degree of the relatedness of OWL classes, 
which are semantically/conceptually related by the properties. An ontology has a high 
cohesion value if its entities are strongly related. The idea behind this is that the concepts 
grouped in an ontology should be conceptually related for a particular domain or a sub-
domain in order to achieve common goals.  



Pagina 45 di 53 6-09-2005  

In terms of the two groups of questions indicated in the introduction to this section, the 
goal of Cohesion Metrics is to measure relatedness of elements in OWL ontologies. The 
definitions that support the proposed metrics are the following: 

• C1, C2, …, Cm be the set of m classes explicitly defined in an ontology. 
• P1, P2, …, Pn be the set of n properties which work as relationship between the set 

of classes. 
• Fc1, Fc2, …, Fcm, be the fanout of each class Ci in the set. 
• Oi be an OWL ontology of interest. 
• → be subtype relationship from Ci to Cj such that Ci → Cj if class Cj is a subclass 

of class Ci . 
• A be a finite set and T be a relation, then T is a tree if there is a vertex V0 in A and 

there exists a unique path in T from V0 to every other vertex in A. 
• A be a finite set and T be a relation on A. A vertex Vn has a Fanout of degree m if 

there exist m relationships to other vertices in A. 
• A be a finite set and T be a relation on A. A vertex Vq is called a leaf of the tree if 

it has Fanout of degree 0. 
 
Three are the Coehsion Metrics, i.e. the functions, defined in terms of the notions given 
above: 
 
Number of Root Classes (NoR) is the number of root classes explicitly defined in the 
ontology Oi . A root class in an ontology means the class has no semantic super class 
explicitly defined in the ontology Oi. Mathematically, NoR can be formulated as follows: 
 
NoR(Oi) = Σ Cj for all 1≤j≤n (number of root classes in Oi) 
 
Number of Leaf Classes (NoL) is the number of leaf classes explicitly defined in the 
ontology Oi. A leaf class in an ontology means the class has no semantic subclass 
explicitly defined in the ontology Oi. Mathematically, NoL can be formulated as follows: 
 
NoL(Oi) = Σ Lj for all 1≤j≤n (number of leaf classes in Oi) 
 
Average Depth of Inheritance Tree of Leaf Nodes (ADIT-LN) is the sum of depths of 
all paths divided by the total number of paths. A depth is the total number of nodes 
starting from the root node to the leaf node in a path. The total number of paths in an 
ontology is all distinct paths from each root node to each leaf node if there exists an 
inheritance path from the root node to the leaf node. And root node is the first level in 
each path. For example, ADIT-LN of an OWL ontology is described in Fig. 3. 
Mathematically, ADIT-LN is formulated as follows:  
 
ADIT-LN(Oi) = Σ Dj / n for all Dj (Dj is total number of nodes on jth path) 
for 1≤j≤n (number of paths in Oi) 

3.2 Evaluation by function measuring 
Most of the literature on ontology evaluation focuses on functionality-related issues. The 
functionality of an ontology is mostly measured by evaluating its appropriateness as 
semantic backbone of either decision-support or information systems that operate in the 
domain represented by the ontology. 



Pagina 46 di 53 6-09-2005  

In the following, we consider some analyses and proposed methods for evaluating the 
functionality of an ontology: OntoMetric, OntoClean, EvaLexon, Methontology, Content 
Evaluation. 

OntoMetric 
OntoMetric [Lozano-Tello et al. 2004] is an adaptation of the Analytic Hierarchy Process, 
i.e. a mathematical method for scaling priorities in hierarchical structures. The main goal 
of this method is to help choose the appropriate ontology for a new project. The functions 
supported by OntoMetric are the ordering by importance of project objectives, the 
qualitative analysis of candidate ontologies for the project, the quantitative measure of the 
suitability of each candidate. The application of OntoMetric can only follow ontology 
release. The method is meant for users types like Engineers or Project Managers who 
need to look for ontologies over the Web at the purpose of incorporating them into their 
systems. Therefore, OntoMetric makes itself useful as a support to the evaluation of the 
relative advantages and risks of choosing an ontology over others. 
The main drawback of OntoMetric is related to its usability: specifying the characteristics 
of an ontology is complicated and takes time; assessing its characteristics is quite 
subjective. On top of this, the number of use cases is limited, which is an important 
obstacle to defining (inter-subjective or objective) parameters based on a large enough 
number of comparable cases. 

OntoClean 
As opposed to OntoMetric, OntoClean [Welty et al. 2001] is meant for application at the 
pre-modelling and modelling stages, i.e. during ontology development. The main goal is 
to detect both formal and semantic inconsistencies in the properties defined by an 
ontology. The main function of OntoClean is the formal evaluation of the properties 
defined in the ontology by means of a predefined ideal taxonomical structure of meta-
properties. 

EvaLexon 

Similarly to OntoClean, EvaLexon finds application at the pre-modelling/modeling stage 
[Spyns 2005]. The main goal here is to evaluate at development time ontologies that are 
created by human beings from text. In sharp contrast with OntoClean, EvaLexon is meant 
for linguistic rather than conceptual evaluation. Its main function is the measurement of 
how appropriate are the terms (to be) used in an ontology. A term is judged more or less 
appropriate depending on its frequency both in the text from which the ontology is (being) 
derived and in a list of relevant domain-specific terms. Regression allows for direct and 
indirect measurement of the ontology’s recall, precision, coverage and accuracy. 

Task-based approach 
In [Porzel et al. 2004] a linguistics-based approach partly comparable to EvaLexon is 
defined. 
The goal of the proposal is to evaluate ontologies with respect to three basic levels: 
vocabulary, taxonomy and (non-taxonomic) semantic relations. As these levels are also 
subject to different respective learning approaches - the common notion of error rates, 
such as found in word - or concept-error rates suffices for each level of evaluation. The 
resulting task-based evaluation should show either of the following shortcomings:  

• insertion errors indicating superfluous concepts, isa- and semantic relations; 
• deletion errors indicating missing concepts, isa- and semantic relations; 



Pagina 47 di 53 6-09-2005  

• substitution errors indicating off-target or ambiguous concepts, isa- and semantic 
relations. 

 
Moreover, given appropriate tasks and maximally independent algorithms operating on 
the ontology in solving these tasks and given the task evaluation gold standards, the error 
rates can be calculated that correspond to specific ontological shortcomings of the 
translation of error rates to the three basic ontological levels.By applying this evaluation 
scheme, improvements in the ontology can be tested and measured that are brought about 
by learning approaches that target the same levels and issues in the ontology learning and 
population field.  
Similarly to EvaLexon, the functions proposed here are based on two key arguments: the 
task and the gold standard. The task needs to be sufficiently complex to constitute a 
suitable benchmark for examining a given ontology. Especially if the target of the 
evaluation is to include non-taxonomic relations as well, tasks are needed where the 
performance outcome hinges substantially on the way these relations are modeled within 
the ontology. The gold standard is a perfectly annotated corpus of part-of-speech tags, 
word senses, tag ontological relations, given sets of answers (so-called keys) used to 
evaluate the performance of algorithms that are run on the ontology to perform the task. 

Methontology 
The intended users of the Methontology framework [Fernández-López et al 2004] are 
domain experts and ontology makers who are not familiar with implementation 
environments. The goal is to let them build ontologies from scratch. To this end a number 
of functions are provided that enable easier intermediate representations of ontologies. 
Such representations are meant to bridge the gap between how people think about a 
domain and the languages usually used to define ontologies at the formal level. In other 
words, Methontology makes it possible to work on ontologies at the knowledge level 
only, and it does so by supporting functions like the specification of the ontology 
development process as well as of its life-cycle (based on evolving prototypes); the 
specification of ontologies at the knowledge level; the multilingual translation that 
automatically transforms the specification into several target codes. 
Methontology is well exemplified by the following specification of a process of ontology 
re-use: 

• specifying the requirements the ontology must satisfy in the new application 
(purpose, language in which it is needed, key aspects that should be modelled, 
scope – the latter defined through competency questions); 

• searching an ontology that covers most of the identified necessities; 
• adapting the chosen ontology so that it satisfies the necessities completely; 
• integrating the ontology in the system (this may involve language translation). 

 
A concrete example of how the intermediate representations work is provided in [Blazquez 
et al. 1998]. Here the intermediate levels are used to facilitate the selection of time 
ontologies by non-experts. On the one hand, the article shows how such levels consist of 
very intuitive and basic definitions of entities and relations, which emerge from 
main(stream) theories of time and are visualized through tables and graphs. On the other 
hand, the article points at the scarcity of ready-for-use intermediate conceptual models of 
time ontologies, a serious obstacle for the analytical work required by the specification 
process spelled out above. 



Pagina 48 di 53 6-09-2005  

Content and ontology technology evaluation 
In the context of a discussion on functional and usability-related aspects of ontology 
evaluation [Gómez-Pérez 2003] a distinction is drawn between two main evaluation 
dimensions: content evaluation and ontology technology evaluation. This distinction may 
well be used for classifying the ontology evaluation methods introduce so far, as well as 
for framing the issue of ontology evaluation in general terms. 
On the one hand, content evaluation is related to the KR paradigm that underlies the 
language in which the ontology is implemented (be it RDF schemas, description logic, 
first order logic, etc.). As already pointed out for methods like OntoClean or 
Methontology, the goal of content evaluation is to detect inconsistencies or redundancies 
before these spread out in applications. The application of content evaluation techniques 
should take place during the entire ontology life-cycle, as well as during the entire 
ontology-building process. Functions should support the evaluation of concept 
taxonomies, properties, relations and axioms 
On the other hand, ontology technology, i.e. ontology development tools like OILed and 
Protégé, should be subject to evaluation too. Here the goal is to ensure smooth and correct 
integration with industrial software environments. The application of such evaluation 
should be directed at the expressiveness of the KR model underlying the ontology editor; 
the tool’s interoperability, in terms of quality of import/export functions (i.e. how much 
knowledge is lost with format transformation), scalability (i.e. how different building 
platforms scale when managing large ontologies with thousands of components, as well as 
time required to open and save, etc.), navigability (e.g. how easy it is to search for a 
component), usability (e.g. user interfaces’ clarity and consistency), and available content 
evaluation functions. There are no implemented functions for evaluation ontology 
technology, but systematic comparisons between tools have been conducted by SIG3 
(Special Interest Group on Enterprise Standard Ontology Environments). 
Based on the distinction between content and ontology technology evaluation, a number of 
general conclusions may be drawn: 

• content evaluation needs specific methods when applied to ontology components 
other than taxonomies; 

• experimental results in ontology technology evaluation show that tools based on 
similar knowledge models are more interoperable because they preserve more 
knowledge throughout the knowledge exchange process;  

• the most well-known ontology development tools (OILed, OntoEdit, Protègé, etc.) 
support content evaluation mainly in the form of circularities detection. This 
though is not enough for more-than-trivial content evaluation; 

• language-dependent evaluation tools should be developed, in order to be used by 
different ontology platforms, and make these able to detect errors in an ontology 
written in the traditional or Semantic Web languages before it is imported. 

 
On content evaluation, [Daelemans et al 2004] points out how recently developed NPL 
techniques can be – and currently are – used for evaluating ontologies’ semantics (vs their 
syntax). NLP not only helps content collection from huge amounts of text and 
maintenance, but it also provides the means for showing that ontologies indeed represent 
“consensual conceptualizations and not just one person’s ideas”.  
In particular, information extraction, named entity recognition and shallow parsing, 
combined with NLP’s standard pattern-matching and machine-learning techiniques, allow 
for semi-automatic extraction of ontological knowledge (concepts and relations) from 
texts. For instance, in the context of the Ontobasis project on the domain of the Medline 
abstract language, knowledge is extracted by using a (completely automatic) shallow 



Pagina 49 di 53 6-09-2005  

parser and by then applying clustering techniques for grouping semantic similarities and 
dependencies into classes. The pivot idea behind these techniques is that all “terms with 
similar syntactic relations to other terms are semantically related”, which allows to semi-
automatically make explicit meanings that are implicit in the syntactic relations of a term. 
Classes that are generated by this method are then used as a basis for the extraction of new 
relations through pattern-matching rules. However, both in the clustering step and the 
pattern-matching one human intervention is still essential to evaluate the proposed 
ontological structures. “The difference with purely handcrafted ontology development is 
that.. [such evaluation].. is much easier, more complete and faster than inventing 
ontological structures”. 

3.3 Evaluation by usability measuring 
In [Noy 2004] it is argued that, although most structural and functional evaluation 
methods are necessary, none are helpful to ontology consumers, who need to discover 
which ontologies exist and, more important, which ones would be suitable for their tasks 
at hand. Knowing whether an ontology is correct according to some specific formal 
criteria might help in the ultimate decision to use an ontology but will shed little light on 
whether or not it is good for a particular purpose or task. What is needed is not only a 
system for evaluating ontologies objectively from some generic viewpoint, but also 
practical ways (function) for ontology consumers to discover and evaluate ontologies. 
Information such as the number of concepts or even an ontology’s complete formal 
correctness is probably not the most important criteria in this task (although it is often the 
easiest to obtain). 
Based on this considerations alternative techniques are proposed, as follows: 

• Ontology summarization: To decide whether to buy a book, we read the blurb on 
the book jacket; to decide whether a paper is relevant to our work, we read its 
abstract. To decide whether a particular ontology fits our application’s 
requirements, we need some abstract or summary of what this ontology covers. 
Such a summary might include a couple of top levels in the ontology’s class 
hierarchy—perhaps a graphical representation of these top-level concepts and 
links between them. We can generate these top-level snapshots automatically or 
let ontology authors include them as metadata for an ontology. The summary can 
also include an ontology’s hub concepts—those with the largest number of links 
in and out of them. What’s more interesting, we can experiment with metrics 
similar to Google’s PageRank: the concept is more important if other important 
concepts link to it. This computation can take into account specific links’ 
semantics (giving a subclass-superclass link a lower value than a property link, 
for instance) or exclude some links or properties. By experimenting with these 
measures, we can discover which ones yield the concepts that users deem 
important. The hub concepts are often much better starting points in exploring 
and understanding an ontology than the top level of its class hierarchy. 

• Epinions for ontologies: in addition to reading a book’s blurb to determine if we 
want to buy it, we often read reviews of the book by both book critics and other 
readers. Similarly, when choosing a movie or a consumer product, such as a 
coffee maker or a pair of skis, we use the Web to find others’ opinions. A 
network for ontologies would help guide our ontology-consumer friend in finding 
whether a particular ontology would be suitable for his or her project. The 
reviews should include not only an ontology’s qualitative assessment (Is it well 
developed? Does it have major holes? Is it correct?) but also, and perhaps more 
important, experience reports. 



Pagina 50 di 53 6-09-2005  

• Views and customization: To evaluate an ontology properly, users might need to 
see a view of an ontology that takes into account their expertise, perspectives, the 
required level of granularity, or a subset of the domain the ontology they’re 
interested in covers. If we can let ontology developers annotate concepts and 
relations with information about which perspectives these terms and relations 
should appear in and how to present or name them, we’ll be able to present these 
different perspectives automatically. Similarly, an ontology developer might want 
to indicate that certain concepts or relations should be displayed only to users 
who identify themselves as experts (presenting a simpler, trimmed down view for 
novices). For an ontology consumer, it’s often much easier to evaluate a smaller 
ontology with only the concepts related to his or her concepts of interest than to 
evaluate a large general reference resource. 

 



Pagina 51 di 53 6-09-2005  

4. Conclusions and future work 
In this report, we have attempted a comprehensive framework for evaluating and 
validating ontologies. We have chosen semiotics as a perspective appropriate to 
distinguish the different aspects of ontology engineering in practice. 
Structural, functional, and profiling properties of ontologies have been separately 
addressed, and a design pattern for quality-oriented ontology descriptions (qoods) has 
been proposed, which allows to model construction principles, to define quality 
parameters on ontology properties, to state parameter dependencies, and to compose 
principles by means of preference orderings or relaxation on parameters, in the context of 
specific ontology projects. 
Some areas of the report need refinement and a richer set of examples, and the state of art 
will be enlarged to cover a larger part of the rapidly growing literature. 
Future work will focus on the empirical assessment of the framework, e.g. by measuring 
existing ontologies, by building an ontology on a same task/topic but by using different 
qoods, and by creating correlations between user-oriented and structural measures. 
Another area of research is the creation of tools to assist in the detection of metrics, user 
annotations, and qood-deployment within an ontology project. The OntoMetric system 
[Lozano-Tello et al 2004] is a first component to be reused in order to start such an 
implementation. 



Pagina 52 di 53 6-09-2005  

References 
 
Almuhareb A., Poesio M., 2004: “Attribute-based and value-based clustering: an evaluation”. In 

Proceedings of the Conference on Empirical Methods in Natural Language Processing. 

Baeza-Yates R. and Ribeiro-Neto B., 1999: “Modern Information Retrieval”. Addison Wesley. 

Berardi D., Calvanese D., De Giacomo G., “Reasoning on UML Class Diagrams using Description Logic 
Based Systems”. In Proc. of the KI'2001 Workshop on Applications of Description Logics, 2001. 

Berland M. and Charniak E., 1999: ''Finding parts in very large corpora.'' In Proceedings of ACL'99. 

Blazquez M., Fernandez M., J. Garca-Pinar M., and Gomez-Perez A. Building Ontologies at the Knowledge 
Level Using the Ontology Design Environment. In Proceedings of the Knowledge Acquisition 
Workshop, KAW98, 1998.  

Brewster C., Alani H,, Dasmahapatra S. and Wilks Y.: “Data-driven ontology evaluation”. Proceedings of 
LREC 2004. 

Catenacci C., Ciaramita M. Gil R., Gangemi A., Guarino N., and Lehmann J., “Ontology evaluation: A 
review of methods and an integrated model for the quality diagnostic task”, Deliverable of the 
OntoDev Italian Ministry of Research Project, available as TechReport at http://www.loa-
cnr.it/Publications.html, 2005. 

Ciaramita M., Gangemi A., Ratsch E., Saric J., and Rojas I., 2005: “Unsupervised Learning of Semantic 
Relations between Concepts of a Molecular Biology Ontology”. In Proceedings of the 19th 
International Joint Conference on Artificial Intelligence.  

Daelemans W., Reinberger M.L. , 2004: “Shallow Text Understanding for Ontology Content Evaluation” . 
IEEE Intelligent Systems 1541-1672, 2004. 

Eco U., 1984: “Semiotica e filosofia del linguaggio”. Einaudi. 

Fernández-López M. and Gómez-Pérez A., 2004: “Searching for a Time Ontology for Semantic Web 
Applications”. In Formal Ontology in Information Systems, A.C. Varzi and L. Vieu (Eds.), IOS Press. 

Gangemi, A., F. Fisseha, J. Keizer, J. Lehmann, A. Liang, I. Pettman, M. Sini, M. Taconet, 2004: “A Core 
Ontology of Fishery and its Use in the FOS Project”, in Gangemi, A., Borgo, S. (eds.): Proceedings of 
the EKAW*04 Workshop on Core Ontologies in Ontology Engineering. Available from: 
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-118/. 

Gangemi A., Borgo S., Catenacci C., and Lehmann J., “Task taxonomies for knowledge content”, 
Deliverable D07 of the EU FP6 project “Metokis”, available at http://www.loa-
cnr.it/Publications.html, 2004. 

Gangemi A.: “Ontology Design Patterns for Semantic Web Content”. In Motta E. and Gil Y., Proceedings 
of the Fourth International Semantic Web Conference, 2005. 

Gluck M. and Corter J., 1985: “Information, Uncertainty and the Utility of Categories”. In Proceedings of 
the 7th Annual Conference of the Cognitive Science Society. 

Gómez-Pérez A.: “Ontology Evaluation”, in Handbook on Ontologies, S. Staab and R. Studer, eds., 
Springer-Verlag, 2003,pp. 251–274.  

Guarino N.: “Towards a Formal Evaluation of Ontology Quality”. IEEE Intelligent Systems 1541-1672, 
2004. 

Guarino N. and Welty C.:  “Evaluating Ontological Decisions with OntoClean”, Comm. ACM, vol. 45, 2, 
2002, pp. 61–65. 

Guarino N. and Giaretta P.: “Ontologies and Knowledge Bases”, Mars N. (ed.) Towards Very Large 
Knowledge Bases, Amsterdam, IOS (1995). 

Hartmann J., Spyns P., Giboin A., Maynard D., Cuel R.,  Suárez-Figueroa M.C., and Sure Y., “Methods for 
ontology evaluation”. Knowledge Web Deliverable D1.2.3, v. 0.1 (2004).  

Huang Z., van Harmelen F., and ten Teije A., 2005: “Reasoning with Inconsistent Ontologies”, IJCAI05. 

Jakobson R.: “Linguistics and Poetics: Closing Statement”. In: Style in Language. MIT Press, Cambridge, 



Pagina 53 di 53 6-09-2005  

MA (1960) 

Kaakinen, J., Hyona, J., & Keenan, J.M. (2002). Individual differences in perspective effects on on-line text 
processing. Discourse Processes, 33, 159 - 173. 

Lozano-Tello, A. and Gomez-Perez A., 2004: “ONTOMETRIC: A method to choose the appropriate 
ontology”, J. of Database Management, 15(2). 

Maedche A. and Staab S.: “Measuring the similarity between ontologies”. Proc. of the 13th Conf. on 
Knowledge Engineering and Knowledge Management, Springer, Berlin, 2002. 

Masolo, C., A. Gangemi, N. Guarino, A. Oltramari and L. Schneider: WonderWeb Deliverable D18: The 
WonderWeb Library of Foundational Ontologies (2004). 

Noy, N., “Defining N-ary Relations on the Semantic Web: Use With Individuals”, W3C Working Draft: 
http://www.w3.org/TR/swbp-n-aryRelations/ (2005). 

Noy, N., “Evaluation by Ontology Consumers”. IEEE Intelligent Systems 1541-1672, 2004. 

Oberle D., Gangemi A., Mika P., and Sabou M., “Foundations for service ontologies:  Aligning OWL-S to 
DOLCE”, in Staab S. and Patel-Schneider P. (eds.), Proceedings of the World Wide Web Conference 
(WWW2004), Semantic Web Track, (2004). 

Pantel P. and Ravichandran D., 2004: “Automatically Labeling Semantic Classes”. In Proceedings of HLT-
NAACL 2004. 

Pasca M. and Harabagiu S.H., 2001: “The Informative Role of WordNet in Open-Domain Question 
Answering”. In NAACL 2001 Workshop on WordNet and Other Lexical Resources: Applications, 
Extensions and Customizations.  

Peirce, Charles (1931-1958). Collected Papers, vols. 1-8, C. Hartshorne, P. Weiss and A.W. Burks (eds). 
Cambridge, MA: Harvard University Press. 

Porzel R. and Malaka R.: “A Task-based Approach for Ontology Evaluation”. Proc. of ECAI 2004. 

Riloff E., 1996: “An Empirical Study of Automated Dictionary Construction for Information Extraction in 
Three Domains”. Artificial Intelligence, 85. 

Roark B., and Charniak E., 1998: ''Noun-phrase co-occurrence statistics for semi-automatic semantic 
lexicon construction.''  In Proceedings of COLING-ACL'98. 

Spyns P., EvaLexon: Assessing triples mined from texts. Technical Report 09, STAR Lab, Brussel, 2005. 

Steels L.: “Components of Expertise”, AI Magazine, 11, 2, 1990, pp. 30-49. 

Sugiura N., Shigeta Y., Fukuta N., Izumi N., and Yamaguchi T., 2004: “Towards On-the-fly Ontology 
Construction Focusing on Ontology Quality Improvement”, ESWC04.  

Sure Y. (ed.), 2004: “Why Evaluate Ontology Technologies? Because It Works!”, IEEE Intelligent Systems 
1541-1672. 

Uren V., Buckingham Shum S, Mancini C. and Li G.: “Modelling Naturalistic  Argumentation in Research 
Literatures”. Proceedings of the 4th Workshop on Computational Models of Natural  Argument, 2004. 

Uschold U. and Gruninger M.,”Ontologies: Principles, Methods, and Applications,” Knowledge Eng. 
Rev.,vol. 11,no. 2,1996,pp. 93–155. 

Vasiliu L., Moran M., Bussler C., Roman D., “WSMO in DIP”, DIP EU FP6 Project Deliverable D19.1, 
v0.1, available at http://www.wsmo.org/2004/d19/d19.1/v0.2/, 2004. 

Welty C., Guarino N., "Supporting ontological analysis of taxonomic relationships", Data and Knowledge 
Engineering vol. 39, no. 1, pp. 51-74, 2001] and [N. Guarino and C. Welty, “Evaluating Ontological 
Decisions with OntoClean,” Comm. ACM, vol. 45, no. 2, 2002, pp. 61–65. 

Welty C., Kalra R., and Chu-Carroll J., 2003: “Evaluating Ontological Analysis”. In Proceedings of the 
ISWC-03 Workshop on Semantic Integration. 

Yao H., Orme A.M., and Etzkorn L., 2005: “Cohesion Metrics for Ontology Design and Application”, 
Journal of Computer Science, 1(1): 107-113, 2005. 


