Knowledge Representation in Protege —OWL
Please install from USB pens provided:

http://www.co-ode.org/resources/tutorials/iswc2005

Protégé 3.2 Beta — complete installation

See instructions for other software on web site
You will need
At least one classifier - Racer, FaCT++ and/or Pellet
Graphviz
The example ontologies

The CO-ODE plugins not bundled with 3.2 beta
(a single zip on web site)

Ontology Design Patterns and Problems:

Practical Ontology Engineering using
Protege-OWL

Alan Rector’, Natasha Noy?, Nick Drummond’,
Mark Musen?

'University of Manchester
2Stanford University

rector@cs.man.ac.uk
{noy, holger}@smi.stanford.edu
musen@smi.stanford.edu

Program

| Ontologies and “Best Practice”

Il Creating an ontology — useful patterns
lll Hands on examples

IV Patterns: n-ary relations

V Patterns: classes as values

VI Patterns: part-whole relations

VIl Summary

Part |. Ontologies & “Best
Practice”

m \What are Ontologies & a review of
History

m Semantic Web
s OWL

m ‘Best Practice”

Semantic Web Best Practice &
Deployment Working Group (SWBP)

What Is An Ontology?

Ontology (Socrates & Aristotle 400-360 BC)
The study of being

Word borrowed by computing for the
explicit description of the conceptualisation of a domain:

m concepts

= properties and attributes of concepts
m constraints on properties and attributes
= Individuals (often, but not always)

An ontology defines
= a common vocabulary
= a shared understanding

Why Develop an Ontology?

m 1o share common understanding of the
structure of descriptive information

among people
among software agents
between people and software

m 1o enable reuse of domain knowledge
to avoid “re-inventing the wheel”
to introduce standards to allow interoperability

Measure the world...quantitative models
(not ontologies)

= Quantitative

Numerical data:
2mm, 2.4V, between 4 and 5 feet

Unambiguous tokens
Main problem is accuracy at initial capture
Numerical analysis (e.g. statistics) well
understood

m Examples:

How big is this breast lump?

What is the average age of patients with
cancer ?

How much time elapsed between original
referral and first appointment at the hospital ?

describe the our understanding of
the world - ontologies

= Qualitative

= Descriptive data
Cold, colder, blueish, not pink, drunk

= Ambiguous tokens

What’s wrong with being drunk ?
m Ask a glass of water.

= Accuracy poorly defined L L |
= Automated analysis or aggregation is a new scnence
m Examples

= Which animals are dangerous ?
= What is their coat like?
= What do animals eat ?

More Reasons

m o make domain assumptions explicit

easier to change domain assumptions (consider a
genetics knowledge base)

easier to understand and update legacy data

m To separate domain knowledge from the
operational knowledge

re-use domain and operational knowledge
separately (e.g., configuration based on
constraints)

m To manage the combinatorial explosion

An Ontology should be just the
Beginning

De8lare Databases

Ontologies structure

Knowledge

The bases

Provide .

description Web”

Software

agents Problem-

solving

methods el

independent
applications

Outline

m What are Ontologies
m Semantic Web
= OWL

m Best Practice

The semantic web

m [im Berners-Lee's dream of a computable
meaningful web
Now critical to Web Services and Grid
computing
s Metadata with everything

Machine understandable!
Ontologies are one of the keys

Understanding rather than text matching

m Google image results for
= Charlie Safran

m Mark Musen

= Alan Rector

Ontology Examples

m [axonomies on the Web
Yahoo! categories

m Catalogs for on-line shopping
Amazon.com product catalog

m Dublin Core and other standards for the Web

m Domain independent examples
Ontoclean
Sumo

Ontology Technology

m “Ontology” covers a range of things
Controlled vocabularies — e.g. MeSH
Linguistic structures — e.g. WordNet

Hierarchies (with bells and whistles) — e.g. Gene
Ontology

Frame representations — e.g. FMA

Description logic formalisms — Snomed-CT,
GALEN, OWL-DL based ontologies

Philosophically inspired e.g. Ontoclean and SUMO

Outline

m What are Ontologies
m Semantic Web
m OWL

m Best Practice

OWL
The Web Ontology Language

m \W3C standard

m Collision of DAML (frames) and Qil (DLs in Frame
clothing)

m Three ‘flavours’
OWL-Lite —simple but limited
OWL-DL — complex but deliverable (real soon now)

OWL-Full — fully expressive but serious
logical/computational problems
Russel Paradox etc etc

All layered (awkwardly) on RDF Schema

m Still work in progress — see Semantic Web Best
Practices & Deployment Working Group (SWBP)

Note on syntaxes for OWL

= Three official syntaxes + Protégé-OWL syntax
Abstract syntax -Specific to OWL

N3 -OWL & RDF
-used in all SWBP documents

XML/RDF -very verbose
Protege-OWL -Compact, derived from DL syntax

m This tutorial uses simplified abstract syntax
someValuesFrom - some
allValuesFrom - only
intersectionOf 2> AND
unionOf - OR
complementOf - not

m Protegé/OWL can generate all syntaxes
18

A simple ontology: Animals

Body Part Living Thing

has part
Arm

Animal v\

Leg f
°g° Herbivore

Person
Carnivore

Description Logics

m \What the logicians made of Frames
Greater expressivity and semantic precision

Compositional definitions
m “Conceptual Lego” — define new concepts from old

m To allow automatic classification & consistency
checking
The mathematics of classification is tricky

Some seriously counter-intuitive results
m The basics are simple — devil in the detail

Description Logics

m Underneath:
computationally tractable subsets of first order logic

m Describes relations between Concepts/Classes

Individuals secondary
DL Ontologies are NOT databases!

Description Logics:
A brief history

m [nformal Semantic Networks and Frames (pre 1980)
Wood: What’s in a Link; Brachman What IS-A is and [S-A isn't.

m First Formalisation (1980)
Bobrow KRL, Brachman: KL-ONE

m All useful systems are intractable (1983)
Brachman & Levesque: A fundamental tradeoff
Hybrid systems: T-Box and A-Box

m All tractable systems are useless (1987-1990)
Doyle and Patel: Two dogmas of Knowledge Representation

A brief history of KR

‘Maverick’ incomplete/intractable logic systems (1985-90)
GRAIL, LOOM, Cyc, Apelon, ...,

Practical knowledge management systems based on frames
Protéegé

The German School: Description Logics (1988-98)

Complete decidable algorithms using tableaux methods (1991-1992)
Detailed catalogue of complexity of family — “alphabet soup of systems’

Optimised systems for practical cases (1996-)

Emergence of the Semantic Web

Development of DAML (frames), OIL (DLs) > DAML+OIL - OWL
Development of Protégé-OWL

A dynamic field — constant new developments & possibilities

Outline

m What are Ontologies
m Semantic Web
x OWL

m ‘Best Practice”

Semantic Web Best Practice & Deployment
Working Group (SWBP)

Why the
“Best Practice working Group™?

m There is no established “best practice”
It is new; We are all learning
A place to gather experience

A catalogue of things that work —
Analogue of Software Patterns

Some pitfalls to avoid

m...but there is no one way

m Learning to build ontologies

Too many choices
Need starting points for gaining experience

m Provide requirements for tool builders
25

Contributing to “best practice

m Please give us feedback
Your questions and experience

On the SW in general:
semanticweb@yahoogroups.com

For specific feedback to SWBP

= Home & Mail Archive:
http://lwww.w3.0rg/2001/sw/BestPractices/
public-swbp-wg@w3.org

Protege OWL: New tools for
ontologies

m [ransatlantic collaboration

m Implement robust OWL environment within
PROTEGE framework

m Shared Ul
components

= Enables hybri
working

Pizza-owl-step-4-01 Protégé 2.1.2 ({file:\C:\Program®o20Files‘Protege_2.1'projects-2004-03-05\Medinfo’\Pizzas_in_owl\Pizza-0

Project Edit Window OWL Wizards Code Help Prompt

heEed@ <« 3% AR o & bJ [E

[Name |
Cheese (V]

rdfs:comment

Magherita_Pizza
Protein_lovers_pizza ;
/egetarian_piza s
g - g [Asserted |
Pizza_topping "
c ow_fat_topping Asserted Conditions
nchovies

ozzarella Pizza_topping
3 hasSpicines Bland

Changed superclasses
Moved from Pizza to Cheesey_pizza, Vegetarian_piza
Inconsistent
Inconsistent

) Classification Results

asSpicines
as_topping

Properties View

Protégé-OWL & CO-ODE

= Joint work: Stanford & U Manchester +
Southampton & Epistemics

Please give us feedback on tools — mailing lists & forums at:
protege.stanford.edu
www.co-ode.org
Latest stable version 3.2 beta - don’t use 3.1

New version 4Alpha almost ready:

Can try out but no support or questions yet please:
www.co-ode.org/downloads/protége-x

m Don’t beat your head against a brick wall!

Look to see if others have had the same problem; If not...
ASK!

We are all learning.

Part || — Creating an ontology
Useful patterns

m Upper ontologies & Domain ontologies
m Building from trees and untangling

m Using a classifier

m Closure axioms

m Specifying Values

m n-ary relations

m Classes as values — using the ontology
m Part-whole relations

Upper Ontologies

m Ontology Schemas

High level abstractions to constrain
construction

e.g. There are “Objects” & “Processes”

Highly controversial
Sumo, Dolce, Onions, GALEN, SBU,...

Needed when you work with many people
together

NOT in this tutorial — a different tutorial

Domain Ontologies

m Concepts specific to a field
Diseases, animals, food, art work, languages, ...
The place to start
Understand ontologies from the bottom up
m Or middle out
m Levels
Top domain ontologies — the starting points for the field
Living Things, Geographic Region, Geographic_feature
Domain ontologies — the concepts in the field
Cat, Country, Mountain
Instances — the things in the world
Felix the cat, Japan, Mt Fuiji

Part || — Useful Patterns
(continued)

m Upper ontologies & Domain ontologies

m Building from trees and untangling

m Using a classifier

m Closure axioms & Open World Reasoning
m Specifying Values

m n-ary relations

m Classes as values — using the ontology

Example: Animals & Plants

Dangerous

Pet

Domestic Animal
Farm animal
Draft animal
Food animal
Fish

Carp

Goldfish

Dog m Carnivore
Cat s Plant

Cow s Animal
Person
m Fur

Tree
Grass l Ch”d

Herbivore m Parent
:\:/'a'e | Mother

emale
Father

Example: Animals & Plants

HEE : lvore

m Male
m Female

Healthy

Pet

Domestic Animal
Farm animal
Draft animal
Food animal

Choose some main axes
Add abstractions where needed; identify relations;
|dentify definable things, make names explicit

m Living Thing
= Animal

Mammal
m Cat
m Dog
m Cow
m Person

Fish
m Carp
m Goldfish

= Plant
Tree
Grass
Fruit

m Modifiers

= domestic
pet
Farmed

m Draft
m Food

Wild
Health
healthy
sick
Sex
Male
Female
Age
Adult
Child

m Relations
m eats
m OWNS
m parent-of

n ...

m Definable
Carinvore
Herbivore
Child
Parent
Mother
Father

Food
Animal

Draft Animal

Reorganise everything but “definable” things into
pure trees — these will be the “primitives”

m Primitives = Modifiers = Relations
.. _ Domestication m eats
Living Thing Domestic o o

Animal Usewnd . parent-of

Draft

@ Mammal

n ...
Cat Food m Definables

Dog

Cow

Person
m Fish

Carp
Goldfish

pet
Risk
Dangerous
Safe
Sex
Male
Female
Age
Adult
Child

Carnivore
Herbivore
Child
Parent
Mother
Father

Food
Animal

Draft Animal

Set domain and range constraints
for properties

m Animal eats Living_thing
eats domain: Animal;
range: Living thing
m Person owns Living_thing except person

owns domain: Person
range: Living thing & not Person

m Living_thing parent of Living_thing

parent _of: domain: Animal
range: Animal

Define the things that are definable
from the primitives and relations

m Parent =
Animal and parent _of some Animal

m Herbivore=
Animal and eats only Plant

m Carnivore =
Animal and eats only Animal

Which properties can be filled in
at the class level now?

m \What can we say about all members of a
class?
eats
All cows eat some plants
All cats eat some animals

All dogs eat some animals &
eat some plants

Fill In the details

(can use property matrix wizard)

Class eats
Cat () Animal
Dog \C) Animal
(C)Grass
Cowy =
lkg,l Leafy_plant
(C) Animal
Person =
\CJPlant

Check with classifier

m Cows should be Herbivores

Are they? why not?

What have we said?

m Cows are animals and, amongst other things,
eat some grass and
eat some leafy plants
What do we need to say:
Closure axiom

m Cows are animals and, amongst other things,
eat some plants and eat only plants

Closure Axiom

= Cows are animals and, amongst other things,
eat some plants and eat only plants

{ Asserted | Inferred ‘

Asserted Conditions

Mammal
) eats only (Grass or Leafy_plant)
=) eats some Grass
=) eats some Leafy_plant

In the tool

= Right mouse
button short cut
for closure axiom
for any existential

“" Navigate to Grass

restriction Edit expression in multi-line editor...

& Edit/View named class...
__JEdit Annotation Properties...

Assened*{ Infe| @%Copy

of Cut

Asserted Conditions & Paste

%, Delete selected row

. Mammal G, Derive similar restriction...
&, Negate expression

€2 eats only (Grass or Leafy_plant)
£) eats some Grass @ Add closure axiom

9 eats some Leafy-plant ’ Cl’eate indiViduals
@ Create subclasses l

Inference »
@ Show Neighbourhood (Jambalaya)

Search and View

Open vs Closed World reasoning

m Open world reasoning

Negation as contradiction

Anything might be true unless it can be proven
false
m Reasoning about any world consistent with this one

m Closed world reasoning

Negation as failure

Anything that cannot be found is false
m Reasoning about this world

Normalisation and Untangling

Let the reasoner do multiple classification

m [ree
Everything has just one parent
A ‘strict hierarchy’

m Directed Acyclic Graph (DAG)

Things can have multiple parents
A ‘Polyhierarchy’
= Normalisation
Separate primitives into disjoint trees

Link the trees with restrictions
Fill in the values

Tables are easier to manage than
DAGs / Polyhierarchies

C) Animal

Class
Cat
Cow .C) Grass
.C) Leafy_plant
P

C) Plant
Person |
Dog CJ Animal

...and get the benefit of inference:

46§3rass and Leafy plants are both kinds of Plant

Remember to add any closure
axioms

v () Mammal Asserted Conditions

= Cat
¢ Closure

» () Cow .
il Mammal AXlom

) Person
> O Pi) eats only Animal
. .g €) eats some Animal

Then let the reasoner do the work

47

Normalisation:
From Trees to DAGS

m Before classification m After classification

m Atree x A DAG
Dlrected Acycllc Graph

'i: H thivore _:K:Z

A 'ﬁ; Camivore _:r:Z

1‘---_-‘ — 4,{ -
Y\ ',, II amma I }—< D 0g "

'.: Ommv ore ‘1

Part || — Useful Patterns
(continued)

Upper ontologies & Domain ontologies
Building from trees and untangling
Using a classifier
Closure axioms & Open World Reasoning
m Specifying Values
m n-ary relations
m Classes as values — using the ontology

Examine the modifier list

= Modifiers m |dentify modifiers that have
Domestication mutually exclusive values

Domestic . .
— Domestication

Use Risk

Draft
Food Sex

Risk Age
g:;'egemus s Make meaning precise
Age - Age group

Sex
Male
. Female m NB Uses are not mutually
ge '
Adult exclusive

Child Can be both a draft (pulling) and
a food animal

Extend and complete lists of
values

= Modifiers m |dentify modifiers that have
Domestication mutually exclusive values

Domestic . .
— Domestication

Feral Risk

Risk Sex
Dangerous

Risky Age
Safe m Make meaning precise
Age - Age group

Sex
Male
Female

Age m NB Uses are not mutually

'T"f:g: exclusive
(o) er
Child Can be both a draft and a food

Adult animal
Elderl

Note any hierarchies of values

= Modifiers m |dentify modifiers that have
Domestication mutually exclusive values

Domestic . .
— Domestication

Feral Risk

Risk Sex
Dangerous

Risky Age
Safe m Make meaning precise
Age - Age group

Sex
Male
Female

Age m NB Uses are not mutually

sl exclusive
Infant

el Can be both a draft and a food
Adult animal
Elderl

Specify Values for each:
Two methods

m Value partitions

Classes that partition a Quality

The disjunction of the partition classes equals the
quality class

m Symbolic values

Individuals that enumerate all states of a Quality

The enumeration of the values equals the quality
class

Method 1: Value Partitions-
example "“Dangerousness”

m A parent quality — Dangerousness

m Subqualities for each degree
= Dangerous, Risky, Safe

m All subqualities disjoint

m Subqualities ‘cover’ parent quality
= Dangerousness = Dangerous OR Risky OR Safe

m A functional property has dangerousness
= Range is parent quality, e.g. Dangerousness
= Domain must be specified separately

m Dangerous_animal =
Animal and has_dangerousness some Dangerous

54

as created by Value Partition
wizard

quality covering axiom

v © ValuePartition Dangerous or Risky or Safe| C |
v Dangerousness

[Dangerous \
Risky Disjoints
Safe Risky
Safe

partitions
disjoints

Value partitions
Diagram

Animal

Jangerous

Risky animal

Value partitions UML style

Dangerousness
Value

owl: u#onOf

Safe 1sky angerous
value value Value

has_dangerousnes#Dangerous
10me Valueskro Animal

Leo’s
Dangerousness

]

Leo the
Lion

Method 2: Value sets —

Example Sex

m There are only two sexes

Can argue that they are things
“Administrative sex” definitely a thing
“Biological sex” is more complicated

Method 2: Value sets-

example Sex

m A parent quality — Sex_value
m Individuals for each value
male, female
m Values all different (NOT assumed by OWL)
m Value type is enumeration of values
Sex_value = {male, female}

m A functional property has sex
Range is parent quality, e.g. Sex value
Domain must be specified separately

m Male animal =

- Animal and has_sex is male

Value sets UML style

Issues In specifying values

m Value Partitions
Can be subdivided and specialised
Fit with philosophical notion of a quality space

Require interpretation to go in databases as values
in theory but rarely considered in practice

Work better with existing classifiers in OWL-DL
m Value Sets

Cannot be subdivided

Fit with intuitions

More similar to data bases — no interpretation
Work less well with existing classifiers

Value partitions — practical
reasons for subdivisions

—-(C) Age_group
anduIt value
L{C) Elderly_value
ClChlld _value
C' Infant_value
CITodIer_value
m “All elderly are adults”
s “All infants are children”

m etc.

m See also “Normality status” in
http://www.cs.man.ac.uk/~rector/ontologies/mini-top-bio
62 One can have complicated value partitions if needed.

Picture of subdivided value
partition

Infant
value

Adult value | Child value

Age_ Group value

More defined kinds of animals

m Before classification, trees

(Camivore)

‘ Anmnl ’* }—‘ Ommvore)

\ N
\

(Hell)IVOIe)

(" Mammal "A,

<
oy

(Male_animal

‘.;VDangelous_animaI)

- v
‘3‘\
V‘fFemale_animaI-t)

‘\[

N\

v il . .
. .)
¢ “‘.. ~— - PR
\ N\ - 4

\ N / . A J— =

\ "\, [Herbivore 77 ——

\ ~— - - —
Ny —— I

m After classification, DAGs

@ }—‘ Puppy)

— A —
[Mammal <3} Cat K}

(Camivore <=
A v

_ N .
.‘v‘vv ,/" ~ g . - 1) .
/ . Omnivore = S
/ P~ y,
N\ —
}—t__"Dangerous_animal 5 \ J— '

Domestlc cat)

Part lll — Hands On

m Be sure you have installed the software
(See front page)

m Open Animals-tutorial-step-1

Explore the interface

- *) Animals-tutorial-step-1 Protégé 3.2 beta (file:/Users/alanrector/Documents/Teaching/foundations-sem-web/2(
O E|E| € |E]E | |eb] ¢ W (][] [z ||)| & BB < | $ «
{ OWLClasses ' W Properties = Forms 4 Individuals & Metadata f-
For Project: @ Animals-tutorial-step-1 For Class: Cow (instance of owl:Class) -
5
Asserted Hierarchy |t [J Annotations :5 33 4
owl:Thing A Property Value
v { Domain_entity " rdfs:comm... A cow is a mammal. It eats grass and leafy plants (only) and is
v © Living_thing considered safe.
v Animal
Bird
Carnivore
Dangerous_animal
Female_animal - . 2| 52
> Fish -an Asserted Conditions cu| §2| N Propert ﬁ [ﬁ Ll
is —
. NECESSARY & SUFFICIEN Vv [eats (multiple Liv
Herbivore | EcEssary] L
Male_animal R— Grass or Leafy._|
- " | Mammal []) Grass
v © Mammal eats only (Grass or Leafy_plant) [] ‘
» @ Cat) eats some Grass [c | ~ ©Leafy_plant
v @ Cow) eats some Leafy_plant [c || ¥ mhas_dangerousness
Bull) has_dangerousness some Safe []) Safe
- | is_parent_of (mull
Calf - (m|is_p _ (mu
Heiffer < -~
<€ =)» Disjoints | q}:l
m ' H I H I _l rﬁ‘ ’\L/.HQKH I ‘ & | nnic View [Pre

Protége - new abbreviated
abstract syntax

lsome someValuesFrom

only allValuesFrom

lhas hasValue

...and... intersectionOf{(...)

...0r... unionOf(...)

jnot complementOf()

Imin minCardinality

max maxCardinality

exactly cardinality

= <, 2 Numeric comparisons (coming
soon)

Protégé Old (<sv3.1) Synta

enComplete-errors-01 Protégé 3.0 beta (file:\C:\Program®o20Files'Protege_3.0_beta'projects-2004-03-05\GAl
pject OWL Wizards Debugging Code Window Help

= B 4 ® B K

SSES |[EII| Propertiesl = Formsl TP Individualsl Metadatal

f—u

R — ale Il ns o nn emeean

@@“@%‘@@@@ﬁ

& Protege OWL Syntax ll
OWL Element | Symbol | Key Example Meaning of example
allvaluesFrom 7 * ¥ children Male All children must be of type Male
someValuesFrom E ? 3 children Lawyer [At least one child must be of type Lawyer
hasValue 3 b rich 3 true The rich property must have the value true
cardinality = = children =3 There must be exactly 3 children
minCardinality 2 > children z 3 There must be at least 3 children
maxCardinality < < children = 3 There must be at most 3 children
complementOf n ! = Parent Anything that is not of type Parent
intersection Of & Human n Male All Humans that are Male
unionOf | Doctoru Lawyer | Anything that is either Doctor or Lawyer
enumeration {...} {1} {male female} The individuals male or female

68

Explore the interface

&) Animals-tutorial-step2 Protégeé 3.2 beta (file:/Users/alanrector/Documents;

File Edit Project OWL Code Tools Window Help

New O &= E]| € | B (&l e 2] || 2]]]|]| 2| d)]| B|| B[EB| <«
asses | roperties | = Forms ndividuals | etadata
Subclas C O owLC P F @ Individuals | @ Metad
icon =X
For Projecs @ Animals-tutorial-complete For Class: Cow (instance of owl: Class)
£
ﬁ_ssertehd Asserted Hierarchy ot X
Ierarc Udigerous _drndl A
y Female_animal |
> @ Fish | Asserted | Inferred |
Herbivore
> Insect Asserted Conditions dh 153
C|aSS Male_animal NECESSARY & SUFFICIENT
H H NECESSARY
Description Y_® Mammal | @ Mamma [
= Cat .
eats only (Grass or Leafy_plant) []
> © Cow eats some Grass [c |
Person eats some Leafy_plant =
» () Pig has_dangerousness some Safe =
DlSjOlnt Omnivare
\.(uuu “r:::l
Classes > @ Rani:
> Plant
I Quality -
> Al | [4] i

Explore the interface

New Add
restriction superciass

expressioffatE it " Inferred |

Asserted Conditions
NECESSARY & SUFFICIENT
NECESSARY
Mammal T
- eats only (Grass or Leafy_plant) Descrlptlon

=) eats some Grass “Necessary

-1 eats some Leafy_plant Conditions”
- has_dangerousness some Safe

Explore the interface

IS
Herbivore
Insect
Male_animal
Mammal
Omnivore

Asserted | Inferred | S
PR— Definition
Asserted Conditions - G “Necessary
NECESSARY & SUFFICIENT &

Conditions”

NECESSARY

Animal S
) eats only Plant EI } Sufficient

“Defined class”
has necessary & sufficient conditions

(3

Explore the interface

Classify button

(racer must be
running’®)

File Edit Project OWL Code Tools Windmy Help L

BEEIETE ER R EIEICEE SR
)

| OWLClasses | M Properties = = Forms 4 Individuals = @ Metadata |

For Project: @ Animals-tutorial-s...

e R

For Class: & Herbivore (instance of owl:Class)
Asserted Hiera & +3f % o3 o |Name T SameAs r DifferentFrom | JAni

L_J.
. a . prt
v 0 Animal Herbivore o

Exercise 1

m Create a new animal, an Elephant and an
Ape
Make them disjoint from the other animals

Make the ape an omnivore
eats animals and eats plants

Make the sheep a herbivore
eats plants and only plants

Exercise 1b: Classification

m Check it with the classifier

m Is Sheep classified under Herbivore
If not, have you forgot the closure axiom?

m Did it all turn red?
Do you have too many disjoint axioms?

Exercise 1c: checking disjoints —
make things that should be inconsistent

m Create a Probe Sheep and Cow that is a
kind of both Sheep and Cow

m Create a Probe _Ape and Man that is a
kind of both Ape and Man

m Run the classifier

m Did both probes turn red?
If not, check the disjoints

Exercise 2: A new value partition

m Create a new value partition
Size partition
Big
Medium
Small

m Describe

Lions, Cows, and Elephants asBig
domestic_cat as Small
the rest Medium

Exercise 2b

m Define Big_animal and Small_animal
Does the classification work

m Extra

Make a subdivision of Big for Huge and make
elephants Huge

Do elephants still classify as “Big Animal

Part |V — Patterns: n-ary relations

Upper ontologies & Domain ontologies
Building from trees and untangling
Using a classifier
Closure axioms & Open World Reasoning
m Specifying Values
m n-ary relations
m Classes as values — using the ontology

Saying something about a
restriction

m Not just
that an a book is good but who said so
And its price
And where to buy it

m But can say nothing about properties
except special thing
Super and subproperties
Functional, transitive, symmetric

N-ary Relations

Binary Relation
"Lions: quality

m According to whom?

Adding attributes to a Relation

NY Times
Book review

"Lions:

i i e exceiient

Define a class for a relation:
Reification

quality

"l ions: description
Life in the Pride"

Class: Description

instance-of

Description_ 1

Quality: Excellent
Source: NY Times Book review

A Relation Between Multiple
Participants

John buys “Lions:Life in the Pride” from books.com for $15

m Participants in this relation:
John
“Lions: Life in the Pride”

books.com
$15

m No clear “originator”

Network of Participants

Class: Purchase

NY Times
Book review

payer
object

"Lions:

Life in the Pride" el

Considerations

m Choosing the right pattern: often
subjective

Pattern 1: additional attributes for a relation
Pattern 2: a network of participants

m Instances of reified relations usually don't
have meaningful names

m Defining inverse relations is more tricky

Part V — Patterns: Classes as
values

m Upper ontologies & Domain ontologies
m Building from trees and untangling
|

Using a classifier
m Closure axioms & Open World Reasoning
m Specifying Values
m n-ary relations
m Classes as values — using the ontology
m Part-whole relations

Using Classes as Property Values

dc:subject

African
Lion

Using Classes Directly As Values

BookAboutAnimals
rdfs:jgbglassOf

™S

rdfs:subclassOf o .)
Life in the Pride"

African
Lion "The African
Lion"

Representation

O O © BookAboutAnimals

BookAboutAnimals

(type=owl:Class)

rdfs:comment

{Asserted ' Inferred

Asserted Conditions

G o ax

(C) owl:Thing
(33 dc:subject AnimalClass

In Protege

O O O LionsLifeinThePrideBook (type=Bo

C

{Name . SameAs DifferentFrom

LionsLifeInThePrideBook)

rdfs:comment

BookTitle vV C -
Lions: Life in the Pride

Dc:subject

(C) Lion

Approach 1: Considerations

m Compatible with OWL Full and RDF
Schema

m Outside OWL DL

Because classes cannot be values in OWL-
DL

Nothing can be both a class and and instance

Approach 2: Hierarchy of
Subjects

BookAboutAnimals

Life in the Pride"
rdfs:supclassOf , “The African
Lion"
Lion |

AfricanLionSubject

Hierarchy of Subjects:
Considerations

s Compatible with OWL DL

m |Instances of class Lion are now

subjects

m No direct relation between
LionSubject and
AfricalLionSubject

s Maintenance penalty

rdfs:subclassOf

Hierarchy of Subjects

rdfs:subclassOf

rd

rdfs:subclassOf

- "The African
Afr_lcan i
Lion

pap€ntSubject

Hierarchy of Subjects:
Considerations

m Compatible with OWL DL
m Subject hierarchy Ctin > @I

(terminology) is
independent of class

hierarchy (rdfs:seeAlso)

[Malntenance penalty rdfs:stject

rdfs:sub¢classOf

Using members of a class as
values

BookAboutAnimals

"l ions:
Life in the Pride"

African Thi PULTEEL
. 10N
Lion

rdfs:subclassOf

Representation

© 6 O BookAboutLions (type=owl:Class)

[

) Ani

BookAboutLions

rdfs:comment

{Asserted ' Inferred

Asserted Conditions

J 3o e

(C) Book
(@) 3 dc:subject Lion

In Protege

| © © O LionsLifeInThePride (type=BookAl
v C x

{ Name | SameAs DifferentFrom

LionsLifeInThePride)

rdfs:comment

BookTitle vV C -
Lions: Life in the Pride

Dc:subject

Considerations

m Compatible with OWL DL

m Interpretation: the subject is one or more
specific lions, rather than the Lion class

m Can use a DL reasoner to classify specific
books

Part VI — Patterns:
Part-whole relations

m Upper ontologies & Domain ontologies
m Building from trees and untangling
|

Using a classifier
m Closure axioms & Open World Reasoning
m Specifying Values
m n-ary relations
m Classes as values — using the ontology
m Part-whole relations

Part-whole relations
One method: NOT a SWBP draft

m How to represent part-whole relations in
OWL is a commonly asked question

s SWBP will put out a draft.

m This is one approach that will be proposed
t has been used in teaching

t has no official standing

t is presented for information only

Part WWhole relations

m OWL has no special constructs
But provides (some of) the building blocks

m [ransitive relations

Finger is_part of Hand
Hand is_part_of Arm
Arm is_part of Body

9
Finger is_part_of Body

Many kinds of part-whole
relations

m Physical parts
hand-arm

m Geographic regions
Hiroshima - Japan

m Functional parts
Ccpu — computer

m See Winston & Odell
Artale
Rosse

Simple version

m One property is part of
transitive

Finger is_part_of some Hand
Hand is_part of some Arm
Arm is_part_of some Body

Get a simple list

m Probe part of body =
Domain_category

is_part_of some Body ™ Logically correct
But may not be what

= @Probe _part_of_body wehn T

L@I Arm
C)Finger
C)Foot
C) Hand
C)Leg
C) Toe

Injuries, Faults, Diseases, Efc.

m A hand is not a kind of a body

... but an injury to a hand is a kind of injury to
a body

m A motor is not a kind of automobile

... but a fault in the motor is a kind of fault in
the automobile

m And people often expect to see partonomy hierarchies

Being more precise: "Adapted SEP
Triples”

m Body (‘as a whole’)
Body
m The Body’s parts
Is_part_of some Body
m The Body and it's parts
Body OR is_part_of some Body

m Repeat for all parts
Use ‘Clone class’ or
NB: ‘JOT’ Python plugin is good for this

Adapted SEP triples:
UML like view

| . | has locus
Injury to Arm ~ rm OR part part of ar
(or part of arm) T e
: /4
Part of
Arm

Injury to Hand has locus @
some

Adapted SEP ftriples:
Venn style view

Arm or parts of Arm

Parts of Arm

Resulting classification:
Ugly to look at, but correct

=L C)Body _part_or_part_of_Body_part
[13—4\) C)Body_or_part_of_body

[‘-3—*@ Arm_or_part_of_Arm

;@l Arm

@Hand_or _part_of_Hand

li@ Finger_or_part_of_Finger

L{C) Finger
C)Hand
——{C) Body
E}—‘@ Leg_or_part_of_legy
LJ-]—‘@ Foot_or_part_of Foot
.C) Foot
@ Toe_or_part_of_Toe
l—u::} Toe
—(CLeg

C) Body_part

Using part-whole relations:
Defining injuries or faults

Injury _to Hand =
Injury has_locus some
Hand or part of hand

Injury_to Arm =

Injury has_locus some Arm_or_part of Arm
Injury_to Body =

Injury has_locus some

m [he expected
hierarchy from

=H(C) Injury_to_body point of view of
[JE}—‘@ Injury_to_arm anatomy
é)—‘@ Injury_to_Hand
l—*@ Injury _to_Finger

Caution with part of

m Motor is_part of some Car

Means “All motors are part of some car’
Obviously false!

But convenient to get:
Car_part =
is_part_of some Car
subsumes
Motor

To be correct must use
“Car_motor =
Motor and is_part_of some Car

J

Geographical regions and
iIndividuals

m Similar representation possible for
individuals but more difficult

and less well explored

Simplified view:
Geographical regions

m Class: Geographical _region
Include countries, cities, provinces, ...
A detailed ontology would break them down
m Geographical features
Include Hotels, Mountains, Islands, etc.

m Properties:
Geographical_region is subregion of Geographical Region
Geographical _feature has location Geographical _Region

Features located in subregions are located in the region.
iIS_subregion_of is transitive

Geographical regions & features
are represented as individuals

m Japan, Honshu, Hiroshima,
Hiroshima-ken,...

m Mt Fuji, Hiroshima_Prince Hotel, ...

Facts™

Honshu IS_subregion_of hasValue Japan
Hiroshima-ken Is_subregion_of hasValue Honshu
Hiroshima Is_subregion_of hasValue Hiroshima-ken

Mt Fuji has_location hasValue Honshu
Hiroshima_prince_hotel has_|ocation hasValue Hiroshima-ken

*with apologies for any errors in Japanese geography
115

Definitions

m Region_of Japan =
Geographical_region AND
is_subregion_of hasValue Japan

I;Z,I Geographical_region
@) i=_subregion_of = Japan

m Feature of Japan =
Geographical_feature AND
(hasLocation hasValue Japan OR
hasLocation hasValue Region of Japan)
1:3,' Geographical_feature
l:EI (has_location = Japan) u (3 has_location Regions_of_Japan)
NECESSARY

In tools at this time

m Must ask from right mouse button menu in Individuals tab
CLs | INL | £ Connected to Racer 1.7.23

FOR PROJECT: @ Animals-03-05% FOR CLASS: (C) Feature_of_japan FO

SUBCLASSES: 5% |:HAME: v T @ X

.C) owl Thing
=-(C) Domain_entity Reasoner log

9' Body_part » Individuals helonging to: Feature_of_japan
;%‘l Body_part_or_part_of_Body_part ,'g> Hiroshima_Prince_Hotel
.C) Disorder I Mt_Fuji

(C) Geographical_entity
= \Q)Geographical_feature (2

@ Featre_otroshima_ten m Dbetter integration under

(C) Feature_of_japan .
(©) Geographical_region (4) .S Conwert to primitive class d eve I 0] p me nt
(C) Living_thing A8 show class description

(C) Quality . &) Edit debugging information
-.§3' Value 4| set Class as Probe...
\C)ValuePartition
L{(C)Japan_and_its_regions

» Total time: 0.05 seconds

|2 Check concept consistency
|2 Check concept consistency

B8 Compute individuals belonging to class
<I’» Compute individuals belonging to class
2| Get inferred super classes

[£ | Get inferred super classes

(J Rename across files...
(&) Set all subclasses disjoint

1 n Ceot Aermvacaticn Ann ~

Warning:
Individuals and reasoners

m Individuals only partly implemented in reasoners

If results do not work, ask someone if they should!
Open World reasoning with individuals is very difficult to implement

If it doesn’t work, try simulating individuals by classes

Large sets of individuals better in “Instance Stores”, RDF
triple stores, databases, etc that are restricted or closed

world

m Ontologies are mainly about classes
Ontologies are NOT databases

Part-whole in OWL

m Note - the only aspect of the part whole
relation represented in OWL is transitivity

“Mereologists” (those who study parts-whole
relations) define other axioms
Antisymmetry (nothing can be part of itself)
Reflexive (everything is a part of itself)

Weak supplementation principle -

m When you take away a part (except the whole), you
leave something behind

Qualified cardinality constraints

m Use with partonomy
m Use with n-ary relations

Cardinality Restrictions

m “All mammals have four limbs”
“All Persons have two legs and two arms™

“(All mammals have two forelimbs and two
hind limbs)”

What we would like to say:
Qualified cardinality constraints

m Mammal
has part cardinality=4 Limb

m Mammal
has part cardinality = 2 Forelimb
has part cardinality = 2 Hindlimb

m Arm = Forelimb AND is_part of some Person

Glossary: “Forelimb” = front leg or arm
“Hindlimb” = back leg

What we have to say in OWL

m The property has part has subproperties:
has limb
has leg
has arm
has_wing

Mammal, Reptile, Bird has [limb cardinality=4
Person has leg cardinality=2
Cow, Dog, Pig... has leg cardinality=4
Bird has leg cardinality=2

Biped = Animal AND
has leg cardinality=2

Classification of bipeds and
quadrupeds

m Before m After
classification classificaiton

Cardinality and n-ary relations

m Need to control cardinality of relations
represented as classes

An animal can have just 1 “"dangerousness”

Requires a special subproperty of quality:
m has_dangerousness_quality cardinality=1

Re-representing the property has danger as
the class Risk

. has danger
A | D
nima cardinality=] angerous

‘functional’

: has Quality
Animal cardinality=

Avoidance

In OWL must add subproperty for each quality
to control cardinality, e.g. has _risk _quality

special

subpropertyif has quality

has Risk Quality has serlousness
cardinality= @ardmahty—l
C

9;-

xz ’9'
@/ NC,
NG

SN
m Leads to a proliferation of subproperties

= The issue of “Qualified Cardinality Constraints”

127

Part VII — Summary

Upper ontologies & Domain ontologies

Building from trees and untangling

Using a classifier

Closure axioms & Open World Reasoning
m Specifying Values

n-ary relations

Classes as values — using the ontology

Part-whole relations
Transitive properties
Qualified cardinality restrictions

End

m o find out more:
http://www.co-ode.org
Comprehensive tutorial and sample ontologiesxz

http://protege.stanford.org
Subscribe to mailing lists; participate in forums

On the SW in general:
semanticweb@yahoogroups.com

For specific feedback to SWBP

Home & Mail Archive:
http:/lwww.w3.0rg/2001/sw/BestPractices/

public-swbp-wg@w3.org

Part VI — Hands On supplement

m Open Animals-tutorial-step-2

Exercise 3: (Advanced supplement)

m Load Animals-Tutorial-complete.pprj
m Define a new kind of Limb — Wing

m Describe birds as having 2 wings

m Define a Two-Winged animal

m Does bird classify under
Two-Winged animal?

