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5. TARGET CAPACITY AND CAPACITY OUTPUT
5.1 Output and input target capacity

Capacity output or input levels, established by output- or input-oriented measurement
respectively, must be compared to some base level in order to establish the existence and
extent of capacity utilization. This comparison point may be either observed output or input
levels, or some other reference point that represents a “better”, or more interpretable,
comparative reference. In particular, capacity output may be compared to a target level of
output or catch determined by biological or regulatory goals. It is important, however, to
recognize that the appropriate comparison point depends on whether the focus of analysis
occurs in the context of the short term, or represents a more long-term situation during which
stock levels have been regenerated, or adjustment costs have been mitigated in some fashion.

That is, target capacity output is some form of desired level of output from the fishery. In a
given, short-term scenario, it may be defined in terms of regulatory goals designed to
regenerate biomass stocks. This may translate to observed output levels if a TAC is in place
and a binding constraint. Over the long term, however, it is expressed as a long-term yield
curve and evaluated at long-term target stock levels.

Target capacity output has been defined as the maximum amount of fish over a period of time
(i.e. year or season) that can be produced by a fishing fleet if fully utilized while satisfying
fishery management objectives designed to ensure sustainable fisheries (FAO, 2000).
Although this definition expresses the target in terms of catch, since it focuses on the long run
and full utilization it also implies corresponding input measures. Associated with each target
output level is a target capital, and corresponding variable input, level. Thus, the question of
target levels for comparison of capacity measures is relevant for both input- and output-
oriented concepts of capacity.

In particular, the notion of target capacity output suggests that measured current capacity
output levels might best be compared to these output levels, rather than to existing harvest
conditions, to identify excess capacity levels relative to fishery objectives. On the input side,
this suggests that imputing K¢ (“potential” or capacity input) levels associated with the target
output level be the focus of input-contraction measures. It must be emphasized, however, that
such long-term target levels are primarily relevant comparison points for capacity output and
input measures corresponding to long-term stock levels, rather than to existing stock levels. A
number of typical target capacity reference points are presented in Table 2.
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Table 2 — Typical capacity targets

Acronym Description

Output-based capacity targets

MSY Maximum sustainable yield

MCY Maximum constant yield

MEY Maximum economic yield

LTAY Long-term average yield

MOOY Multi-objective optimal yield

Input-based capacity targets

Kwmsy K (capital — fixed inputs, or capacity base) at MSY

Kmesy Kat MCY

Kmesy K at MEY

Kitay Kat LTAY

Kmooy K at MOOY

Kot K at which the slope of the yield per recruit curve is 10 percent of the slope near the origin
(i.e. equivalent to Fy 1)

Kay K at the average yield

Kuax K at the maximum yield per recruit

Source: Derived from Caddy and Mahon (1995), FAO (1999b).

Target output refers to some long run optimal sustainable yield defined by the objectives of
the management plan. As shown in the first panel of Table 2, this may be the maximum
sustainable yield (the maximum level of harvest that can be taken on a continuous basis), the
maximum economic Yyield (the level of harvest that produces the maximum level of economic
profit on a continuous basis), or some other measure that takes into account economic and
social factors. These latter measures are referred to as the Alternative Sustainable Yield
(ASY) and take into account precautionary, economic and social objectives, as well as
conservation objectives of fisheries management.

These target levels are typically associated with some notion of the path that should be taken
to move to this point, allowing for stock regeneration. In a short-term situation where the
stock is in an overfished state, the catch must be reduced below that corresponding to the
long run yield curve, for the given stock level, in order to allow for regeneration of the stock
to a target level in the long run. The desired target path of catch according to stock
regeneration may, at any point in time, therefore be thought of as a short-term target level.

Catch-based target levels as defined in the table are fundamentally based on some notion of a
long run state, with implied optimal levels of catch and fishing effort. That is, associated with
each level of sustainable yield in terms of catch is a long-term level of overall fishing effort,
E, or capital (vessel) stock, K, combined with (variable) input effort, V. This notion is
founded on the level of fixed inputs, or the capacity base, K, to which the variable inputs are
applied. The target input level associated with input-oriented capacity utilization measures is
thus based on K, so input-based targets are represented in the table in terms of K.

The distinction between K and V inputs is important. However, in many countries target
levels of inputs defined either in terms of K, V, or a combination of these inputs (i.e. boat
numbers, days at sea, or different combinations of inputs such as kW*days), are set as
management objectives. A key issue for constructing and using capacity and capacity
utilization measures is distinguishing input targets based on moving toward full capacity
utilization, such as boat numbers, from those that focus on limiting the use of the capacity,
such as days at sea, that may exacerbate excess capacity. For the purposes of analyzing
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capacity, it is necessary to differentiate between the two separable components of the
“effective” or standardized unit of effort, kW*days, that disallows this distinction. Also, note
that for effective capacity management, input capacity targets might best be set at the fleet
segment level. However, separate targets for each sub-fleet of (relatively) homogeneous boats
in terms of fishing activities, which control for heterogeneous capital stocks, or fishing power
of different types of vessels, also may be relevant.

It should be recognized also that defining long-term, input-based target capacity may be
complicated by technological change that could alter the relationship between the level of
catch and the nominal (or observed) measure of input capacity over time. That is, over the
long term, investment in new technology will increase the power of any given vessel.
Generally, technological change results in the target input capacity in terms of boat numbers
decreasing over time, even though output-based target capacity may remain constant.
Similarly, where economic target levels of capacity are to be established, in terms of
determining the most efficient or cost-minimizing fleet for catching target output levels,
changes in costs (or prices if profit maximization is the goal) also can affect the optimal fleet
configuration and size. Hence, input capacity targets require continual revision to account for
technological developments or technical change, and changes in prices and costs. No single
long-run measure may therefore be relevant when addressing long-term issues, since
technological and economic changes occur continuously over time.

For purposes of deriving measures of excess capacity in fisheries, the use of sustainable
yields as target output capacity measures also must be adapted to take short-term fluctuations
into account. Sustainable yields are essentially long-term concepts (i.e. achieved when the
fishery is in equilibrium). The output capacity measures defined in the previous sections are,
by contrast, essentially short-term measures, which are influenced by the prevailing stock
conditions in the years in which they were measured, to the extent that these fluctuations
cannot be taken into account or controlled for. This exacerbates the issue of short- versus
long-term evaluation of excess capacity alluded to in previous sections.

For example, in Figure 12, we assume that excess capacity is defined in terms of a capacity
level of output that coincides with that on the short term yield curve for time 1, although this
does not explicitly build in the underlying production function relationship. If the associated
catch for E, given the prevailing stock level, C;, is compared to Cysy to generate a capacity
utilization measure, it appears that no excess capacity is evident. This raises the issue of the
short- (path) versus the long-term (level) target mentioned above. In terms of the growth
associated with the given stock level, excess capacity already prevails, since the capacity
output is higher than that on the long run yield curve.
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Figure 12 — Changes in capacity output over time

In year two, this problem is further worsened due to short run fluctuations; C, (assumed to be
equivalent to the capacity output, given E) is not only greater than the associated long run
yield for that stock, but also is greater than MSY. If an input utilization measure was
calculated, however, it would likely indicate a surplus of effort and fleet size could be
reduced to achieve Eysy.

This issue underscores two points: short- and long-term capacity output and input measures
should be compared to the associated relevant target; and short-term fluctuations in yield due
only to short-term stock fluctuations should not drive the resulting capacity output measure.
The former issue requires consideration of how a long-term capacity output measure that
could relevantly be compared to long-term targets might be constructed. The latter suggests
that capacity output levels should be measured over time to purge the impacts of such
fluctuations.

These issues also suggest that measures of input capacity may be more reliable in measuring
the extent of excess capacity than output measures. Like the issue of returns to inputs or
scale, which motivated our discussion of the relationship between input- and output-oriented
measures, this is at least partly driven by the point at which the measures are evaluated.
Again in Figure 12, the level of combined effort (E) producing both of the estimated capacity
yields (C; and C,) is constant and greater than that which would be required to produce MSY
(Emsy).

Two alternatives may be developed to address the issues related to short- versus long-term
measures. The short-term capacity output measures developed in the preceding sections may
be compared to current target output measures, based on a path toward the long run level. Or,
a longer term capacity output measure evaluated in terms of long-term stock levels may be
constructed to compare to long-term target output measures. Both of these measures require
imputation from the more standard measurement processes that rely on observed (short-term)
data. The former requires adapting the target catch goal into a current target, but this is
already the focus of most stock regeneration plans and resulting TACs. The latter requires
imputing capacity output for stock levels outside the range of those observed which is
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somewhat more problematic, and thus less definitive, than measures based on observed
relationships.

In the short term, in fisheries managed using output controls, the total allowable catch (TAC)
imposed on the fishery may be assumed to represent the target output level most consistent
with the current stock size and objectives of management. As a result, this is an appropriate
short-term target output measure for the assessment of excess capacity and thus to be used
instead of observed levels (if they differ) to construct capacity utilization measures. For
fisheries managed using input controls, an estimate of the appropriate target output level will
need to be undertaken using either expert opinion, or biological, bio-economic or multi-
objective models of the fishery (see Section 5.4) to use as a comparison point for short-term,
input-oriented capacity measures.

For imputation of long-term measures, both the numerator and denominator of the capacity
utilization ratios developed in Section 3 need to be adapted. In particular, for the CU measure
defined as Current Catch/Potential Catch, the numerator should instead reflect a target catch
level and the denominator should be evaluated at target stock levels corresponding to this
catch level. This may be accomplished for either the DEA or SPF measures discussed in
Section 4, as overviewed by Kirkley, Morrison and Squires (2001).

In practice, this is not as significant an issue for input-oriented measures, since such measures
are defined according to existing catch and stock levels, and thus do not impute beyond the
observed data. It is still the case, however, that if long-term output and stock levels are the
focal points, the long-term level of capacity consistent with the target output and stock level
should be imputed for comparison purposes. If the stock is currently overfished, this may
imply a higher capacity base than that associated with the given levels of catch and stock,
since Cpsy Will exceed the current output level (or TAC). But this is likely to be more than
counteracted by the greater catch per unit of K possible at higher stock levels.

5.2 Excess capacity, overcapacity and absolute capacity

The difference between excess capacity and overcapacity is not well specified in the fisheries
capacity and capacity utilization literature. A useful distinction, however, is that employed by
the National Marine Fisheries Service (2001). Overcapacity occurs when the potential output
that could be produced, conditional on desired resource levels and full utilization of variable
inputs, exceeds the level desired by management (i.e. a target level). Return to Figure 11 and
assume that the desired resource condition corresponds to the resource condition producing
the short-run yield curve in time two. This stock level is higher than the stock level
supporting MSY. In this case, we would have overcapacity because our potential output is
higher than the level needed to support our target stock level. If we further applied our weak
concept of capacity output, catch or output would become bounded or limited at some point
of fishing effort. That point would coincide with our potential capacity output, and the
difference between output levels corresponding to that point and the point corresponding to
the intersection of the short- and long-run yield curves would represent overcapacity. In
contrast, excess capacity implies that, likely due to regulatory constraints, existing catch
levels could potentially be taken more efficiently at existing biomass stock levels.

Since management is typically concerned about the capacity of a fishing fleet, it is important
to make the distinction between excess and overcapacity. Excess capacity is essentially a
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short-run concept; in fact, the concept of capacity is a short-run concept. Excess capacity
equals the difference between the potential output that could be produced given existing
technology, resource conditions, and full variable input utilization and either the observed
output or technically efficient output level (Fére, Grosskopf and Kokkelenberg, 1989).

In contrast, overcapacity has been characterized relative to desired resource conditions. As
such, it is an intermediate to long-run notion, although this is somewhat inconsistent with the
concept of capacity output. Overcapacity is the difference between the potential output that
could be produced given existing technology, desired resource conditions (i.e. target level),
and full variable input utilization, and the output level desired to support target resource
conditions. Whether or not overcapacity is always a problem depends, in part, on the
flexibility of the fleet to change to other fisheries. If an existing fleet of vessels operating in a
particular fishery poses serious overcapacity concerns and the vessel operators have no
flexibility to change to other fisheries, overcapacity will continue to pose a long-term
problem. Excess capacity poses problems if it is chronic, and again, vessel operators have no
flexibility to change to other fisheries. It is often the case that existing vessels cannot easily
change to other fisheries, because of management and regulatory strategies.

Overcapacity also has been identified as the difference between current capacity and target
capacity. That is, overcapacity (OC) might be expressed as the ratio:

__current capacity
target capacity

oC

So if the target output in a fishery was 125 tonnes (based on biological and/or economic
objectives), while the current capacity output was 200 tonnes, the fishery has the potential to
harvest 60 percent more than the target capacity. Alternatively, such a ratio could be
expressed directly in terms of capacity input levels.

This defines OC essentially as an inverse capacity utilization measure, where current capacity
is expressed in terms of potential output given the current capacity base, and the comparison
or reference point is target output (or, analogously, for an input measure). However, as noted
prior, this comparison may be somewhat misleading since it may contain both short and long
run measures, which are not necessarily comparable, and it finesses the issue of current stock
dependence (i.e. comparisons of current capacity should be made in terms of current targets
rather than long-run target levels). Alternatively, “current capacity” should be evaluated at
long run stock levels to generate a more appropriate long-term measure of capacity (i.e.
current capacity should be estimated conditional upon resource conditions necessary to
support the target capacity level; for example, the population needed to yield MSY or some
other objective).

The relative capacity measure specified above (OC), and implicitly (in inverse form) in the
earlier discussion of CU, is also sometimes expressed in absolute terms, or levels, as:

Overcapacity = Current Capacity - Target Capacity

Overcapacity of 75 tonnes is implied for the above example.
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Relative measures are usually more desirable for measuring overcapacity or excess capacity,
since they are in proportional terms and measurement units are not an issue. Thus, they better
facilitate identifying which fisheries (or species) are in most need of capacity management
intervention. A large fishery may have a large, absolute overcapacity measure, while a small
fishery may have a substantially smaller absolute overcapacity measure. However, in relative
terms, the smaller fishery may have a greater overcapacity “problem” than the larger fishery.
Similarly, a species with a relatively small catch in a multispecies fishery may have a small,
absolute overcapacity problem but a large, relative overcapacity problem.

Finally, note that the term “overcapitalization” is often used interchangeably with
overcapacity. The concept of overcapitalization directly refers to input capacity and to the
level of capital stock in particular. A fishery is considered to be overcapitalized if the capital
stock is greater than that required to efficiently achieve the target level of output. The
existence of excess capacity generally implies overcapitalization, but it is possible to have
excess capacity without having overcapitalization (e.g. too many variable inputs applied to
the capital stock). In addition, a fishery can be overcapitalized even if excess capacity is not
apparent, if reallocation or a different fleet configuration could take the same catch at lower
cost. This is partly an issue of boat level as compared to aggregate measures of capacity and
capacity utilization. Indicators of overcapitalization also often implicitly involve a cost
component, which has not been factored into our technical or physical definitions of capacity
and CU. These issues are elaborated further here.

5.3 Estimation of target capacity

The concepts of target output capacity and target input capacity are inextricably linked. With
the exception of the long-term average yield, which can be observed directly from catch data,
all other output targets require some model (explicit or implicit) of stock dynamics that make
assumptions about the level and/or form (i.e. mesh size) of effort applied to the fishery.
Hence, for every target output is associated a potential equivalent target input. Similarly,
where fisheries are managed by controls on inputs, input targets are set on the basis of the
expected output that those inputs will produce.

As just noted, the models used to determine target capacity may be either explicit or implicit.
Explicit models may be either biological (e.g. MSY is the preferred target), bio-economic
(e.g. MEY s the preferred target), or multi-objective (if some alternative output level is the
preferred target). These models have a formal mathematical structure and are generally
estimated from data. An advantage of such models is that their robustness can be tested by
comparing the estimates with known events, and the structure and underlying assumptions
are readily apparent and hence can be debated, agreed or disagreed. In some nations, explicit
biological, bio-economic and multi-objective models have been developed that can be used
for estimation of long term target output and input levels for many fisheries. On a global
scale, however, neither bio-economic models nor multi-objective models have been widely
used to estimate the long-term output or input levels of fisheries. Where such models do not
exist, expert opinion may be sought to provide estimates of target capacity.

Implicit models are informal models that may have no foundation in existing data (possibly
because such data do not exist) but may be based on observation and experience. These
models have no explicit structure that can be debated and agreed upon. Such models often
exist in the minds of experts, who may form opinions about how the fisheries may respond to
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certain changes based on their own experiences. Midway between these models are
theoretical models that are based on established theory and opinion. Such models may have a
formal mathematical structure but may not have sufficient data to derive the appropriate
modelling parameters and conduct tests on their robustness.

5.3.1 Expert knowledge

A panel of experts may provide “educated guesses” about the level of capacity utilization and
the potential harvesting ability of particular fleets, as well as estimates of target capacity
(defined by the objectives of the fisheries policy or management plan) and, consequently,
relative capacity. A formal technique (the Delphi Technique) has been developed that
facilitates consensus between a group of individuals with expert knowledge on the issues to
be examined. Tone (1999), however, offers an alternative to the traditional Delphi Technique
to obtain both consensus and empirical estimates of economic parameters.

The Delphi Technique was pioneered by the RAND Corporation to gather opinions from a
group of experts (Patton, 1986). A key feature of the technique is the anonymity of the
participants. The experts neither meet nor know each other's identity.

The first step of the technique is to form a panel of experts and involved parties in the area of
research. For the purposes of capacity estimation, this might include industry representatives
as well as scientists. Information about who is on the team is not disclosed to others in the
team. The basis of the anonymity requirement is that in any group of experts, it is likely that
some individuals will be perceived to have had more experience than others. As a result, the
opinions of these individuals may be perceived to have greater credibility than those of the
others in the group. Consequently, less experienced team members might be reluctant to
challenge the opinions of better known experts. Therefore, the opinion of the team would
often reflect the opinion of the dominant team member and would not constitute a true,
unbiased consensus. To overcome this problem, the Delphi Technique involves using a team
of experts who do not know who the other team members are.

The second step is to have individuals within the team provide initial estimates (in this case,
capacity, capacity utilization and target capacity) and the reasoning behind their estimates.
Ideally, the participants will have some information available on current catch and activity
levels, such as might be collected in a Rapid Appraisal (RA) or survey of the fishery.
Participants document their opinions and supporting reasons, and return these to the group
moderator. The moderator is independent of the team, and does not participate directly in the
estimation of capacity (i.e. does not provide an opinion).

The moderator synthesizes the information provided by each expert into a single document
outlining the estimates and reasoning of each expert. Care is taken that no comment or
opinion is traceable to its originator.

The fourth step is to send a summary document to all experts for their responses. At this
stage, the experts are asked to re-evaluate their estimates on the basis of the arguments
proposed by other experts. The experts also are requested to propose reasons why they do not
support other estimates. These responses are then sent to the moderator, who again compiles
all responses into an updated summary document.
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The process continues until either the experts' opinions converge or the moderator concludes
that the comments have ceased to change substantively during successive rounds. In the latter
case, if consensus is not achieved, the moderator must make a subjective assessment about
which values to accept. At this point, greater weight may be given to the estimates of more
experienced panel members, or the members who present the more convincing arguments for
their estimates.

An advantage of the Delphi technique is that it works as an informal, subjective model when
decisions are based on opinion, and can be directly converted to a formal model when the
data are more knowledge based (e.g. based on information on catch and effort levels).
However, the technique has a number of problems that need to be considered. Employing a
team of experts may be expensive, and the iterative process may be time consuming. There
also exists the potential for bias to be introduced (intentionally or unintentionally) by the
person administering the technique (the moderator) through the summary reports presented to
the group. While the group of experts does not know the members of the group, the
moderator would be aware of the members and may inadvertently bias the summary towards
the opinions of individuals who are perceived to be more authoritative.

An alternative process involves the use of face-to-face meetings, in which the moderator
compiles the answers and presents them immediately while ensuring confidentiality. There
are several computer programmes designed to assist in this process. While some anonymity
and time for reflection are lost, a face-to-face meeting can provide quicker results.

Expert knowledge also can be obtained through surveys or RA. This might be useful for
producing initial estimates of potential output and target capacities. However, without the
potential for feedback and revision, the resulting survey-based estimates may be less reliable
than those achieved through the more formal Delphi approach.

5.3.2 Biological, bio-economic and multi-objective modelling

Biological models have been developed for many fisheries around the world and underpin
many fisheries management decisions. In most cases, the models are developed from
commercial catch and effort data and, in some cases, supplemented with fishery independent
data. The use of commercial catch and effort data requires an assumption about the
relationship between catch and effort. Furthermore, such models often are used to assess the
effects of different levels of fishing effort on fish stocks as an aid to fisheries management
decision-making. As a result, most biological models can be used to assess both target output
levels and input levels.

Bio-economic models are less common than biological models and have to date played a
lesser role in fisheries management decision-making. Nevertheless, a substantial number of
bio-economic models have been developed for a wide range of species in many countries,
and such models provide the type of information discussed in Chapter 2. Bio-economic
models provide a means to combine what is known about the biology and the fleet into a
single framework for policy analysis. Generally, a bio-economic model will have a biological
component that is used to estimate how the stocks may change under different levels of
exploitation and an economic component that estimates how fishers may react to changing
stock, price and cost conditions. The combination of these activities upon the underlying
stock structure can provide an estimate of the expected level of catch and profits within the
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fishery. Management regulations can be inserted into the model to estimate their effects on
the level of output, stock and profitability. An example of the use of a bio-economic model
for the estimation of target capacity is presented in Appendix E).

Bio-economic models may have a number of applications in assessing target output and input
levels. Where MSY is considered the most appropriate target output level, a bio-economic
model can be used to estimate the fleet composition and size that produces the greatest
economic benefits. Conversely, a bio-economic model can be used to estimate the fleet size
and structure that maximizes economic benefits for the fishery as a whole, and the associated
target level of output. This is particularly useful in multispecies fisheries where harvesting the
MSY of individual species may lead to incompatible targets, because one “optimally”
managed fishery may result in some other species being harvested above and others, below
MSY.

One form of model that is particularly relevant for estimating target capacity is a bio-
economic, multiobjective optimization model. Such a model is generally developed as an
extension to standard bio-economic models, and includes a range of other factors associated
with the fishery and fishing activity (e.g. employment level, pollution levels). Such
optimization models can be used to estimate the level of output and fleet configuration that
best achieves the objectives of fisheries management. This, then, can provide managers with
an indication of both output-based and input-based target levels of capacity either in the long
run or short run (or both in some cases). Further, optimization models also can be used to
estimate the most economically efficient fleet structure to achieve the target output. Hence,
they also provide information on the level of overcapitalization in the fishery. Multiple
objectives of management can thus be combined into a single optimization framework to
provide estimates of optimal sustainable yield that are consistent with the range of objectives
usually inherent in fisheries management plans. Multiple-objective models have not been
widely used to determine management and regulatory strategies for fisheries. They are often
quite complex to solve, and their results are often quite difficult to apply. They do offer,
nevertheless, a comprehensive framework for determining capacity output in fisheries. A
recent review of the use of multiobjective programming in fisheries is given by Mardle and
Pascoe (1999). A simple example of this work is presented in Appendix F.

Development of bio-economic multiobjective optimization models is a multidisciplinary task
involving input from biologists, economists, fishery managers and commercial operators.
Further, development of such models requires detailed biological and economic data, and
constructing and validating the model can take a considerable amount of time. As a result, it
IS unreasonable to expect that models be developed solely for the purposes of estimating
target capacity. However, because bio-economic models can be useful tools for the
management of fisheries in general, States are encouraged to develop bio-economic and
multiobjective models to do so. Once developed, the models also can be used to provide
estimates of target capacity.
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6. ADDITIONAL CONSIDERATIONS
6.1 Distinction between technical and economic measures

The methods of output-based capacity measurement outlined in Section 4 were developed
from a technological perspective. Although based on production theory, the measures have
little direct economic content. Formally, technological-engineering measures are defined
according to the maximum possible output that could be produced per unit of time (a year or
season), with existing plant (the vessel and its characteristics) and equipment (gear or nets),
and under customary and usual practices, provided the availability of variable factors of
production (e.g. labour and fuel) are not restricted. Such measures thus represent maximum
physical output levels that a vessel or operating unit could produce, regardless of input and
output prices. Some economic content is implicitly accommodated in what have been called
technological-economic measures that do not impute capacity output measures beyond the
scope of the observed data, and thus are restricted by observed behaviour. To some extent,
the technological-economic measures implicitly reflect economic responses (i.e. landings
were actually determined by fishers in accordance with underlying behavioural objectives).
However, technological measures are only rough approximations of an economic measure of
capacity, since they are not explicitly linked to any behaviour from economic incentives.

Different cost structures within a fishery could result in measured potential (technical) output
levels for some vessels being inconsistent with an operator’s objective of profit
maximization. Whether this is a problem, however, depends on whether profit maximization
may be considered a relevant goal for the operator. For many fisheries it may not be
reasonable to think that such a goal is the main driving factor behind behaviour. It remains
true, however, that some measured potential levels of output might not be economically
feasible, as the added cost of harvesting the catch would exceed the additional revenue
gained. This may not be well reflected by the technological-economic approach.
Alternatively, cost minimization may not be the behavioural objective that best characterizes
decision-making behaviour, and approaches for determining capacity based on cost
minimization may be inappropriate to use estimating capacity output. Also, even if cost
minimization or profit maximization may not be perceived as a relevant goal, in a multiple
species setting with possible choice among species, revenue maximization may be a relevant
economic goal to build into the analysis. Fare, Grosskopf and Kirkley (2000) demonstrate
how a cost- or revenue-based approach may be used to estimate capacity when production
involves multiple outputs.

Economic indicators, or at least imputation of the implied costs of production decisions, are
even more important to represent at the fleet level, since generation of rents from reduced
capacity is one of the goals of fishery management. Therefore, even if individual fishers do
not have explicit economic incentives, such goals may be relevant to managers. Also, if
regulatory schemes in place may impose upon property rights, thus causing fishers to operate
more clearly in response to economic motivations, such behaviour is important to impute for
appropriate measurement of capacity and capacity utilization.

The economic concept of capacity output is the output level (nominal catch or landings)
determined in accordance with a given behavioural objective (e.g. profit maximization, cost
minimization, or revenue maximization) by a fishing unit operating under customary and
normal operating conditions. The economic measure is distinguished from the technological-
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economic measure in that it explicitly determines the economically optimal output or input
levels consistent with optimizing behaviour of fishing units or operators. Provided adequate
data on costs and earnings are available, such economic capacity measures may be calculated
in several ways. For example, one very crude measure sometimes suggested is to determine
the output level corresponding to minimum average cost. This would require a sufficiently
long-time series of costs and landings data to compare unit costs across boats and time.

Although such a measure could provide useful information for fisheries managers, it does not
directly address the issue of associated capacity utilization. One type of cost-oriented
approach, however, may be drawn from the technological economic framework. If an input-
oriented approach is used, the implied reduction of capital from existing K levels that would
still support production of observed catch levels is the focus of the analysis. If the associated
capital costs associated with this contraction in the fleet can be estimated, the implied
reduction in costs for a given output (and thus revenue) level may be imputed. This is not
directly related to economic optimization but allows implicit consideration of potentially
reduced costs associated with contractions of the fleet. With heterogeneous capital stocks,
however, and thus potential ambiguities associated with what form a capacity reduction
programme would take, construction of such measures is difficult. This suggests, in turn, that
an appropriate “price” of capital to use for cost-based economic models might be similarly
difficult to compute.

A more direct approach involves the use of economic optimization models based on cost or
profit functions, using DEA or SPF methods. With information on input and output prices, an
economic measurement consistent with cost minimization, revenue maximization, or profit
maximization may be calculated by imputing the least cost, fixed input level for production
of observed output levels. A capacity utilization measurement then can be constructed in
terms of the additional costs that are unnecessarily incurred in the fishery by non-optimal
fixed input levels. And the deviation of the fixed input levels may in turn be imputed from
this cost gap. Although this method has rarely been applied to DEA or SPF methods, such
models in a standard economic framework have been specified and implemented in studies
such as Morrison (1985) and Fare, Grosskopf and Kirkley (2000). It should again be
emphasized, however, that using this type of modelling framework requires one to assume
that the relevant behavioural objective of boat operators is the economic one of, say, cost
minimization.

An advantage of using an economic-based approach to capacity measurement is that potential
economic waste in fisheries may be identified. Excess capacity can be measured not just in
terms of changes in the quantity of catch, or more relevantly in the level of inputs, but also in
terms of foregone economic profits. Difficulties that persist, however, involve the existence
(and appropriateness) of cost and price data; the relevance of economic behavioural
assumptions in fisheries that remain subject to common property motivations; and the nature
of existing management and regulation.

Also, estimation of economic measures of capacity and capacity utilization requires
significant economic data, and these data are generally not available.*® It is therefore

Bseveral European Union Nations and the United States have begun collecting detailed economic data on costs
and earnings. The eventual availability of detailed economic data, thus, warrants that various economic concepts
of capacity be estimated. Methods and procedures for these approaches are available in Morrison (1985a, b),
Fousekis and Stefanou (1996), Keeler and Ying (1996), Fagnart, Licandro and Portier (1999), Fare, Grosslopf
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unrealistic to require states to produce such estimates for the purpose of international
comparisons. Ultimately, it will be important for states to develop such measures for
managing their fishing capacity, if the economic ramifications of excess capacity are driving
management decisions.

6.2 Aggregation across species and fleet segments

Estimation of capacity output or catch for fisheries is best carried out at low levels of
aggregation — for example, the boat level — for a particularly fishery. Once capacity
utilization indicators have been estimated for the boats and species in individual fisheries,
however, this information must be aggregated by various dimensions — such as boats, gear,
species, fisheries and regions — to provide useful information about excess capacity over
entire fisheries, or even countries. Such aggregation does not, however, have a strong
theoretical basis unless production is fully and linearly additive (Daal and Markies, 1984).
That is to say, the individual components of the overall aggregate are essentially independent
from one another, and thus can simply be added together.

The basic problem is this: How does one use estimates at the firm or operating unit level to
obtain estimates of the fleet, fishery, or industry. Daal and Merkies (1984) suggest that
realistic and consistent aggregation is nearly impossible. Moreover, in the presence of
technological externalities, consistent aggregation is not possible. This is likely to be the case
for many fisheries. Kirkley et al. (2001), Fare and Zelenyuk (2001) and Fare, Grosskopf and
Zelenyuk (2001) provide a comprehensive theoretical framework and discuss aggregation
over firms to obtain a measure of industry efficiency or capacity. They demonstrate that
industry capacity is greater than or equal to the sum of firm level capacity. In contrast,
Blackorby and Russell (1999, p. 7-8) state “...there does not exist a technology set such that
the widely used Debreu (1951)/Farrell (1957) measure of technical efficiency can be
aggregated.” The three previously cited works, however, adopt Koopmans (1957) concept of
efficiency and propose the use of directional distance functions to examine technical
efficiency and capacity.

Aggregation of output-based measures of capacity becomes increasingly less definitive at
higher levels, since comparability is lost. For example, it is less problematic across fisheries
and between countries that harvest a shared stock for a given species, such as the cod stock in
the North Sea. In this scenario, capacity output can be derived from the addition of such
output of cod from each country participating in the common-pool fishery. This, however,
provides only a rough approximation, which would underestimate total capacity. The sum of
individual capacity estimates would be underestimated, because it does not allow for
allocation of inputs among different operating units (e.g. allocating labour or days from one
vessel in a given fishery to another vessel in a different fishery). This will be even more true
when adding across species, particularly if capacity output measures impute the potential
output from latent capacity, and thus, possibly double-count boats that are currently operating
in different fisheries. Also, with diminishing returns, increased exploitation of a shared stock
by all participants would result in a less than proportional increase in output because the
stock is limited. However, since output measures are typically used indirectly to impute
required capacity or capital contraction to produce desired catch levels, rather than as an

and Kirkley (2000), and Coelli, Grifell-Tatje and Perelman (2001). There are also several problems with
estimating a stochastic cost or profit function (see Kumbhakar and Lovell (2000) for a comprehensive
discussion on estimating stochastic cost, revenue and profit functions).
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indicator of what would happen if capacity were actually unleashed on the fishery, this is
unlikely to be a binding constraint in practice.

With several fleet segments catching different combinations of species, the problem of
aggregation becomes even more complex. One possibility is to use techniques such as DEA
or SPF to estimate the capacity output of each species per fleet segment separately in a
multiple species fishery. These can be aggregated across fleet segments for individual species
as indicated in Table 3, where the X’s represent the capacity output of a given species of a
given fleet segment. An example of aggregation of species across fleet segments is also
provided in Appendix C. It is preferable, however, to recognize multispecies issues more
directly, at least within a particular fishery, by using DEA or SPF models that recognize
technical and economic interactions among the various outputs produced (e.g. how the catch
of one species increases or decreases as the catch of another species increases or decreases).
That is, the estimation may be performed for a multi-output, or multispecies, production
technology that accommodates at least some forms of jointness (more than one species or
product is produced for a given level of fishing effort) that are ignored when potential output
from separate estimations are simply added together. Also, if revenue rather than quantity is
the focus of the analysis, and estimation of multispecies fishery capacity output is carried out
directly rather than simply added, it also may be useful to recognize the economic
motivations underlying different catch compositions. This can be accomplished by
postulating revenue rather than output maximization as a basis for capacity output measure.

Table 3 — Interactions between fleet segments and species in multispecies/fleet fisheries

Fleet segment Species
1 2 3 4

A X X

B X X

C X X

D X

Total fishery Al+Cl A2+B2 B3+C3 D4

Deriving overall output-based measures of capacity utilization and excess capacity at higher
aggregation levels, such as for a country will inevitably require some form of aggregation
across species, gear and region, since estimation cannot justifiably be carried out at such an
aggregated level. The simplest approach is to add up the quantities of different fish stocks.
However, for most purposes it will be more informative to weight this sum in some manner,
such as weighing the output of each species by its price to produce a total value of output
(Gross Value of Production). Note also that in order to impute capacity utilization measures
from such an aggregation process, target output measures of capacity used as comparison
points for CU measures also must be aggregated using price weights.

A potential interpretation difficulty for measures added according to their value is that excess
capacity measures can vary with a change in relative prices, all other things being equal. This
is particularly problematic when examining trends in capacity and comparing capacity
measures between years. For example, an apparent decline in total excess capacity over time
may be a result of a decrease in price for a species that is subject to equivalent or even greater
levels of excess capacity than in the previous year. To limit this, a constant set of prices could
be applied to a given time series of output values for purposes of international comparisons.
However, this raises questions about how market mechanisms and true capacity output are
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linked and how to distinguish their effects. This, in turn, suggests that evaluation of capacity
output in such terms is questionable. In summary, aggregation or even comparison of
capacity output measures across fisheries is difficult to accomplish effectively and should be
undertaken with care.

Aggregation of many input-based measures of capacity also can be undertaken, although it
again raises difficulties of interpretation. For example, total gross tonnage or total kW days
fished can be aggregated across all fleet segments, as can their target levels. However, the
more variation there is across boats, the more this measure is questionable, since it implies
that a “representative” boat can be defined and the relationship between inputs and output
harvesting capacity is linear. Similarly, inaccuracies in the aggregate measure may increase at
higher levels of aggregation due to incompatibility of effort units. For example, the
importance of KW days is greater for fleet segments using mobile gear (e.g. trawl gear) than
for fleet segments using static gear (e.g. pots). It also precludes the incorporation of activity
in fisheries that are not based on readily measurable physical inputs (e.g. labour rather than
capital intensive fisheries). And when only measures such as boat numbers are available, a
mixture of large and small boats in the population will create a bias in the estimate of total
capacity (most likely an overestimate, because one large boat may be equivalent to several
small boats in harvesting capacity). Consequently, any aggregation of input-based capacity
measures should be viewed with substantial caution.

Despite the problems associated with aggregation, such information is important for
providing a general indication of the order of magnitude of capacity utilization in a fisheries
sector. Computing an indicator of total capacity utilization for all fleet segments that are
harvesting a given species or stock provides a useful, albeit approximate, indication of the
magnitude of balance or imbalance that exists between fishing capacity and the overall
resource.

At the international level, aggregation could potentially be undertaken between those
countries harvesting shared international, transboundary, highly migratory and straddling fish
stocks, although again the aggregation is problematic and should be undertaken with care.
The purpose of this exercise would be to provide information to the appropriate, regional
fisheries management organization (RFMO) about the potential risks that a combined
national fleet capacity prosecuting these shared fish resources may present for the short- and
long-term conservation of such stocks. In this context, RFMO officials would have an
opportunity to consider the implications of the mobility of certain countries and/or fleet
segments across species and/or national lines and to discuss any policies or measures that
may eventually be considered to manage such fleet mobility (FAO, 2000). For such
aggregation to work, the countries involved will need to coordinate their data collection and
capacity estimation approaches to ensure that compatible measures are developed.

6.3 Artisanal fleets

In many countries, the artisanal sector is often not adequately incorporated into fisheries
management plans and measures, despite its importance. In many developing countries,
attention is focused on the development of mechanized and/or commercial fisheries, with
traditional and subsistence fisheries often incorrectly regarded as being insignificant. Even in
countries that have relatively advanced fisheries management systems, such as the
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United Kingdom, the level of information collected on the small boat sector (under ten s in
length) is negligible, even though these boats comprise almost two thirds of the entire fleet.

Three main types of artisanal fleets/fishers can be defined as: pure subsistence fishers, part-
time commercial fishers, and full-time commercial fishers. The capital used by these fishers
may not involve a vessel but, instead, may take the form of fishing gear or even labour. In
such cases, the most appropriate inputs should be used to define fishing units in subsequent
analyses.

For pure subsistence fisheries, the concepts of capacity utilization and excess capacity as
defined in previous sections of the guidelines are not necessarily meaningful. This sector
catches only what is needed and, while they could catch more, by definition they do not catch
more than is required for food or subsistence purposes. As a result, it is not clear that they
behave in the same optimizing manner as commercial fishers (e.g. who maximize their
outputs given fixed inputs, or minimize their costs to achieve a desired catch). They may, of
course, have other optimizing behaviour), and hence, the analytical methods such as SPF and
DEA may not be appropriate. For this user group, rather than operating according to a strict,
firm level objective, individuals may be more concerned about satisfying or maximizing
utility subject to various constraints. Similar problems are likely to exist when attempting to
assess capacity in recreational fisheries.

For purposes of defining and measuring capacity in subsistence fisheries, the current catch
levels can be considered to be the current output capacity, because, by definition, this is the
maximum catch that will be taken under normal operating conditions. Furthermore, because
most subsistence fisheries interact with commercial or industrial fisheries to some extent, the
ability of their fishing activity to expand is limited.

Small-scale fishing in many countries is also associated with part-time farming (or other
activities). Hence, when conditions are not favourable for farming, fishing activity may
increase. In such cases, the potential capacity of this group should be considered in the same
manner as full-time fishing units. This will result in these fleet segments demonstrating
substantial latent effort and capacity underutilization. This needs to be considered when
assessing the overall level of overcapacity in the fishery.

Small-scale commercial fishing units operating on a full-time basis need to be assessed in the
same manner as their larger counterparts in the measurement of fishing capacity. However,
data related to this sector are often poor or non-existent. As a result, the available approaches
may be limited and resulting estimates, subject to some uncertainty. This may present
problems when aggregating capacity measures at the national or regional level, particularly if
output-based measures of capacity by species are not available.

6.4 Pelagic and highly variable fisheries

Many pelagic fisheries are subject to large inter-annual variations in catch, because stock size
is highly dependent upon spawning success and subsequent recruitment, both of which are
highly susceptible to variations in environmental conditions (e.g. food availability and water
temperature). This represents an extreme example of the general issue of short run
fluctuations in stocks that generate output changes that should not be attributed to capacity
changes.
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Without some measure of stock that can be used to control for these fluctuations, estimates of
capacity output derived through peak-to-peak, SPF, or DEA analysis with a single series of
fleet level data will be largely influenced by the years in which the fish stocks were either
highly abundant or very dense.** Where panel data (time series of individual vessel level
data) are available, dummy variables can be used in the SPF approach to try to capture the
effects of such stock fluctuations on output. Similarly, treating time (and, implicitly, stock
size) as a categorical variable and estimating capacity output in each separate time period will
reduce potential distortions when using DEA.

Ideally, some measure of stock or resource density can be directly incorporated into the
analysis as a fixed input into the production process. In such a case, the resulting estimates of
capacity output would be more representative of the real value. When using DEA, the stock
needs to be treated as a non-discretionary input. (See Cooper, Seiford and Tone, 2000.) In
actuality, however, stock or resource conditions represent disembodied technical change (i.e.
technical progress that is generally beyond the control of the vessel operator).

The issue of short-run fluctuations is particularly a problem when imputing long-run
measures from short run evidence; for example, when comparing current capacity output
measures with target catch estimates such as MSY. As noted above, target measures are
based on long run equilibrium values of output, and implicitly a stable (or average) stock
size, whereas usual capacity output estimates are based on current stock size. If comparison is
carried out using these types of measures, it is particularly likely that a fishery may be
perceived as not having overcapacity in a “poor” recruitment year, because capacity output is
less than (average) target capacity. However, the level of inputs employed may be greater
than that which would be expected to produce the target capacity under “normal” or average
conditions. Conversely, a fishery may be perceived as having substantial overcapacity in a
*good” year when capacity output exceeds target capacity, but the level of inputs may be less
than or equal to the level associated with target capacity under average conditions.

In such highly fluctuating fisheries, controlling for stock levels and for long-run comparisons
that impute capacity output levels at target rather than current biomass stock levels is key to
constructing interpretable and useful measures. For short run comparisons, if a bio-economic
model of the fishery is available, optimal yields given current stock conditions can be
estimated to provide a short run measure of target capacity for comparative purposes. Also,
directly constructing input-oriented measures of capacity could bypass some of these issues if
an estimate of optimal input use at (average) target capacity output can be derived.

6.5 Processing and hold capacity

Both onshore and onboard processing can affect the measurement of fishing capacity.
Onboard processing can act as a constraint to vessel production. That is, some of the input

“In addition, some pelagic species, such as tuna, are often prosecuted by complex fishing gear and technology.
For example, purse vessels are typically deployed from a mother ship in response to aerial-based descriptions of
stocks. In other cases, vessels use dolphin feeding behavior to identify schools of tuna, speedboats to help herd
the dolphin, and divers to free the dolphin. In addition, the inputs typically considered for many fisheries may
not be appropriate indicators of capacity. For such fisheries, it will be a challenge to estimate capacity output.
Squires (pers. comm.) is presently estimating capacity for several Pacific tuna fisheries. The problem may
become more complicated because of the need to treat undesirable outputs (e.g. dolphin).
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base is used for processing purposes rather than catch, so if variations in output composition
are not taken into account, the link between measured input and output is misrepresented.
Also, processing facilities are only able to process a given quantity of catch-per-unit of time,
and thus, onboard processing activities may actually determine harvesting capacity levels.
While boats could potentially catch more, they are unable to process this catch, so there is no
economic incentive to continue fishing beyond the ability of the boat to process the catch.
This can be incorporated into DEA analysis directly as a technical constraint, provided
information is available. Alternatively, vessel capacity could be estimated by examining
onboard processing capacity. Where information on output composition or the processing
constraint is not available, measures of capacity output are likely to be over-estimated.

Similarly, constraints in onboard freezer and storage capacity also will restrict the level of
potential catch. Once full, the boat must return to port to unload, even though higher catches
could be achieved by continuing to fish. In most cases, these constraints will be implicitly
incorporated in the analysis as boats of similar sizes would be expected to have similar hold
or freezer constraints, and hence, returning to port would be part of the normal working
practice reflected in their effort data (e.g. days at sea). This issue can be accommodated if
data on this capital characteristic are available and used as part of the measure of K.

In addition, in some cases, onshore processing may impose limits on the quantity of catch
that can be utilized upon landing. In such cases, processing acts as a constraint to the total
capacity of the fleet. The maximum output for all boats may be negatively impacted, and
hence, the resulting estimate of capacity reflects the processing rather than the harvesting
capacity. Given that an objective of capacity management is to ensure that harvesting
capacity Is commensurate with reproductive capacity of the resource, an unconstrained
estimate of output capacity is required. Where such a constraint can be identified and the
carrying capacity measured, it can be incorporated into the analysis, much like onboard
processing capacity. The constraint can then be relaxed to provide a more appropriate
measure of fleet capacity.

It is also the case that when fishing vessels and processors are vertically integrated,
production decisions are made on the basis of the value of the final product. As a result,
cross-subsidization may occur between the processing activity and the harvesting activity in
order to maximize overall profits. Consequently, fleet activity may not be consistent with the
assumptions underlying the main techniques used to assess capacity. In such a case, estimated
capacity output may not reflect the potential output of the fishery, unless output
compositional and values are taken into account. This requires both the separate measurement
of different types of product, and the assumption of maximum revenue rather than output as
the retained assumption about behavioural motivations. If this is not possible, the bias in the
measure cannot readily be identified; the measures may be either over- or under-estimated
depending on the extent of cross-subsidization in the fishery.

6.6 Other factors that may affect the measure of capacity

Other factors that also may distort the measurement of capacity include quality and discards.
Haul reduction may increase the quality of the landed fish and result in higher market prices.
Where a fishery consists of a mix of fishers, some of whom aim to land a lesser quantity of
high-quality catch and others, to land a higher quantity catch, the capacity output will be
defined by the latter rather than the former. As a result, boats landing the higher quality catch
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will be perceived as operating at less than full capacity. One way to deal with this issue, as
alluded to above for other types of output compositional issues, is to weight the measure of
the catch by their prices and construct the estimating framework according to revenue instead
of output maximization. Alternatively, if boats that aim to land higher quality but small
quantity catches can be identified, constraints on their capacity output can be incorporated
directly into the analysis, or the boats can be analyzed separately (so the quality aspect is
treated as a categorical variable). This may only be accomplished, however, if individual
vessel level data are available, and the harvesting strategies of the individual vessels can be
identified. The latter concern, in particular, requires information on individual boats that is
not likely to be readily available.

Estimates of output capacity are generally based on estimates of the landed catch rather than
the total catch, as often only the former is recorded. In many fisheries, particularly those
subject to quota controls, part of the catch of some species is discarded. The effect of this is
that both actual and capacity outputs are under-estimated.

Where discard data are available, they can be incorporated into the analysis (i.e. added to the
landed catch to provide an estimate of total catch). It may also be possible in this case to take
discards or by-catch into account as a negative output, particularly if discards stem from
restrictions on catch for controlled species. However, it is unlikely that such information is
available at the individual boat level for all boats in the fishery. If estimates of discards are
available at the fleet level (e.g. derived from a discard sampling programme), some
adaptation to estimated capacity output levels may be possible. For example, if it is assumed
that discards are proportional to catch, then discarding at the capacity output level can be
estimated by dividing the current discard estimate by the measure of capacity utilization.

7. INTERPRETATION AND USE OF EXCESS CAPACITY MEASURES

Measures of capacity, capacity utilization and overcapacity outlined in previous sections
provide indications of potential problems in particular fleet segments, species and fisheries.
Such information is essential to the effective management of capacity. Generation of such
indicators, however, is not sufficient to ensure effective capacity management. In many cases,
researchers who are not directly involved in the management process will be estimating the
measures. The information generated needs to be distributed to fisheries managers, industry
representatives and other groups with an interest in providing management advice (e.g.
economists, biologists, technicians). Consequently, the assessment of overcapacity or under
capacity in each fishery requires a general reporting framework that allows the information
generated to be readily accessible to those who are likely to use it.

The objective of this section is to provide a possible reporting framework that states may
wish to adopt for the purposes of reporting an assessment of capacity, and excess and
overcapacity in their respective fisheries. An advantage of adopting such a reporting
framework is that it facilitates the presentation of key measures and explicit recognition of
underlying assumptions (underlying both the measurement of capacity output and input
levels, and of target input and output levels to be used as a basis for comparison). Examples
of tables that might be completed by each State when reporting their capacity measures are
provided in Appendix F.
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The reporting framework is based on the assumption that states have Level 3 data (see
Appendix A). This was considered by the Mexico City consultation to be the desired data
level for estimating fishing capacity. Where only Level 0 or 1 data are available, it will not be
possible to report at the level of detail suggested for the individual fishery level reports.
However, it is expected that most information could be constructed to complete the general
and national level tables. When Level 2 data are available, it is likely that input-based
indicators of capacity could be estimated at the individual fishery level.

Although the Mexico City consultation established data levels and the feasibility of
estimating capacity using that data, resource managers would probably have to assign
priorities initially to the fisheries to be examined. They may want to consider prioritizing
according to the type of existing management, nature of overfishing, value of the fishery, or
some other criteria.

The tables provide a snapshot of the current extent of overcapacity in each fishery. In
developing such tables, potential problems in individual fisheries, fleet segments and species
will become apparent, which will enable better targeting of capacity management measures.
Subsequent aggregation of this information at the national level will provide an overview of
the general extent of a country’s problem, even when it may overlook specific situations.

7.1 General information

The general information suggested in Table F.1 is primarily intended to provide an indication
of the relative importance of each fishery. Much of the information required for Table F.1
should be generally available, and is generally reported currently by most countries. For
artisanal and subsistence fisheries, estimates of production value and activity levels (e.g. boat
numbers and employment) may be necessary. These estimates can be derived largely from
the information collected for estimating capacity in these fisheries.

7.2 Fishery level information

A separate analysis of capacity, capacity utilization and relative capacity is recommended
(Tables F.2 to F.5) for each fishery identified in Table F.1. Analyses are to be estimated for
each fleet segment that participates in the fishery and for each key species. Input-based
indicators are presented in Tables F.2 to F.5, and output based indicators, in Tables F.6 to
F.10.

Key input-based capacity indicators for each fleet segment in each fishery are presented in
Table F.2. For purposes of international comparisons and aggregation across fisheries, it is
recommended that gross tonnage, engine power (in kW) and standardized days fished (days
times kW) be used, because these measures should be readily available in each country. For
non-mechanized fisheries, only days fished should be reported (assuming that all days fished
are homogeneous). Latent effort and (input-based) capacity utilization estimates should also
be presented for each fleet segment. It will be necessary, however, to develop allocation rules
to determine potential capacity output when latent effort exists. One possible method
involves allocating according to historical participation, if there has been actual participation
in more than one fishery.
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Alternatively, capacity output could be calculated conditional on the assumption that all
effort by vessels having latent effort in a fishery could be allocated to the same fishery. This
places an upper limit on capacity output. There are other optimization or DEA options that
also could be considered, which determine the allocation of variable and fixed factors, such
that the allocation maximizes technical efficiency over a group of fisheries. (See, for
example, Fare, Grosskopf and Li, 1992; Fére et al., 2000.) Changes in input-based indicators
of capacity and capacity utilization over the last five years (Table F.3) also should be reported
where possible to provide an indication of trends in the fishery. Where possible, target levels
of inputs associated with MSY* and ASY also should be identified for each fleet segment
(Tables F.4 and F.5). Given these target levels, estimates of overcapacity at the fleet segment
and total fishery can be derived.

Output measures of capacity and capacity utilization (Tables F.6 to F.8) ideally should be
made at the species level. The number of key species examined in each fishery will vary.
However, species that are nationally important should be reported for each fishery in which it
is caught, even if it is relatively unimportant to some. This enables aggregation of species
across all fisheries for the purpose of producing a national assessment. Less nationally
important species can be aggregated into an “other” category.

For each species in a particular fishery, a target capacity should be specified where possible
(Table F.9). Ideally, to allow for international comparisons, two target capacity measures
should be provided, which are consistent with the target levels of inputs detailed in Tables
F.4 and F.5 and prevailing stock conditions. Where a fishery is managed by output controls,
the TAC can be assumed to represent the target output equivalent to the ASY for the purpose
of estimating overcapacity.

The information in Tables F.6 to F.9 provides only a snapshot of current capacity utilization
and relative capacity. Where possible, a summary table of the key information for each
species over the last five years should be presented to demonstrate trends in capacity
utilization and relative capacity (Table F.10).

7.3 National level information

Information from individual fisheries can be aggregated into national indicators of capacity
and capacity utilization. Input-based indicators for each fishery could be summarized and
aggregated to provide an estimate of the total level of physical inputs utilized in the fisheries
(Table F.11).*° For measures such as total tonnage and engine power, this may provide an
overestimate of total capacity, because some boats may operate in more than one fishery and
hence may be double counted. A note outlining the potential overestimate should be made in
the accompanying text. Measures of capital utilization (i.e. standardized days fished) should
not be distorted, because fishing activity is only counted once for each fishery.

*The Mexico Conference concluded that maximum sustainable yield (MSY) should be considered as an upper
bound limit to target output and should be used as the basis for international comparisons. MSY also has been
adopted as the limit reference point by the Code of Conduct for Responsible Fishing.

|t is stressed that in addition to obtaining and summarizing information on the physical aspects of production
(i.e. input and output levels), there should be a broad emphasis placed on collecting and summarizing detailed
economic information (e.g. costs, input and output prices, revenues, capital values and returns to factors of
production).
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Target levels of input capacity for each fishery (provided separately for each fleet segment in
Tables F.4 and F5) could be aggregated to provide an overview of input-based overcapacity
at the national level (Tables F.12 and F.13). Similarly, information on catch, capacity output,
capacity utilization and relative capacity could be aggregated across the fisheries for each
species to provide an overall indicator of species exploitation (Table F.14).

Summary estimates of the total level of capacity output for each fishery could be estimated
by aggregating across species in each fishery (Table F.15). Target capacity measures also
could be aggregated in a similar way. It may be useful to the aggregation to use prices as
weights, to provide an estimate of capacity in terms of revenue and thus provide an indication
of the economic significance of any observed overcapacity. Aggregation of commodities
does, however, pose particularly vexing problems, and therefore, should be done in a manner
consistent with aggregation theory. (See, for example, Cornes, 1992) For international
comparisons, these could be converted to United States dollars at the prevailing exchange rate
for each country. Tables may also be presented in local currency in addition to the table in
USS. Countries with Level 1 data could also attempt to provide estimates in terms of US$. If
information on species composition is not available to derive a reliable estimate of the output
value, then information could be presented in terms of aggregated catch weight. This is less
desirable, because it does not provide any indication of the extent of economic overcapacity,
because high volume low value species often dominate the catch weight. It does, however,
preclude confusion arising from market differences that affect relative prices (across species
or time) but not actual quantities that may be produced with existing capacity.

The different estimates of aggregate national capacity utilization and relative capacity should
be summarized to provide an overall picture of capacity in the state (Table F.16). Because
measures are derived on the basis of different assumptions, there are no a priori reasons why
consistent measures should be achieved. That is, there are no reasons why relative output
capacity should be the same as relative input capacity. Also, aggregation across non-
homogeneous units can add distortions to the final measure (e.g. same sized boats in different
fisheries will have different levels of catch). For example, potting boats will have lower catch
of higher valued species while pelagic trawlers will have higher catches of lower valued
species. The different measures are presented in the table only as indicators of the possible
extent of overcapacity in each state.

Although aggregation of capacity estimates at the state or national level poses several
problems, there is, nevertheless, a need to secure such estimates. A primary need, of course,
is to develop national policies on capacity reduction. Moreover, vessels in some fisheries may
actually change their geographical home port or fishery (e.g. a vessel moves from the east
coast of a nation to the west coast and enters a similar gear fishery involving different
species). One potential way to deal with aggregation across different species and fisheries is
to develop meaningful price weighted aggregates. This is regularly done to measure gross and
net national products or the output of a diverse industry (e.g. agriculture, which produces
pork, poultry, beef, lamb and various crops). A simple Divisia or Torngvist aggregate could
be constructed, provided output price information was available.*’

*"Numerous other forms of aggregate outputs are possible. Detailed discussions on aggregation over
commaodities or inputs are available in Johnson, Hassan and Gren (1984), Deaton and Muellbauer (1980), and
Cornes (1992). All three references, as well as Daal and Merkies (1984), provide discussions on aggregating
over firms or individuals.
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7.4  Additional information (qualitative review)

Presentation of tables also will need accompanying text highlighting the potential distortions
that may have been introduced into the analysis through necessary assumptions. For example,
the text could indicate which, if any, fisheries are subsistence-based, such that capacity output
is assumed to be equivalent to current catch. Similarly, fisheries with a high proportion of
part-time fishers will exhibit relatively low capacity utilization. These also will need to be
noted in accompanying text.

The management objectives of each fishery also should be presented, and the effect of these
on the estimation of Alternative Sustainable Yield (ASY) outlined (i.e. information on the
relative weights assigned to each objective should be provided). Related to this are short-term
and long-term targets. If target capacity is primarily short run, it needs to be explained and an
indication of long-term targets needs to be provided.

As noted above, some fishers will operate in more than one fishery. As a result, a simple
aggregation of the physical inputs in each fishery will lead to an overestimate of the total
level of inputs employed. An estimate of the potential overestimate of these inputs could be
provided in the text.

Attention could be drawn to likely distortions caused by incompatible units, particularly in
relation to measures of input capacity. Aggregation of these units across fisheries is likely to
cause distortions, and a qualitative assessment of the extent of these distortions would be
useful in interpreting these figures.

A description of the methodology used to estimate the individual capacity measurements
should also be provided, particularly as different methods may result in different measures (a
consequence of the underlying assumptions). For example, the text should explain which
techniques were used to estimate capacity output for each fishery and how the estimates of
target capacity were derived (e.g. bio-economic or stock dynamic models, or average of
previous years).

For states exploiting shared resources (e.g. straddling stocks), coordination of the
methodology for estimating capacity and target capacity is essential. Details about which
stocks are shared and the coordination process for their assessments also should be provided.

Finally, an assessment of the situation in each fishery based on the data in the tables should
be undertaken, taking into account the estimation problems encountered in each fishery (e.g.
aggregation problems, or stock fluctuations in pelagic fisheries). In particular, consideration
should be given to what might be considered an “acceptable” level of capacity
underutilization in each fishery. For relatively stable fisheries, this might be small, whereas
greater capacity underutilization may be acceptable in more variable fisheries, particularly if
conditions in the assessment year are relatively “poor”.

8. CONCLUDING REMARKS

The process of estimating capacity and capacity utilization is not just an academic exercise.
The measures derived will provide valuable information relevant to the future management of
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capacity in the fisheries under consideration. The Code of Conduct for Responsible Fishing
identified overcapacity as a major constraint to sustainability in world fisheries and
consequently places significant emphasis on the need to manage capacity. Management of
capacity is not possible unless some indication is available of the species affected and the
extent to which overcapacity may exist in the different fisheries.

As noted in Section 2, the input and output based measures presented in the guidelines are not
equivalent, although they are complementary. Equivalent measures only can be produced
under restrictive conditions, which rarely hold, or with explicit information about returns to
inputs (including biomass stocks) or to scale. As a result, the measures provide different
information to managers and need to be interpreted according to their different perspectives.
However, as most fisheries are managed through some form of input control, both approaches
are useful for providing sufficient information on the fisheries for the effective management
of capacity. When possible, therefore, countries should attempt to undertake computation of
all measures outlined above.

The ability of the states to develop reliable indicators of capacity is largely predicated on the
existence of reliable data. The Mexico City consultation concluded that Level 3 data (see
Appendix A) should be regarded as the desired standard for estimating fishing capacity.
Countries with data collection programmes that do not meet these data requirements should
develop institutions capable of collecting such data. Although measures exist to estimate
capacity with less data, these measures are relatively crude, and hence may provide incorrect
measures of capacity. While data collection may be perceived as expensive, efficient data
collection systems are likely to be less expensive than the economic losses that could occur as
a result of fishery mismanagement.

The Mexico City consultation also concluded that obtaining Level 4 data (see Appendix A)
was a desirable long-term objective. The addition of economic information about fisheries
allows an estimate of the most cost-effective means of harvesting the resource, and hence
provides information on the potential economic losses arising from excess capacity. States
that currently collect Level 3 data should therefore consider developing systems to collect
Level 4 data.
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APPENDIX A: LEVELS OF DATA AVAILABILITY AND PREFERRED
CAPACITY ESTIMATION METHODS

The Mexico City consultation identified four levels of data availability (Table A.1). Level 1
is the minimum level of data necessary for estimating fishing capacity. Countries with Level
0 data (i.e. essentially no quantitative data) should give high priority to the collection of
sufficient data to reach at least Level 1 as soon as possible.

Table A.1 - Levels of data availability

Level Data available

0 Little or no quantitative data.

1 An estimate of total landings; in vessel-based fisheries, an estimate of total vessels; in non-vessel-
based fisheries, number of participants or a measure of the total gear units in use (e.g. total number of
beach nets).

2 As for Level 1, plus an index of vessel size and/or power; gear type; a “rough” index of trends in
fishing success; “rough” measures of total time spent fishing and maximum time that could be spent
fishing under normal operating procedures per year or season; basic relevant characteristics of fishing
operations (e.g. seasonality, number and types of other fisheries in which vessels operate, use of fish
aggregating and fish finding devices such as FADs, sonar, satellite tracking, other examples of
changes in technology, autonomy of vessels, trans-shipment practices).

3 As for Level 2, plus total catch (including discards) split by fleet segment and by species; basic
biological information (e.g. resource distribution, catch by species, size structure, “rough” estimates
of potential maximum sustainable yield); comprehensive primary characteristics determining fishing
power (e.g. gross tonnage or other volume measures, engine power, fish hold capacity, vessel age —
see Table 1); comprehensive information on gear type and dimensions; prices or revenues by major
species; detailed effort and catch per unit effort (CPUE) data, including time spent fishing.

4 As for Level 3, plus detailed biological information on fish stocks (e.g. estimated biomass, fishing
mortality rates, age/size structure, uncertainty in stock assessments); comprehensive data on other
important features of the fishery such as detailed information on fish aggregating and finding devices
(e.g. sonar, FADs, satellite tracking), skipper and crew skill levels, fuel consumption, autonomy of
vessels, processing capacity, cost and earnings information, value of capital stock, employment,
subsidies and economic incentives, and fishing operations relative to fish distributions.

Source: FAO (2000)

Level 3 is the desired standard for the estimation of fishing capacity. Countries with Levels 1
and 2 data should aim to collect data to move to Level 3 as soon as possible. The benefits of
moving to Level 3 include improved accuracy and precision of capacity measures.

Level 4 is the long-term desired level of data for estimating capacity. This allows not just the
measurement of capacity and capacity utilization, but also estimation of economically
optimal levels of capacity.

The method adopted for measuring capacity will largely depend on the quantity and quality
of available data. A summary of the methods available to estimate capacity given the data
available is presented in Table A.2.
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Table A.2 — Available and preferred methods for capacity

estimation depending on data quality

expert opinion

Input-based measures: aggregate and fleet
segment estimates of potential effort and
latent effort; aggregate and fleet segment
estimates of size/power based measure of
inputs, survey, expert opinion

Bio-economic models can be developed to
estimate target capacity

Data Methods available Preferred method(s)

Level

0 Rapid rural appraisal, survey, expert opinion ~ Combination of methods

1 Output-based measures: peak-to-peak, SPF, No preference, best to try all three output-based
DEA, survey, expert opinion measurement approaches and compare results. All
Input-based measures: based on available available input-based measures.
input information (e.g. ether boat numbers or  Expert opinion may be necessary to determine input
gear use), survey, expert opinion and output-based target capacity

2 Output-based measures: peak-to-peak, SPF, SPF or DEA as only single output, but can utilize
DEA, survey, expert opinion effort data to produce unbiased estimates
Input-based measures: aggregate potential All available input-based measures
effort and latent effort; aggregate size/power Expert opinion may be necessary to determine input
based measure of inputs (e.g. total kW), and output-based target capacity
survey, expert opinion

3 Output-based measures: SPF, DEA, survey, DEA or SPF can provide species specific measures
expert opinion of capacity output
Input-based measures: aggregate and fleet Best available input-based measures
segment estimates of potential effort and Bio-economic model estimates of both input- and
latent effort; aggregate and fleet segment output-based target capacity
estimates of size/power based measure of
inputs, survey, expert opinion
Crude bio-economic models can be
developed to estimate target capacity

4 Output-based measures: SPF, DEA, survey, DEA or SPF can provide species-specific measures

of capacity output and economic measures using cost
data

Best available input-based measures

Bio-economic model estimates of both input- and
output-based target capacity
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APPENDIX B: PEAK-TO-PEAK ANALYSIS

Peak-to-peak analysis is a relatively simple method to assess the capacity utilization of an
industry over time. An advantage of peak-to-peak analysis is that it requires information on
only one output measure and one input measure, and hence is suited to estimating capacity
utilization with only Level 1 data (see Table A.1). Peak-to-peak analysis has been applied in
fisheries by Ballard and Roberts (1977), Ballard and Blomo (1978) and Hsu (2003).

The underlying theory

Peak-to-peak analysis is based on an underlying assumption that output is a function of the
level of inputs and a technology trend, such that

Y, =a,V,T, 1)

where Y; is the output in time, t; a is a proportionality constant; V; is a composite or
aggregate index of inputs; and T; is the technology trend that represents productivity change.
An implicit assumption in the use of a composite index of inputs is that the technology
displays constant returns to scale. That is, increasing all inputs will result in a proportional
increase in output.

The level of technology is determined by the average rate of change in productivity between
peak years, where productivity is given by Y4V, (i.e. average output per unit of input). The
technology in any one year is thus

Y Y
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where m is the length of time from the previous peak year, and n is the length of time to the
following peak year, and T.p, is the level of technology at the previous peak (i.e. year m)
equivalent to the average productivity (e.g. catch per unit of effort) in that period. The other
term on the right hand side (i.e. the term inside the brackets) represents the cumulative
change in productivity between the two peaks. This is added to the average productivity in
the previous peak year (i.e. year m) to give an estimate of the average productivity of capacity
in subsequent years.

An alternative way of estimating the level of technology between peaks is given by
Y Y
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where Y./V, is the average productivity in the upper peak and Y./Vn, is the average
productivity in the lower peak. The term in the brackets represents the average change in
productivity between the two peaks. Both approaches produce identical results.

Assuming the proportionality constant has a value of 1, the estimate of the level of
technology is equivalent to the capacity level of productivity (i.e. T; = Y¢*/Vi, where Y¢* is the
capacity level of output). From this, the capacity level of production can be estimated from
the product of the inputs and the capacity level of productivity, such that

Yt* = VtTt (4)
and capacity utilization can be estimated by
CU; = Y¢*/Y,. ()

A particular difficulty in interpreting the results of a peak-to-peak analysis in fisheries is that
no consideration is given to changes in the stock level. Apparent changes in productivity may
be due to either changes in technology (the underlying assumption of the technique) or
changes in the stock level.

This problem may be particularly pertinent in developing fisheries, where catch rates may
increase rapidly initially, with the main peak occurring in the middle of the time series.
Subsequent declines in catch rates may reflect falling stock levels. However, if the main peak
is used as the last peak in the series (all other years showing a steady decline), it is likely that
the technique will over-estimate capacity output and under-estimate capacity utilization.

The problem can be minimized by including lower peaks rather than successively higher
peaks as is generally used in other industries that do not rely upon a biological resource base.

Example of use: Nigerian artisanal fishing sector
Data on the artisanal fishing sector in Nigeria were used as an example of how peak-to-peak

analysis can be used to estimate capacity. The data were derived from Amire (2003), and are
presented in Table B.1.
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Table B.1 — Nigerian artisanal fisheries productivity, 1976-1994

Average catch per:

Year Canoes Fishers Production Canoe Fisher
1976 134 337 413 832 327 561 2438 0.792
1977 137 447 424 838 331280 2410 0.780
1978 138 447 425 298 336 138 2431 0.790
1979 133728 446 152 356 888 2 669 0.800
1980 133723 459 065 274 158 2 050 0.597
1981 120 142 440 592 323916 2 696 0.735
1982 105 239 416 959 377 683 3589 0.906
1983 129 555 472 122 376 984 2910 0.798
1984 109 638 342 219 246 784 2 251 0.721
1985 80 688 302 234 140 873 1746 0.466
1986 77 134 408 927 160 169 2077 0.392
1987 76 644 437 465 145 755 1902 0.333
1988 77 144 447 850 185181 2 400 0.413
1989 77 155 470 250 171 332 2221 0.364
1990 76 981 452 187 170 459 2214 0.377
1991 77 093 457 102 168 211 2.182 0.368
1992 77 076 459 847 184 407 2393 0.401
1993 77 050 456 381 106 276 1379 0.233
1994 77 073 457 775 124 117 1610 0.271

Source: Amire (2003).

The choice of input may have an impact on the measure of capacity output and, consequently,
capacity utilization. In the Nigerian artisanal fleet, the number of canoes active in the fishery
had declined over time while the number of fishers remained relatively constant (a result of
more fishers operating per canoe). Over the same period, motorization increased in the
fishery from 8.7 percent in 1996 to 20.8 percent in 1994 (Amire, 2003). As a result, it would
be expected that there was substantial technological change in the fishery. Developing a
composite index of inputs in such a case is difficult without first estimating a production
function and imposing constant returns to scale.

For purposes of illustration, capacity was assessed using both canoes and fishers (separately)
for the input measure. From Table B.1, it can be seen that the peak productivity periods for
both inputs were 1976, 1979, 1982, 1988 and 1992. These peaks also are apparent by
graphing the catch per unit input series (Figure B.1).
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Figure B.1 — Catch-per-unit input, Nigerian artisanal fleet

Table B.2 — Peak-to-peak analysis using canoes as input measure

Year Canoes  Production CPUE Average  Capacity Capacity  Utilization
® (Vo) (Yy (YdVy) technological CPUE output rate

change’ (Ty) > (YY)
1976 134 337 327561 2438 - 2438 327 561 100%
1977 137 447 331280 2410 0.0768 2515 345 701 96%
1978 138 247 336 138 2431 0.0768 2592 358 330 94%
1979 133728 356 888 2 669 0.0768 2 669 356 888 100%
1980 133723 274 158 2 050 0.3067 2975 397 885 69%
1981 120 142 323916 2 696 0.3067 3282 394 321 82%
1982 105 239 377683 3589 0.3067 3589 377683 100%
1983 129 555 376 984 2910 -0.1981 3391 439 289 86%
1984 109 638 246 784 2251 -0.1981 3193 350 041 71%
1985 80 688 140 873 1746 -0.1981 2995 241631 58%
1986 77134 160 169 2077 -0.1981 2797 215711 15%
1987 76 644 145 755 1902 -0.1981 2599 199 161 73%
1988 77 144 185181 2400 -0.1981 2 400 185181 100%
1989 77 155 171332 2221 -0.0020 2398 185 055 93%
1990 76 981 170 459 2214 -0.0020 2 396 184 485 92%
1991 77 093 168 211 2182 -0.0020 2395 184 600 91%
1992 77076 184 407 2393 -0.0020 2393 184 407 100%
1993 77 050 106 276 1379 -0.0020 2391 184 192 58%
1994 77073 124 117 1610 -0.0020 2389 184 094 67%

Note: Peak years in bold, a) estimated by [(Yn/Vh)-(Ymn/Vim)]/(n-m)

The analyses, undertaken in an Excel spreadsheet, are given in Tables B.2 and B.3 using
canoes and fisher numbers respectively. Average technological change was estimated
between the peak years (indicated in bold). For example, between 1976 and 1979, average
productivity change was (2.669-2.438)/(4-1) = 0.0768.
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Capacity CPUE is estimated by adding the average technological change to the preceding
year’s value. Capacity output is estimated by multiplying the capacity CPUE by the input
level. The utilization rate is estimated by dividing actual output by capacity output.

Table B.3 — Peak-to-peak analysis using number of fishers as input measure

Year Fishers  Production CPUE Average  Capacity Capacity  Utilization
® (Vo (Yy (Y¢Vy) technological CPUE output rate

change’ (Ty (Y™ (YdY®)
1976 413 832 327 561 0.792 0.792 327 561 100%
1977 424 838 331280 0.780 0.003 0.794 337 461 98%
1978 425 298 336 138 0.790 0.003 0.797 339016 99%
1979 446 152 356 888 0.800 0.003 0.800 356 888 100%
1980 459 065 274 158 0.597 0.035 0.835 383419 72%
1981 440 592 323916 0.735 0.035 0.871 383 540 84%
1982 416 959 377 683 0.906 0.035 0.906 377 683 100%
1983 472 122 376 984 0.798 -0.082 0.824 388911 97%
1984 342 219 246 784 0.721 -0.082 0.742 253 823 97%
1985 302 234 140 873 0.466 -0.082 0.660 199 368 71%
1986 408 927 160 169 0.392 -0.082 0.578 236 194 68%
1987 437 465 145 755 0.333 -0.082 0.496 216 782 67%
1988 447 850 185181 0.413 -0.082 0.413 185181 100%
1989 470 250 171332 0.364 -0.003 0.410 192 977 89%
1990 452 187 170 459 0.377 -0.003 0.407 184 155 93%
1991 457 102 168 211 0.368 -0.003 0.404 184 731 91%
1992 459 847 184 407 0.401 -0.003 0.401 184 407 100%
1993 456 381 106 276 0.233 -0.003 0.398 181594 59%
1994 457 775 124 117 0.271 -0.003 0.395 180722 69%

Note: Peak years in bold, a) estimated by [(Yo/Vn)-(Yn/Vm)1/(n-m)
Despite differences in the input measure used, the estimated capacity output was fairly

similar in both instances (Figure B.2a). The estimated capacity utilization in each year was
also relatively similar (Figure B.2b).
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Figure B.2 — a) estimated capacity and b) estimated capacity utilization
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APPENDIX C: STOCHASTIC PRODUCTION FRONTIERS

Stochastic production frontiers were initially developed for estimating technical efficiency
rather than capacity and capacity utilization. However, the technique also can be applied to
capacity estimation through modification of the inputs incorporated in the production (or
distance) function. A potential advantage of the stochastic production frontier approach over
DEA is that random variations in catch can be accommodated, so that the measure is more
consistent with the potential harvest under “normal’” working conditions. A disadvantage of
the technique is that, although it can model multiple output technologies, doing so is
somewhat more complicated, requires stochastic multiple output distance functions, and
raises problems for outputs that take zero values (Paul, Johnson and Frengley, 2000).

The underlying theory

A production function defines the technological relationship between the level of inputs and
the resulting level of outputs. If estimated econometrically from data on observed outputs and
input usage, it indicates the average level of outputs that can be produced from a given level
of inputs (Schmidt, 1986). A number of studies have estimated the relative contributions of
the factors of production through estimating production functions at either the individual boat
level or total fishery level. These include Cobb-Douglas production functions (Hannesson,
1983), CES production functions (Campbell and Lindner, 1990) and translog production
functions (Squires, 1987; Pascoe and Robinson, 1998).

An implicit assumption of production functions is that all firms are producing in a technically
efficient manner, and the representative (average) firm therefore defines the frontier.
Variations from the frontier are thus assumed to be random, and are likely to be associated
with mis- or un-measured production factors. In contrast, estimation of the production
frontier assumes that the boundary of the production function is defined by “best practice”
firms. It therefore indicates the maximum potential output for a given set of inputs along a
ray from the origin point. Some white noise is accommodated, since the estimation
procedures are stochastic, but an additional one-sided error represents any other reason firms
would be away from (within) the boundary. Observations within the frontier are deemed
“inefficient”, so from an estimated production frontier it is possible to measure the relative
efficiency of certain groups or a set of practices from the relationship between observed
production and some ideal or potential production (Greene, 1993).

A general stochastic production frontier model can be given by:
Ing; = f(Inx) +v; —u, 1)
where g; is the output produced by firm j, x is a vector of factor inputs, v; is the stochastic

(white noise) error term and u; is a one-sided error representing the technical inefficiency of
firm j. Both v; and u; are assumed to be independently and identically distributed (iid) with

variance o2 and o2 respectively.

Given that the production of each firm j can be estimated as:
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Ing; = f(Inx)-u, 2)
while the efficient level of production (i.e. no inefficiency) is defined as:
Ing*= f(Inx) 3)
then technical efficiency (TE) can be given by:

InTEj:Incjj—Inq*:—uj (4)

Hence, TEj =e ", and is constrained to be between zero and one in value. If u; equals zero,
then TE equals one, and production is said to be technically efficient. Technical efficiency of
the jth firm is therefore a relative measure of its output as a proportion of the corresponding
frontier output. A firm is technically efficient if its output level is on the frontier, which
implies that g/g* equals one in value.

While the techniques have been developed primarily to estimate efficiency, they can be
readily modified to represent capacity utilization. In estimating the full utilization production
frontier, a distinction must be made between inputs comprising the capacity base (usually
capital inputs), and variable inputs (usually days, or variable “effort”). If capacity is defined
only in terms of capital inputs, the implied variation in output, and thus variable effort, from
its full utilization level is sometimes termed an indicator of capital utilization.

If variable inputs are assumed to be approximated by the number of hours or days fished (i.e.
nominal units of effort), estimating the potential output producible from the capacity base
with variable inputs “unconstrained” implies removing this variable from the estimation of
the frontier. The resulting production frontier is thus defined only in terms of the fixed factors
of production, or K. In particular, it will be supported by observations for the boats that have
the greatest catch per unit of fixed input (which generally corresponds to the boats that
employ the greatest level of nominal effort for a particular level of K). The resulting measure
of technical efficiency is equivalent to the technically efficient capacity utilization (TECU);
accommodating both the impacts of technical inefficiency and deviations from full utilization
of the capacity base. That is, it represents the ratio of the potential capacity output that could
be achieved if all fixed inputs were being utilized efficiently and fully to observed output.

Only limited attempts to estimate stochastic production frontiers for fisheries have been
undertaken (Kirkley, Squires and Strand, 1995, 1998, Coglan, Pascoe and Harris, 1999,
Sharma and Leung, 1999, Squires and Kirkley, 1999; Pascoe, Andersen and de Wilde, 2001;
Pascoe and Coglan, 2002). These have focused upon an estimation of efficiency rather than
capacity, although the capacity problem has recently been addressed by Kirkley, Morrison
and Squires (2001) and Tingley and Pascoe (2003) using SPF procedures.®® The techniques
used and problems encountered are similar, and distinction between the utilization and
efficiency components — thus providing an unbiased estimate of capacity utilization —
requires first computing the more standard inefficiency measure.

*8 pascoe and Coglan (2000) estimated the effects of variations in efficiency upon physical capacity measures
used in the UK and demonstrated the problems associated with assuming homogeneity in physical inputs.
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Functional forms for the production function

Estimation of the SPF requires a particular functional form of the production function to be
imposed. A range of functional forms for the production function frontier are available, with
the most frequently used being a translog function, which is a second order (all cross-terms
included) log-linear form. This is a relatively flexible functional form, as it does not impose
assumptions about constant elasticities of production®® nor elasticities of substitution®
between inputs. It thus allows the data to indicate the actual curvature of the function, rather
than imposing a priori assumptions. In general terms, this can be expressed as:

1
InQ;, =5, +Z,Bi In X ;. +§ZZﬂi,k In X I X0 —U +Vvy, (5)
i T

where Qj is the output of the vessel j in period t and X;;: and X; are the variable and fixed
vessel inputs (i, k) to the production process. As noted above, the error term is separated into
two components, where vj; is the stochastic error term and u;; is an estimate of technical
inefficiency.

Alternative production functions include the Cobb-Douglas and CES (Constant Elasticity of
Substitution) production functions. The Cobb-Douglas production function is given by:

Ian,t :ﬂ0+Zﬂi Inxj,i,t_uj,t+vj,t (6)

As can be seen, the Cobb-Douglas is a special case of the translog production function where
all G x = 0. The production function imposes more stringent assumptions on the data than the
translog, because the elasticity of substitution has a constant value of 1 (i.e. the functional
form assumption imposes a fixed degree of substitutability on all inputs). And the elasticity
of production is constant for all inputs (i.e. a 1 percent change in input level will produce the
same percentage change in output, irrespective of any other arguments of the function).

The CES production function is given by:

Q. =7loX,, +@=8)%, [ —u, +v,, (7)

jit
where 6 is the substitution parameter related to the elasticity of substitution (i.e. 6 = (1/c)-1
where o is the elasticity of substitution) and & is the distribution parameter. The CES
production function is limited to two variables, and is not possible to estimate in the form
given in (7) in maximum likelihood estimation (MLE) (making it unsuitable for use as the
basis of a production frontier). However, a Taylor series expansion of the function yields a
functional form of the model that can be estimated, given as:

* This represents the percentage change in output from a 1 percent change in the input level.

%0 This represents the degree to which one input is able to substitute for another as a result of relative input price
changes while still holding output constant. The values range from 0 (which indicates the inputs are used in
fixed proportions and are not substitutable) to infinity (in which case the inputs are perfectly substitutable and
their use is highly responsive to relative price changes).
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2
. X, X,
In(XQ—”) =Iny+@©-1)InX,, +u§|n(%)—%u%(l—é){ln(%)} —U;, +V;,(8)
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The model can be estimated as a standard or frontier production function, and the parameter
values derived through manipulation of the regression coefficients. The functional form in (8)
can be shown to be a special case of the translog function where £ii = Sk = -0.55;.

Given that both the Cobb-Douglas and CES production functions are special cases of the
translog, ideally the translog should be estimated first and the restrictions outlined above,
tested. However, the large number of variables required in the process of estimating the
translog may cause problems if a sufficient data series is not available, resulting in degree of
freedom problems. In such a case, more restrictive assumptions must be imposed.

Separating capacity utilization from random variations in catch

To estimate the stochastic production frontier, an appropriate functional form is assumed (i.e.
Cobb-Douglas, CES or Translog production function) and the parameters of the model
(including ¢% and ) are estimated by MLE. Estimation of the maximum value of the
logged likelihood function is based on a joint density function for the split error term & = vj-u;
(Stevenson, 1980). From this, technical efficient capacity utilization (TECU) can be
calculated for the individual firm, given by:

1-®(o,+ye;loy,)
1-®(ye;lo,)

E[exp(—uj)‘gj ]: exp(y &, +o4/2) (9)

where o, =\y(1-y)o? , 6’ =c?+c?, y=c2lc’ and ®(.) is the density function of a

standard normal random variable (Battese and Coelli, 1988). From this, if y = 0, then the
expected value of the TECU score is one. That is, there are no deviations due to technical
inefficiency or capacity underutilization (i.e. 2= 0). If y = 1, then all deviations are due to
technical inefficiency and capacity underutilization (i.e. ;= 0). Hence if 0<y<1, deviations

are characterized by both TECU and a random or stochastic component (Battese and Corra,
1977). Standard estimation programmes such as FRONTIER, discussed below, may be used
to compute these estimates.

In order to separate the stochastic and TECU effects in the model, a distributional assumption
has to be made for u; (Bauer, 1990). From the literature on technical efficiency estimation,
four distributional assumptions have been proposed: an exponential distribution
i.e.u; ~exp(d) (Meeusen and van der Broeck, 1977); a normal distribution truncated at zero,

for example, u; ~ ‘N(,uj ,a2)| (Aigner, Lovell and Schmidt, 1977); a half-normal distribution
N(0,07)
normal distribution (Greene, 1990).

truncated at zero i.e. u; ~ (Jondrow et al., 1982); and a two-parameter Gamma/

There are no a priori reasons for choosing one distributional form over the other, and all have
advantages and disadvantages (Coelli, Rao and Battese, 1998). For example, the exponential
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and half-normal distributions have a mode at zero, implying that a high proportion of the
firms being examined are perfectly efficient. The truncated normal and two-parameter
gamma distribution both allow for a wider range of distributional shapes, including non-zero
modes. However, these are computationally more complex (Coelli, Rao and Battese, 1998).
Empirical analyses suggest that the use of the gamma distribution may be impractical and
undesirable in most cases. Ritter and Simar (1997) found that the requirement for the
estimation of two parameters in the distribution may result in identification problems, and
several hundreds of observations would be required before such parameters could be
determined. Further, a maximum of the log-likelihood function may not exist under some
circumstances. Bhattacharyya et al. (1995), however, offer one approach for selecting the
distribution to reflect technical inefficiency; they suggest the use of a data generating process.

(@) (b)

Relative frequency
Relative frequency

u u;

(©

Relative frequency

Figure C.1 — Capacity utilization distributional assumptions:
(a) half-normal; (b) truncated normal; (c) exponential (Note: TECU=¢ ")

The half-normal, truncated normal and exponential distributions of the inefficiency term are
illustrated in Figure C.1. The half normal distribution assumes that the mode in the
distribution is zero. This produces the greatest number of boats operating at full capacity in
the estimated capacity utilization distribution (i.e. u; = 0 and hence TECU =1 as e%=1). In
contrast, with the truncated normal, the mode of the distribution (the greatest number of
observations with any particular u; score) is greater than zero. With such a distribution, the
proportion of boats operating at full capacity in the sample can vary. The half-normal
distribution is a special case of the truncated normal distribution, with the estimated mode
being zero. Hence, the truncated normal distribution is a more general specification (out of
the two), and the regression output can be tested to see if the mode (equivalent to the mean
value in a non-truncated distribution) is equal to zero. The average capacity utilization in the
sample is lower if a truncated normal distribution is assumed than if a half-normal
distribution is assumed (unless the estimated mode of the truncated distribution is zero, in
which case they are identical).
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The exponential distribution also allows for a high number of boats to be operating at full
capacity. While the range of TECU scores may be as great (if not greater) than under the
assumption of a half-normal or truncated normal distribution, the frequency of low TECU
scores is less than under the other two distributional assumptions. As a result, the average
capacity utilization is likely to be higher under the assumption of an exponential distribution
than under either of the other two distributional assumptions.

Time variant TECU

An implicit assumption in estimating efficiency using the above specification is that
efficiency is time invariant. A number of studies have attempted to estimate time varying
efficiency, allowing for technological change to affect the efficiency measurement over time.
For the estimation of TECU, it would be expected that technology would change over time,
and that a time variant measure would be more relevant. Note also, however, that technical
change may instead be assumed to shift the frontier, and thus appear in the production
function specification instead of the stochastic specification underlying the inefficiency
measurement.

Cornwell, Schmidt and Sickles (1990) replace the firm effect by a squared function of time
with parameters that vary over firms (i.e. U, =Uib+bt+ct2J). Kumbhakar (1990) also

allowed a time-varying inefficiency measure assuming that it was the product of the specific
firm inefficiency effect and an exponential function of time, such that:

U, =Ufirer |’ (10)

where Ui are assumed to be iid as truncations at zero of the N(0, c,2) (half-normal case). This
allows flexibility in inefficiency changes over time, although no empirical applications have
been developed using this approach (Coelli, Rao and Battese, 1998).

Battese and Coelli (1992) proposed a time-varying inefficiency measure given as:

TE, =u;e”™, t=12,.T (11)

where u; are assumed to be iid truncations at zero of the normal distribution N(p;, 5, and n
is the rate of change in efficiency over time. If n>0, the TECU term, u;;, is always increasing
over time (i.e. as (T-t) increases), whereas n<0 implies that uj; is always decreasing with
time. Hence, one of the main problems of this model is that TECU is forced to be a
monotonic function of time. This not desirable, as it might be expected that capacity
utilization would fluctuate from year to year, and that changes in technology would be
discrete events rather than continuous. Again, this may be accommodated to some extent by
including t instead in the production function specification, which for a translog model allows
for cross-effects with all other arguments of the function, including potential measures of the
resource stock.

Inefficiency models

In many studies of technical efficiency, the results are used to estimate the effects of various
factors on inefficiency. These may be estimated using either a one-step or two-step process.
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In the two-step procedure, the production frontier is first estimated and the technical
efficiency of each firm, derived. These are subsequently regressed against a set of variables,
Zit, which are hypothesized to influence the firm’s efficiency. This approach has been adopted
in a range of studies (e.g. Kalijaran, 1981; Pitt and Lee, 1981).

A problem with the two-stage procedure is a lack of consistency in assumptions about the
distribution of the inefficiencies. In the first stage, inefficiencies are assumed to be
independently and identically distributed (iid) in order to estimate their values. However, in
the second stage, estimated inefficiencies are assumed to be a function of a number of firm-
specific factors, and hence are not identically distributed (Coelli, Rao and Battese, 1998).

Kumbhakar, Ghosh and McGuckin (1991) and Reifschneider and Stevenson (1991) estimated
all of the parameters in one step to overcome this inconsistency. The inefficiency effects were
defined as a function of the firm-specific factors (as in the two-stage approach), but were
incorporated directly into the MLE. Battese and Coelli (1995) also suggested a one-step
procedure for using the model (now accounting for time), such that:

Ing;, = f(Inx)+v;, —u;, (12)
and the mean inefficiency is a function of firm-specific factors, such that:

mjvt:ZS +ijt (13)

where Z is the vector of firm-specific variables which may influence the firm’s efficiency, 6
is the associated matrix of coefficients and W, is an iid random error term.

Huang and Liu (1994) proposed a non-neutral stochastic frontier model. This is estimated by
regressing the inefficiency term upon two sets of variables, Z;; and Z;*, the first representing
some firm-specific variables which may influence the firm’s efficiency and the latter
variables representing the interactions between Zj; and the input variables in the stochastic
frontier, such that:

Yi,t =p Xi¢ T Vi _Ui,t) and Ui,t = Zi,t§+ Z:,té‘* +Wi,t . (14)

This allows movement of the function to be biased towards certain inputs. However, it again
imposes an assumption that the inefficiency determinants are linearly related to efficiency.

The various approaches discussed thus far raise the question of whether or not these
determinants of efficiency should be accommodated in the production function specification
itself, or as determinants of measured inefficiency. We would think that it would be
preferable to consider as many production determinants as possible in the technological
specification, rather than in the stochastic specification, to represent their productive effects
(marginal products) directly. This reduces the potential for calling something “inefficiency”
when it may be explainable by the effective level of the productive inputs. This is particularly
important if the efficiency and utilization components of overall deviations from the frontier
are to be distinguished separately, which is important for unbiased estimation of capacity
utilization. Appropriate representation of the characteristics of inputs, such as those
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comprising the “power” embodied in the capacity base, is critical for interpretable and usable
capacity and utilization estimates.

“Unbiased” estimates of capacity output

As noted above, the stochastic production frontier approach was developed primarily to
estimate technical efficiency. It also can be modified to produce estimates of capacity and
capacity utilization by removing the constraining influence of variable inputs in the
production function, usually represented for the fishery by a measure of “effort”, such as days
or hours fished. The resulting “efficiency” score will combine both capacity utilization and
technical inefficiency. Full efficiency capacity output can be estimated by scaling up current
output by the efficiency score generated from this estimation process (i.e. by dividing current
output by the efficiency score). However, this may be a biased measure of capacity output,
because under normal working conditions it would be expected that most of the fleet would
be operating at less than full efficiency, due at least in part to mis- or un-measured factors of
production.

To reduce these distortions, an unbiased measure of capacity utilization may be derived by
dividing the combined measure of capacity utilization and efficiency by the efficiency scores
estimated in the traditional manner (e.g. estimated with the measure of capital utilization such
as days or hours fished), such that:

CU - TECU

TE (15)

where TECU is the combined measure of capacity utilization and efficiency and TE is the
efficiency score computed for the full production function relationship with the contribution
of variable inputs incorporated rather than removed. This will result in a higher estimate of
capacity utilization (i.e. as TE <1, CU >TECU).

Capacity output is estimated by dividing the actual catch by the capacity utilization measure,
or multiplying by the inverse capacity utilization ratio, 1/CU, often called a measure of
overcapacity, such that:

actual output

Capacity =

Cu . (16)

This can be estimated for every observation for every boat, and aggregated across the fleet to
provide estimates of total capacity in each time period examined.

Data requirements — panel, cross sectional and time series data

In order to separate out the effects of random fluctuations in output from systematic
differences due to inefficiency and capacity utilization, the estimation of TECU ideally
requires repeated observations for the same boat. This requires a time series of information
for a cross-section of boats in the population. This is generally referred to as panel data. Panel
data may be balanced or unbalanced. Balanced panel data exist where there are an equal
number of observations for all boats in the sample and every boat operates in every time
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period of the data. Unbalanced panel data occur when there are not an equal number of
observations for each boat, and/or the boats do not operate in every time period of the data.

A difficulty with unbalanced panel data is that different sets of boats may be compared in
different time periods, and there may be instances where some boats are not directly
compared. Estimation is readily carried out for unbalanced panel data using programmes such
as FRONTIER. But since efficiency and capacity utilization are relative (rather than absolute)
measures, estimation may be problematic if there are only a few boats in the sample for given
time periods, so that the boats are only compared to a small number of other boats in the
same period. ldeally, the data set should be broad enough for this not to occur, and ideally
every boat should operate in the same period with every other boat (not all at the same time
necessarily) at least once (and preferably more times). Time periods when only a few boats
are operating should be excluded from the data set. Similarly, boats that have only a few
observations should be excluded from the sample, as their efficiency score will be measured
relative to only a few other boats in only a few time periods. This requires a subjective
assessment about which observations to exclude. For example, Pascoe and Coglan (2002)
included boats that had observations for at least four months a year in at least three of the four
years of the data. This resulted in only 63 boats out of a possible 457 being included in the
analysis. In contrast, Kirkley, Squires and Strand (1995, 1998) limited their analysis to only
10 boats for which a long and consistent time series was available.

When cross-sectional data only are available (i.e. only one observation per boat), a strict
assumption about the distribution of the inefficiency term is required. Resulting estimates of
TECU will conform to the imposed distribution, and it is not possible to statistically
distinguish between the nested distributions (i.e. half-normal and truncated normal).
Similarly, if an inefficiency model is imposed, the TECU measures will conform to the
model. Statistical measures of the parameters in the inefficiency model are not reliable.
Consequently, there is little benefit in imposing such a distribution onto the data, and it is
preferable to use the standard distributions (i.e. half- or truncated normal).

Despite these concerns, Sharma and Leung (1999) developed their model using cross-
sectional data only and imposed an inefficiency model onto the data. As would be expected,
most of the parameters were non-significant, with only one variable defining the inefficiency
distribution at the 5 percent level of significance.

When only aggregated time series data are available, the estimation encounters similar
problems to that of only cross-sectional data. While TECU can be estimated for each year for
the fleet as a whole, it is highly sensitive to underlying assumptions about the TECU
distribution.

Output measures

Although the SPF approach can be used to estimate efficiency and capacity of a multispecies
fisher or a multiple product technology, it is computationally complex to undertake. As a
consequence, researchers often aggregate over different outputs to construct a composite
output (e.g. cod plus haddock equal groundfish). The resulting capacity and capacity
utilization estimates will, however, reflect the aggregated output, and may therefore yield
inadequate estimates of capacity relative to individual species or products.
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When data are limited, only aggregate output catch data may be available, which precludes
consideration of relevant aggregation. Estimation of capacity and capacity utilization,
however, may be influenced by changes in the catch composition, particularly if some species
in the catch fluctuate substantially from year to year. These factors should be taken into
consideration when reviewing the results of the analysis.

When data are available on a species basis, they need to be aggregated into a composite
output measure. One method is to use the prices of the species as weights to estimate the total
value of output. This approach is valid if it is reasonable to assume that fishers aim to
maximize the value of their catch rather than the quantity.

The use of aggregate value of the multi-product firm as the output measure has implications
for analysis. First, value is a factor of prices as well as quantity, so that price changes may
affect the measurement of capacity utilization. A price index may be constructed to deflate
the value series to remove general inflationary price changes and relative price changes
between species, leaving only relevant “effective value” impacts such as quality changes.
Details on the construction of such indexes are given in Coelli, Rao and Battese (1998).
Further, if fishers may be assumed to be profit maximizers, changes in relative prices may
result in changes in fishing strategy. As a result, the function is not truly a production
function and the TECU scores may represent a combination of allocative as well as technical
efficiency.

The potential biases introduced into the analysis by using value as the output measure are not
likely to be large. Squires (1987) and Sharma and Leung (1999) note that fishers base their
fishing strategies on expected prices, the level of technology and resource abundance.
However, price expectations are not always accurate, fishing gear is not species selective (so
the species mix is a function of seasonal abundance) and changing gear types is time
consuming and generally needs to be done onshore before the trip rather than at sea. Hence,
the ability of fishers to immediately respond to changes in relative prices is limited. Finally,
the effects of changes in price on the level of outputs can be incorporated through the use of a
stock index as an input in the model that is based on the value of the available resource (i.e.
stock multiplied by price).

Software packages

Two packages are generally available for estimating stochastic production frontiers -
FRONTIER 4.1 (Coelli, 1996a) and LIMDEP (Greene, 1995). Both packages use the MLE
approach. A recent review of both packages is provided by Sena (1999).

FRONTIER 4.1 is a single purpose package specifically designed for the estimation of
stochastic production frontiers and technical efficiency, while LIMDEP is a more general
package designed for a range of non-standard (i.e. non-OLS) econometric estimation. An
advantage of the former model (FRONTIER) is that estimates of efficiency are produced as a
direct output from the package. The user is able to specify distributional assumptions for
estimating the inefficiency term in a programme control file. In LIMDEP, the package
estimates a one-sided distribution, but separation of the inefficiency term from the random
error component requires additional programming.
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Table C.1 - Distributional assumptions allowed by the software

Distribution LIMDEP FRONTIER
Time invariant firm specific inefficiency

e Half-normal distribution v v
e  Truncated normal distribution v v
e Exponential distribution v X
Time variant firm specific inefficiency

e Half-normal distribution X v
e Truncated normal distribution X v
One step inefficiency model X v

Source: Sena (1999).

FRONTIER is able to accommodate a wider range of assumptions about the error distribution
term than LIMDEP (Table C.1), although it is unable to model exponential distributions.
Neither package can model gamma distributions. Only FRONTIER is able to estimate an
inefficiency model as a one-step process. An inefficiency model can be estimated in a two-
stage process using LIMDEP, although this may create biases, because distribution of the
inefficiency estimates is pre-determined through underlying distributional assumptions.

In the literature, the most commonly used package for estimating stochastic production
frontiers is FRONTIER 4.1. This is freely available over the Internet from the Centre for
Efficiency and Productivity Analysis, University of New England, Australia
(http://www.une.edu.au/econometrics/cepa.htm). User guides and examples also are provided
when downloading the software.

Example of use: Nigerian artisanal fishery

The Nigerian data used in the peak-to-peak analysis also was used to estimate capacity
utilization and capacity output from the stochastic production frontier approach. An
advantage of the SPF approach is that more inputs can be incorporated into the analysis than
in the peak-to-peak approach. In this case, both the number of canoes and average crew per
canoe could be used in the production frontier estimation.

With such a limited data set, a number of assumptions were necessary. First, a simple Cobb-
Douglas production function was assumed of the form Q = ,Canoes”Crew” where Q is

the actual total output, and the /'s are parameters to be estimated. To estimate the model, the
variables are logged to produce a linear version of the model (i.e.
In(Y) =In(B,) + B, In(Canoes) + S, In(Crew) , where In(x) represents the natural log of the

variable x). As there were no data representing capital utilization (e.g. hours or days fished),
only estimates of technically efficient capacity utilization (TECU) are possible, and resulting
estimates of capacity may be overestimated (as CU = TECU from (15)).

As the data were aggregated, there was only one observation a year. An assumption was
made that capacity utilization would vary over time, so a time-variant measure was required.
In estimating the capacity utilization in each period, an assumption also had to be made about
the distribution of the measures. Both the half-normal and the truncated normal were tested.

The models were estimated using FRONTIER 4.1. The results of the maximum likelihood
estimation are given in Table C.2.
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Table C.2 — Results from Maximum Likelihood Estimation

Half-normal Truncated normal

Coefficient t-value Coefficient t-value
beta 0 -8.74 -1.96 -7.51 -7.53
beta 1 1.77 5.08 1.68 11.14
beta 2 0.52 1.44 0.35 0.36
sigma-squared 0.20 0.68 0.03 1.31
Gamma (y) 0.89 5.17 0.07 0.09
Mu (i) restricted to be zero 0.10 3.66
Eta (1) -0.53 -1.35 -0.27 -0.51
log likelihood function 8.55 7.03
LR test of the one-sided error 4.86 (2 restrictions) 1.82 (3 restrictions)

From Table C.2, the values beta 0, beta 1 and beta 2 refer to the coefficients of the production
function outlined above. The value of gamma (y) indicates the proportion of variation in the
model that is due to capacity utilization. Since this value is relatively high in the half normal
distribution model (0.88), it suggests that much of the variation not due directly to changes in
the level of fixed inputs is due to changes in capacity utilization. In contrast, the value of y in
the truncated-normal model is low (0.07) and not significantly different from zero, suggesting
that very little variation in output between years is due to differences in capacity utilization.

A series of tests can be conducted to test the specification of the models. These are tested
through imposing restrictions on the model and using the generalized likelihood ratio statistic
(4) to determine the significance of the restriction. The generalized likelihood ratio statistic
(also known as the LR test) is given by:

A =-2[In{L(H,)}- In{L(H,)}] (17)

where In{L(Ho)} and In{L(H1)} are the values of the log-likelihood function under the null
(Ho) and alternative (H;) hypotheses. The restrictions form the basis of the null hypothesis,
with the unrestricted model being the alternative hypothesis. The value of A has a
distribution with the degrees of freedom given by the number of restrictions imposed.

A major test used to determine the existence of a frontier (i.e. Hy: y=0) is the one-sided
generalized likelihood ratio test of Coelli (1995). Since the alternative hypothesis is that 0 <
v < 1, the test has an asymptotic distribution, the critical values of which are given by Kodde
and Palm (1986). If the hypothesis is accepted, there is no evidence of underutilization of
capacity in the data and the production frontier is identical to a standard production function.

FRONTIER 4.1 produces the results from the one-sided generalized likelihood ratio-test
automatically. From the model results, the values of the LR test can be seen to be 4.86 and
1.82 for the half normal and the truncated normal models respectively. These can be
compared with the critical value table published in Kodde and Palm (1986) for two
restrictions and three restrictions (representing the ‘degrees of freedom’ in the model)
respectively. Standard statistical practice is to compare the results at the five percent level of
significance, which allows for less than a five percent probability that the results are spurious
(i.e. a 95 percent probability that the relationship is valid). The critical value at the five
percent level of significance is 5 138 with two degrees of freedom and 7 045 for three
degrees of freedom.
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In this case, both models do not satisfy the requirements of the test (because the values are
less than the critical values), which suggests that in both cases estimates of capacity
utilization may be spurious. However, the half-normal model satisfies the requirements at the
ten percent level of significance (critical value of 3 808). This suggests that there is a ten
percent probability that the results are spurious. While this is generally not considered
sufficient to accept the results, for the purposes of this example the results will be assumed to
be valid.

The models also can be compared using the LR test. The half-normal is a restricted form of
the truncated normal with the restriction that 4 (mu) = 0. The value of the generalized
likelihood ratio statistic in this case is A =-2[8.55-7.03]=-3.04. Since the value is

negative (and hence will be less than the critical y* value, which is always positive), we
cannot reject the hypothesis that Ho: ¢ = 0 and accept the model which assumes the half-
normal distribution.

The estimated capacity utilization derived from the analysis, and consequently the estimated
capacity output based on the results, are given in Table C.3. The gradual decline in capacity
utilization is partly an artefact of estimating the time variant model, which only allows for a
constant rate of change over time. From Table C.2, the value of eta (n) was negative,
suggesting technological change had decreased efficiency over time. More likely, this decline
represents a decline in stock size over the period examined.

Table C.3 — Capacity utilization and output estimated using SPF

Year Production Capacity Utilization Capacity output
1976 327561 1000 327571
1977 331280 1000 331297
1978 336 138 1000 336 167
1979 356 888 1.000 356 941
1980 274 158 1000 274 226
1981 323916 1000 324 053
1982 377 683 0.999 377 954
1983 376 984 0.999 377 442
1984 246 784 0.998 247 292
1985 140 873 0.997 141 365
1986 160 169 0.994 161118
1987 145 755 0.990 147 221
1988 185181 0.983 188 347
1989 171332 0.972 176 322
1990 170 459 0.953 178 948
1991 168 211 0.921 182 627
1992 184 407 0.870 211902
1993 106 276 0.791 134 365
1994 124 117 0.674 184 164

A comparison of the estimates of capacity from the SPF and the Peak-to-Peak methods is
illustrated in Figure C.2. For purposes of illustration, only the results from using canoes as
the key input for the peak-to-peak analysis are presented. From this, it can be seen that both
techniques produce estimates with fairly similar trends, and the estimates of capacity in the
last few years (1989-94) of the data are fairly similar.
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The analysis presented here demonstrates that the SPF technique can be used to provide
estimates of capacity and capacity utilization with minimal data requirements. More detailed
data at the boat level disaggregated over time (e.g. monthly data) would result in more
detailed estimates of capacity and capacity utilization. Further, information on time fished
(e.g. hours or days) would allow estimates of technical efficiency also to be made, enabling
correction for the potential biases that may be introduced into the analysis.

The example analysis also excludes a measure of the biomass stock. Ideally, some stock
abundance measure might be incorporated into the analysis so the effects of changes in stocks
on potential output can be estimated, providing more reliable estimates of capacity utilization.
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Figure C.2 — Comparison of SPF and peak-to-peak estimates of capacity output
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APPENDIX D: DATA ENVELOPMENT ANALYSIS (DEA)

Data envelopment analysis or DEA is a linear programming technique developed in the work
of Charnes, Cooper and Rhodes (1978). It is a non-parametric technique used in the
estimation of production functions and has been used extensively to estimate measures of
technical efficiency in a range of industries (Cooper, Seiford and Tone, 2000). Like the
stochastic production frontiers, DEA estimates the maximum potential output for a given set
of inputs, and has primarily been used in the estimation of efficiency. However, again like the
SPF approach, DEA also can be used to estimate capacity utilization (Fare, Grosskopf and
Lovell, 1994). The Féare, Grosskpof and Lovell approach, however, seeks to determine
capacity output, conditional on the fixed input binding production. This is the weak concept
of capacity output offered by Coelli, Grifell-Tatje and Perelman (2001). The strong concept
includes the weak concept, while the weak concept does not include the strong concept of
capacity output. In addition, the weak concept avoids problems caused by particular
functional forms and decreasing returns to scale (e.g. the Cobb-Douglas production function,
which does not have an absolute mathematical maximum).

Seiford and Thrall (1990) describe DEA in terms of floating a piece-wise linear surface to
rest on top of the observations (i.e. envelop the data). More specifically, the key constructs of
a DEA model are the envelopment surface and the efficient projection path to the
envelopment surface (Charnes et al., 1995). The projection path to the envelope surface is
determined by whether the model is output-oriented or input-oriented. The choice of input- or
output-oriented models depends upon the production process characterizing the firm (i.e.
minimize the use of inputs to produce a given level of output or maximize the level of output
given levels of the inputs). For the purpose of estimating capacity in fisheries, only the
output-oriented DEA measures have been empirically estimated.

A key advantage of DEA over other approaches previously examined is that it more easily
accommodates both multiple inputs and multiple outputs. As a result, it is particularly useful
for analysis of multispecies fisheries, because prior aggregation of the outputs is not
necessary. Further, as will be outlined below, a specific functional form for the production
process does not need to be imposed on the model (as is required in the use of the SPF
approach).

In fisheries, the technique has been applied to the Malaysian purse seine fishery (Kirkley et
al., 2003), United States Northwest Atlantic sea scallop fishery (Kirkley et al. 2001),
Atlantic inshore groundfish fishery (Hsu, 2003), Pacific salmon fishery (Hsu, 2003), the
Danish gillnet fleet (Vestergaard, Squires and Kirkley, 2003), English Channel multispecies
multigear fisheries (Pascoe, Coglan and Mardle, 2000; Tingley, Pascoe and Mardle, 2003),
the Scottish fleet (Tingley and Pascoe, 2003) and the total world capture fisheries (Hsu,
2003).

CRS and VRS frontiers
The envelopment surface will differ depending on the scale assumptions that underpin the

model. Two scale assumptions are generally employed: constant returns to scale (CRS), and
variable returns to scale (VRS). The latter encompasses both increasing and decreasing
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returns to scale. CRS reflects the fact that output will change by the same proportion as inputs
are changed (e.g. a doubling of all inputs will double output); VRS reflects the fact that
production technology may exhibit increasing, constant and decreasing returns to scale. As
demonstrated in Section 2.6, input- and output-based capacity measures are only equivalent
under the assumption of constant returns to scale. However, there are generally a priori
reasons to assume that fishing would be subject to variable returns and, in particular,
decreasing returns to scale (see Section 2.6). Cooper, Seiford and Tone (2000) provide a
discussion of methods for determining returns to scale. In essence, the researcher examines
the technical efficiency given different returns to scale, and determines whether or not the
observed levels are along the frontier corresponding to a particular returns to scale.

The effect of the scale assumption on the measure of capacity utilization is demonstrated in
Figure D.1. Four data points (A, B, C, and D) are used to estimate the efficient frontier and
the level of capacity utilization under both scale assumptions. Note that only fixed inputs are
considered in Figure D.1. The frontier defines the full capacity output given the level of fixed
inputs. With constant returns to scale, the frontier is defined by point C for all points along
the frontier, with all other points falling below the frontier (hence indicating capacity
underutilization). With variable returns to scale, the frontier is defined by points A, C and D,
and only point B lies below the frontier i.e. exhibits capacity underutilization. The capacity
output corresponding to variable returns to scale is lower than the capacity output
corresponding to constant returns to scale.
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Output
CRS frontier
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O3 | ___ VRS frontier
|
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|
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I
Fixed Inputs

Figure D.1 - CRS and VRS frontiers

As with the SPF analysis, the measure of capacity utilization is estimated as the ratio of the
actual output to the frontier level of output. With the exception of point C (which has a
capacity utilization of 100 percent under both assumptions), the measure of capacity
utilization is lower (i.e. more underutilization) for each point when assuming constant returns
to scale than when assuming variable returns to scale. Even for point B, O;/03 < O/0..

Hence, assuming a CRS frontier is likely to result in a greater estimate of capacity output and
a lower estimate of capacity utilization than assuming a VRS frontier. As there are a priori
reasons for assuming variable returns to scale in fisheries it is recommended that the latter be
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used, and the results treated as lower bounds for capacity output and upper bounds for
capacity utilization.

Input and output orientations

A range of DEA models have been developed that measure efficiency and capacity in
different ways. These largely fall into the categories of being either input-oriented or output-
oriented models.

With input-oriented DEA, the linear programming model is configured so as to determine
how much the input use of a firm could contract if used efficiently in order to achieve the
same output level. For the measurement of capacity, the only variables used in the analysis
are the fixed factors of production. As these cannot be reduced, the input-oriented DEA
approach is less relevant in the estimation of capacity utilization. Modifications to the
traditional input-oriented DEA model, however, could be done such that it would be possible
to determine the reduction in the levels of the variable inputs conditional on fixed outputs and
a desired output level.

In contrast, with output-oriented DEA, the linear programme is configured to determine a
firm’s potential output given its inputs if it operated efficiently as firms along the best
practice frontier. This is more analogous to the SPF approach, which estimated the potential
output for a given set of inputs and measured capacity utilization as the ratio of the actual to
potential output, and is consistent with the illustration of the method in Figure D.1. Output-
oriented models are “...very much in the spirit of neo-classical production functions defined
as the maximum achievable output given input quantities” (Fare, Grosskopf and Lowell,
1994, p. 95).

Mathematical specification of the DEA approach

Technically speaking, DEA is an approach rather than a model. Unlike the SPF model where
the parameter estimates represent the production elasticities, the resultant weights associated
with the input variables have no economic interpretation.”* They simply define the relative
contribution of reference points on the frontier to the estimation of efficient or capacity
output for the point under examination. As a result, it is a method for estimating efficiency
and capacity utilization, but does not impart any useful information on the production
processes involved in the fishery. Models can be developed, however, to assess allocative and
scale efficiencies, congestion, and overall economic efficiency (Fare, Grosskopf and Kirkley,
2000). Linear programming (LP) models are developed to undertake the DEA, and for the
purposes of simplicity, these can be referred to as DEA LP models.

An output-oriented approach is generally more appropriate for the estimation of capacity and
capacity utilization. Following Fare, Grosskopf and Kokkelenberg (1989), and Fére,
Grosskopf and Lowell (1994) the output-oriented DEA LP model of capacity output given
current use of inputs is given as:

51Spech‘ic functional forms, however, can be estimated via DEA. For example, it is possible to specify a Cobb-
Douglas specification or even a second-order translog specification and estimate the parameters by DEA (see,
for example, Fare et al., (1993) and Charnes et al. (1994).
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where @, is a scalar showing by how much the production of each firm can increase output,

Ujm IS amount of output m by firm j, x;, is amount of input n used by boat j and z; are
weighting factors. Inputs are divided into fixed factors, defined by the set «, and variable
factors defined by the set a. To calculate the measure of capacity output, the bounds on the
sub-vector of variable inputs, x, need to be relaxed. This is achieved by allowing these

inputs to be unconstrained through introducing a measure of the input utilization rate (2,,),

itself estimated in the model for each boat j and variable input n (Fére, Grosskopf and Lovell,
1994). The restriction 5z, =1 allows for variable returns to scale.>
]

Capacity output based on observed outputs (u*) is defined as @, multiplied by observed
output (u). Implicit in this value is the assumption that all inputs are used efficiently as well
as at their optimal capacity. From this, technically efficient capacity utilization (TECU) based
on observed output (u) is:

TEcu =2 -_Y _

1
; — )
i du D

The measure of TECU ranges from zero to 1, with 1 being full capacity utilization (i.e. 100
percent of capacity). Values less than 1 indicate that the firm is operating at less than full
capacity given the set of fixed inputs.

Implicit in the above is a downwards bias because observed outputs are not necessarily being
produced efficiently (Fare, Grosskopf and Lovell, 1994). As with the SPF measure of capital
utilization, an unbiased measure of capacity utilization is calculated as the ratio of technically
efficient output to capacity output.

The technically efficient level of output requires an estimate of technical efficiency of each
boat, and requires both variable and fixed inputs to be considered. The output orientated DEA
model for technically efficient measure of output is given as:

2 contrast, excluding this constraint implicitly imposes constant returns to scale while Xz; < 1 imposes non-
increasing returns to scale (Fare, Grosskopf and Kokkelenberg, 1989).
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where @, is a scalar outcome showing how much the production of each firm can increase by

using inputs (both fixed and variable) in a technically efficient configuration. In this case,

both variable and fixed inputs are constrained to their current level (i.e. the equality constraint

on the output orientated model of capacity has been relaxed). Again, the restriction ¥z, =1 is
J

imposed to allow for variable returns to scale.

In this case, @, represents the extent to which output can increase through using all inputs
efficiently. From this, technical efficiency is estimated as:

TE=1/D, . (4)

The measure of technical efficiency ranges from one to infinity; @,- 1.0 is the proportion by

which outputs may be expanded. Some existing software and articles, however, report the
value of TE as one over @, (see for example, Coelli, Rao and Battese, 1998). Values of the

ratio (Eq. 4) less than 1 indicate that, even if all current inputs (both variable and fixed) were
used efficiently, output is less than potential output. That is, output could increase through
efficiency gains, without changing the levels of the inputs.

The unbiased estimate of capacity utilization is consequently estimated by:

cu-JECU _1 /1 @, (5)
TE @,

As @, <1, the estimate of CU>TECU. Dividing the level of output by the corrected measure
of capacity utilization produces lower but unbiased estimates of capacity output.

Categorical variables

A key factor affecting the level of fishery production is the size of the stock. This is
effectively an exogenous variable (also known as non-discretionary variable) as it is beyond
the control of the fishers to modify their use of the stock input, other than through exploiting
it harder by spending more days fished. Where information on stock is available, such as an
index of stock abundance, then this can be directly incorporated into the analysis and treated
the same as other fixed inputs.

A difficulty arises, however, when stock information is not available. In such a case, the
analysts have two options. The first option is to ignore stock changes between time periods,
as was the case in the Nigerian example using the peak-to-peak and SPF approaches. In such
a case, the measure of capacity and capital utilization may be distorted, as actual output may
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be low due to low stock abundance rather than due to under-utilization of capacity. Where
only a time series of aggregate data is available, then this may be the only option.

Where a time series of cross sectional data are available (i.e. data on individual vessels with
several observations per vessel over time, also known as panel data), then it is more
appropriate to treat stock (and time) as a categorical variable. Boats operating in the same
time period will be subject to the same stock conditions. As a result, a direct comparison of
these boats is possible. Conversely, it is not possible to compare boats across periods, as the
output will be affected also by different stock conditions. In such a case, the measure of
capacity in periods of low abundance will be over-estimated. In treating stock (and time) as a
categorical variable, only boats that operate under the same conditions are compared. This
requires undertaking several analyses, one for each time period (i.e. each period is treated as a
separate category). Measures of capacity output are more reliable relative to the implicit stock
abundance in that period. These measures can be consistently aggregated over time if
necessary, e.g. monthly estimates of capacity can be aggregated to provide annual estimates
of capacity.

Effects of random variations on estimates of capacity and capacity utilization

A shortcoming of the DEA approach is that the results may be unduly influenced by random
events. Fisheries are often considered to be highly stochastic (i.e. subject to random
fluctuations) because of the susceptibility to environmental fluctuations. Further, as the
fishery resource is unseen and must effectively be found before it can be harvested, some
fishers may be ‘lucky’ and find a large school of fish while others may by ‘unlucky’ and find
few if any fish. The SPF approach filters out these random fluctuations to a large extent when
estimating capacity utilization; at the same time and like all regression procedures, outliers
and the central tendency of the data influence the SPF parameter estimates. Without proper
examination of the data prior to estimation, estimates derived from the SPF or any regression
procedure may based on a limited number of observations (e.g. the case in which it is
determined that the SPF is the appropriate specification with all the data, but the SPF is
rejected when one observation (outlier) is omitted).

The effects of these random fluctuations on the estimates of capacity and capacity utilization
using the DEA approach are illustrated in Figure D.2. The frontier depicted in Figure D.2 is
essentially the same as illustrated in Figure D.1, with the exception that an additional point E
has been added. Under normal circumstances (i.e. normal operating conditions), the firm at
point E would produce an output at point E*. However, due to some random event, it
managed to produce at point E. The effect of this is to shift the frontier to a higher level,
changing the estimated capacity and capacity utilization measures for those points not on the
frontier. For example, the capacity output for firm B on the ‘new’ frontier is greater than the
‘true’ frontier, and the level of capacity utilization would therefore be lower. Similarly, firm
D, which is on the original frontier (i.e. 100 percent capacity utilization), is now considered
to be under-utilizing its capacity.
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Figure D.2 — Effects of random variation on capacity utilization

Empirical testing of the DEA methodology using artificial data sets has shown that the
distortion in capacity estimates is proportional to the degree of random variation in the data.
However, the unbiased estimate of capacity utilization (given in (5) earlier) is not greatly
affected by the amount of variation, as the estimated value of @, and @, are both (almost)
equally affected, and thus the ratio of the two measures is not substantially distorted (Holland
and Lee, 2002). Hence, a reliable estimate of capacity output can be derived by using the
actual catch data and the unbiased estimate of capacity utilization.

Software

DEA can be undertaken using any linear programming package, including fairly basic
packages such as the optimization facilities generally found in spreadsheet packages.
However, as the analysis has to be repeated for each observation, using simple linear
programming algorithms may be time consuming, particularly if a large number of data
points are available. Mathematical programming packages such as GAMS (General
Algebraic Modelling System, Brooke, Kendrick and Meerhaus, 1992) have the advantage that
loops can be written into the model to repeat the analysis for every observation. However,
this requires understanding of the modelling language.

A range of software has been developed specifically to undertake DEA analysis. These are
generally user-friendly packages that make estimating efficiency and capacity utilization
relatively straightforward. These include DEA-Solver (Cooper, Seiford and Tone, 2000),
which is an add-on to Microsoft Excel, On-front (Fare and Grosskopf, 1999) and DEAP
(Coelli, 1996b). The latter package is freely available over the Internet
(http://www.une.edu.au/econometrics/cepa.htm) from the Centre for Efficiency and
Productivity Analysis, University of New England, Australia. User guides and examples are
also provided when downloading the software. Information on On-Front is also available
over the internet (http://www.emg.com) from Economic Measurement and Quality.

Example of use: Nigerian artisanal fishery

The Nigerian data used in the peak-to-peak and SPF analysis were also used to estimate
capacity utilization and capacity output using the DEA approach. As with the SPF analysis,
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both the number of canoes and average crew per canoe were used as inputs in the analysis,
with one aggregated output measure.

The analysis was undertaken using the DEAP programme (Coelli, 1996b). For the purpose of
the estimation of capacity utilization, each observation was assumed to occur in the same
time period. As time is a categorical variable, a separate analysis of one observation in each
time period would result in every observation being at full capacity (as there are no other
observations against which the output can be compared). This differs from the SPF analysis,
where the time element could be directly factored into the analysis.>® As with the other two
analyses (i.e. SPF and peak-to-peak), the absence of stock information results in the implicit
assumption that stock has not changed, and that any change in catch rate is attributable to
changes in capacity utilization.

Estimates of capacity utilization were obtained assuming both constant and variable returns to
scale (Table D.1). As would be expected, the CRS analysis resulted in lower estimates of
capacity utilization and greater estimates of capacity output than the VRS analysis. Further,
when variable returns to scale were assumed, most years were found to reflect “operation at
full capacity”.

The results of the three analyses are compared in Figure D.3. Only the VRS results are
presented for the DEA analysis. From this, it can be seen that the SPF and DEA results are
identical for all but the last 6 years of the data. The DEA estimates of capacity were also
generally the most conservative over the period examined. In contrast, the peak-to-peak
estimates of capacity were substantially greater than the other two methods over the period
1977 to 1987. This is largely an artefact of the peak in 1982, which resulted in a relatively
high apparent rate of technological progress being imposed on the estimates over the period
1977 to 1982. While subsequent “technological change” was negative (most likely reflecting
a decline in the stocks) the capacity catch rate did not converge with the actual catch rate
until the next peak in 1988. Hence, unusually high catch rates can have longer lasting effects
when using peak-to-peak analysis than with the other two techniques.

53Using a windows technique, which is based on the use of moving averages, different time periods can be
included in the analysis (Charnes et al., 1995).
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Figure D.3 — Comparison of capacity measures: peak-to-peak, SPF and DEA

Table D.1 — Capacity utilization and output, Nigerian artisanal fishery

Year Production Capacity utilization Capacity output
CRS VRS CRS VRS
1976 327 561 1 1 327 561 327 561
1977 331280 0.999 0.999 331612 331612
1978 336 138 1 1 336 138 336 138
1979 356 888 0.998 1 357 603 356 888
1980 274 158 0.974 0.978 281 476 280 325
1981 323916 0.987 0.989 328 182 327519
1982 377 683 1 1 377 683 377 683
1983 376 984 0.994 1 379 260 376 984
1984 246 784 0.991 1 249 025 246 784
1985 140 873 0.948 1 148 600 140 873
P986 160 169 0.959 1 167 017 160 169
1987 145 755 0.952 1 153 104 145 755
1988 185 181 0.971 1 190 712 185181
1989 171 332 0.964 0.993 177 730 172 540
1990 170 459 0.964 1 176 825 170 459
1991 168 211 0.963 0.992 174 674 169 568
1992 184 407 0.97 1 190 110 184 407
1993 106 276 0.926 0.957 114 769 111 951
1994 124 117 0.939 0.967 132 180 128 353

Example of use: multispecies fisheries in the English Channel

This example is drawn from Pascoe, Coglan and Mardle (2001). The study examined two
fleet segments in the English Channel — an otter trawl fleet and a static gear fleet that used a
combination of both gillnets and long lines. Both fleet segments targeted the same set of
species, but their catch composition varied as a result of the different gear types. The example
illustrates how capacity of two different fleet segments can be estimated and the results
combined to produce an overall estimate of capacity output in a heterogeneous fishery.
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A multi-output DEA analysis was undertaken with the catch of the main target species (cod,
cuttlefish, hake, ling, monk, plaice, sole and whiting) included as separate outputs in the
analysis. In addition, all other species were aggregated into an “other” category. While the
target species formed the minority of the catch by weight, they generally formed a significant
part of the value of the total catch. Further, most of the target species are subject to quota
control and are of main interest to fisheries managers (e.g. cod, hake, monk, plaice, sole and
whiting).

The key inputs used in the analysis were days fished, length and breadth of boat and engine
power (kW) (Table D.2). Fixed inputs included length, breadth and engine power, and were
assumed to represent the capital input into the fishery. Variable inputs only included days
fished. While data on labour employed were available, these were only available on an annual
basis. Hence, they would have effectively formed part of the fixed factors of production.
They were excluded from the analysis as, in practice, labour is a variable input. Data on catch
and days fished were available on a monthly basis over a 12 month period (1995).

Inputs were relatively similar between otter trawlers and netter-liners. Netter-liners fished, on
average, approximately two days less a month than otter trawlers. Otter trawlers tended to
have, on average, physically bigger boats (in terms of length times breath), although netter-
liner boats had on average larger engines. There is no a priori reason why this would be the
case.

Table D.2 — Key inputs for otter trawlers and netter-liners

Variable Fixed

Days fished Length Width Kw
Otter Trawlers
e Average 14.0 13.27 4.66 157.7
e Maximum 34 23.16 6.34 373
e  Minimum 1 10.33 3.62 28
Netter-liners
e Average 11.9 12.29 4.34 171.2
e Maximum 31 23.82 5.79 442
e  Minimum 1 104 35 55

Catch composition changes over the year due to different patterns of seasonal abundance.
However, information on the stock conditions in each month was not available, so a stock
variable could not be included in the analysis. To allow for variations in availability, the DEA
model was run categorically. That is, the model was run separately for each month, so that
only boats that fished in the same month would be compared. It was assumed that stock
abundance was relatively constant over the month so that the timing of fishing did not affect
the catch composition. Spatial variations in catch composition were also not considered. The
analysis is limited to one area of the Channel (the western half) and it is assumed that species
abundance did not vary substantially across this area.

The model was also run separately for the two fleet segments such that otter trawlers were not
directly compared to netter-liners. A combined analysis would have required the assumption
of a common production process, which clearly is not realistic. Capacity output was
estimated at the individual vessel level (based on the observed catch and the estimated
capacity utilization and technical efficiency measures) and aggregated to the fleet level. From
this, aggregate measures of capacity utilization can be derived from the aggregated actual and
capacity output estimates.
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From the model output, capacity utilization (CU) varied considerably by species and between
the two fleet segments examined (Table D.3). For most species, the otter trawlers were
operating at less than 90 percent capacity (e.g. cod, hake and ling) and for some species less
than 80 percent capacity (e.g. cuttlefish, plaice and whiting). However, much of this
underutilization of capacity arose out of using the inputs inefficiently rather than not using
enough variable inputs. If the inputs had been used efficiently, then the unbiased capacity
utilization for the target species would have been greater than 90 percent. In contrast, the
netter-liner fleet segment was generally operating at above 90 percent capacity, and if inputs
were used efficiently, would be operating at almost 100 percent capacity for most of the
target species.

Table D.3 — Estimated capacity output (tonnes) and capacity utilization by species

Observed  TE Capacity TE CU Unbiased CU Unbiased
output output output 1/0, 0,/0, capacity output
a b c alb c/b a/(c/b)

Otter trawlers
Cod 89.5 108.3 98.2 0.83 0.91 98.4
Cuttlefish 472.2 649.6 596.4 0.73 0.92 513.3
Hake 15.1 175 16.0 0.86 0.91 16.6
Ling 33.8 38.1 35.7 0.89 0.94 36.0
Monk 218.4 260.1 237.3 0.84 0.91 240.0
Plaice 121.7 158.0 144.6 0.77 0.91 133.7
Sole 15.2 18.6 17.1 0.82 0.92 16.5
Whiting 650.6 822.0 757.0 0.79 0.92 707.2
Other 24494 3550.4 30385 0.70 0.86 2906.3

Netter-liners

Cod 38.0 41.2 40.4 0.92 0.98 38.8
Cuttlefish 25.3 26.7 25.7 0.95 0.96 26.4
Hake 3.8 3.9 3.8 0.98 0.99 3.8
Ling 84.6 88.2 86.9 0.96 0.99 85.5
Monk 57.5 59.3 58.8 0.97 0.99 58.1
Plaice 8.5 9.2 8.8 0.92 0.96 8.9
Sole 3.4 35 3.4 0.98 0.99 3.4
Whiting 59.3 66.1 63.0 0.90 0.95 62.4
Other 786.7 894.2 856.4 0.88 0.96 819.5

While the fleets are significantly different in their operations, the capacity output from the
two fleets can be aggregated at the species level (as the species is a homogenous output). The
combined capacity output and derived capacity utilization for the two fleet segments is
presented in Table D.4 From this, overall unbiased capacity utilization averages out at
between 88 percent for the “other’ species, and between 92 and 97 percent for the key species
examined.

The purpose in this example was to demonstrate how aggregate measures of capacity can be
derived for individual species that are exploited by more than one fleet segment and in
different combinations with other species. Further, the capacity measures can be aggregated
over several fisheries provided each fishery is estimated separately. The resultant set of
information can be compared to overall target capacity measures for the species. Further, the
fleet level information provides guidance as to which fleet segments exploiting the fishery
may be in most need of capacity management measures.
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Table D.4 — Combined capacity output (tonnes) and capacity utilization by species

Observed  TE Capacity TE CU Unbiased CU Unbiased

output output output 1/0, 0,/6, capacity output

Cod 127.5 149.5 138.6 0.85 0.93 137.1
Cuttlefish 4975 676.3 622.1 0.74 0.92 539.6
Hake 18.9 21.4 19.8 0.88 0.93 20.4
Ling 118.4 126.3 122.6 0.94 0.97 121.4
Monk 275.9 319.4 296.1 0.86 0.93 298.1
Plaice 130.2 167.2 153.4 0.78 0.92 142.6
Sole 18.6 22.1 20.5 0.84 0.93 20.0
Whiting 709.9 888.1 820 0.80 0.92 769.6
Other 3286.1 4 444.6 3894.9 0.74 0.88 3725.8
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APPENDIX E: ESTIMATION OF TARGET AND LONG-RUN OVERCAPACITY:
AN EXAMPLE FROM THE ENGLISH CHANNEL FISHERIES

Estimating overcapacity in fisheries requires an estimate of the potential sustainable level of
output that might be possible in the long run, given that stocks have adjusted to changes in
the fishing fleet. With multispecies fisheries, the long-run desired output level of each species
may differ from the maximum sustainable yield, or maximum economic yield if considered in
isolation, as this will also depend on the “optimal” fleet structure that harvests the resource.
To assess these optimal fleets and yields, a bio-economic model of the fishery is required that
takes into account stock dynamics as well as costs and revenues associated with undertaking
different fishing activities.

The definition of “optimal” also depends upon management objectives. An optimal fleet size
under an objective of profit maximization will be substantially smaller than one in which
employment is considered the key objective. Similarly, the optimal sustainable yields under
both scenarios would differ. More often is the case; however, that management must balance
several, often conflicting, objectives. Multi-objective bio-economic models therefore play a
significant role in assessing the level of overcapacity in species when several management
objectives exist. A multi-objective bio-economic model was used to determine the “optimal”
fleet configuration and size for key fleet segments operating in the fisheries of the English
Channel.

Multispecies, multigear fishery

The English Channel hosts a broad variety of fishing activities aimed at targeting a number of
species. Approximately 4,000 boats operate within the English Channel [WHEN?],
comprised roughly of 50 percent United Kingdom boats, 45 percent French boats and five
percent from other countries (most of these from Belgium). The fleet uses one (or more) of
seven gear types: beam trawl, otter trawl, pelagic/mid-water trawl, dredge, line, nets and pots.
In total, 92 species are landed by boats operating in the English Channel. However,
approximately 30 species make up the majority of landed weight and value.

The English Channel fleet is comprised primarily of small vessels. Over two-thirds of the
fleet are less than ten metres in length, and about half of these are less than seven metres. A
large proportion of the under seven metres vessels operates essentially on a part-time basis,
generally fishing for less than half of the number of expected full-time days.

The boats are, for the most part multi-purpose; they operate with different gears over the
year, and in some cases, use different gears in the same month. Fishing activity has been
classified into a number of métiers based on gear used and area fished, which can vary within
the same month.>

The bio-economic model

The model, described in Pascoe and Mardle (2001), includes both French and United
Kingdom fleets operating in the Channel and takes into account the fishing activity of other

** This classification was undertaken using cluster analysis to identify different activities within a given gear type.
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EU Member States (which, combined, contribute around five percent of the fishing activity).
All commercial species caught in the Channel are included in the model, and for some
species (e.g. crustaceans) several identified stocks have been included. The model includes a
combination of age-structured biological models, as well as surplus production models for
some species. That is, all outcomes are sustainable in the long run (both biologically and
economically). The model also was specified as an “optimization” model, because it produces
the best outcomes given the objectives provided. The output of the model is: the sustainable
catch of each species, the fleet size and structure that produces that catch and relevant socio-
economic measures of performance, given the fleet structure and catch (e.g. profits,
employment).

While estimating the optimal sustainable yield of each species, the model solution is
primarily input-based rather than output-based. Fishing activity in the model was modified
such that each vessel in the model solution was operating at full capacity utilization
(expressed in terms of days fished). The resulting fleet size and structure thereby represented
that which was required to harvest the “optimal” yield operating at full capacity. Because the
benchmark is the existing fleet size and structure, input-based measures of overcapacity® are
derived rather than output-based measures.

The model solution was based on key management objectives in place in the fishery.
Conservation objectives are over-riding, and all solutions are sustainable in the long run. The
economic objectives were specified as maximizing profits in the fishery, with each country
having a separate profit target, based on its own potential maximum profit. (See Pascoe and
Mardle, 2001.) Employment objectives were also included by setting target employment
levels based on their current levels in the fishery. Finally, the EU principle of relative
stability was imposed so that each country could not incur a greater proportion of benefit (or
loss) than the other. Multiple objectives were incorporated into the model through
specification of an “achievement function”. Deviations away from the targets for each
objective can then be minimized using a technique known as goal programming.

Multi-objective optimization

The model was run with the dual objectives of both increasing economic profits and
maintaining employment. The economic profit objectives were taken as the maximum
economic profits that could be achieved in each country. (See Pascoe and Mardle, 2001.) The
employment objectives were taken as the current level of employment in each country. The
additional objective — that each country can only incur the same proportion of the potential
social cost — was also imposed to ensure that relative stability was maintained.

Essential to the achievement function was the definition of the weights associated with each
goal. Different weights are likely to result in different optimal solutions. Because deviations
from all goals are undesired, one appropriate method is to set all weights to unity since there
is no need to differentiate their importance (Ignizio and Cavalier, 1994).

A number of different weights were applied in the model. The model was run with equal
weights applied to both profit and employment goals. The model was also run with a lower

% More correctly, the measures indicate the degree of overcapitalization, which are considered an input-based
measure of overcapacity.
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weight on economic profits and with a lower weight on employment. A common weight was
used for both countries with each objective. This ensured that neither country was given
preference relative to the other.

Table E.1 — Multi-objective optimization results

Current situation Different weights on objectives
Wprofit = 0.5; Worofit = 1; Worofit = 1;
Wemployment = 1; Wemployment = 1; Wemployment = 0.5;
Wsequity =1 Wsequity =1 Wsequity =1

UK  France UK France UK  France UK France
Boat numbers
e  otter trawl 129 207 64 173 40 134 98
e  beam trawl 92 86 74 65 65 63 92 56
e dredge 18 253 18 253 18 253 18 253
e trawl/ dredge 300 295 255 127
e pots 65 159 65 157 65 141 65 132
e nets 172 168 108 62
e lines 51 43 43 39
e net/line 137 122 122 122
o whelk pots 44 42 38 25
e seaweed 59 59 59 56
o fixed gear 216 194 194 172
e  misc. 127 126 119 79
e inshore mixed 1613 1613 1250 832
Revenue (€m)
e Channel fleet* 155.8 257.6 132.2 246.9 122.8 219.0 139.0 172.2
e  External fleet 11.0 17.3 11.2 21.0 11.3 25.2 115 29.1
Profits® (€m) -6.1 31.7 0.0 42.3 8.8 51.1 17.6 51.8
Capital® (€m) 1955 319.2 149.1 260.4 113.9 182.1 114.3 102.1
Employment® 4343 4840 3978 4 433 3216 3584 2198 2 450

a) Includes revenue from English Channel fleet generated outside the Channel. b) Channel fleet only.

As would be expected, the optimal fleet configuration depends on the relative weights given
to the profit and employment objectives (Table E.1). An optimal fleet with a higher weight on
employment was characterized by a large number of smaller boats, particularly in the United
Kingdom. Conversely, increased weight on economic profits results in the total capital (and
employment) in the fishery decreasing. Comparing the current situation with the case in
which employment was given greater weight than profits (i.e. Wprorit=0.5, Wempioyment=1),
economic profits could be increased by 65 percent, with only an eight percent reduction in
employment.

Extent of overcapacity

As noted previously, the extent of any overcapacity in the fishery will depend on the actual
objective of fisheries management. From the above analysis, several different fleet
configurations were identified based on different levels of importance assigned to each
objective. Potentially, an infinite number of “optimal” fleets can be identified, but only one
will be truly optimal.
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The percentage of overcapacity can be estimated by dividing the current fleet number by the
“optimal” fleet (Table E.2). From this, it can be seen that the estimate of overcapacity varies
substantially based on the objectives of management. For example, if maximizing
employment was the main objective, there is no overcapacity in the inshore fleet, but if
maximizing profit was a main objective, there was considerable overcapacity in this sector.

Table E.2 — Extent of overcapacity in the UK fleet segments of the Channel fishery (%0)

Fleet segment Weights given to each objective

Wprofit = 051 Wemployment = 1; Wprofit = 1; Wemployment = 1; Wprofit = 1; Wemployment = 051

Wsequitv =1 Wsequitv =1 Wsequity =1

otter trawl 102% 223% inf
beam trawl 24% 42% 0%
dredge 0% 0% 0%
pots 0% 0% 0%
net/line 12% 12% 12%
inshore mixed 0% 29% 94%

Usefulness of the results

The use of bio-economic models to assess the extent of overcapacity needs to be undertaken
with some caution. Most optimization models are sensitive to the data provided, and a small
change in the main parameters may result in a different optimal solution. For example, if the
price of the fish species targeted by the otter trawlers increased, then the optimal number of
vessels in this segment may also increase. Similarly, if fuel prices decreased, the optimal
number of all mobile gear boats (otter and beam trawlers and dredges) could increase.
Because prices and costs are likely to change in the future, the results of the models should
not be seen as prescriptive, but rather, indicative of problem areas within a fishery.

Many biological parameters in the model are also subject to uncertainty. This again would
affect the optimal fleet size and structure if errors were introduced into the model through
inaccurate biological parameters. The robustness of the results to uncertainty in biological
and economic parameters can be examined through either sensitivity analysis or stochastic
simulation. Such techniques were not presented in this paper in order to keep the analysis
fairly simple, but a stochastic analysis of the model results was presented in Pascoe and
Mardle (2001).

With these limitations in mind, the development and use of bio-economic models can provide
useful information to managers on the extent of overcapacity by fleet segment in a
multispecies, multigear fishery.
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APPENDIX F: POSSIBLE REPORTING FRAMEWORK

General information

Table F.1 — General description of the fisheries reported, current year

Fishery Gross value of Number of Employment | Main gear types Key species
production vessels
X
Y
z
Total country
Fishery level information
Input-based measures
Table F.2 — Input capacity indicators, fishery X
Fleet Total tonnage | Total Engine Total Potential | Latent effort Capital
segment (GRT) | Power (kW) | standardized | standardized | (standardized utilization
days fished days fished | days fished - (%)
(KW days) (kW days) kW days)
| | a| b | c| d | dc|  c/d*100 |
A
| B I I I I I I I
C
| D I I I I I I I
Total fishery
Table F.3 —Trends in input capacity over the last 5 years, fishery X
Fleet Total tonnage | Total Engine Total Potential | Latent effort Capital
segment (GRT) | Power (kW) | standardized | standardized | (standardized utilization
days fished days fished | days fished - (%)
(KW days) (kW days) kW days)
a b c d d-c ¢/d*100
Current—4
Current -3
Current — 2
Current—1
| Current year | | | | | | |
Table F.4 — Indicators of input-based overcapacity (MSY)
Fleet Target Relative Target Relative Target Relative
segment tonnage | capacity (%) Engine | capacity (%) | standardized | capacity (%)
(GRT) Power (kW) days fished
(KW days)
e a/e*100 f b/f*100 g d/g*100
A
B
C
D
Total fishery
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Table F.5 — Indicators of input-based overcapacity (ASY)

Fleet Target Relative Target Relative Target Relative
segment tonnage | capacity (%) Engine | capacity (%) | standardized | capacity (%)
(GRT) Power (kW) days fished
(KW days)
e a/e*100 f b/f*100 g d/g*100
A
B
C
D
Total fishery

Output-based measures

Table F.6 — Current output (tonnes), current year, fishery X

Fleet segment Species
1 2 3 4
A
B
C
D

Total fishery

Table F.7 — Capacity output (tonnes), current year, fishery X

[ Fleet segment | Species |
1 2 3 4
LA | | | | | |
B
| C | | | | | |
D

| Total fishery |

Table F.8 — Capacity utilization (%), current year, fishery X

Fleet segment Species
1 2 3 4
A
B
C
D

Total fishery

Table F.9 — Relative capacity for fishery X

Species Total capacity Target capacity: Catch at Relative capacity given
EMSY EASY/ TAC EMSY (%) EASY/ TAC (%)

1

2

3

4

Note: target catch based on current stock and target input level. Where TACs exist, these may represent the

target catch at Esy.
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Table F.10 — Trends in capacity utilization and relative capacity
over last 5 years, fishery X, species 1

Year Total catch Capacity output Capacity utilization Relative capacity at
(%) Ewsy (%) Easy/TAC (%)
Current year — 4
Current year — 3
Current year — 2
Current year — 1
Current year
National level information
Input-based measures
Table F.11 — Input capacity indicators
Fishery Total tonnage | Total Engine Total Potential | Latent effort Capacity
(GRT) | Power (kW) | standardized | standardized | (standardized utilization
days fished days fished | days fished - (%)
(KW days) (kW days) kW days)
a b c d d-c ¢/d*100
[ X I I I |
Y
| Z I I I |
Total country
Table F.12 — Indicators of input-based overcapacity (MSY)
Fishery Target Relative Target Relative Target Relative
tonnage | capacity (%) Engine | capacity (%) | standardized | capacity (%)
(GRT) Power (kW) days fished
(KW days)
e a/e*100 f b/f*100 g d/g*100
X
Y
Z
Total country
Table F.13 — Indicators of input-based overcapacity (ASY)
Fishery Target Relative Target Relative Target Relative
tonnage | capacity (%) Engine | capacity (%) @ standardized @ capacity (%)
(GRT) Power (kW) days fished
(KW days)
| | e | a/e*100 | fl b/f*100 | g | d/g*100 |
X
LY I I I I I I |
Z

| Total country | | | | |

Output-based measures
Table F.14 — Aggregate species output capacity utilization

| Species | Total catch | Capacity output | Capacity utilization |

Relative capacity at |

EMSY (%)

Easy/TAC (%)

(%)
I I I I

WO INPF




Table F.15 — Aggregated output capacity measures
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Fishery Current Capacity Capacity Target capacity at Relative capacity
output output | utilization (US$) (%
(US$) (USS) (%) Emsy | Easy/TAC Emsy | Easy/TA
C
X
Y
Z

Total country

Table F.16 — Summary of national capacity measures

Measure Current Capacity Target capacity at Relative capacity (%)
capacity utilization
| (%) | Emsy | Easy/TAC | Emsy | Easy/TAC |
Output (US$)
| Input measures | | | | |
e Tonnage n.a.
e Engine n.a.
power
e KW Days

n.a. = not applicable
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