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CHAPTER 6  PRODUCTION MODELS 

6.1 BASIC ASSUMPTION ABOUT THE EVOLUTION 
OF THE BIOMASS OF A NON EXPLOITED STOCK 

The production models (also called general production models, global models, sintetic models 
or Lotka-Volterra models) consider the stock globally, that is, they do not take into 
consideration the structure of the stock by age or size. 

The total biomass of a non exploited stock cannot grow beyond a certain limit. The value of 
that limit depends, for each resource, on the available space, on the feeding facilities, on the 
competition with other species, etc. In conclusion, it depends on the capacities of the 
ecosystem to maintain the stock. That size limit of the biomass will be designated by
Carrying Capacity, k.

The total biomass of a non exploited fishery resource has the tendency to increase with the 
time towards its carrying capacity, k, with a non constant absolute rate, air(Bt). The rate, 
air(Bt), is small when the biomass is small, increases when the biomass grows and is again 
small when the biomass gets close to the carrying capacity. Changes, including reductions, 
can occur in the biomass due to fluctuations of the natural factors, but, in any case, the 
tendency will always be an increase towards its carrying capacity. 

The instantaneous rates  air(Bt) or rir(Bt) are therefore not constant. 

In order to formulate the basic assumption of a model for the evolution of the non-exploited 
biomass, one can adopt a function H of Bt , as was done with the basic assumption of the 
individual growth,  and define it:

r)]B(H)k(H[rir t
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−=−  with r constant  

r is  the  intrinsic growth rate of Bt. The relative instantaneous rate, rir(Bt), of the non-
exploited biomass can therefore be deduced as. 
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6.2 EXPLOITED STOCK 

When the stock is exploited, the rate of variation of the biomass due to all causes, that is, the 
total rir(Bt), can be  separated into two components: natural rir(Bt) due to all causes but not 
fishing and  rir(Bt) due to fishing: 

( ) ( ) ( )fishingtnaturalttotalt BrirBrirBrir +=
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In an interval of time Ti and with a constant fishing level, it will be: 

( ) == ifishingt FBrir constant

and:
( ) ( ) ifishingnaturalttotalt FBfBrir −=

   

The natural rate, rir(Bt), (which, according to the basic assumption of the natural evolution of 
the biomass, B, is supposed to be a function of the biomass, Bt) is usually designated as f(Bt).

Comments

1. Historically, the production models were the first to be used on the analyses of the 
evolution of biological populations, Lotka-Volterra (1925-1928). 

2. Schaefer (1954) applied  a production model to a fish stock subject to fishing. 

3. The carrying capacity, k , has been designated in fisheries biology, as B∞ and also as Bo.
Currently the symbol k is preferred (notice that this symbol is different from the symbols, 
K, of the individual growth models and of the relation S-R). 

4. The basic assumption about natural rir(Bt) previously presented, can be mathematically 
formulated in different ways.. 

5. The production models can only be used in fisheries to analyse the effects of fishing level 
changes and not of changes in the exploitation pattern, because  the models consider the 
biomass in a global way and do not take into consideration the age or size stock 
structure.

6.3  VARIATION OF THE BIOMASS  IN THE INTERVAL T i

The “total”, “natural” and “by fishing” instantaneous rates can be approximated by the 
relative mean rates, rmr(Bt). In fact, it can be said that rmr(Bt) ≅ rir(Bt) relative to the  
meanBi. (This relation is exact in the case of the exponential model) . 

The following general expression in terms of instantaneous rates  

( ) ( ) ifishingnaturalttotalt FBfBrir −=

can then be approximated, replacing the rates by  the respective mean rates in relation to the 
mean biomass during the interval Ti:

( ) ( ) iit FBfBrmr −= in relation to Bi

or

( ) fishingii
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The variation of the biomass due to all causes of mortality is then decomposed into the 
variation due to natural mortality and the variaton due to the fishing mortality:

fishingiiiitotali YT.B).B(fB −≅∆

The value of the biomass, Bi+1, at the end of the interval Ti is:

( ) iiiii1i YT.Bf.BBB −+=+

6.4 LONG TERM PROJECTIONS (LT)
 (EQUILIBRIUM CONDITIONS) 

The situation of equilibrium at the interval Ti implies that the biomass of the stock, at the end 
of the interval Ti (usually 1 year) is equal to the biomass at the beginning of the same interval, 
Bi+1=Bi, or the  variation of the biomass is zero ∆Bi=0.

Bringing the instantaneous rates closer to the mean rates, when the stock is in equilibrium, 
during Ti, then ∆Bi=0 and rmr(Bt)=0.  Thus, a equilibrium condition will be:  

( ) ii FB.f =

Then the equilibrium conditions,  referred to with the subindex E are:  

( ) EE FBf =

T.B.FY EEE =

6.5 BIOMASS AND FISHING LEVEL INDICES 

In practice the values ofBi e Fi are not always available and so, one has to look for  
quantities that are associated with the biomass, B, and the fishing level, F, preferably 
quantities (called indices) proportional to those parameters.   

Let U  be an  index of the mean biomass,B, then during the interval of time T we have: 

B.qU =

and  let  f be the index of fishing mortality coefficient, Fi, then during the interval of time T: 

T.F.constf =

from  T.B.FY =  and B.qU =

will have ( ) T.U.q/1.FY =
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thus, to have U.fY =    is necessary to be
FT.

q

1
f =

A very common index ofB is the catch per unit effort (cpue). The index of F will be the 
fishing effort in an appropriate unit, in order to be  proportional to the fishing level.

The constant of proportionality, q , is designated as the capturability or catchability 
coefficient and indicates the fraction of the biomass that is caught by unit of effort. 

6.6 BIOLOGICAL TARGET REFERENCE POINTS (TRP) 

Long term (or equilibrium) biological reference points can also be defined for these models. 

FMSY is the value of F that makes the long term capture, Y, maximum.

FMSY is different of Fmax. In fact FMSY maximizes the Catch in weight, while Fmax, maximizes 
the Catch in weight per Recruit. Notice that the value of Fmax cannot be calculated with 
production models, because the age structure of the stock and the recruitment, R are 
considered implicit in the basic assumptions of the model.  

The biological reference points depend on the basic assumptions of the model , therefore the 
value of FMSY of the structural models is different from the value of FMSY of the production 
models because the relation S-R, as well as the natural mortality coefficient, M, are implicit in 
the production models. 

To compare results of the two types of models one has to take into consideration that each 
model is based on different basic assumptions.  

For the same reasons, F0.1 of the production models is a different concept to F0.1 of the 
structural models. 

F0.1, B0.1 and Y0.1 of the productions models could be calculated directly from the basic 
assumptions but it is preferable  to obtain those characteristics using the constant relations 
between the reference points 0.1 and MSY (Cadima, 1991). 

6.7 TYPES OF PRODUCTION MODELS 

The most common production models in fishery stocks assessment are the Schaefer model 
(1954), the Fox model (1970) and the Pella and Tomlinson model (1969), the latter is also 
designated as GENPROD (name of the computer program that the authors elaborated for the 
application of their model). Fox mentions that the elaboration of his model was based on an 
idea from Garrod (1969). 

Each one of these models  corresponds to one particular function of H(Bt ) of the basic 
assumption. 
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6.7.1 SCHAEFER MODEL  

The function H(Bt) of the basic assumption of this model is: 

( ) 1
tt BBH −=

Relative instantaneous rate, rir(Bt), due to natural causes 

The  general basic assumption of the Schaefer model is: 

r]Bk[rir 11
natural −=− −−

and then, the instantaneous rate of variation of the “natural” biomass can be mathematically 
deduced  as:
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Equilibrium conditions 

The relative mean rate , rmr(Bt), in relation toB,  will be: 
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and, as in equilibrium, ( ) EE FBf = ,  the equilibrium conditions can then be expressed as: 

)r/F1.(kB EE −=

iEEE T.B.FY =

Notice thatBE is linear with FE and for FE =0 ,BE = k = carrying capacity = virgin biomass. 

Graphically, the relation betweenBE and FE shows a straight line with interception equal to k 
and slope equal to -k/r. 

Target point, FMSY

The Schaefer equilibrium conditions during one year are: 

YE = FE .BE BE = k . (1 - FE / r) 

Y maximum will occur when dY/dF=0, then derivating the previous expression of YE in order 
to F and making it equal to zero the target point FMSY will be:

Target point, FMSY (Schaefer) 

FMSY = r/2  BMSY = k/2  YMSY = rk/4 
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In fact, the derivative 

  dY/dF = B + F (dB/dF) 

or  dY/dF = k(1- F/r) + F (- k/r) = k - 2k.F/r 

and then, FMSY = r/2 

the relations of the remaining characteristics are obtained by substituting this result in the 
equilibrium conditions. 

Target point, F0.1

The ratio between F0.1 and FMSY is constant and equal to 0.90, so: 

Target point, F0.1 (Schaefer)

F0.1/ FMSY = 0.90 B0.1 /BMSY = 1.10 Y0.1 /YMSY = 0.99 

In fact, as seen before, dY/dF = k - 2k.F/r and, as F0.1 corresponds to dY/dF = 0.1k, so:

  0.1k = k - 2kF0.1/r

or   0.90 = 2 F0.1/r

or   0.90 =F0.1/FMSY

Abundance indices,U, and fishing level indices, f

As seen in Section 6.5, the  indicesU and f, are assumed to be proportional toB and F, so 
the equilibrium condition can be written as: 

UE = a + b.fE and YE = fE .UE (a,b are constants). 

The target point, fMSY, is obtained by equating to zero the derivative of YE in order to fE:

Target point, fMSY (Schaefer)

  fMSY = -a/(2b) UMSY = a/2 YMSY = - a2/(4b)

In the production models, the ratios f0.1/fMSY eU0.1/UMSY are equal to the ratios F0.1/FMSY

and B0.1/BMSY. With Schaefer's model we will then have: 

Target point, f0.1 (Schaefer)

f0.1/ fMSY = 0.90 U0.1 /UMSY = 1.10 Y0.1 /YMSY = 0.99 
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From U = q.B, and FT=q.f , the previous expressions of FMSY and fMSY , one can also obtain 
the relations between the parameters k and r and the coefficients a, b and q: 

  k = a/q r = - aq /(bT)  kr = - a2/(bT)

When the value of the interval T is 1 year, T will not appear in these expressions. It is 
possible to calculate the parameters k and r, knowing the values of the capturability 
coefficient, q. Notice that the product k.r does not depend on q. 

6.7.2 FOX MODEL  

For the Fox production model the function H(Bt) will be: 

  H(Bt ) = ln(Bt)

Relative instantaneous rate, rir(Bt), due to natural causes 

For the Fox model, from the expression of the general basic assumption, we have: 

  rirnatural [ lnk -lnB ] = - r 

and then, as previously referred to, the instantaneous rate of variation of the “natural” biomass 
can be mathematically deduced from that expression and written as:  

( )tnaturalt B/kln.r)B(rir =

Equilibrium conditions 

The equilibrium condition of the biomass can be expressed by:  

( ) EE FB/kln.r =

Then, the equilibrium conditions will be: 

r/F
E

Ee.kB −= iEEE T.B.FY =

Notice that ( )EBln  is linear with FE and that, for FE = 0,BE = k = virgin biomass or carrying 

capacity. The relation between ln( EB ) and FE is linear, with interception equal to lnk,  and 
slope = -1/r. 

Target point, FMSY

Derivating YE in order to F and equating the derivative to zero, FMSY, BMSY and YMSY will be: 

FMSY = r BMSY = k/e YMSY = rk/e 
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Target point, F0.1

In this model the ratio between F0.1 and FMSY is constant and equal to 0.7815. So, it can be 
written:

F0.1/ FMSY = 0.7815 B0.1 /BMSY = 1.2442 Y0.1 /YMSY = 0.9724 

These results are obtained in a similar way to those for the Schaefer model. The equation to 
solve will be:

( ) 1.0r/F1.e 1.0
r/F 1.0 =−−

which requires iterative methods to find the value of F0.1/r. The solution is F0.1/r = 0.7815 that 
is igual to F0.1/FMSY.

Abundance indices, U , and fishing level indices, f

For the Fox model the equilibrium condition can be written as: 

Ef.ba
E eU +=  or  lnUE = a + b.f  (a,b are constants) 

and
  YE = fE .UE

Target point, fMSY

The target point , fMSY , can be obtained by equating to zero the derivative of YE in order to fE:

  fMSY = -1/b UMSY = ea/e YMSY = - ea/be

Target point, f0.1

In the Fox model, the ratios f0.1/fMSY etU0.1 /UMSY are equal to F0.1/FMSY andB0.1 /BMSY

and then:

 f0.1/ fMSY = 0.7815 U0.1 /UMSY = 1.2442 Y0.1 /YMSY = 0.9724 

From B.qU = and from FT=q.f ,  the following can be deduced: 

  k = ea/q. r = - q /(bT)  kr = - ea/(bT)

When the value of the interval T is one year, T will not appear in those expressions. The last 
expression allows the calculation of the product k.r. To calculate k and r separately it is 
necessary to know the value of the coefficient of capturability, q.
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6.7.3 PELLA AND TOMLINSON MODEL  (GENPROD) 

For this production model the function H(Bt) will be:

( ) p
tt BBH −=

Relative instantaneous rate, rir(Bt ), due to natural causes 

The expression of the basic assumption of the GENPROD model, will be : 

( ) rBkrir pp
natural −=− −−

therefore

( ) ( ) ])B/k(1.[p/rBrir p
naturalt

−−=

Equilibrium conditions 

In equilibrium conditions, FE will be:   

FE = f(BE) = (r / p) .[ 1 - (k /B)-p]

Then, the equilibrium conditions can be expressed as: 

p/1
EE ]r/F.p1.[kB −= iEEE T.B.FY =

Notice that the relation between 
p

E )B( and FE is linear with intercept equal to k and the slope 
equal to -pk/r, in conclusion, for FE = 0,BE = k = carrying capacity=virgin biomass.  

Target point, FMSY

Derivating YE in order to F and equating to zero, we will have: 

Target point, FMSY  (Pella and Tomlinson)
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Target point, F0.1

The ratio between F0.1 and FMSY is constant for each value of p and can be obtained in a 
similar way to the previous cases. The equation to solve by iterative methods is: 

X= 1 - 0.1.[1-p/ (1+p).X]1/p where  X=F0.1/ FMSY

And also B0.1/ BMSY = [1+p - p./ (1+p).X](1+1/p)

  Y0.1/ YMSY = [F0.1/ FMSY].[ B0.1/ BMSY]
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The following Table summarizes the most important results: 

 parameter p F0.1/FMSY B0.1/BMSY Y0.1/YMSY

Fox 0.0 * 0.781521 1.244182 0.972355 

 0.2 0.819995 1.193441 0.978616 

 0.4 0.848355 1.158613 0.982915 

 0.6 0.869888 1.133469 0.985991 

 0.8 0.886657 1.114599 0.988268 

Schaefer 1.0 * 0.900000 1.100000 0.990000 

 1.2 0.910816 1.088420 0.991350 

 1.4 0.919724 1.079045 0.992424 

 1.6 0.927165 1.071323 0.993293 

 1.8 0.933457 1.064867 0.994008 

 2.0 0.938835 1.059401 0.994602 

 2.2 

2.4

0.94377

0.947516

1.054720

1.050674

0.995704

0.995531

 2.6 0.951059 1.047146 0.995898 

 2.8 0.954188 1.044045 0.996216 

 3.0 0.956969 1.041302 0.996494 

Notice that (F0.1/FMSY) + (B0.1/BMSY) ≅ 2. From this result it can be said that when F0.1 is 
smaller than FMSY by a certain percentage, the equivalent relation of the biomasses will be 
bigger by the same percentage. 

Abundance indices, U , and fishing level indices, f

For the Pella and Tomlinson model, the equilibrium conditions can be written as: 

U = (a + b.f)1/p or U p= (a + b.f) (a,b are constants). 

  YE = fE .UE

The target point, fMSY , can be obtained by equating to zero the derivative of YE in order to fE:

Target point, fMSY  

fMSY = -a/(b(1+1/p)) 
p/1

MSY )]p1/(a[U +=  YMSY = -(p/b).(a/(1+p))(1+1/p)

The ratios f0.1/fMSY and U0.1/UMSY will be equal to the ratios F0.1/FMSY and B0.1/BMSY,
respectively. These last ratios can be observed in the previous Table. 

The values of k, r e kr can also be obtained fromU = q.B , and from F.T=q.f  
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k =  a1/p/q r/= - apq /(bT) kr = (-p/bT)a(1+1/p ) 

When the size of the interval is one year, T will not appear in those expressions. The last 
expression in the previous table allows the calculation of the product k.r.The separate values 
of k and r can be calculated if the value of the coefficient of capturability, q is known.

Comments

1. The Pella and Tomlinson model has been criticized in its practical application because 
sometimes it produces better adjustments with non reliable values of the parameter p, 
resulting in extremely high values of FMSY.

2. It is also important to notice that p, the additional parameter of that model, is written with 
different symbols depending on the authors. 

3. The values of the biological reference points relative to F, estimated by Schaefer's model, 
are more restrictive than the corresponding values estimated by the Fox or GENPROD 
production models. 

6.8 SHORT TERM PROJECTIONS

6.8.1 GENERAL METHODS 

Long term projections have been estimated in fisheries since the 50's using these production 
models but in practice, it was only in the 90's that methods were developed for short term 
projections. These methods are based in the Schaefer, Fox and Pella et Tomlinson expressions 
for the non-exploited biomass. 

By applying production models as referred to in Section 6.3, the variation of the biomass for 
1 year can be expressed, in a general way, as: 

YT.B).B(fB fishingiiiitotali −≅∆

or    Bi+1=Bi +Bi.f(Bi ).Ti - Yi

where  Bi = biomass at the beginning of the year i 

   Bi+1= biomass at the end of the year i 

iB = mean biomass during the year i 

   Yi = catch in weight during the year i 

)B(f i is the approximation of the mean rate of  "natural" variation  of the biomass, relative to 

iB during the year i. 

The expression of the variation of the biomass is the basis for most of the methods for 
short term projections. Computer programs were prepared for the application of these 
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methods, which also determine long term projections, biological reference points, etc. Some 
examples are CEDA and BYODIN, Rosenberg et al. (1990), and  Punt and Hilborn (1996) 
respectively.

Theoretically those methods suppose thatBi et Yi are known for a period of years. The 
function f(Bi ) can be that of Schaefer, Fox or  Pella and Tomlinson.   

To determine the parameters r and k it would be necessary to adopt one of the expressions of 
f(Bi) and the value B1 in the first  interval of the period of years. 

In practice, the values of the annual mean biomasses are not available, only the associated 
quantities, usually assumed to be proportional to the mean biomasses, that is indices Ui=q.Bi

so, the parameters to be estimated are r, k and q (see Chapter 7). 

The object function, of the least squares method, to be minimized is Φ = Σ (Uobs - Umod)
2  that 

is, the sum of the squares of the residuals between the observed values and the estimated 
values (designated by error of the process). However, when the  the relation U=q.Bi is not 
determinant, but it is supposed to have  an error, designated as observation error, then it is 
preferable to adopt the object function Φ = Σ (lnUobs- lnUmod)

2 (Punt and Hilborn, 1996). 

6.8.2  PRAGER METHOD (1994) 

Prager (1994) adopted the Schaefer model and used the relative instantaneous rate of the 
variation of the biomass in the initial basic expression ( not  the mean rate approximation) that 
is,

  rir(Bt) = r[1 - Bt / k]. Bt - Fi. Bi

He integrated this expression during the year i and obtained the relation between Bi+1 and Bi

He also calculated the mean biomass,Bi , integrating Bt during the year i. Finally the catch in 
weight is calculated as:

  Yi= FiBi . 

The estimation of the parameters can then be made using the least squares method. The 
computer program prepared for this estiamtion is called ASPIC (Prager, 1995). 

6.8.3  YOSHIMOTO AND CLARKE METHOD  (1993) 

The short term projections are derived from the basic assumption of the production models,  

( ) ( ) fishingtnaturalttotalt )F(BrirBrir −=

or, representing   rir(Bt) natural by  f(Bt):

( ) ( ) fishingtttotalt )F(BfBrir −=
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Integrating this expression during the interval of time Ti and considering that: 

  rir(Bt) = air ln(Bt)  and  Ft = Fi  =constant: 

ñ
+

=
1ti

ti

t dt)B(lnair

 ln (Bi+1) - ln (Bi) = f(Bt) cumi - Fi Ti = f(Bt) Ti - Fi Ti

For the next interval Ti+1 (which is the interval where one intends to project the stock and the 
catch):
 ln (Bi+2) - ln (Bi+1) = f(Bt+1).Ti+1 - Fi+1.Ti+1

Calculating the simple arithmetic mean of the two previous expressions and considering that : 

 1/2[ln (Bi+1) + ln (Bi+2)] - 1/2[ln (Bi) + ln (Bi+1)] = ln(B*i+1) - ln(B*i)
            
whereB*

i is the geometric mean of Bi and Bi+1, andB*
i+1 is the geometric mean of Bi+1 and 

Bi+2 ,

Therefore, the mean of the two expressions will be:  

 ln(B*i+1) - ln(B*i) = (1/2) {f(Bi) Ti + f(Bi+1) Ti+1 } - (1/2) {Fi Ti + Fi+1 Ti+1}

The natural rir(Bt) of the Fox model is, as mentioned before f(Bt) = r (lnk - lnBt), so the 
approximation, f(Bi) can be written as: 

  r[lnk- ln(B*
i)]

whereB*
i is the geometric mean of Bi and Bi+1.

Therefore, the previous expression relative to the geometric means, can be re-written as: 

 ln (B*i+1) - ln (B*i) =

 = (1/2) { r(lnk- ln(B*i)) Ti + r(lnk- ln(B*i+1)) Ti+1 } - (1/2) {Fi Ti + Fi+1 Ti+1}

To simplify, and as the intervals of Ti are usually constant (and equal to one year), one can 
use T instead of Ti and Ti+1 and the expression will be: 

 ln(B*i+1) - ln (B*i) = (rT/2) { lnk- ln(B*i) + lnk- ln(B*i+1) }- (1/2) {Fi T + Fi+1 T} 

or reorganizing the terms of this expression, it will be: 

(1 + rT/2) . ln (B*i+1) = rT lnk + (1- rT/2) ln(B*i)) - (T/2) (Fi + Fi+1 ) 
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Finally, the expression can be written as follows: 

ln (B*i+1) = 2rT/(2+rT) . lnk + (2- rT)/(2+rT) . ln(B*i)) - T/(2+rT) . (Fi + Fi+1 ) 

As seen in the long term projections (or equilibrium), it is more common to have biomass 
indices,U, and fishing level indices, f, rather thanB et F values. 

Using the indices U = qB  and qf = FT  

the Yoshimoto and Clarke expression (1993) can be written as :  

( )1iii1i ff
rT2

q
Uln.

rT2

rT2
)qkln(.

rT2

rT2
Uln ++ +

+
−

+
−+

+
=

It is useful, in practice, to write this expression  in the following way: 

 lnUi+1 = b1 + b2 . lnUi + b3 . (fi + fi+1)

where:

)qkln(
rT2

rT2
b1 +

=

rT2

rT2
b2 +

−=

rT2

q
b3 +

−=

From the coefficients b1, b2 and b3 one can estimate the parameters q, r and k (keep in mind 
that in the long term projections it was not possible to obtain q separately) as : 

q = -4b3/(1+b2) 

 rT = 2(1-b2) / (1+b2)

  k = ((1+b2)/(-4b3)).e
b1/(1-b2)

   
Comments

1. The fact of having developed, in this manual, the Yoshimoto and Clarke model for the 
short term projections, does not mean a special preference for this model over other 
models for the short term projections.  

2. Yoshimoto and Clarke designated their expression by the integrated expression of Fox, 
as it is based on the direct integration of the basic assumption. 
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3. Notice that f (Bi) and f (Bi+1) are, in general, different from f (Bi) and f (Bi+1).
However, the means of f( ) may be considered equal to  f(means of B) if another type of 
mean of B is used. 

• Definition ofBi
* through a function

Consider n values Bi and the simple arithmetic mean of  f(Bi), that is, 

  f(B) =(1/n).Σ f(Bi)

• LetB* be a value such as f(B*) =f(B) . 

B* is  designated as the mean of Bi  through  the function f. 

EXAMPLES

4. If f(B) = ln(B) then ln(B*) = (1/n).Σln(Bi) and B* is the mean of the values Bi through 
the logarithm function, also designated as geometric mean of the values Bi

5. If  f(B) = B-1 then  (B*)-1 = (1/n).Σ(Bi)
-1 and B* is designated as harmonic mean of the 

values Bi

6. If f(B) = B-p then  (B*)-p = (1/n).Σ(Bi)
-p andB* is designated as the mean of order (-p) 

of the values Bi . 

7. Another approach (Cadima & Pinho, 1995) of the integrated equation of Fox can be: 

 lnUi+1 = b1 + b2 . lnUi + b3 . (fi + fi+1)

 where:  

b1= (1-e-rT) ln(qk)   2

1

b1

b

23

2 e
blnb2

b1
k −⋅

⋅⋅−
−=

             b2= e-rT                           r T= -  lnb2

b3= - q(1-e-rT) / (2rT)   
2

3
2 b1

b
bln2q

−
⋅⋅=

This last approach of the integrated Fox model can be deduced from the basic assumption of  
the model, during the interval Ti:

( ) ( ) fishinginaturalFoxttotalt )F(Blnkln.rBrir −−=

Taking into account the properties of rates and assuming r, k and Fi constant during Ti

interval, the  absolute instantaneous rate of  [r.(lnK-lnBt)-Fi] will be: 

 air[r.(ln k - lnBt)-Fi] = -r.air (lnBt)=-r.rir(Bt)

 So substituting rir (Bt) by the Fox expression mentioned before, one can write: 

 air[ r.(ln k - ln Bt) - Fi] = -r. [r.(ln k - ln Bt) - Fi ] 
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or r
]F-)Bln-kr.(ln[

]F-)Bln-kr.(lnair[

it

it −=

Finally, by the definition of rir the expression will be: 

 rir[ r.(ln k - ln Bt) - Fi ]= -r 

showing that [r.(ln k - ln Bt)-Fi] follows an exponential model, during the interval Ti with r 
constant.

So, the final value of (r.ln k - r.ln Bt - Fi), can be expressed as: 

 (r.ln k - r.ln Bi+1 - Fi) = (r.ln k - r.ln Bi - Fi). e
-r.Ti

or
 ln Bi+1 = (1- e-r.Ti).ln k + e-r.Ti.ln Bi - (1- e-r.Ti ).Fi/r

At the following interval, Ti+1, the expression would be: 

 ln Bi+2 = (1- e-r.Ti+1).ln k + e-r.Ti+1.ln Bi+1 - (1- e-r.Ti+1 ).Fi+1/r

then, the mean of the two previous expressions, considering Ti=Ti+1=T, will be: 

 ln Bi+1
* = (1- e-r.T).ln k + e-r.T. lnBi

*- ((1- e-r.T ) / 2r).(Fi+Fi+1)

where Bi
* = geometric mean of Bi and Bi+1 and Bi+1

* = geometric mean of Bi+1 and Bi+2.

Using the indicesUi = q.Bi
*  and qfi = FiT  the expression will be: 

  lnUi+1 = (1- e-r.T).ln (qk) + e-r.T. lnUi - ((1- e-r.T )/2rT) .q(fi+fi+1)

which is the initial expression  of comment nº 7.  
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CHAPTER 7  ESTIMATION OF PARAMETERS 

In the previous chapters, several models used in stock assessment were analysed, the 
respective parameters having been defined. In the corresponding exercises, it was not 
necessary to estimate the values of the parameters because they were given. In this chapter, 
several methods of estimating parameters will be analysed. In order to estimate the 
parameters, it is necessary to know the sampling theory and statistical inference. 

This manual will use one of the general methods most commonly used in the estimation of 
parameters – the least squares method. In many cases this method uses  iterative processes, 
which require the adoption of initial values. Therefore, particular methods will also be 
presented, which obtain estimates close to the real values of the parameters. In many 
situations, these initial estimates also have a practical interest. These methods will be 
illustrated with the estimation of the growth parameters and the S-R stock-recruitment 
relation.

The least squares method is presented under the forms of Simple linear Regression, multiple 
linear model and non linear models (method of Gauss-Newton). 

Subjects like residual analysis, sampling distribution of the estimators (asymptotic or empiric 
Bookstrap and jacknife), confidence limits and intervals, etc., are important. However, these 
matters would need a more extensive course. 

7.1 SIMPLE LINEAR REGRESSION – LEAST SQUARES METHOD  

Model

Consider the following variables and parameters: 

 Response or dependent variable  = Y 
 Auxiliary or independent variable             = X
 Parameters     = A,B 

 The response variable is linear with the parameters 

Y = A+BX 

Objective

The objective of the method is to estimate the parameters of the model, based on the observed 
pairs of values and applying a certain criterium function (the observed pairs of  values are 
constituted by selected values of the auxiliary variable and by the corresponding observed 
values of the response variable), that is : 
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Observed values             xi and yi for each pair i, where i=1,2,...,i,...n 
Values to be estimated A and B and (Y1,Y2,...,Yi,...,Yn)  for the n observed pairs of
    values 

  (Estimates values: Â and 
∧
B  (or a and b) and ( 1, 2 ,.., i .., n)

Object function (or criterium function) 

( )
2n

1i
ii Yyä

=

−=Φ

Estimation method 

In the least squares method the estimators are the values of A and B which  minimize the 
object function. Thus, one has to calculate the derivatives ∂Φ/∂A e ∂Φ/∂B, equate them to 
zero and solve the system of equations in A and B. 

The  solution of the system can be presented as : 

x = (1/n).äx    y = (1/n).äy

Sxx = ä(x - x )(x - x )  Sxy = ä(x - x )(y - y )

b = Sxy/Sxx   a = y  - b. x

Notice that the observed values y, for the same set of selected values of X, depend on the 
collected sample. For this reason, the problem of the simple linear regression is usually 
presented in the form : 

 y = A + BX + ε

where ε is a random variable with expected value equal to zero and variance equal to σ2.
So, the expected value of  y will be Y or A+BX and the variance of y will be equal to the 
variance of ε.

The terms deviation and residual will be used in the following ways: 

Deviation is the difference between yobserved and ymean ( y ) i.e.,    deviation = (y- y ) 

while

Residual is the difference between yobserved and Yestimated (
∧
Y ), i.e.,  residual = (yi - iY

∧
).

To analyse the adjustment of the model to the observed data, it is necessary to consider the 
following characteristics: 
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Sum of squares of the residuals: 

( )ä −=
2

residual ŶySQ

This quantity indicates the residual variation of the observed values in relation to  the 
estimated values of the response variable of the model, which can be considered as the 
variation of the observed values that is not explained by the  model.

Sum of squares of the deviations of the estimated values of the response variable of the 
model:

( )ä −=
2

elmod yŶSQ

This quantity indicates the variation of the estimated values of the response variable of the 
model in relation to its mean, that is the variation of the response variable explained by the 
model.

Total sum of  squares of the deviations of the observed values equal to:

( )ä −=
2

residual yySQ

This quantity indicates the total variation of the observed values  in relation to the mean 

It is easy to verify the following relation: 

SQtotal = SQmodel + SQresidual

or

total

residual

total

elmod

SQ

SQ

SQ

SQ
1 +=

or  1 = r2 + (1 - r2)

where

r2 (coefficient of determination) is the percentage of the total variation that is
explained by the model and  

1-r2 is the percentage of the total variation that is not explained by the model. 
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7.2 MULTIPLE LINEAR REGRESSION – LEAST SQUARES 
METHOD

Model

Consider the following variables and parameters: 

 Response or dependent variable  = Y 
 Auxiliary or independent variables = X1, X2,..., Xj,..., Xk

 Parameters    = B1, B2,..., Bj,..., Bk

The response variable is linear with the parameters 

 Y = B1X1+B2X2+... + BkXk = Σ BjXj

Objective

The objective of the method is to estimate the parameters of the model, based on the observed 
n sets of values and by applying a certain criterium function (the observed sets of values are 
constituted by selected values of the auxiliary variable and by the corresponding observed 
values of the response variable), that is: 

Observed values             x1,i x2,i ,..., xj,i,.., xk,i and yi for each set i, where i=1,2,...,i,...n 

Values to be estimated   B1,B2,...,Bj,...,Bk et (Y1,Y2,..., iY ,..., nY )

The estimated values can be represented by : 

1B
∧

, 2B
∧

,..., jB
∧

,..., kB
∧

(ou b1,b2,...,bj,...,bk) et 1Y
∧

, 2Y
∧

,..., iY
∧

,..., nY
∧

Object function (or criterium function) 

Estimation method 

In the least squares method the estimators are the values of Bj which minimize the object 
function.

As with the simple linear model, the procedure of minimization requires equating the partial 
derivatives of Φ to zero in order to each parameter, Bj,  where j=1, 2, ..., k.  The system is 
preferably solved using matrix calculus. 

2
i

n

1i
i )Yy( −=Φ ä

=
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Matrix version 

Matrix =)k,n(X Matrix of the n observed values of each of the k auxiliary 

variables

Vector =)l,n(y Vector of the n observed values of the response variable 

Vector =)l,n(Y Vector of the values of the response variable given by the 

model (unknown) 

Vector =)l,k(B  Vector of the parameters 

Vector B̂  or =)l,k(b Vector of the estimators of the parameters 

Model

 Y(n,1) = X(n,k) . B(k,1) ou Y=X.B+ε

Object function 

Φ(1,1) = (y-Y)T.(y-Y) ou Φ(1,1) = (y-X.B)T.(y-X.B)

To calculate the least squares estimators it will suffice to put the derivative dΦ/dB of Φ in 
order to vector B, equal to zero. dΦ/dB is a vector with components ∂Φ/∂B1, ∂Φ/∂B2, ..., 
∂Φ/∂Bk. Thus: 

 dΦ/dB(k,1) = -2.XT.(y-X.B) = 0 

or XTy - (XT.X). B = 0 

and b = 
∧
B  = (XT.X)-1 . XTy

The results can be written as: 

b(k,1) = (XT.X)-1.XTy

)1,n(Y
∧

 = X.b or )1n(Y −

∧
= X (XT.X)-1.XT y

 residuals(n,1) = (y-
∧
Y ) 

Comments

In statistical analysis it is convenient to write the estimators and the sums of the squares using 
idempotent matrices. Then the  idempotent matrices L, (I - L) and (I - M) with  
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L(n,n) = X (XT . X)-1 . XT, I = unity matrix and M(n,n) = mean(n,1) matrix = 1/n [1] where [1] is a  
matrix with all its elements equal to one, are used.  

It is also important to consider the sampling distributions of the estimators assuming that the 
variables εi are independent and have a normal distribution. 

A summary of the main properties of the expected value and variance of the estimators is 
presented :

 E[c1+c2.u] = c1+c2.E[u] V[c1+c2.u] = c2.V[u].c2
T

1 –  Random variable, ε   εn. (independent) 
 Expected value of ε    E[ε] = 0. 
 Variance of ε    V[ε](n.n) = E[ε.εT]=I.σ2

2 –  Observed response variable y  y = Y+ε
 Expected value of y   E[y] = Y = X.B. 
 Variance of y       V[y](n.n) = V[ε](n.n) = I.σ2

3 –  Estimator of  B          B̂ = (XT.X)-1.XT.y

 Expected value of B̂     E[ B̂ ] = B 

 Variance of B̂      V[ B̂ ](k.k) = (XT.X)-1.σ2

4 –  Estimator of Y of the model  
∧
Y = X. B̂  = L.y 

 Expected value of 
∧
Y     E[

∧
Y ] = Y. 

            Variance of 
∧
Y     V[

∧
Y ] = L.σ2

5 –  Residual e     e = y-
∧
Y = (I-L).y 

 Expected value of e    E[e] = 0 
 Variance of e                 V[e] = (I-L).σ2

6 –  Sum of squares 

6.1 -  Residual Sum of squares = SQ residual(1.1) = (y-
∧
Y )T(y-

∧
Y ) = yT (I-L)y

This quantity indicates the residual variation of the observed values in relation to the 
estimated values of the model, that is, the  variation not explained by the model. 

6.2 -  Sum of squares of the deviation of the model = SQ model(1.1) = (
∧
Y - y )T(

∧
Y - y ) = yT

(L-M)y

This quantity  indicates the variation of the estimated response values of the model in relation 
to the mean, that is, the  variation explained by the model.
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6.3 - Total Sum of the squares of the deviations = SQ total(1.1) = (y- y )T(y- y ) = yT (I-M) y 

This quantity indicates the total variation of the observed values in relation to the mean. 
It is easy to verify the following relation: 

 SQtotal = SQmodel + SQresidual or 

total

residual

total

elmod

SQ

SQ

SQ

SQ
1 +=

or 1 = R2 + (1 - R2)

where:   

R2 is the percentage of the total variation that is explained by the model. In matrix terms it 
will be:  

 R2 = [yT(L - M)y].[ (yT(I - M)y]-1

 1-R2 is the percentage of the total variation that is not explained
                            by the model. 

The ranks of the matrices (I-L), (I-M) and (L-M) respectively equal to (n-k), (n-1) and (k-1), 
are the degrees of freedom associated with the respective sums of squares. 

7.3 NON-LINEAR MODEL –  METHOD OF GAUSS-NEWTON – 
LEAST SQUARES METHOD 

Model

Consider the following variables and parameters: 

 Response or dependent variable = Y 

 Auxiliary or independent variable = X

 Parameters     = B1,B2,...,Bj,...,Bk

The response variable is non-linear with the parameters 

 Y = f(X;B) where B is a vector with the components B1,B2,...,Bj,...,Bk

Objective

The objective of the method is to estimate the parameters of the model, based on the n 
observed pairs of values and by applying a certain criterium function (the observed sets of 
values are constituted by selected values of the auxiliary variable and by the corresponding 
observed values of the response variable), that is: 
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Observed values    xi and yi for each pair i, where i=1,2,...,i,...n 

Values to be estimated B1,B2,...,Bj,..,Bk and (Y1,Y2,...,Yi,...,Yn) form the n pairs of observed 
values.

(Estimates  =  B̂ 1, B̂ 2,..., B̂ j,..., B̂ k or b1,b2,...,bj,...,bk and 
∧
Y 1,

∧
Y 2,...,

∧
Y i,...,

∧
Y n)

Object function or criterium function 

Estimation criterium 

The estimators will be the values of Bj for which the object function is minimum. 
(This criterium is called the least squares method). 

Matrix version 

It is convenient to present the problem using matrices.  
So:

Vector X(n,1) = Vector of the observed values of the auxiliary variable 

Vector y(n,1) = Vector of the observed values of the response variable 

Vector Y(n,1) = Vector of the values of the response variable given by the
                       model 

Vector B(k,1) = Vector of the parameters 

Vector b(k,1) = Vector of the estimators of the parameters 

Model
 Y(n,1) = f(X; B) 

Object function 
Φ(1,1) = (y-Y)T.(y-Y)

In the case of the non linear model, it is not easy to solve the system of equations resulting 
from equating the derivative of the function Φ in order to the vector B, to zero. Estimation by 
the least squares method can, based on the Taylor series expansion of function Y, use iterative 
methods. 

Revision of the Taylor series expansion of a function

Here is an example of the expansion of a function in the Taylor series in the case of a function 
with one variable.

ä=Φ
=

n

1i

2
ii )Y.y(
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The approximation of Taylor means to expand a function Y = f(x) around a selected point, x0 ,
in a power series of x :

Y = f(x) = f(x0) +(x-x0).f’(x0)/1! + (x-x0)
2f’’(x0)/2! +... + (x- x0)

i f(i)( x0)/i!+...

where f(i)(x0) = ithderivatives of  f(x) in order to x, at the point x0.

The expansion can be approximated to the desired power of x. When the expansion is 
approximated to the power 1 it is called a linear approximation, that is,  

 Y ≅ f(x0) + (x-x0).f’(x0)

The Taylor expansion can be applied to functions with more than one variable. For example, 
for a function Y = f(x1,x2) of two variables, the linear expansion would be: 

2

)0(2)0(1
)0(22

1

)0(2)0(1
)0(11)0(2)0(1 x

)x,x(f
).xx(

x

)x,x(f
).xx()x,x(fY

δ
δ

−+
δ

δ
−+≈

which may be written, in matrix notation, as  

 Y = Y(0)+A(0).(x-x(0))

where Y(0) is the value of the function at the point x(0) ,with components x1(0) and x2(0) ,and 
A(0) is the matrix of derivatives whose elements are equal to the partial derivatives of f(x1,x2)
in order to x1,x2 at the point (x1(0), x2(0)).

To estimate the parameters, the Taylor series expansion of function Y is made in order to the 
parameters B and not to the vector X. 

For example, the linear expansion of Y = f(x,B) in  B1, B2, ..., Bk , would be: 

Y = f(x;B) = f(x; B(0)) + (B1-B1(0)) ∂ f /∂ B1 (x;B(0)) +..... +
 (B2-B2(0))∂ f /∂ B2 (x;B(0)) +...... + ..........+ (Bk-Bk(0)) ∂ f /∂ Bk (x;B(0))

or, in matrix notation, it would be :

 Y(n,1) = Y(0) (n,1) + A(0) (n,k) . ∆B(0) (k,1)

where

A = matrix of order (n,k) of the partial derivatives of the matrix f(x;B) in order to the vector 

B at the point B(0) and 

∆B(0) = vector (B - B(0)).

Then, the object function will be: 

Φ = (y-Y)T.(y-Y) = (y-Y(0) - A(0) .∆B(0) )
T(y-Y(0) - A(0) .∆B(0))
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To obtain the minimum of this function it is more convenient to differentiate Φ in order to the 
vector ∆B than in relation to vector B and put it equal to zero. Thus: 

 0 = -2(A(0))
T(y-Y(0) -A(0) .∆B(0)) = -2A(0)

T(y-Y(0) )+ 2 AT A(0) .∆B(0) 
          (0)

or ATA(0) .∆B(0) = AT (y-Y(0) )
(0)  (0) 

Therefore:

( ) ( ) ( )( ) ( ) ( )( )0
T
0

1

0
T
00 Yy.A.A.AB −=∆ −

If ∆B(0) is “equal to zero” then the estimate of B is equal to B(0).

(In practice, when we say “equal to zero” in this process, we really mean smaller than the 
approximation vector one has to define beforehand). 

If ∆B(0)  is not “equal to zero” then the vector B(0) will be replaced by : 

 B(1) =B(0) + ∆B(0) 

And the process will be repeated, that is, there will be another iteration with B(0) replaced by 
B(1) (and A(0) replaced by A(1) ). The iterative process will go on until the  convergence at the 
desired level of approximation is reached.  

Comments

1. It is not guaranteed that the process always converges. Sometimes it does not, some other 
times it is too slow (even for computers!) and some other times it converges to another 
limit!! 

2. The above described method is the Gauss-Newton method which is the basis of many 
other methods. Some of those methods introduce modifications in order to obtain a faster 
convergence like  the Marquardt method (1963), which is frequently used in fisheries 
research. Other methods use the second order Taylor expansion (Newton-Raphson 
method), looking for a better approximation. Some others, combine the two modifications.  

3. These methods need the calculation of the derivatives of the functions. Some computer 
programs require the introduction of the mathematical expressions of the derivatives, 
while others use sub-routines with numerical approximations of the derivatives.  

4. In fisheries research, there are methods to calculate the initial values of the parameters, for 
example in growth, mortality, selectivity or maturity analyses.  

5. It is important to point out that the convergence of the iterative methods is faster and more 
likely to approach the true limit when the initial value of the vector B(0) is close to the real 
value.

7.4 ESTIMATION OF GROWTH PARAMETERS

The least squares method (non-linear regression) allows the estimation of the parameters K, 
L∞ and to of the individual growth equations.
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The starting values of K, L∞ and t0 for the iterative process of estimation can be obtained by 
simple linear regression using the following methods :  

Ford-Walford (1933-1946) and Gulland and Holt (1959) Methods 

The Ford-Walford and Gulland and Holt expressions, which were presented in Section 3.4, 
are already in their linear form, allowing the estimation of K and L∞ with methods of simple 
linear regression on observed Li and Ti. The Gulland and Holt expression allows the 
estimation of K and L∞ even when the intervals of time Ti are not constant. In this case, it is 
convenient to re-write the expression as: 

∆L/TI = K .L∞ - K. L

Stamatopoulos and Caddy Method (1989) 

These authors also present a method to estimate K, L∞ and to (or Lo) using the simple linear 
regression. In this case the von Bertalanffy equation should be expressed as a linear relation 
of Lt against e-Kt.

Consider n pairs of values ti, Li where ti is the age and Li the length of the individual i where 
i=1,2, ...., n. 

The von Bertalanffy equation , in its general form is (as previously seen): 

 L∞ - Lt = (L∞- La). e
-K(t-ta)

It can be written as:  

 Lt = L∞ - (L∞- La). e
+Kta. e-Kt

The  equation has the simple linear form, y = a + bx, where: 

y = Lt a = L∞   b = - (L∞- La). e
+Kta

x = e-Kt

If one takes La = 0, then ta=to, but, if one considers ta = 0, then La = Lo.

The parameters to estimate  from a and b will be L∞, to or Lo.

The authors propose adopting an initial value K(0), of K, and  estimating a(0), b(0) and r2
(0) by 

simple linear regression between y (= Lt) and x(=ek
(0)). The procedure may be repeated for 

several values of K, that is, K(1) K(2),.... One can then adopt the regression that results in the 
larger value of r2, to which Kmax , amax and bmax correspond. From the values of amax, bmax and 
Kmax one can obtain the values of the remaining parameters. 

One practical process towards finding Kmax can be: 
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(i). To select two extreme values of K which include the required value, for example K= 0 
and K=2 (for practical difficulties, use K = 0.00001 instead of K = 0).

(ii). Calculate the 10 regressions for equally-spaced values of K between those two values 
in regular intervals.

(iii). The corresponding 10 values of r2 will allow one to select two new values of K which 
determine another interval, smaller than the one in (i), containing another maximum 
value of r2.

(iv). The steps (ii) and (iii) can be repeated until an interval of values of K with the desired 
approximation is obtained. Generally, the steps do not need many repetitions. 

7.5 ESTIMATION OF M – NATURAL MORTALITY COEFFICIENT 

Several methods were proposed to estimate M, and they are based on the association of M 
with other biological parameters of the resource. These methods can produce approximate 
results.

7.5.1 RELATION OF M WITH THE LONGEVITY, λt

Longevity: Maximum mean age t  of the individuals in a non-exploited population. 

Duration of the exploitable life: λ=−λ rtt   (Figure 7.1) 

    Nr = R

    tr    λt

Figure 7.1 Duration of the exploitable life 

Tanaka (1960) proposes "NATURAL" Survival Curves (Figure 7.2) to obtain the values of M 
from longevity. 
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A cohort practically vanishes when only a fraction, p, of the recruited individuals survives. In 
that case, λ⋅−

λ ⋅= MeRN , and it can be written: 

 p = λ−λ = .Me
R

N
 and so  M = -(1/λ).ln p

Different values of the survival fraction produce different survival curves of M in function 
of .

0

0.5

1

1.5

2

2.5

0 10 20 30
      λ  (years)

M

p=1%

p=5%

Survival curves of Tanaka

Figure 7.2 Survival curves by Tanaka 

Any value of p can be chosen, for instance, p = 5%, (i.e. one in each twenty recruits survives 

until the age  tλ) as variable value of the survival curves.

7.5.2 RELATION BETWEEN M AND GROWTH

Beverton and Holt Method (1959) 

Gulland (1969) mentions that Beverton and Holt verified that species with a larger mortality 
rate M also presented larger values of K. Looking for a simple relation between these two 
parameters, they concluded approximately that: 

2
K

M
1 ≤≤             for small pelagic fishes 

3
K

M
2 ≤≤   for demersal fishes 

Pauly Method (1980) 

Based on the following considerations: 

1. Resources with a high mortality rate cannot have a very big maximum size; 

2. In warmer waters, the metabolism is accelerated, so the individuals can grow up to a 
larger size and reach the maximum size faster than in colder waters. 
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Based on data of 175 species, Pauly adjusted multiple linear regressions of transformed 
values of M against the corresponding transformed values of K , ∞L  and temperature, T, and 
selected one that was considered to have a better adjustment, that is, the following empirical 
relation:

°++−−= ∞ Tln463.0Kln6543.0Lln0279.00152.0Mln

with the parameters expressed in the following units: 

 M = year-1 

∞L = cm of total length 
 K = year-1 

=T  surface temperature of the waters in  C

Pauly highlights the application of this expression to small pelagic fishes and crustaceans. 
The Pauly relation uses decimal logarithms to present the first coefficient different from the 
value -0.0152 which was given in the previous expression, written with natural logarithms.  

7.5.3 RELATION BETWEEN M AND REPRODUCTION

Rikhter and Efanov Method (1976) 

These authors analysed the dependency between M and the age of first (or 50 percent)  
maturity. They used data from short, mean and long life species, and suggested the following 
relation  of M with the, tmat, age of 1st  maturity: 

            (Units) 

( ) 155.0
t

521.1
M 720.0

%50mat

−=
ö
ö
÷

õ
æ
æ
ç

å

→

→
−1

%50mat

yearM

yeart

Gundersson Method (1980) 

Based on the assumption that the natural mortality rate should be related to the investment of 
the fish in reproduction, beyond the influence of other factors, Gundersson established several 
relations between M and those factors. 

He proposed, however, the following simple empirical relation, using the Gonadosomatic 
Index (GSI) (estimated for mature females in the spawning period) in order to calculate M:           

                                       M = 4.64xGSI - 0.37 
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7.5.4  KNOWING THE STOCK AGE STRUCTURE, AT BEGINNING
AND END OF YEAR, AND CATCHES IN NUMBER, BY AGE,
DURING THE YEAR

The natural mortality coefficients Mi , at age i can be calculated from the catch, Ci , in 
numbers,  and the survival numbers, Ni  and Ni+1 at the beginning and end of a year, by 
following the steps: 

 calculate 
1ii

i
i NN

C
E

+−
=

 calculate 1iii NlnNlnZ +−=

 calculate ( )iii E1ZM −⋅=

The several values of M obtained in each age could be combined to calculate a constant value, 
M, for all ages.

Paloheimo Method (1961) 

Let us consider the supposition that Fi is proportional to fi for several years i, that is 

i

i
i T

f
qF ⋅=   for 1Ti =  year, ii fqF ⋅= ,

then: MfqZ ii +⋅=

So, the linear regression between iZ  and if  has a slope qb =  and an intercept Ma = .

7.6 ESTIMATION OF Z – TOTAL MORTALITY COEFFICIENT  

There are several methods of estimating the total mortality coefficient, Z, assumed to be 
constant during a certain interval of ages or years. 

It is convenient to group the methods, according to the basic data, into those using ages or 
those using lengths. 

7.6.1 METHODS USING AGE DATA

The different methods are based on the general expression of the number of survivors of a 
cohort, at the instant t, submitted to the total mortality, Z, during an interval of time, that is: 

( )attZ
at e.NN −−=

Z is supposed to be constant in the interval of time (ta,tb).
Taking logarithms and re-arranging the terms, the expression will be: 

 lnNt = Cte - Z.t 

where Cte is a constant ( = ln Na+Zta).
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This expression shows that the logarithm of the number of survivors is linear with the age, 
being the slope equal to -Z.

Any constant expression which does not affect the determination of Z will be referred to as 
Cte.

1. If Z can be considered constant inside the interval (ta,tb) and, having available abundance 
data,Ni , or indices of abundance in number,Ui in several ages, i, then, the application of the 
simple linear regression allows one to estimate the total mortality coefficient Z. 

In fact 

i

ZT

ii
ZT

e1
.NN

i−−=  soNi = Ni. Constant  

and, as 

( )ai ttZ
ai e.NN −−=    

then, by substitution: 

iZt
i e.CteN −=   (Ti = const = 1 year) 

and also

ii ZtCteNln −=

The simple linear regression between iNln   and ti allows the estimation of Z (notice that the 
constant, Cte  is different from the previous one. In this case only the slope matters to 
estimate Z). 

2. If ages are not at constant intervals, the expression could be approximated and expressed 
in terms of  the tcentrali. For Ti variable, it will be: 

 Ni ≈ Ni . e
-ZTi/2

and, as    Ni = Na . e -Z.(ti-ta)

it will be Ni ≈ Cte. e-Ztcentrali

and finally:   lnNi ≈ Cte - Z. tcentrali

3. When using indicesUi, the situation is similar because Ui = q.Ni, with q constant, and 
then, also: 
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ii ZtCteUln −=

The simple linear regression between iUln and ti allows one to estimate Z. 

4. If the intervals are not constant, the expression should be modified to: 

 lnUi ≈ Cte - Z. tcentrali

Simple linear regression can be applied to obtain Z, from catches, Ci , and ages, ti , supposing 
that Fi is constant. 

Ci = FiNi Ti and so, lnCi = Cte + lnNi when Ti is constant. So:

 lnCi = Cte - Z. ti

5. If the intervals are not constant, the expression should be modified to: 

 lnCi/Ti ≈ Cte - Z. tcentrali

6. Let Vi be the cumulative catch from ti until the end of the life, then:  

 Vi = ä Ck = ä Fk Nkcum,

Where the sum goes from the last age until age i,  

As Fk and Zk are supposed to be constant äNkcum = Ni/Z and so: 

 Vi = FN/Z and lnVi = Cte + lnNi

Therefore:
 ln Vi = Cte - Z. ti

7. Following Beverton and Holt (1956), Z can be expressed as : 

att

1
Z

−
=

Then, it is possible to estimate Z from the mean aget
This expression was derived, considering the interval (ta, tb) as (ta, ∞).

7.6.2 METHODS USING LENGTH DATA

When one has available data by length classes instead of by age, the methods previously 
referred to can still be applied. For that purpose, it is convenient to define the relative age. 

Using the von Bertalanffy equation one can obtain the age t in function of the length, as: 

(the expression is  written in the general form in relation to ta and not to t0)
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 t = ta - (1/K).ln[(L∞- Lt )/( L∞- La)]

or

)1ln(.
K

1
t

LL
LtL

t
a

a
a −∞

−
−−=

(This equation is referred to by some authors as the inverse von Bertalanffy equation). 

The difference t-ta is called relative age, t*,  .

So:   t* =-(1/K).ln[(L∞- Lt )/( L∞- La)]    or t* =-(1/K)ln[1-(Lt-La)/ ( L∞- La)]

For ta = to ,  La = 0 and: 

)
L

L1ln(.
K

1
t t*

∞

−−=

t* is called a relative age because the absolute ages, t , are related to a constant age, ta.
In this way, the duration of the interval Ti can either be calculated by the difference of the 
absolute ages or by the difference of the relative ages at the extremes of the interval: 

 Ti = ti+1 -ti = t*
i +1 - t

*
i

Also:

  t*centrali = tcentrali + Cte 

t* = t + Cte 

So, the previous expressions still hold when the absolute ages are replaced by the relative

ages:

lnNi = Cte - Z. t*
centrali

lnUi = Cte - Z. t*
centrali

ln Vi = Cte - Z. t*
i

ln Ci/Ti = Cte - Z. t*
centrali

Finally, the expression would also be : 

Beverton and Holt (1957) proved that : 

*t

1
Z = 
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aLL

LL
KZ

−
−⋅= ∞

L must be calculated as the mean of the lengths weighted with abundances (or their      
indices) or with the catches in numbers. 

Comments

1. The application of any of these methods must be preceeded by the graphical 
representation of the corresponding data, in order to verify if the assumptions of the 
methods  are acceptable or not and also to determine the adequate interval, (ta , tb).

2. These formulas are proved with the indications that were presented, but it is a good 
exercise to develop the demonstrations as they clarify the methods. 

3. It is useful to estimate a constant Z, even when it is not acceptable, because it gives a 
general orientation about the size of the values one can expect. 

4. The methods are sometimes referred to by the names of the authors. For example, the 
expression ln Vi = Cte - Z.t*

i is called the Jones and van Zalinge method (1981). 

5. The mean age as well as the mean length in the catch can be calculated from the 
following expressions: 

ä
ä=

C

)C.t(
t

i

icentrali  with Ci = catch in number in the age class i 

ä
ä=

C

)C.L(
L

i

icentrali

where Ci = catch in number in the length class i 

ä
ä=

C

)C.*t(
*t

i

icentrali

with Ci = catch in number in the age class. 

The relative age should be t* = - (1/K).ln[(L∞- Lt )/( L∞- La)]
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Summary of the Methods to Estimate the Total Mortality Coefficient, Z 

Assumption: Z is constant in the interval of ages, (ta, tb)

T Constant  

ii tZCteNln ⋅−=

ii tZCteUln ⋅−=

ii tZCteCln ⋅−=

ii tZCteVln ⋅−= ö
÷
õæ

ç
å = ä

=

i

ultk
ki CV

Ti variable

icentrali tZCteNln ⋅−=

icentrali tZCteUln ⋅−=
ö
÷
õ

æ
ç
å +=

2

T
tt i

icentrali

icentral
i

i tZCte
T

C
ln ⋅−=

ii tZCteVln ⋅−=

att

1
Z

−
= ( )∞=bt  (Beverton and Holt equation of Z)

Supposition: Z is constant in the interval of lengths, (La, Lb)

Relative age öö
÷

õ
ææ
ç

å
−
−

⋅−=
∞

∞

LaL

LL
ln

K

1
t t*

i

*
ii t.ZCteNln −=

*
centrali i

tZCteNln ⋅−=
2

tt
t

*
1i

*
i*

centrali
++=

*
centrali i

tZCteUln ⋅−=

*
central

i

i
i

tZCte
T

C
ln ⋅−=

*
i

*
1ii ttT −= +  (Gulland and Holt equation) 

*
ii tZCteVln ⋅−= (Jones and van Zalinge equation) 

aLL

LL
KZ

−
−⋅= ∞ ( )∞=*

bt  (Beverton and Holt equation of Z)
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7.7 ESTIMATION OF THE PARAMETERS OF THE STOCK-
RECRUITMENT (S-R) RELATION 

The least squares method (non-linear model) can be used to  estimate the parameters, α and k, 
of any of the S-R models. 

The initial values of the Beverton and Holt model (1957) can be obtained by re-writing the 
equation as: 

 (R/S)-1 or S.
k

11

R

S

α
+

α
=

and estimating the simple linear regression between y (= S/R) and x (=S) which will give the 
estimations of 1/α and 1/(αk). From these values, it will then be possible to estimate the 
parameters α and k.  These values can be considered as the initial values in the application of 
the non-linear model. 

In the Ricker model (1954) the parameters can be obtained by  re-writing the equation as: 

S.
k

1
ln

S

R
ln −α=

and applying the simple linear regression between y (= ln R/S) and x (=S) to estimate lnα and  
(-1/k). From these values, it will be possible to estimate the parameters (α and k) of the 
model, which can be considered as the initial values in the application of the non-linear 
model. 

It is useful to represent the graph of y against x in order to verify if the marked points are 
adjustable to a straight line before applying the linear regression in any of these models. 

In the models with the flexible parameter, c, like for example, the Deriso model (1980), the 
equation can be re-written as: 

k

S
..c

S

R cc
c

α−α=ö
÷
õ

æ
ç
å

For a given value of c the linear regression between y (= (R/S)c ) and x (=S) allows the 
estimation of the parameters α and k. 

One can try several values of c to verify which one will have a better adjustment with the line 
y against x; for example, values of c between -1 and 1. 

The values thus obtained for α, k and c, can be considered as initial values in the application 
of the iterative method, to estimate the parameters α , k and c of the non-linear Deriso model. 
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7.8 ESTIMATION OF THE MATRIX [F] AND OF THE MATRIX [N] –
COHORT ANALYSIS – AC and LCA 

7.8.1 COHORT ANALYSIS BY AGE- (AC)

The cohort analysis is a method to estimate the fishing mortality coefficients, Fi, and the 
number of survivors, Ni, at the beginning of each age, from the annual structures of the  stock 
catches, in number, over a period of years. 

More specifically, consider a stock where the following is known: 

Data

age, i, where i = 1,2,...,k
year, j, where j = 1,2,...,n 

Matrix of catches [C] with  
Ci,j = Annual catch, in number, of the individuals with the age i and during the year j

Matrix of natural mortality [M] with 
Mi,j = natural mortality coefficient, at the age i and in the year j. 

Vector [T] where 
Ti = Size of the age interval i (in general, Ti=T=1 year) 

Objective

To estimate 

 matrix [F]
and
 matrix [N].

In the resolution of this problem, it is convenient to consider these estimations separately; one 
interval of age i (part 1); all the ages during the life of a cohort (part 2); and finally, all the 
ages and years (part 3). 

PART 1 (INTERVAL TI )

Consider that the following characteristics of a cohort, in an  interval Ti are known : 

Ci = Catch in number 

Mi = Natural mortality coefficient  

Ti = Size of the interval

Adopting a value of Fi, it is then possible to estimate the number of survivors at the 
beginning, Ni , and at the end, Ni+1 , of the interval. 
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In fact, from the expression: 

)e1.(N.
MF

F
C iii T).MF(

i
ii

i
i

+−−
+

=

one can calculate Ni which is the only unknown variable in the expression. 

To calculate Ni+1 one can use the expression ( ) iii T.MF
i1i e.NN +−

+ = where the values Ni , Fi and 
Mi were previously obtained. 

PART 2 (DURING THE LIFE)

Suppose now that the catches Ci of each age i, of a cohort during its life, the values of Mi and
the sizes of the interval Ti are known. 

Adopting a certain value, Ffinal , for the Fishing Mortality Coefficient in the last class of ages, 
it is possible, as mentioned in part 1, to estimate all the parameters (related to numbers) in
that last age group. In this way, one will know the number of survivors at the beginning and 
end of the last age . 

The number at the beginning of that last class of ages, is also the number Nlast at the end of the 
previous class, that is, Nfinal  is the initial number of survivors of the class before last. 

Using the Ci expression, resulting from the combination of the two expressions above : 

)1e.(N.
MF

F
C iii T).MF(

final
ii

i
i −

+
= ++

one can estimate Fi in the previous class, which is the only unknown variable in the 
expression. The estimation may require iterative methods or trial and error methods.

Finally, to estimate the number Ni of survivors at the beginning of the class i, the following 
expression can be used : 

( ) iii T.MF
finali e.NN +=

Repeating this process for all previous classes, one will successively obtain the parameters in 
all ages, until the first age.  

In the case of a completely caught cohort, the number at the end of the last class is zero and 
the catch C has to be expressed as : 

( ) final
ifinal

final
final N.

MF

F
C

+
=
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Pope Method 

Pope (1972) presented a simple method to estimate the number of survivors at the beginning 
of each age of the cohort life, starting from the last age. 

It is enough to apply successively in a backward way, the expression: 

Ni ≈ (Ni+1 e MT/2 + Ci).e
MT/2

Pope indicates that the approximation is good when MT ≤ 0.6 

Pope’s expression is obtained, supposing that the catch is made exactly at the central point of 
the interval Ti (Figure 7.3).

Nt

Ni

N´
Ci

N´´                Ni+1

      0
         0     ti                  tcentrali                     ti+1

Figure 7.3 Number of survivors during the interval Ti = ti+1 – ti with the catch 
extracted at the central point of the interval 

Proceeding  from the end to the beginning one calculates successively: 

N” = e1iN +
+MTi/2

N’ =  N” + Ci

 Ni = N’.e+MT/2

substituting N’ by N”+Ci, the expression will be: 

 Ni = (N” + Ci).e
 MT/2

Finally, substituting N” by Ni+1.e
+MTi/2, it will be: 

2
MT

i
2

MT

1ii e.CeNN ö
÷
õæ

ç
å +≈ +
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Part 3 (period of years) 

Let us suppose now that the Catch matrix [C], the natural mortality [M] matrix and the vector 
size of the intervals [T], are known for a period of years.

Let us also assume that the values of F in the last age of all the years represented in the  
matrices and the values of F of all the ages of the last year were adopted. These values will be 
designated by Fterminal (Figure 7.4) 

 Years 
Ages 2000 2001 2002 2003 
1 C C C C Fterminal

2 C C C C Fterminal

3 C C C C Fterminal

Fterminal Fterminal Fterminal Fterminal

Figure 7.4 Matrix of catch, [C], with Fterminal in the last line and in the last 
column of the matrix C. The shadowed zones exemplify the catches 

of a cohort 

Notice that in this matrix the elements of the diagonal correspond to values of the same 
cohort, because one element of a certain age and a certain year will be followed, in the  
diagonal, by the element that is a year older.  

From parts 1 and 2 it will then be possible to estimate successively Fs and Ns for all the 
cohorts present in the catch matrix. 

Comments

1. The values of Mi,j  are considered constant and equal to M, when there is no information 
to adopt other values.

2. When data is referred to ages, the values Ti will be equal to 1 year. 

3. The last age group of each year is, sometimes grouped ages(+). The corresponding 
catches are composed of individuals caught during those years, with several ages. So, the 
cumulative values do not belong to the same cohorts, but are survivors of several 
previous cohorts with different recruitments and submitted to different fishing patterns. It 
would not be appropriate to use the catch of a group (+) and to apply cohort analysis. 
Despite this fact, the group (+) is important in order to calculate the annual totals of the 
catches in weight, Y, of total biomasses, B, and the spawning stock biomass. So, it is 
usual to start with the cohort analysis on the age immediately before the group (+) and 
use the group (+) only to calculate the annuals Y, B and (SP). The value of F in that 
group (+) in each year, can be estimated as being the same fishing mortality coefficient 
as the previous age or, in some cases, as being a reasonable value in relation to the values 
of Fi in the year that is being considered.

4. A difficulty in the technical application appears when the number of ages is small or 
when the years are few. In fact, in those cases, the cohorts have few age classes 
represented in the Matrix [C] and the estimations will be very dependent on the adopted 
values of Fterminals.
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5. The cohort analysis (CA) has also been designated as: VPA (Virtual Population 
Analysis), Derzhavin method, Murphy method, Gulland method, Pope method, 
Sequential Analysis, etc. Sometimes, CA is referred to when the Pope formula and the 
VPA are used in other cases. Megrey (1989) presents a very complete revision about the 
cohort analyses. 

6. It is also possible to estimate the remaining parameters in an age i, related to numbers, 
that is, Ncumi,Ni, Di, Zi and Ei. When the information on initial individual or mean 
weights matrices [w] or [w] are available, one can also calculate the matrices of annual 
catch in weight [Y], of biomasses at the beginning of the years, [B], and of mean 
biomasses during the years [B]. If one has information on maturity ogives in each year, 
for example at the beginning of the year, spawning biomasses [SP] can also be 
calculated. Usually, only the total catches Y, the stock biomasses (total and spawning) at 
the beginning and the mean biomasses of the stock (total and spawning) in each year are 
estimated.  

7. The elements on the first line of the matrix [N] can be considered estimates of the 
recruitment to the fishery in each year.  

8. The fact that the Fterminals are adopted  and that these values have influence on the 
resulting matrix [F] and matrix [N], forces the selection of values of Fterminals to be near
the real ones. The agreement between the estimations of the parameters mentioned in the 
points 6. and 7. and other independent data or indices (for example, estimations by 
acoustic methods of recruitment or biomasses, estimations of abundance indices or 
cpue´s, of fishing efforts, etc) must be analysed. 

9.   The hypothesis that the exploitation pattern is constant from year to year, means that the 
fishing level and the exploitation pattern can be separated, or Fsepi = Fj x si . This 
hypothesis can be tested based on the matrix [ F ] obtained from the cohort analysis. 

 It is usual to call this separation VPA-Separable (SVPA). 

We have 
jtot

i
j,i FF =ä

and
itot

j
j,i sF =ä

and ä =
j,i

totj,i FF

Then, if ijij s.FF =  one can  prove that tottottotij F/)s.F(s.F
ij

= .

If the estimated values of Fij are the same as the previous Fsepij = Fj.si then the hypothesis 
is verified. This comparison can be carried out in two different ways, the simplest is to 
calculate the quotients Fsepij /Fij. If the hypothesis is true this quotient is equal to one. If 
the hypothesis is not verified it is always possible to consider other hypotheses with the 
annual vector [s] constant in some years only, mainly the last years.  

10. It is usual to consider an interval of ages, where it can be assumed that the individuals 
caught are “completely recruited”. In that case, the interval of ages corresponds to 
exploitation pattern constant (for the remaining ages, not completely recruited, the 
exploitation pattern should be smaller). For that interval of ages, the means of the values 
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of Fi,j  in each year are then calculated. Those means,Fj, are considered as fishing levels 
in the respective years. The exploitation pattern in each cell, would then be the ratio Fi,j

/Fj . The  si , for the period of years considered, can be taken as the mean of the relative 
pattern of exploitation calculated before. Alternatively, they can also be taken as referring 
to si of an age chosen for reference. 

7.8.2 LENGTH COHORT ANALYSIS - (LCA)

The technique of the cohort ansalysis, applied to the structure of the catches of a cohort 
during its life, can be made with non constant intervals of time, Ti,. This means that the length 
classes structure of the catches of a cohort during its life, can also be analysed.

The methods of analysis of the cohort in those cases is called the LCA (Length Cohort
Analysis). The same techniques; Pope method, iterative method, etc, of the CA for the ages, 
can be applied to the LCA analysis (the intervals Ti´s can be calculated from the relative 
ages).

One way to apply the LCA to the length annual catch compositions, will be: to group the 
catches of length classes belonging to the same age interval in each year. The technique CA 
can then be applied directly to the resulting age composition of the catches by age of the 
matrix [C]. This technique is known as “slicing” the length compositions. To “slice”, one 
usually inverts the von Bertalanffy length growth equation  and estimates the age ti for each 
length Li (sometimes using the relative ages t*

i) (Figure 7.5). It is possible that when grouping 
the length classes of the respective age interval, there are length classes composed by 
elements that belong to two consecutive age groups. In these cases, it will be necessary to 
“break” the catch of these extreme classes into two parts and distribute them to each of those 
ages. In the example of Figure 7.5, the catches of the length class (24-26] belong to age 0  and 
to age 1 . So, it is necessary to distribute that catch to the two ages. One simple method is to 
attribute to age 0 the fraction (1.00 - 0.98)/(1.06 - 0.98) = 0.25 of the annual catch of that 
length class and to age 1 the fraction (1.06 - 1.00)/(1.06 - 0.98) = 0.75. The method may not 
be the most appropriate one, because it is based on the assumption that, in the length classes, 
the distribution of the individuals by length is uniform. So, it is necessary to use the smallest 
possible interval of length classes, when applying this distribution technique.

Another way to do the length cohort analysis is to use the catches in the length classes of the 
same age group. It is possible to follow the cohorts in the matrix [C], through the length 
classes belonging to a same age, in a certain year, with the length classes of the next age, in 
the following year, etc. In this way, the different cohorts existing in the matrix will be 
separated and the evolution of each one of them will be by length classes, not by age (see 
Figure 7.5).
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Group    Years 

Age Relative 
age

Length

Classes

2000 2001 2002 2003 

1.03 20- 41 30 17 49 

0 1.54 22- 400 292 166 472 

1.98 24- 952 699 400 1127 

2.06 26- 1766 1317 757 2108 

1 2.30 28- 2222 1702 985 2688 

2.74 30- 2357 1872 1093 2902 

2.88 32- 2175 1091 1067 2739 

3.00 34- 1817 948 1416 1445

3.42 36- 1529 812 1270 1250

2 3.64 38- 1251 684 980 1053

3.83 40- 1003 560 702 710

3.96 42- 787 290 310 558

3 4.01 44- 595 226 179 834

4.25 46- 168 70 71 112

         Cohort of the year 2000 

Figure 7.5 Example of a matrix [C] with the catches of the cohort shadowed, 
written in bold, recruited at year 2000, “sliced” by length classes,  

The LCA R. Jones method (1961), of analysing a length composition during the life of a

cohort can then be applied. The different values of Ti are calculated as Ti = ti+1*-ti*, where ti*
e ti+1* are the relative ages corresponding to the extremes of the length interval i. The vector 
[N] can also be obtained as the number of initial survivors in each length class of the cohort, 
and in each age class. 

Comments on cohort analyses 

1. Certain models, called integrated models, combine all the available information (catches, 
data collected on research cruises, effort and cpue data, etc) with the matrix [C], and 
integrate in a unique model, in order to optimize the previously defined criterium 
function. A model integrating CA and the hypothesis of constant exploitation pattern was 
developed and called  SVPA, separable VPA, because the Fishing level and Exploitation 
pattern are “separable”. 

2. Fry (1949) considered the cumulative catches of a  cohort by age during its life, from the 
end to the beginning, as an  image of the number of survivors at the beginning of each 
age (which the author designated as “virtual population”):

virtualNVC ii

i

finalk
k ==ä

=
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In the fishery that Fry studied, M was practically equal to zero. 

            If  M is different from zero it can also be said that the number Ni of survivors at the 
beginning of the interval i will be : 

    ä
=

=
i

finalk
ki DN

where Dk represents the number of total deaths at the interval k.

Adopting the initial values, Ek(0) , for the exploitation rates, E , in all the classes, one can 
calculate  the total deaths: 

    Dk(0)  = Ck/Ek(0).

N i(0) can be calculated as the cumulative total deaths from the last class up to the ith class, 
that is: 

    ä
=

=
i

ultk
)o(k)0(i DN

 Then the expression will be: 

    )N/Nln(T.Z )0(i)0(1ii)1(i +=

and:

              i)1(i)0(ii)1(i T.Z.ET.F =

Comparing Ei(1) with Ei(0) , the new values of E will be: 

    )T.MT.F/(T.FE iii)1(ii)1(i)1(i +=

One can then estimate the values of E with the desired approximation by an iterative 
method, repeating the five calculations (of Di, Ni, ZiTi, FiTi and Ei,) using Ei(1)   instead of     
Ei(0).

In the last class, the number, Nlast, can be taken as equal to the number of deaths, Dlast ,
and in this case, Nlast  will be calculated as : 

    lastlastlastlast E/CDN ==
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3. Finally, the results of CA and of LCA give a perspective view of the stock in the 
previous years. That information is useful for the short and long term projections. 
Usually, data concerning the catches is not available for the year in which the assessment 
is done and so it is necessary to project the catches and the biomasses to the beginning of 
the present year before calculating the short term projection. 

4. When the relative ages are calculated, it is usual to adopt zero as the age ta

corresponding to the value of La , taken as the lower limit of the first length class 
represented in the catches. 
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CHAPTER 8  EXERCISES 

8.1 MATHEMATICAL REVISION 

1. Calculate:

A) 104

16
1

2
− 84270 0 010 5. .

B) 4

4

3

5
( )3 4 4− 5 42 2+ 2 22 5×

C) log1000 log .0 01
log

10

10

4

3−

å

ç
æ

õ

÷
ö

D) lne
ln

1

e
ln e−5 e eln

E) 0

0

A

0

0

A

∞
∞

A

∞
∞
A

0

∞
∞
0

2. Verify that 

a) a e a= ln  b)  a a= 10log

c)
e

x

x − ≈1
1 for − < < +0 01 0 01. .x d)

e

x
e

x x
− ≈1 2  for 5.0x5.0- +<<

3. Solve the following expressions applying natural logarithms to both members of the 
equality:

a) y a x= ⋅ 5 b) ( )y a e
b x c= ⋅ − ⋅ + ⋅2  c)  ( )y a b e

c x b− = ⋅ − ⋅ −

Note: a, b, e c are constants; e is the basis of natural logarithms ( )e = 2 7183. .. ; x and y are 

variables.

4. Determine the value of x in the following expressions: 

a) e x− = 5 2.  b)  10 55x = . c) ( )y a b e
c x b− = ⋅ ⋅ −
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5. Calculate the derivatives of the following expressions:

a) y=13 g)  y=5x m)  y=(4+2x)3

b) y=3-8x h)  y=e-3.x n)  y=(x-6)2

c) y=x
5 i)  y=ln x o)  y= a.(3-e-b.x)3

d) y=x
2/7 j)  y=ln(5x+4) p)  y= (4x+3).(ex-4)

e) y=x
-3 k)  y= 1/x

f)  y=e3.x l)  y= (2+4x)/(3-x)

6. Calculate the indefinite integrals of the following functions: 

a) ( ) 0xf =
f) ( )

x

1
xf = k) ( ) x5.0exf ⋅−=

b) ( ) 34.5xf =
g) ( )

x52

5
xf

⋅−
−= l) ( ) 1x2e3xf +⋅⋅=

c) ( ) 6xxf = h) ( )
2xx40

x21
xf

++
⋅+= m)  ( ) xexxf ⋅=

d) ( ) x31xf ⋅+= i) ( ) xexf = n) ( ) xlnxf =
e) ( ) 3x4xf −⋅=  j)  ( ) x2.0exf ⋅= o) ( ) xlnxxf ⋅=

7. Calculate the area under the function 

a) x52)x(f += between 1x =  and 4x =

b) x.3e)x(f = between 0x =  and 1x =

c)
x25

2
)x(f

+
= between

2

1
x =  and 

2

3
x =

d) x31)x(f += between 2x −=  and 2x =

8. Calculate the value of ycumulative with 

a)
x2ey −= between 0x =  and 8.0x =

b) x21

2
)x(f

+
=

between 0x =  and 2x =

c)
3x.2)x(f =  between 0x =  and 1x =
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9. Calculate the Mean Value of y  with 

a) x7e3y −⋅=  between x = 0  and 1x =

b) ( )x2.0e14y ⋅−−⋅=  between x = 1  and x = 3

c) x2y −=  between x = 0  and x = 12.

10. Calculate the integral of  

a) ( ) x5.0e2xf ⋅−⋅= with the initial condition ( ) 4xF1x =Ý= where ( ) ( )ñ ⋅= dxxfxF

b) ( )
x

3
xf =  with the initial condition ( )F 1 2=

c)
dy

dx
y= ⋅0 2.  with the initial condition x y= Ý =0 10  

d)
x31

3

dx

dy

+
=  with the initial condition 0y0x =Ý=

8.2 RATES (2.2) 

Consider the function, x2.0e.3540y −−= at the interval (0,10) 

1. Calculate:

a) The values of y for x = 0 1 2 3 4 5 6 7 8 9 10, , , , , , , , , , ;

b) Represent graphically the function y at the interval ( )0 10,  of x;

c) The variation, ∆y , corresponding to the interval ( )1 2,  of x;

d) The absolute mean rate of variation of y, amr(y), at the intervals (1,7), (2,5), (5,6) and 
(8,9) of x;

e) The absolute instantaneous rate of variation of y, air(y), at the points x=3 and x=4; 

f) Calculate the relative mean rate of variation of y, r.m.r.(y),  at the interval (8,9) in    
relation to the value of y corresponding to the initial point, to the final point and to the 
central point of that interval; 

g) Calculate a relative instantaneous rate of variation of y, r.i.r.(y) at the central point of 
the interval (8,9). 
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2. Calculate the air(y) of the following functions: 

a) x101y +=

b) y x x= − +3 2 3

c) y ex=

d) y x= ln  

3. Calculate the rir(y) of the following functions:

a) x4y +=

b) xey =

c) x2e6y ⋅=

d) xay ⋅=  with a = constant 

4. Calculate the air of the air(y) of 12x4x3y 2 −−=

5. Given the function, y e x= ⋅ −3 18. verify that rir(y)=air(ln y) 

8.3 SIMPLE LINEAR MODEL  (2.3) 

Consider a model that relates the characteristic y with time t, where the basic assumption is: 

 air(y)= -3, for 0 < < ∞t

Adopt the initial conditionl: for t = 0 , y=30 

1. How would you designate this model? 
Write the general expression for the value of the characteristic y at the instant t;

2. Calculate the value of y when t = 0,1,2,3,4,5,6 and draw the graph of y against t.

3. Considering the interval of time, ∆t, from 2t =  to 4t =

a) Calculate the variation of y during the mentioned interval ∆t;

b) Calculate the central value of y in the interval ∆t;

c) Calculate the cumulative value of y in that interval, ycum;

d) Calculate the mean value, y , of y, in the interval ∆t;
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e) Calculate the simple arithmetic mean of y in the interval ∆t;

f) Verify that the arithmetic mean of y is equal to the mean value, y , and equal to the 
central value, ycentral, of y in that interval.

g) Verify that in the linear model, the amr(y) = air(y) = constant. To do that, calculate, 
for the above mentioned  interval, ∆t, the amr(y) and the air(y) and compare the 
results.

Repeat  exercise 3. considering the interval from t = 0 to t = 10. 

8.4 EXPONENTIAL MODEL (2.4) 

Consider a model that relates the characteristic y with time t, through the following basic  
assumption: 

rir(y) = -0.4 for 0 < < ∞t

Adopt the initial condition : for t = 0 ,  y =100 

1. Write the general expression for the value of the characteristic y at the instant t;

a) Calculate the value of y at the instants t =1,2,3,4,5,6. 

b) Represent, graphically, the values of y calculated above, against the corresponding 
values of t. 

c) Represent, graphically, the values of lny against the given values of t. 

2. Considering the interval of time ∆t = (3,6) 

a) Calculate the variation of y, ∆y, during the interval ∆t.

b) Calculate ycentral in the interval ∆t.

c) Calculate the value of ycum in the interval ∆t.

d) Calculate y  in the interval ∆t.

e) Show that the  geometric mean of the values of  y for t = 3 y t = 6  is equal to ycentral

and approximately equal to y in that interval. 

f) Show that, in that interval, 4.0)y(rir)y(rmr
iyrelativeto −==

3. Consider the interval of time from 0t =  to 10t = . Repeat the calculations of questions 2 
item a), c) and d) for this interval. 
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8.5 COHORT – EVOLUTION IN NUMBER (3.2) 

GROUP I 

From the stock of megrim, Lepidorhombus whiffiagonis, from Divisions VIIIc and IXa of the 
ICES, the Assessment Working Group of ICES (ICES, 1997a) estimated that the fish recruit 
to the exploitable phase, at the beginning of age 1 year, and that in 1996 the instantaneous 
rate of total mortality during the exploitable phase was 0.7 year-1.

Consider 1000 individuals of a cohort of megrim, recruited to the exploited phase, which 
starts at the beginning of age 1 and finishes at the end of age 7 years. 

1.

a) What is the value of the rir of the variation of Nt  in this interval ? 

b) What is the value of the rir of the mortality of Nt  in this interval ? 

c) Calculate the annual rate of survival during the interval. 

d) Calculate the annual rate of  mortality during the interval. 

2.

a) Calculate the number of survivors at the beginning of each age of that interval. 

b) Calculate the number of survivors at the end of 7 years of age. 

c) Draw the graph of the number of survivors in each age of that interval. 

d) Calculate the number of deaths in each age of the interval. 

e) Calculate the number of deaths during all the exploitable phase. 

f) Determine the percentage of the initial number of 3 year-olds that survive until the 
beginning of their 6th year. 

g) Determine the percentage of the initial number of 3 year-olds that die before the 
beginning of their 6th year. 

h) Calculate the mean number of survivors during each age of the given interval. 

i) Calculate the cumulative number of survivors during ages 3 to 5. 

j) Calculate the mean number of survivors between the beginnings of ages 3 and 6. 
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GROUP II 

The Working Group of ICES which evaluated the stock of iberic sardine, Sardina pilchardus,
estimated the mortality rates in each age of 1995 (ICES, 1997b), presented in the  following 
table : 

Age Group 0 1 2 3 4 5 6 

Annual Rate of 
Mortality

0.36 0.43 0.54 0.63 0.66 0.68 0.72 

Suppose that these rates correspond to a cohort. 

1. As previously seen, there may be several types of rates (ex: amr, rmr, air and rir and the 
relative rates were referred to several values of the characteristics). What type of rate is 
the annual rate of mortality? 

2. Calculate the survival rate in each age class. 

3. Calculate the total mortality coefficient for each  age class. 

4. Calculate the survival rate between the beginning of age 1 and the end of age 4. 

5. Calculate the annual mean rate of survival in the same interval of ages. 

GROUP III 

Consider a cohort of a certain species for which the number of survivors at the beginning of 
age 2 years is 4325, while the number of survivors at the end of age 2 years is 2040. 

1. Calculate the mean number of 2 year-old individuals and the number of individuals at the 
age of 2.5 years. Compare the results. 

2. If the annual rate of mortality of this cohort during the ages 3 and 4 is 70 and 60 
percent respectively, calculate the percentage of the initial number of individuals at age 3 that 
will survive until the end of age 4.  

Give the relation between the survival rate during the period that covers the ages 3 and 4 
years and the annual survival rates of ages 3 and 4 years. 

8.6 COHORT – CATCH IN NUMBER                                                   (3.3) 

GROUP I 

According to the Assessment Working Group of ICES (ICES, 1996a) the relative 
instantaneous rates of total and natural mortality for the age of 3 years, of the stock of blue 
whiting, Micromesistius poutassou, in 1995,  were estimated as being, respectively, 

1-
3 year4.0Z = and 1-

3 year2.0M = . In that year, the number of survivors at the beginning of  

age 3  year was 2600 million individuals. 
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1. Calculate, for the cohort of 1992  and for the age of 3 years : 

a) The total annual rates of survival and of mortality. 

b) The relative instantaneous rate of fishing mortality. 

c) The exploitation rate. 

d) The number of deaths during the age. 

e) The mean number of survivors during the age. 

f) The total catch in number of 3 years old individuals. 

g) The number of survivors at the end of the age. 

GROUP II 

The 4 year-old age group of the stock (Div. ICES VIIe-h) of whiting, Merlangius merlangus

merlangus, is simultaneously exploited by the crustaceans trawl fleet and demersal fish trawl 
fleet.

The Working Group of ICES that evaluates this stock estimated (ICES, 1996a) that, in 1995, 
the total instantaneous mortality rate of that age (4 years) was Z = 1.3 year-1. Suppose, for this 
exercise, that the instantaneous rate of fishing mortality caused by the crustaceans trawl fleet 
was Fc = 0.5 year-1, while the corresponding value for the demersal fish trawl fleet was Ff = 
0.6 year-1. The Group also considered the natural instantaneous mortality rate, M = 0.2 year-1.

1.   In 1995 17.66 million individuals recruited at 4 years of age.  

a) Calculate the total number of deaths during that age. 

b) Calculate the mean number of survivors during the age. 

c) Calculate the exploitation rate of each fleet. 

d) Calculate the total exploitation rate. 

e) Calculate the catch in number by each fleet and the total catch in number. 

f) Calculate the number of survivors at the end of the age. (The solutions to the questions 
can be done in any order).
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GROUP III 

For this exercise, suppose that in 1990, the mean number of survivors of the cohort of a stock 
of anchovy, Engraulis encrasicholus, during the period of 2 years of age was calculated as 
about 50 million individuals. During 1992, 70 million individuals were caught, from which, 
40 percent were caught by the national fleet, and it is estimated that 80 million died of natural 
causes.

1. For this age and this cohort: 

a) Calculate the total exploitation rate and the exploitation rate of the national and 
foreign fleets. 

b) Calculate the total, natural and fishing mortality coefficients. 

c) Calculate the fishing instantaneous mortality rates caused by the national fleet and by 
the foreign fleet. 

d) Calculate the number of survivors at the beginning and at the end of the age. 
 (The solutions to the questions can be done in any order).

GROUP IV 

According to the Assessment Working Group of ICES (ICES, 1997a) the fishing mortality 
coefficients applied to the 1976 cohort  of the stock of common sole, Solea vulgaris, of the 
Celtic Sea were estimated in each age from 2 to 8 years (following table). The natural 
mortality coefficient for this stock is considered constant and equal to 0.1 year-1. It was 
estimated that, at the beginning of age 6 years there were 1112 million survivors of this 
cohort.

Age 2 3 4 5 6 7 8 

Fi 0.07 0.22 0.33 0.41 0.45 0.41 0.74 

1. Calculate the numbers of survivors of this cohort at the beginning of each of the above 
mentioned ages. 

2. Calculate the number of deaths in each age referred in the table. 

3. Calculate the exploitation rates of this cohort in each age. 

4. Calculate the mean numbers of survivors during each of the above ages. 

5. Calculate the catches, in numbers, extracted from this cohort during each of the ages 
mentioned above, using two different methods. 

8.7 INDIVIDUAL GROWTH IN LENGTH AND WEIGHT  (3.4) 

GROUP I 

The parameters of the von Bertalanffy length growth equation of the stock of European 
anglerfish (Div. VIIIc and IXa of ICES), Lophius budegassa, were estimated as (Duarte et al.,
1997):
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  Asymptotic length = 101.69 cm 
  Coefficient of growth in length = 0.08 year-1

  Theoretical age, when the length is zero =  -0.2 year 

1. Calculate the theoretical length corresponding to the age 3.84 years. 

2. Calculate the length at the beginning of the ages 1 to 12 years. 

3. Calculate, for each of the above mentioned ages, the central length.  

4. Represent, graphically, the Bertalanffy curve of growth in length for this stock. 

GROUP II 

Using the growth parameters given in Group I: 

1. Calculate the length that corresponds to each age interval between 1 and 12 years as 
being the simple arithmetic mean of the length at the beginning and at the end of each 
class.

2. Calculate the mean length in each age for the same interval from 1 to 12 years 
accordingly to the von Bertalanffy model. 

3. Compare the lengths obtained in 1) with those obtained in 2) and with the central values 
in each age of the interval, calculated in Group I-3. 

GROUP III 

The data presented in the following table represents the mean length (cm) by age (years) 
obtained from direct age reading of individuals of the stock of European anglerfish, Lophius

budegassa, (Div. VIIIc and IXa). 

 t     Lt (cm)  T Lt(cm)

1 9.2 7 44.4 
2 16.5 8 49.0 
3 22.9 9 52.3 
4 28.8 10 55.0 
5 34.7 11 60.8 
6 38.6 12 63.4 

Based on this data the parameters of the growth equation were estimated according to the  
Gompertz model as being : 

Gompertz:  L∞ = 73.7 cm;  k = 0.22 year-1  t* = - 2.76 year 

(t* is the age corresponding to L=1 cm) 
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1. Represent, graphically, the observed values. 

2. Calculate, for the interval 1-12 years, the values of the length at the beginning of each age, 
according to the Bertalanffy growth model and draw the corresponding growth curve. 

3. Calculate, for the interval 1-12 years, the values of the length at the beginning of each age, 
according to the Gompertz growth model and draw the corresponding growth curve. 
Determine the inflection point of the curve. 

4. Say which growth model you consider more appropriate for this case and justify your 
answer.

GROUP IV 

The data presented on the following table concern the stock of European anglerfish Lophius

budegassa (Div. VIIIc and IXa). 

Table of individual weights by length class, taken from the samples of European anglerfish, 
Lophius budegassa collected by IEO and IPIMAR in 1994. 

Li (cm) Wmeani (g) n Li (cm) Wmeani (g) n 

20-   129 3 50- 1685 28 
22-   163 2 52- 1896 30 
24-   219 4 54- 2107 24 
26-   265 14 56- 2345 41 
28-   320 8 58- 2569 41 
30-   397 10 60- 2848 32 
32-   486 9 62- 3126 35 
34-   545 57 64- 3407 28 
36-   664 60 66- 3700 19 
38-   773 61 68- 4056 23 
40-   890 58 70- 4411 17 
42- 1027 64 72- 4764 13 
44- 1122 56 74- 5203 8 
46- 1334 50 76- 5587 4 
48- 1503 37 78- 5982 3 

The mean of the observed weights and the number (n) of individuals, are indicated for each 
length class.

Based on this data, the parameters of the weight-length relation were estimated for this stock 
as : 

 a = 0.021   
b = 2.88 

1. Calculate the theoretical weight for each length class. 

2. On a graph, plot the observed and the theoretical weights against the length classes. 
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3. Suppose you want to use  the weight-length relation, with b=3 (the constant estimated for 
this relation being a=0.013). Calculate, for this case, the theoretical weights for each 
length class. Compare these values with the theoretical weights estimated in 1).  

4. Using the results obtained up to now, write the Bertalanffy growth equation, in weight, 
for this stock.  

8.8 COHORT DURING ALL LIFE  BIOMASS AND CATCH IN 
WEIGHT

(3.6)

GROUP I 

The recruitment to the exploitable phase of horse-mackerel, Trachurus trachurus, distributed 
in the Ibero-Atlantic waters (Div. VIIIc and IXa) occurs at age 1. In order to make the 
calculations, let us consider the exploitable phase between the ages 1 and 10 years and the 
recruitment of a cohort equal to 1 000 individuals. 

The parameters of the von Bertalanffy equation were estimated by the Working Group of 
ICES (ICES, 1998a), using the mean lengths, at age of the catch, as being: 

  L∞ = 34.46  cm 
  K = 0.225  year-1

  to = -1.66  year 

The weight-length relation was also estimated, using the mean weights by age adopted by the 
WG for the long term projections (ICES, 1998a), as being: 

W(g) = 0.011 L(cm) 2.90 

The mortality of this stock is characterized as : 

• A constant natural mortality coefficient during all the exploitable phase : M = 0.15 
year-1.

• Fishing mortality coefficients in 1996 (ICES, 1998a) are different with age as : 

Age (year)  1 2 3 4 5 6 7 8 9 10 

Fi (year-1) 0.24 0.26 0.10 0.08 0.06 0.09 0.12 0.14 0.18 0.24 

1. Organize the calculations in a spreadsheet, in order to calculate, for each age of the life 
of the cohort  (from age 1 to 10): 

a) The number at the beginning of the age 

b) The individual weight at the beginning of the age 

c) The biomass at the beginning of the age 

d) The number of deaths during the age 
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e) The mean number of survivors during the age 

f) The mean individual weight during the age  

g) The mean biomass during the age 

h) The Catch in number during the age 

i) The Catch in weight during the age 

2. Determine: 

a) The cumulative number of survivors during all the exploitable phase 

b) The cumulative biomass of the cohort during all the exploitable life 

c) The total catch, in numbers, from the cohort during all the exploitable life; 

d) The total catch, in weight, from the cohort during all the exploitable life; 

e) The mean weight of the individuals caught, during all the exploitable life; 

f) The mean weight of the individuals of the cohort, during all the exploitable life. 

GROUP II 

Present the histograms of : 

1. Mean numbers of survivors of the cohort in each age, during all the exploitable life. 

2. Mean biomasses of the cohort at each age, during all the exploitable life. 

3. Catches in number by age of the cohort, during all the exploitable life. 

4. Catches in weight by age of the cohort, during all the exploitable life. 

GROUP III 

Suppose now, that one intends to analyse the case in which all the fishing mortality 
coefficients were 30 percent bigger than those indicated in the table of Group I.

1. Calculate the characteristics of the Group I-2 that could be obtained from the same 
cohort during all its life, in this alternative situation. 

2. Compare the values of the characteristics obtained under these conditions with those 
obtained in Group I-2, calculating the percentage of variation of those characteristics in 
relation to the corresponding values of the previous situation. 
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8.9 COHORT DURING ITS LIFE – SIMPLIFICATION OF 
BEVERTON AND HOLT MODEL 

(3.7)

GROUP I 

The recruitment to the exploitable phase of horse-mackerel, Trachurus trachurus, in Ibero-
Atlantic waters (Div. VIIIc and IXa) occurs at age 1.

The recruitment at the exploitable phase was simplified by adopting the  age tc=2 year. 

The parameters of the von Bertalanffy equation estimated for this stock are the following : 

  L∞ = 34.46 cm 
  K = 0.225 year-1

  to = -1.66 year 

The weight-length relation: W(g) = 0.011 L(cm) 2.90

The mortality of this stock is characterized as :  

• A constant natural mortality coefficient during all the exploitable phase  
M = 0.15 year-1;

• Fishing mortality coefficient, F = 0.14 year-1, constant during all the exploited phase. 

1.  Calculate, using the simplification of Beverton and Holt : 

a) The recruitment Rc to the exploited phase. 

b) The number of deaths during all the exploited life. 

c) The cumulative number of survivors during all the exploited life. 

d) The cumulative biomass during all the exploited life. 

e) The catch in number during all the exploited life. 

f) The catch in weight during all the exploited life. 

g) The mean weight of the individuals of the cohort during all the exploited life. 

h) The mean weight of the individuals caught during all the exploited life. 

GROUP II 

The data presented in Section 8.8 – Group I show a great variety in the values of F. However, 
in Section 8.9, the simplification of an F constant was adopted, F = 0.14 year-1. The purpose, 
now, is to compare the results from Section 8.8 with those obtained in this exercise, using the 
simplification of Beverton and Holt. 
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1.

a) Determinate the cumulative number, the cumulative biomass, the total catch in 
number, the total catch in weight and the mean weight in the catch.  

b) Compare the results with those obtained in Section 8.8 (Group I-2). 

2.

a) Using a 30 percent bigger value of F calculate the cumulative number, the 
cumulative biomass, the total catch in number, the total catch in weight and the mean 
weight in the catch and compare with the corresponding values obtained in the 
Group I-1.a).

b) Compare the percentages of variation of the characteristics obtained in 2.a)  with 
those obtained in Section 8.8 (Group III). 

8.10 STOCK – SHORT TERM PROJECTION (4.3) 

The mortality parameters and the exploitation pattern of the Iberic Stock of hake, Merluccius

merluccius, from Divisions VIIIc and IXa of ICES were estimated by the Assessment 
Working Group of ICES (ICES, 1998b) as : 

•  Natural Mortality Coefficient = 0.20 1−year

•  Fishing Mortality Level in 1996 = 0.24 1−year

Exploitation pattern in 1996 

age 0 1 2 3 4 5 6 7 8 

sI 0.00 0.09 0.29 1.31 1.25 1.12 1.32 1.55 1.55 

The growth parameters were estimated as being : 

Growth parameters of von Bertalanffy 
(CE, 1994): 

Weight length relation,
Wt (g)= a.L(cm)b (Cardador, 1988): 

L∞ = 100 cm 
K = 0.08 1year−

t0  = -1.4 year  

a = 0.004 

b = 3.2 

At the beginning of 1996 the considered stock had the following age structure, with i 
representing the age and Ni the number of survivors at the beginning of the age i, expressed in 
millions of individuals : 

age 0 1 2 3 4 5 6 7 8 

Ni 83 27 41 30 22 11 6 3 5 
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GROUP I 

1. Estimate the individual weights at the beginning of each age, the total number of 
individuals and the total biomass of the stock at the beginning of the year. 

2. Estimate the individual mean weight, the mean number of survivors, the mean biomass, 
the total catch in number, the total catch in weight and the mean weight in the catch and in 
the stock, during 1996. 

3. Supposing there was a recruitment in 1997 equal to 100 million individuals, calculate the 
following, for the beginning of 1997: 

a) The age structure of the stock, in number 

b) The age structure of the stock, in biomass 

c) The total number of individuals of the stock 

d) The total biomass of the stock 

(notice that the stock at the beginning of 1997 is equivalent to the stock at the end of 1996, 
except  for the 1997 recruitment).  

GROUP II 

The scientists drew attention to the fact that the fishing level in 1996 was very high and 
should, therefore, be reduced. They suggested a reduction of about 40 percent so that one 
could get  adequate catches in weight and biomasses in the future. 

As an alternative to improve the exploitation of this stock, they also suggested increasing the 
mesh size of the fishing nets. 

1. Fishing managers asked the scientists to evaluate the mean biomass of the stock, the catch 
in number, the catch in weight and the mean weight in the catch during 1997 in case of :  

a) Maintaining the 1996  fishing pattern (status quo situation)

b) Reducing the 1996 fishing level by 40 percent. 

Making the necessary calculations in order to estimate a) and b), present the results and 
comment on the changes in the catch in weight and mean biomass, relative to 1996. 
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2. Fishing managers also asked the scientists to evaluate the catch in weight and the mean 
biomass that would result from maintaining the fishing level of 1996 in 1997, but using a 
new mesh size of the fishing net. To solve this question, the scientists proposed the 
following new exploitation pattern:

age 0 1 2 3 4 5 6 7 8 

sI 0.00 0.00 0.03 1.50 1.65 1.75 1.80 1.80 1.80 

Make the calculations, present the results and make your comments on the changes in the 
catch in weight and the mean biomass relative to 1996. 

3. Evaluate the effects on the catch in weight and on the mean biomass, resulting from the 
simultaneous adoption (in 1997) of the reduction by 40 percent of the fishing level in 
1996 and the introduction of the new exploitation pattern. Present the results and make 
your comments . 

8.11 STOCK – LONG TERM PROJECTION (4.4) 

The mortality parameters of the Iberic Stock (Div. VIIIc e IXa) of Sardine, Sardina

pilchardus, were estimated by the Assessment Working Group of ICES (ICES, 1997b) as : 

• Natural Mortality Coefficient = 0.33 1−year

• Fishing Mortality Level in 1996 = 0.56 1−year

Assume that the exploitable phase occurs from the beginning of age zero until the end of age 
six.

Relative pattern of exploitation, si, during 1996 

so s1 s2 s3 s4 s5 s6

0.21 0.41 0.79 1.18 1.34 1.43 1.68 
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The parameters of the individual growth and the weight length relation of this stock were 
estimated (Pestana, 1989) as : 

Von Bertalanffy
growth parameters  

Weight length relation

W a Lb= .
with L  in cm and W  in g 

L∞ = 22.3 cm 
   K = 0.40 year-1 

to = -1.6 year  

a = 0.0044 
b = 3.185 

GROUP I 

1. Calculate the evolution in number and the biomass of a cohort during its life at the 
beginning of each age, supposing that growth, natural and fishing mortality parameters are 
the given values. 

2. The recruitment at age 0 in 1996 was estimated as being 4300 million individuals. 
Calculate the cumulative number, the cumulative biomass, the catch in number and in 
weight, during all the life of the cohort. 

GROUP II 

It was estimated that, at the beginning of 1996, the considered stock  had the following age 
structure, in number, representing i the age and Ni the number of survivors at the beginning of 
age i, expressed in millions of individuals : 

I 0 1 2 3 4 5 6 

NI 4300 279 591 233 561 384 180 

To make a long term projection of the stock, all the mortality and growth parameters will be 
considered stable during the following years. Consider, also, that the recruitment in those 
future years will be equal to the recruitment of 1996.  

1. Based on these assumptions, project the numbers of survivors at the beginning of each 
year and age, until  2006. 

2. Compare the structures of the stock in the years 2003 and 2006. 

3. Compare the evolution of the 1996 cohort with the structure of the stock at the beginning 
of 2003.
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8.12 STOCK – RECRUITMENT RELATION (4.5) 

During the meeting of the assessment Working Group (ICES, 1998b) of the Iberic stock 
(Div. VIIIc and IXa) of hake, Merluccius merluccius, the following stock parameters were 
estimated for the period 1982-1996: 

Year N (age 0) 

(million)

Spawning Biomass 
(thousand tons) 

1982 125 59.8 

1983 107 61.4 

1984 136 58.8 

1985 97 44.1 

1986 104 26.4 

1987 97 24.2 

1988 84 22.8 

1989 56 18.9 

1990 59 19.4 

1991 69 20.5 

1992 86 21.5 

1993 70 21.0 

1994 63 16.5 

1995 32 15.2 

1996 83 18.0 

The annual recruitment at the exploitable phase is considered as being the number of 
individuals with age 0. 

1. Draw the dispersion graph of the resulting recruitments, against the parental spawning 
biomass. 

2. The parameters of Shepherd, Ricker, Beverton & Holt and Deriso S-R relations were 
estimated and are shown in the following table, as well as the respective determination 
coefficients, r2 :

Parameters Shepherd Ricker Beverton & Holt Deriso 

α (R/g) 3.50 4.43 4.91 4.40 

k (1000 tons) 64.94 78.13 45.39 106.27 

C 3.52   0.896 

r2 0.71 0.68 0.66 0.75 
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a) Calculate the expected recruitments in each year of the period 1982-1996 using the 
four S-R models.  

b) The determination coefficient, r2,  can be used as an indicator of a good or bad  
adjustment of the model to the observed data, depending on the number of 
observations (r2 can be interpreted as a percentage of variation of the observed points 
that is explained by the model. Values close to 1 indicate a good adjustment and 
values close to zero indicate a bad adjustment). Using this indicator, make your 
comments about the adjustments of each model. 

8.13 Fmax (5.2.1)

Consider the stock of cod fish, Gadus morhua, in the Irish sea (Div. VIIa). The following 
mortality and biological parameters were estimated by the Working Group of ICES (ICES, 
1998c):

Natural Mortality Coefficient: M = 0.20 year-1

Fishing Level in 1996: F96 = 0.58 year-1 

Mean weight (kg) in the catch and in the stock : 

Age 0 1 2 3 4 5 6 7 

iW 0.001 0.883 1.778 3.597 5.695 7.904 8.502 9.200 

GROUP I 

Assume that the stock was constituted by the age groups 0 to 7 years and that it was exploited 
with the following exploitation pattern : 

Age 0 1 2 3 4 5 6 7 

is 0.80 0.90 0.96 1.00 1.00 1.00 1.00 1.00 

1. Calculate, for  1000 recruits, the long term annual catch in weight and the annual mean 
biomass, corresponding to the fishing level of 1996. 

2. Adopting the factor Ffactor between 0 and 2.5 year-1 with intervals of 0.1 year-1 draw the 
curve of the annual catch in weight against Ffactor. Represent, in the same graph, the curve 
of the mean biomass against Ffactor.

3. Calculate the biological reference point Fmax.
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GROUP II 

1. Answer the previous questions, but considering the following exploitation pattern. 

Relative pattern of exploitation adopted by the Working Group: 

Age 0 1 2 3 4 5 6 7 

is 0.00 0.20 0.96 1.30 1.12 0.67 0.58 0.58 

a) Compare the value of Fmax of this exercise with the one obtained in the exercise in 
Group I. 

b) Calculate the biological reference point Fmax knowing that the Working Group considers 
the group of age 7 as a group of cumulative ages (7+). The mean weights in the catch and 
in the stock presented at the beginning of the text are maintained, except for the last 
group of ages which will now be the age group 7+ with the mean weight equal to 10.873 
kg. The exploitation pattern is also maintained with the value 0.58 for the group 7+. 

c) Compare the two calculated values of Fmax, considering the last age group as 7 or as 7+. 

8.14 F0.1 (5.2.2)

Consider the Iberic stock  (Div. VIIIc e IXa) of four-spot megrim, Lepidorhombus boscii.

The following parameters were estimated by the Working Group of ICES (ICES, 1998b):  

Natural Mortality Coefficient: M = 0.20 year-1

Fishing mortality in 1996: F96 = 0.36 year-1 

Exploitation pattern: 

Age 1 2 3 4 5 6 7+ 

is 0.06 0.43 0.89 1.65 1.66 1.22 1.22 

Mean weight (kg) in the catch and in the stock: 

Age 1 2 3 4 5 6 7+ 

iW 0.037 0.067 0.086 0.109 0.144 0.188 0.244 
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1. Adopting the value 1000 for the recruitment to the fishing area, calculate the long term 
annual catch in weight, the annual mean biomass, and the annual mean weight in the 
catch,  corresponding to the fishing mortality level of 1996. 

2. Adopting the factor Ffactor between 0 and 2.5 year-1 with intervals of 0.1 year-1 draw the 
curve of the annual catch in weight against Ffactor. Represent, in the same graph, the curve 
of the mean biomass against Ffactor.

3. Calculate the biological reference point F0.1

4. Calculate the biological reference point Fmax

5. In the graph of the curves of the annual catch in weight and of the mean biomass against 
Ffactor, mark the Biological reference points F0.1 and Fmax which were previously 
calculated. Make your comments. 

6. Calculate the long term mean biomass, the catch in weight and the mean weight in the 
catch for F0.1. Compare those characteristics with the values obtained in question 1 and 
make your comments. 

8.15 Fmed and FMSY (5.2.3) and (5.2.4) 

During the meeting of the Assessment Working Group (ICES, 1998b) on the Iberic stock 
(Div. VIIIc and IXa) of hake, Merluccius merluccius, the following population parameters 
were estimated : 

 Natural mortality coefficient:  M = 0.2 year-1;

 Fishing mortality in 1996:  F96 = 0.24 year-1 

 Mean weight in the catch (g): 

Age (year)  0 1 2 3 4 5 6 7 8+ 

)g(Wi
4 37 106 205 358 517 706 935 1508 

Maturity ogive ( percent): 

Age (year)  0 1 2 3 4 5 6 7 8+ 

% maturei 0 0 1 6 20 49 76 91 100 

For the long term projections, the Working Group adopted the mean exploitation pattern for 
the period 1994-1996, as shown in the next table : 

Age (year)  0 1 2 3 4 5 6 7 8+ 

is 0.001 0.11 0.398 1.3 1.261 1.019 1.473 1.874 1.874 
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1. Calculate the long term annual mean biomass, the spawning biomass, the annual catch in 
weight and the mean weight in the catch. 

2. Draw the curve of the annual catch in weight and the mean biomass against F, for values 
of  Ffactor between 0 and 2.5 year-1, with intervals of 0.1 year-1. Calculate the TRPs Fmax

and F0.1.

3. Calculate the biological reference point Fmed , knowing the recruitments (million 
individuals at age 0) and the spawning biomasses (thousand tons) between 1982 and 1996,  
estimated by the Working Group, presented in the following table : 

Year N (age 0) 
(million)

Spawning biomass 
(1000 tons) 

1982 125 59.8 

1983 107 61.4 

1984 136 58.8 

1985 97 44.1 

1986 104 26.4 

1987 97 24.2 

1988 84 22.8 

1989 56 18.9 

1990 59 19.4 

1991 69 20.5 

1992 86 21.5 

1993 70 21.0 

1994 63 16.5 

1995 32 15.2 

1996 83 18.0 

4. Calculate the long term mean biomass, the spawning biomass, the catch in weight and 
the mean weight in the catch for Fmed. Compare with the values obtained in question 1 
and make your comments.  

5. Adopting the Ricker stock-recruitment relation, estimated by the Working Group (α = 
4.43 R/ kg  and  K = 78.13 thousand tons) , calculate FMSY, BMSY  and Y MSY.  and 
compare the different F-target estimated. 
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8.16 MBAL AND Bloss (5.3.4 & 5.3.5) 

During the meeting of the Assessment Working Group (ICES, 1998b) on the Iberic stock  
(Div. VIIIc and IXa) of hake, Merluccius merluccius, the recruitment (million individuals at 
age 0) and the spawning biomass (thousand tons) was estimated for the period 1982-1996. 
The values obtained are presented in the following table : 

Year N (age 0) 

 (million) 

Spawning biomass 
(1000 tons) 

1982 125 59.8 

1983 107 61.4 

1984 136 58.8 

1985 97 44.1 

1986 104 26.4 

1987 97 24.2 

1988 84 22.8 

1989 56 18.9 

1990 59 19.4 

1991 69 20.5 

1992 86 21.5 

1993 70 21.0 

1994 63 16.5 

1995 32 15.2 

1996 83 18.0 

1. Using the spawning biomasses and the resulting recruitments, calculate the Biological 
Reference Limit Points, MBAL and Bloss.
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8.17 Floss and Fcrash  (5.3.5 & 5.3.6) 

GROUP I 

During the meeting of the Assessment Working Group (ICES, 1998b) on the Iberic stock 
(Div. VIIIc and IXa) of hake, Merluccius merluccius, the recruitment (million individuals at 
age 0) and the spawning biomass (thousand tons) was estimated for the period 1982-1996. 
The values obtained are shown in the following table :

Year N (age 0) 

 (million) 

Spawning biomass    
(thousand tons) 

1982 125 59.8 

1983 107 61.4 

1984 136 58.8 

1985 97 44.1 

1986 104 26.4 

1987 97 24.2 

1988 84 22.8 

1989 56 18.9 

1990 59 19.4 

1991 69 20.5 

1992 86 21.5 

1993 70 21.0 

1994 63 16.5 

1995 32 15.2 

1996 83 18.0 

The Shepherd S-R relation was adjusted to the pairs of values in the table (r2=0.71), and the 
relation parameters are the following : 

α = 3.5      Kg -1

  k = 64.94  thousand tons 
   c = 3.52 

1. Draw the dispersion graph of the resulting recruitments, against the parental spawning 
biomasses. 

2. Calculate the expected recruitments in each year of the period 1982-1996 according to the 
Shepherd S-R model and in the previous dispersion graph, draw the respective curve. 
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GROUP II 

1. Calculate the annual catch in weight and the spawning biomass per recruit for the stock of 
hake, using the mortality and biological parameters estimated by the Working Group for 
the long term projections (given in Section 8.15), namely : 

 Natural mortality coefficient  : M = 0.2 year-1

 Fishing mortality in 1996:  F96 = 0.24 year-1 

 Mean weight in the catch (g):  

Age (year)  0 1 2 3 4 5 6 7 8+ 

iW 4 37 106 205 358 517 706 935 1508 

 Maturity ogive ( percent): 

Age (year)  0 1 2 3 4 5 6 7 8+ 

% maturei 0 0 1 6 20 49 76 91 100 

 Mean relative pattern of exploitation of the period 1994-1996: 

Age (year)  0 1 2 3 4 5 6 7 8+ 

is 0.001 0.11 0.398 1.3 1.261 1.019 1.473 1.874 1.874 

GROUP III 

1. Using the results of Groups I and II, calculate biological reference Limit-Points, Floss and 
Fcrash.
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8.18  PRODUCTION MODELS (EQUILIBRIUM) – SCHAEFER (6.7.1)

The following table presents the annual total catch Y, (t) and mean biomass B, (t) for the 
fishery of the Iberic stock (Div. VIIIc and IXa) of sardine, Sardina pilchardus, between 1977 
and1996, used by the Working Group of ICES (ICES, 1998a). 

Year Y (t) B (t) 

1977 125750 750289 

1978 139990 759192 

1979 153441 763313 

1980 191682 804765 

1981 214133 842091 

1982 204504 802573 

1983 181139 713376 

1984 202686 794856 

1985 204107 810539 

1986 180606 679808 

1987 168825 547179 

1988 158540 481295 

1989 137126 431719 

1990 139157 368099 

1991 127756 316365 

1992 126054 453161 

1993 138795 539096 

1994 132800 416842 

1995 121384 368158 

1996 111431 246037 

GROUP I 

1. Calculate Fi corresponding to each year i. 

2. Calculate the biomasses, Bi, at the beginning of each year. (Use the procedure proposed 
by Schaefer, that is, the biomass at the beginning of a year is approximated by the 
arithmetic mean of the mean biomasses of the previous and the following year). 

3. Calculate the equilibrium catches, YE, which would correspond to the observed values 
of F. 
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4. Calculate the equilibrium mean biomasses, BE, which would correspond to the observed 
values of  F. 

5. Draw the graph ofBE against Fi.

GROUP II 

The Schaefer model was adjusted and the following parameters were estimated :  

  k = 1562851  t 
  r = 0.426 year-1

1. Calculate the equilibrium biomasses and the equilibrium catches corresponding to the 
fishing levels observed in each year, using the Schaefer model.  

2. Draw, in the graph of Group I point 5, the equilibrium biomasses calculated with the  
Schaefer model.  

3. Calculate FMSY , BMSY and YMSY

4. Calculate F0.1 , B0.1 and Y0.1.

8.19 PRODUCTION MODELS (EQUILIBRIUM) (6.7.1 & 6.7.2) 

The following table presents the annual total catches and the corresponding total fishing 
efforts of a shrimp stock in the Arabian Sea during the period 1969 to 1978 (Sparre and 
Venema, 1992).  

Year Catch, Y Total effort
 (t) (1000 days) 

1969 546.7 1.224
1970 812.4 2.202
1971 2493.3 6.684
1972 4358.6 12.418
1973 6891.5 16.019
1974 6532.0 21.552
1975 4737.1 24.570
1976 5567.4 29.441
1977 5687.7 28.575
1978 5984.0 30.172

GROUP I 

1. Draw a graph of the annual abundance index against the corresponding fishing mortality 
index.

2. The Fox model was adjusted to the data. The following parameters were obtained : 

  a = 6.150 b = - 0.028 with a determination coefficient, r2 = 0.78. 



141

a) Calculate and draw the curves of the equilibrium conditions of the abundance index 
and of the total catch against fishing effort. 

b) Determine the target-points MSY and 0.1. 

c) Determine the parameters (kq), (r/q) and (kr). 

GROUP II 

Knowing that the adjustment of the Schaefer model to the same set of data, resulted in the 
following values of the parameters : 

  a = 444.454 
  b = - 8.055 
  (r2 = 0.77) 

1. Repeat the calculations of the previous Group. 

8.20 PRODUCTION MODELS – SHORT TERM PROJECTION (6.8) 

The following table presents the annual total catches (in tons) and the corresponding catches 
by fishing unit effort (kg/ fishing day of the fleet PESCRUL) of the stock of Deepwater rose 
shrimp, Parapenaeus longirostris, of the Algarve during the period 1983 to 1994 (Mattos 
Silva, 1995).

Year Y (t) cpue 
(kg/day)

1983 538 235 

1984 638 131 

1985 431 63 

1986 99 22 

1987 37 8 

1988 62 21 

1989 437 77 

1990 146 28 

1991 126 26 

1992 53 25 

1993 91 41 

1994 232 66 

Using the following parameters of the integrated Fox model and Yoshimoto & Clarke (1993): 
k= 1580 t, q=0.39 thousand days-1 and  r=0.55 year-1 :
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1. Project the cpue and the catch in weight for the year 1995, supposing that the fishing 
effort will be maintained equal to that of 1994 (situation status quo). 

2. Determine the target reference points, YMSY, BMSY and FMSY and the indices UMSY and 
fMSY.

3. Determine the target reference points, Y0.1, B0.1 and F0.1 and the indices U0.1 and  f0.1.

4. Determine the percentages of the carrying capacity corresponding to the target points 
FMSY and F0.1

5. Based on the results obtained in the previous questions, make your comments on the state 
of the stock and of its exploitation. 

6. Suppose that one intends to reduce the fishing effort in 1995 by about 20 percent relative 
to the effort of 1994. Project the catch in weight for 1995 and present the variations 
resulting from that effort reduction on the catch in weight and on the biomass.  

8.21 SIMPLE LINEAR REGRESSION –  ESTIMATION OF THE  
PARAMETERS OF THE W-L RELATION AND GROWTH
PARAMETERS (FORD-WALFORD, GULLAND AND HOLT
AND STAMATOPOULOS AND CADDY) 

(7.2)

GROUP I 

Consider the following 10 pairs of  values of x and y: 

ix 2 6 7 8 11 15 16 18 19 21 

iy 13 40 52 56 78 105 111 130 132 149 

1. Estimate the constants A and B of the straight line. 

2. Estimate the values of Y corresponding to the given values of x. 

3. Calculate the determination coefficient r 2 .

4. Draw a graph with the observed values and with the estimated line. Observe the  
adjustment and say if you consider the linear model adequate. 
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GROUP II 

The data presented on the following table represent the individual weights by length class of 
European anglerfish, Lophius budegassa samples from the Iberic coast in 1994.  

Li (cm)  tW (g) Li (cm)  tW (g) 

20- 129 50- 1685 

22- 163 52- 1896 

24- 219 54- 2107 

26- 265 56- 2345 

28- 320 58- 2569 

30- 397 60- 2848 

32- 486 62- 3126 

34- 545 64- 3407 

36- 664 66- 3700 

38- 773 68- 4056 

40- 890 70- 4411 

42- 1027 72- 4764 

44- 1122 74- 5203 

46- 1334 76- 5587 

48- 1503 78- 5982 

1. Using the simple linear regression model, estimate the parameters of the weight-length 
relation for this stock, considering that  Wcentral=Wmean. (Notice that the ln Wcentral is linear 
to the ln Lcentral).

GROUP III 

The data presented in the following table represent the mean length (cm) of the individuals at 
the beginning of the age (years), obtained from direct age reading of the individuals of the 
stock of European anglerfish, Lophius budegassa, (ICES Div. VIIIc and IXa), Section 8.7

T Lt t Lt

1 9.2 7 44.4 

2 16.5 8 49.0 

3 22.9 9 52.3 

4 28.8 10 55.0 

5 34.7 11 60.8 

6 38.6 12 63.4 
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From this data and using  the simple linear regression model, estimate the growth parameters 
K and L∞ with the expressions : 

1. Ford-Walford (1933-1946) 

2. Gulland and Holt (1959) 

3. Stamatopoulos and Caddy (1989). (The expressions for 1), 2) and 3), were studied in the 
Chapter concerning  Individual Growth). 

4. Comment on the results obtained  in the previous questions with the values of the 
parameters given in  Section 8.7. 

8.22 MULTIPLE LINEAR MODEL – REVISION OF MATRICES – 
ESTIMATION OF THE PARAMETERS OF FOX 
INTEGRATED MODEL (IFOX) 

(7.3)

REVISION OF MATRICES

GROUP I 

Consider the matrices A and B : 

A = 2 3 0 1 B = 1 1 0 3 
 1 1 4 1 1 3 2 5 
 0 4 2 2  2 1 6 0 
 1 0 3 3  2 2 1 0 

1. Using a spreadsheet, calculate: A + B,  A * B, Det(A), Det(B), A-1 e B-1

2. Show that (A.B)-1 = B-1.A-1

3. Show that (A.B)T = BT.AT

GROUP II

Let the Matrices: 

M(4,4)= (1/4)   1 1 1 1 O(4,4) =  0 0 0 0 I(4,4) =  1 0 0 0 
  1 1 1 1  0 0 0 0  0 1 0 0 
  1 1 1 1  0 0 0 0  0 0 1 0 
  1 1 1 1  0 0 0 0  0 0 0 1 

1. Verify that the matrix null 0 is idempotent. 

2. Verify that the matrix identity I is idempotent.  

3. Verify that the matrix M is idempotent. 
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4. What are the traces of M and I? 

5. Calculate the ranks, r , of M and of I. 

6. What is the value of the determinant of M and I? 

GROUP III

1. Verify that the product Mx, where x is the vector given by xT  = (3 4 8 1), is a vector 
with all elements equal to the arithmetic mean, x , of the 4 elements of vector x. 

2. Verify that (I-M)x is the vector of the deviation.

3. Verify that the sum of the squares of xi , ä(xi
2) can be written as : xT . x

4. Verify that the sum of the squares  of the deviations, ä(xi - x ) 2 , can also be written in 
a matricial form, as : xT (I-M)x

GROUP IV 

1. Consider the vector x = 2 + θ  where θ is an unknown parameter. 
          3 θ
           5 - θ

a) Write the derivative 
dx

dθ
 of the vector x 

b) Calculate xT x

c) Calculate
d

dθ
 (xT x)

d) Show that
d

dθ
 (xT x) = 2 (

dx

dθ
)T x

2. Consider the vector x = 2 +  4θ1 -  5θ2   where θ1 and θ2 are two unknown constants. 

    1+    θ1 + θ2

    θ1
2 +4θ2

a) Write the derivative matrix   
∂
∂θ

. x
  (take θ1 and θ2 as variables) 

b) Calculate xT  x 

c) Transpose
∂

∂θ
 (xT  x) 
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d) Show that the transposed matrix  
∂

∂θ
 (xT  x) = 2 (

∂
∂θ

x
)T x

GROUP V 

Consider the following system of  2 equations with 2 unknowns; 

  5 = 2 A + 3 B  
  4 =    A -  2 B 

1. Show that the equation system can be written in matrix form as,  

  Y(2,1) = X(2,2) θ(2,1) 

where  Y is the vector of the independent  terms (5 e 4) of the system, 

θ is the vector of the unknowns A and B 
 and X is the matrix of the coefficients of the unknowns 

2.  Verify that the solution of the system can be given as  θ = (XTX)-1XTY

3. Show that X is a square, non singular matrix, and then that the solution of the system can 
be θ = X-1Y

ESTIMATION OF THE PARAMETERS OF THE YOSHIMOTO AND CLARKE  MODEL 

(1993)

4. Estimate the parameters k, q and r, of the Fox integrated model (IFOX) and of 
Yoshimoto & Clarke (1993) using the following data : 

Year Y 
(t)

CPUE
(kg/day)

1983 538 235 

1984 638 131 

1985 431 63 

1986 99 22 

1987 37 8 

1988 62 21 

1989 437 77 

1990 146 28 

1991 126 26 

1992 53 25 

1993 91 41 

1994 232 66 
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which represent the total annual catches (in tons) and the respective catches by fishing effort 
unit (kg/fishing day of the fleet PESCRUL) of the stock of Deepwater rose shrimp, 
Parapenaeus longirostris of the Algarve during the period 1983 to 1994 (Mattos Silva, 1995).

Comment on the obtained results comparing them with those presented in Section 8.20.  

8.23 NON LINEAR REGRESSION – ESTIMATION OF THE 
GROWTH PARAMETERS AND  OF THE S– R RELATION 
(GAUSS–NEWTON METHOD) 

(7.4)

The data in the following table represent the mean length (cm) of the individuals at the 
beginning of the age (years), obtained from direct age reading of individuals of the stock of 
anglerfish, Lophius budegassa, (Div. VIIIc andIXa), Section 8.7.

t Lt t Lt

1 9.2 7 44.4 

2 16.5 8 49.0 

3 22.9 9 52.3 

4 28.8 10 55.0 

5 34.7 11 60.8 

6 38.6 12 63.4 

GROUP I 

1. Represent graphically the values of Lt against t. 

2. Estimate the growth parameters K, L∞ and t0 for the Bertalanffy growth model using a 
non-linear regression model. 

3. Estimate the values of Lt corresponding to given values of t and mark on a graph the 
observed values and the estimate curve. Comment on the adjustment.  

4. Compare the results obtained in the previous questions with the values of the parameters 
given in  Section 8.7. 

GROUP II 

Using the data on spawning biomass and on recruitments of hake, presented in Section 8.12, 
estimate the parameters of the  Beverton and Holt, Ricker, Deriso and Shepherd S-R models.  

1. Compare  the obtained values with those presented in Section 8.12. 
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8.24 ESTIMATION OF M (7.6) 

GROUP I 

1. Estimate the 5 percent  Tanaka survival curve for natural mortality coefficients between 
0.0 and 5.0 year-1 and longevities between 0 and 30 years. 

2. Calculate the values of M corresponding to the longevity 1, 2, 3, 10, 15 and 30 years. 

GROUP II 

The parameters of von Bertalanffy equation for the Iberic stock (Div. VIIIc and IXa of ICES) 
of horse-mackerel, Trachurus trachurus, are the following : 

  L∞ = 34.46 cm, TL (carapace length) 
  K = 0.225 year-1

1. Estimate the value of M for this stock, knowing that from 1985-95 in the distribution area 
of this stock in the Iberic Peninsula, the  mean temperature of the sea water at the surface, 

was : T C= 13

GROUP III 

Consider a certain fishing stock for which the first maturity mean age was estimated as 2.3 
year.

1. Obtain an approximate estimate of M for this stock.  

GROUP IV 

The reproductive biology of the stock of Atlantic mackerel, Scomber scombrus was studied 
and it was estimated that the mean gonadsomatic index (gonad weight/total weight) of the 
mature females in the spawning period was 0.13. 

1. Estimate an approximate value for the natural mortality coefficient M for this stock, 
assuming that it is constant for all the ages and years. 

GROUP V 

The scientists responsible for the evaluation of the stock of a certain fishing resource, 
implemented an acoustic cruise every year in January, to estimate the abundance of the stock 
by age classes. Fishery statistics are also needed to estimate the catch by age during the year. 

The following table presents the estimations of the abundance of the stock, by age classes, 
obtained on the cruises in 1993 and 1994, as well as the structure of the catches during 1993. 
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Age Number of survivals, N, in million Total catch in 1993 

 January 1993 January 1994 (million) 

2 243 353 11 

3 99 189 15 

4 86 67 20 

5 37 52 9 

6 13 22 3 

7 6 8 1 

Although this information is available, the scientists responsible for this stock have 
difficulties applying the assessment models to the resource because they do not have an 
estimation of M. 

1. So, estimate the natural mortality coefficient for this resource in 1993, and help the 
group of scientists responsible for the resource. 

GROUP VI 

The following table presents the data on fishing effort, in million trawl hours, and the total 
mortality coefficent, Z, for a certain fishery for the period 1987 to 1995. 

Years Effort 
(106 hours) 

Z (year-1)

1987 2.08 1.97 

1988 2.80 2.05 

1989 3.5 1.82 

1990 3.6 2.32 

1991 3.8 2.58 

1992 - - 

1993 - - 

1994 9.94 3.74 

1995 6.06 3.74 

1. Determine M (natural mortality coefficient), assumed to be constant for the period 1987-
1995.

2. Determine the catchability coefficient q. 
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8.25 ESTIMATION OF Z (7.7) 

GROUP I 

A swept area cruise allowed the scientists of the Marine Research Institute in Bergen, 
Norway, to estimate the abundance of the different age classes of the stock of cod fish, Gadus

morhua, in January of 1995 (following table). 

Age (years) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N95 (109) 1984 440 160 103 82 65 54 43 33 27 26 21 17 13 10

1. Represent on a graph, the logarithms of the numbers of survivors against the age. 

2. Select the age interval from which the total mortality coefficient, Z, can be taken as 
constant.

3. Estimate the total mortality coefficient, Z, of the stock in January 1995. 

GROUP II 

The following table presents the mean catches by age, in number, of plaice, Pleuronectes

platessa, per 100 trawl hours in two periods, 1929-1938 and 1950-1958. 

Age (years) 2 3 4 5 6 7 8 9 10 

C/f 1929-38 125 1355 2352 1761 786 339 159 70 28 

C/f 1950-58 98 959 1919 1670 951 548 316 180 105 

1. Estimate the total mortality coefficient, Z, of the stock in each of the periods. 

2. Consider that the mean fishing effort on the North Sea plaice during the two periods was 5 
million hours of trawl in 1929-1938 and 3.1 million hours of trawl in 1950-1958. Estimate 
for each period: 

a) the natural mortality coefficient, M; 

b)  the catchability coefficient, q;  

c) and the fishing mortality coefficient, F.  

GROUP III 

The following table presents the annual composition of the catches by age from 1988 to 1994, 
in millions of individuals, for a certain resource : 
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CATCHES (million individuals) 

Age 1988 1989 1990 1991 1992 1993 1994 

0 599 239 424 664 685 478 330 

1 678 860 431 1004 418 607 288 

2 1097 390 1071 532 335 464 323 

3 275 298 159 269 203 211 243 

4 40 54 75 32 69 86 80 

5 6 9 13 18 8 25 31 

6 1 8 3 5 5 3 8 

7 6 0 1 0 1 1 1 

1. Calculate the mean annual composition during 1988-1994. 

2. Estimate Z, based on that mean composition. 

3. Estimate Z, based on the mean age of the mean composition of the catch. 

4. Estimate Z for each year of the given period. 

5. Compare the annual Zs with the values of Z obtained in questions 2 and 3. 

GROUP IV 

The following table shows the length composition, in equilibrium, of a certain resource, with 
L∞ = 100  cm and K = 0.2 year-1.

Length class (cm) 35- 40- 45- 50- 55- 60- 65- 70- 75- 80- 85- 90- 95-

Catch (Ci) in million 7 10 20 51 46 44 41 36 33 28 23 17 8 

1. Calculate the relative ages corresponding to the lower limit of each length class. 

2. Determine the age interval corresponding to each length class. 

3. From which class can one consider Z constant? 

4. Determine Z using : 

a) The catches in each class. 

b) The cumulative catches. 

c) The mean length in the catch. 

5. Compare the values of Z obtained by the different methods of question 4. 
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GROUP V 

The length compositions of the catches for three different periods of time are known for a 
certain fishing resource. 

Period Length 
classes (cm) 

45- 50- 55- 60- 65- 70- 75- 80- 85- 90- ≥95

1960-69 Catch (Ci) in 
million

256 237 211 187 161 138 113 87 62 36 12 

1970-79 268 226 180 141 105 76 50 30 15 6 1 

1980-89 212 161 116 79 52 31 17 8 3 1 0 

Consider the 45 cm length class as the first class completely recruited . 
Adopt K = 0.3 year-1 and L cm∞ = 100  as the von Bertalanffy growth parameters for this 
resource.

1. Estimate the values of the total mortality coefficient, Z, for each period and comment on 
the results. 

8.26 AGE COHORT ANALYSIS (CA)  (7.9.1)

GROUP I 

1. Consider a stock and an interval of time i, ( )t ti i, +1 . Knowing that for this interval of 

time:  

  Mi = 0.4 year-1 

  Ti = 2.3 year 
  Ci = 230 million individuals 

a) Adopt the value 0.5 year-1 for the fishing mortality coefficient for the interval and 
calculate the numbers of survivors at the beginning and end of the interval.  

2. Consider the interval of time i, ( )t ti i, +1 . Knowing that in this interval of time: 

  Mi = 0.6 year-1

  Ti = 0.9 year 
  Ci = 98 million individuals 
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Calculate the value of the fishing mortality coefficient, Fi , for the interval , taking the number 
of survivors, Ni , at the beginning of the interval, i, to be 172 million individuals.  

3. Consider the interval of time  (ti, t I+1). Knowing that in that interval of time : 

 Mi= 0.5 year-1

 Ti = 1 year 
 Ci = 42 million individuals 

a) Calculate the value of the fishing mortality coefficient for the interval, knowing 
that the number of survivors at the end of the year was Ni+1= 85 million 
individuals. Calculate the value of Fi using the Pope formula. 

GROUP II 

The data in the following table represent the catches in millions, of a cohort of hake, 
Merluccius merluccius, in the Iberic Peninsula waters. 

Age (years) 0 1 2 3 4 5 6 7 8 

Ci (million) 712 3941 8191 10311 5515 4149 3081 1185 549 

Adopt a value of 0.2 year-1 for the natural mortality coefficient, constant for all the ages. 

1. Suppose that the value of  the fishing mortality coefficient at the last age (8 years) was 
1.0 year-1. Calculate, by an iterative method and by the Pope method, for each age of the 
cohort : 

a) The value of the fishing mortality coefficient. 

b) The number of survivors at the beginning of the age. 

c) Compare the results obtained  by the two methods. 

d) Represent, on a graph the values of Fi estimated against the age, and say what the 
recruitment of this cohort is at the exploited phase. 

GROUP III 

1. Aiming to analyse the influence of the chosen Fterminal , repeat the calculations of question 
1 of Group II, using one of the previous methods, with 0.3 and 1.5 year-1 for the value of 
Fterminal.

a) Draw a graph with the estimated values of Fi and Ni against the age. 

b) Comment on the differences between the graphs for the different values of Fterminal.

2. Aiming to analyse the influence of the choice of M, repeat the calculations of question 1 
of Group II, using one of the previous methods, for values of M of 0.1 and 0.4 year-1.
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a) Represent, on a graph, the estimated values of Fi and Ni against the age. 

b) Comment on the differences between the graphs for the different values of M. 

GROUP IV

The annual catches by age class, of a certain resource, for the years of 1985 to 1994, are 
presented in the following table. 

Catches by age class (Million individuals) 

Years

Age

(years)

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 

0 67 88 104 290 132 90 63 38 52 90 

1 532 1908 1841 1671 4172 1915 1284 906 541 704 

2 2070 1756 4424 3178 2534 6320 2826 1911 1322 741 

3 728 4016 2256 4042 2499 1972 4742 2115 1382 890 

4 353 945 3309 1273 1926 1170 883 2102 896 540 

5 97 439 733 1730 558 827 479 356 807 316 

6 16 107 300 333 656 207 291 166 117 243 

7 25 8 73 136 126 243 73 101 54 35 

8 5 7 5 33 52 47 85 25 33 16 

The modus operandi of the fishing fleet was constant during the period, but the number of 
vessels increased significantly. It is considered that, at present, the resource is intensively 
exploited.

Besides the information on the fishery, the estimates of the growth parameters of this resource 
and of the natural mortality coefficient are also available: 

  L∞ = 38.5 cm  a = 0.021  of the relation W(g)-L(cm) 
  K = 0.25 year-1 b = 2.784  of the relation W(g)-L(cm) 
  to = - 0.51 year  M = 0.3 year-1 

1. Estimate the fishing mortality coefficient and the number of survivors at the beginning of 
the year for each age class and each year. Use the Pope Cohort Analyses method. 

a) Start by selecting Fterminal = 0.5 year–1 for the last age of every year and for all the ages of 
the last year. 

b) After analysing matrix F obtained in a), select new values for Fterminal and repeat the 
application of Pope’s method. 
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2. Besides the information given in the previous question, it is also known that the spawning 
takes place in a restricted period, around the beginning of the year. Research cruises using 
acoustic methods took place during the spawning period, in order to estimate the 
spawning biomass (kg/hour of trawl). The results obtained are shown in the following 
table : 

Years 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
Spawning 
biomass
Index

1270 1613 1629 1424 1300 1209 1000 718 476 326

The biological information collected during those cruises was also used to estimate the 
maturity ogive of the stock at the spawning period: 

Age (years) 0 1 2 3 4 5 6 7 8 

% Matures 0 1 20 50 80 100 100 100 100 

a) Calculate the spawning biomass in the spawning period of each year from 1985 to 1994 
using the results of the Cohort Analyses obtained in question 1.b.

b) Use the information of the acoustic cruises to tune the Cohort Analyses. 

c) Comment on the tuning results. 

8.27 LENGTH COHORT ANALYSIS (LCA) (7.9.2)

GROUP I 

The following table presents the annual catch length composition, of a cohort of a resource 
with    L∞ = 130 cm and K = 0.1 year-1.
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Length
classes(cm)

Catch, CI

(million)
6- 1823
12- 14463
18- 25227
24- 8134
30- 3889
36- 2959
42- 1871
48- 653
54- 322
60- 228
66- 181
72- 96
78- 16
84- 0

The natural mortality coefficient was estimated  as being M = 0.3 year-1.
1. Using the Pope method, and adopting E=0.5 as being the exploitation rate in the (78-) 

length class of the catch, estimate the number of survivors at the beginning of each length 
class, the fishing mortality coefficient F and the exploitation rate E in each class. 

2. Calculate the mean number of survivors of the cohort. 

GROUP II 

The following tables 1 and 2 present the basic information on a hypothetical stock during the 
years 1985 to 1994.

1. Apply the slicing technique to the Catch matrix and comment on the validity of applying 
cohort analyses by ages. 

2. Estimate the matrices [F] and [N] by length classes and years. 

3. Calculate the matrix [Fsep] and comment on the hypothesis that the exploitation pattern 
can be considered to be constant during those years. 

Table 1.  Growth parameters of the von-Bertalanffy curve, L∞ and K Natural Mortality 
Coefficient, M and constants a and b of the weight/length relation 

Growth Natural Mortality Weight/length relation 
wi = a . (Li)

b

L∞ (cm) 42 M (year-1) 0.8 a 0.0023

K (year-1) 0.5   b 3
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Table 2.  Catch matrix in thousands of individuals, by length classes and years 
in the period 1985-94 

YearsAge
(sliced)

Length
classes
(cm)

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 

0 20- 35 41 30 17 49 69 34 61 46 29

21- 338 400 292 167 472 662 327 593 442 276

22- 805 952 699 400 1127 1575 777 1404 1053 657

23- 1500 1766 1317 757 2108 2923 1436 2574 1962 1220

24- 1901 2222 1702 985 2688 3678 1795 3175 2485 1535

25- 2034 2357 1872 1093 2902 3900 1886 3276 2659 1627

26- 1898 2175 1806 1067 2739 3600 1722 2925 2482 1502

1 27- 1951 1817 1228 1416 1445 2932 3376 1695 1785 2376

28- 1664 1529 1091 1276 1250 2467 2801 1369 1523 1999

29- 1382 1251 948 1125 1053 2018 2258 1071 1265 1636

30- 1127 1003 812 980 873 1619 1782 818 1031 1312

31- 900 787 684 841 710 1269 1372 607 823 1029

32- 694 595 560 702 558 959 1017 432 635 778

2 33- 809 565 290 389 834 511 759 832 221 518

34- 584 399 226 310 618 361 522 544 160 365

35- 403 267 170 240 439 242 340 335 110 245

36- 262 168 122 178 294 152 207 191 72 154

3 37- 165 168 66 71 175 214 93 128 75 46

38- 86 84 40 45 96 107 44 55 39 23

Consider La= 20 cm   and    ta=0
(Extracted from : Cadima, E. & Palma, C.,1997. Cohort Analysis from annual length catch 
compositions. Working document presented to the Working Group of the Demersal Stocks 
Assessment of the South Shelf, held in Copenhagen from 1-10 September, 1997.) 
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8.28 EXAMINATION - WRITTEN TEST 

TRAINING COURSE ON FISH STOCK ASSESSMENT 
INSTITUTO DE INVESTIGAÇÃO DAS PESCAS E DO MAR 
(LISBON, 3 NOV. -10 DEC. 1997) 

QUESTION 1

Consider a certain stock with the following parameters: 

 Natural Mortality Coefficient: M = 0.20 year-1 

 Fishing mortality in 1996: F96 = 1.08 year-1 

  Exploitation pattern : 

Age 1 2 3 4 5 6 7+ 

sI 0.07 0.23 0.33 0.49 0.97 1.00 1.00 

Mean weight (kg) in the catch and in the stock: 

Age 1 2 3 4 5 6 7+ 

WI 0.053 0.076 0.111 0.125 0.158 0.204 0.337 

Maturity ogive (percent): 

Age (year)  1 2 3 4 5 6 7+ 

% maturesi 34 90 100 100 100 100 100 
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The estimated recruitments and the spawning biomasses between 1986 and 1996 are 
presented in the following table : 

Table 1 

Year N (age 1) 

(thousands)

Spawning biomass  

(t)

1986 8751 1957 

1987 8305 1591 

1988 7123 1956 

1989 7596 2073 

1990 6013 2287 

1991 5054 1506 

1992 9713 1400 

1993 5520 1275 

1994 6000 980 

1995 7329 675 

1996 6840 917 

1. Calculate the biological reference point F0.1. Indicate the value of the virgin biomass that 
you estimated and calculate the percentageB0.1/Bvirgin..

2. Calculate the biological reference point Fmax.

3. Calculate the biological reference point Fmed

4. Estimate the parameters of the S-R Ricker model and indicate what the value of the 
spawning biomass/recruit is, corresponding to Fcrash.

5. Comment on the present state of the stock and its exploitation.  
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QUESTION 2

Consider a stock where the length compositions of the catches during 1986-1995 are known 
(Table 2). 

The following parameters were estimated from this stock : 
 Natural mortality coefficient = 1.2 year-1

 Asymptotic length = 39.8 cm 
 Growth coefficient= 0.8 year-1

Table 2 – Catch Matrix (thousand individuals) 

YearLength  
classes (cm) 

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 

14- 10 9 8 9 7 18 13 12 15 8 

15- 20 17 15 18 13 35 26 23 29 16 

16- 29 25 23 26 19 52 39 34 42 24 

17- 47 41 37 43 31 84 63 56 69 39 

18- 92 80 72 83 60 164 122 108 134 76 

19- 224 194 175 202 146 398 297 263 325 185 

20- 261 226 203 234 169 461 343 305 376 214 

21- 420 363 326 376 271 736 547 488 601 342 

22- 335 525 603 506 511 365 983 571 657 741 

23- 345 540 618 516 520 370 995 581 666 752 

24- 422 661 751 622 625 444 1189 699 799 902 

25- 442 693 781 642 643 454 1212 718 818 923 

26- 415 650 726 592 590 415 1102 659 747 843 

27- 388 607 672 542 537 376 995 601 677 765 

28- 360 564 617 493 486 339 890 543 609 688 

29- 332 520 563 444 435 301 788 487 543 613 

30- 304 475 508 396 386 265 689 431 478 539 

31- 275 430 453 348 337 230 594 377 414 468 

32- 272 246 509 494 330 314 212 428 351 353 

33- 239 216 439 419 277 261 174 359 292 294 

34- 206 186 369 345 226 211 139 293 235 237 

35- 171 155 300 273 176 162 106 228 181 182 

36- 136 123 230 202 129 117 75 167 130 131 

37- 82 99 116 196 147 91 80 40 117 83 

38- 49 60 66 103 75 45 38 21 58 41 

39- 0 0 0 0 0 0 0 0 0 0 
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1. Estimate the values of the fishing mortality coefficient in each length class of the cohort 
of 1987 (to simplify, adopt Fterminal = 0.5 year-1).

2. Estimate the corresponding values of the number of survivors at the beginning of each 
class.

3. Say what the recruitment of this cohort is. 

QUESTION 3

The Fox Production model was adjusted to a certain stock and the following parameters were 
obtained :

  K = 300 thousand tons  
  r = 0.50 year-1

1. Determine the biological reference points FMSY and F0.1.

2. Knowing that in recent years the biomass of this stock is about 30 percent of the virgin 
biomass, comment on the present state of the stock and its exploitation, based on the 
adopted model.  
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