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5. Accuracy boundaries in small 
populations 
 
In this section readers will be presented with an approach that 
concerns accuracy boundaries in small populations. Major topics 
include: 
 
(a) Shortcomings of the probabilistic approaches described in Section 

4 when target populations are of much smaller size. 
(b) Advantages of algebraic-based over probabilistic-based accuracy 

boundaries in cases of very small populations.   
(c) Practical criteria for determining the use of probabilistic and 

algebraic accuracy boundaries. 
 
5.1 Example of probabilistic boundaries in small 
populations  
 
Figure 5.1 represents the application of the probabilistic approach 
presented in Section 4 in the case of two small populations each with 
size N=100. Lower accuracy boundaries were constructed using 
formulae (4.7) and (4.9) at a probability level of 95 percent (z=1.96). 
 
The plots illustrate a significant gap between fluctuating sampling 
accuracy and its predicted lower limits. This “safety” space becomes 
more exaggerated in very small populations, such as the days in a 
month, where N can be as small as 28. It would thus seem that the 
probabilistic approach is “too pessimistic” in the case of small or very 
small populations and that safe accuracy limits can be obtained with 
much smaller samples than those indicated by the boundaries. This 
defect can partially be remedied by changing the value of z according 
to the population size but this technique does not alter significantly the 
picture and adds considerable complexity to the construction of 
accuracy boundaries. 
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Figure 5.1. Accuracy plots and probabilistic accuracy boundaries for 
small concave (0-1) and convex populations. Population size is 
N=100. Notice the excessive safety space between global boundary 
curves and fluctuating sampling accuracy. 
 
The reason for this shortcoming is that fundamental formula (3.6) 
(which constitutes the basis for formulating population-specific and 
global boundaries), assumes that sample means follow the normal 
distribution, an assumption that no longer holds when the population 
is too small.  
 
5.2 Algebraic accuracy boundaries 
 
Stamatopoulos (1999) has worked out an algebraic approach that 
seems to answer most of the questions raised in the previous section 
(see also References). Rather than applying the probabilistic formula 
(3.6), accuracy boundaries for small populations make use of an 
exponential function of the type: 
    
                             (5.1) kx
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where the independent variable  x  is the ratio  log n / log N  and N , 
n  denote population and sample size respectively. 
 
The three parameters   are formulated on the basis of four 

basic variables denoted 

k,a,a 21
W , a , g , S  which are computed as follows:  

 
(1) Computation of W  for concave populations. 
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e+−=      (5.2)
   
(2) Computation of W  for flat or convex populations. 
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(3) Computation of a.    
 

1N
1N

)1N(
NW2a 2

2

−
+

−
−

=        (5.4) 

 
(4) Computation of g. 
 

N
a1ag −

+=                     (5.5) 

 

  



 42 
 

(5) Computation of S. 
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Once W , a , g , S  have been evaluated, the three parameters 

 of expression (5.1) are computed as follows: k,a,a 21
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To be noted that  are only a function of the population size 

N  since the values of the four basic variables 

k,a,a 21
W , a , g , S  depend 

only on  N. 
 
Figure 5.2 illustrates the application of the above approach on two 
small populations with size N=30. The first population is concave with 
0 -1 elements while the second is convex. The dotted line represents 
the probabilistic curve drawn according to the concepts described in 
Section 4. Comparison between the two boundaries reveals that the 
probabilistic approach tends to become unduly “pessimistic” when the 
target populations are very small.  
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Figure 5.2. Accuracy plots and algebraic and probabilistic boundaries 
(dotted line) for two small populations with size  N=30.  
 
5.3 Properties of algebraic boundaries 
 
The properties of algebraic boundaries as defined in (5.1) are similar 
to those defined in the probabilistic approach in Section 4.  
 
(a) For  x=0  the intercept of function (5.1) and the vertical axis  A  is 

a value between 0 and 1. 
 
In fact, gaa)0(G 21 =+=  and by considering expressions (5.2), 
(5.3) and (5.4) it is easy to verify that g lies between 0 and 1. Its exact 
position depends on whether the target population is assumed to be 
concave or convex. 
 
(b) For x=1 function G(x) also becomes 1. 
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To prove that  will involve some calculations, 
starting with the observation that any variable C can be written as: 

1Naa)1(G k
21 =+= −
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Based on the observation above and the fact that (5.9):  
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we can write: 
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(c) As with probabilistic boundaries, also in algebraic boundaries 
there exists a breakpoint at sample size Nn = , at which 
accuracy becomes stable and starts a slow convergence towards 
1.  

 
By considering the function: 
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and recalling the earlier property , we first notice that: 
 
 

k =−−  

r hand at x=1 B(x)  also becomes 1 because of the 
relationship: 
 

ntial, have 

rowth for small values of    and beyond a certain point it starts a 

hich the difference G(x)-B(x) becomes maximum, which occurs 
hen: 
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That is at x=0  B(x)  has the same intercept g. 
 

n the otheO

1g1gNaa1g)1(B 21 =−+=−−+=  
 

 other words functions  G(x)  and  B(x)  are both expone

0

In
the same intercept  g  and meet at the same final point 1. 
 
However, their growth patterns are contrasting. Function G(x) shows 
a rapid growth up to a certain value of  x  and from then on it grows 
steadily until it becomes 1. Function B(x) shows a slow and steady 

xg
rapid growth until it also becomes 1.  
 
Evidently the critical value of x is at a point where the difference 

(x)-B(x) becomes maximum since it is from that point on that the G
growth of G(x)  becomes slower and steadier and that of B(x)  faster. 
 
In terms of differential calculus we are seeking a critical point x at 
w
w
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[ ] 0)x(B)x(G
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n to the above equation, which 
ads to the conclusion that algebraic accuracy boundaries also have 
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It is easy to verify that x=0.5 is a solutio
le

Nn = . a breakpoint at sample size  
 
5.4 Criteria for applying algebraic boundaries 
 

igure 5.3 illustrates the applicF ation of both algebraic and probabilistic 
ccuracy boundaries in two concave populations with 0-1 elements 
nd sizes N=30 and N=900.  

a
a
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3. Algebraic and probabilistic boundaries (dotted line) in very 
small (N=30) and small/medium size (N=900) populations.  
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In the first case the probabilistic boundary (dotted line) is found much 
below the accuracy fluctuation and the algebraic boundary seems to 

rovide more realistic lower limits. In the second case the two lines 

wer limits are more 
alistic. It would thus seem that an empirical criterion for choosing 

daries are more effective in very small populations with 
ze not exceeding 900. Beyond that size the probabilistic boundaries 
ould apply.  

 

p
almost coincide. 
 
As N increases the situation is reversed. Algebraic boundaries 
become excessively pessimistic and probabilistic lo
re
between the two approaches is the following: 
 
Algebraic boun
si
sh
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SUMMARY 
 
In this section readers were presented with an approach for setting-up 
accuracy boundaries using algebraic, rather than probabilistic 
concepts. The following points have been discussed. 
 
(a) Probabilistic boundaries tend to be excessively “pessimistic” when 

applied to very small populations. In practical terms this would 
mean that a desired accuracy level would be achieved with 
smaller sample size. 

(b) It is possible to set-up algebraic (i.e. non probabilistic) boundaries 
that have the same properties as the probabilistic ones.  

(c) Algebraic boundaries perform better with population sizes not 
exceeding 900 elements. Experience shows that beyond that size 
probabilistic boundaries should to be used.   
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