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4. Global accuracy boundaries

In this section readers will be presented with a step-by-step approach
aiming at the following propositions and conclusions:

(a) At equal sample size accuracy in concave populations is lower
than in flat or convex populations.

(b) Sampling accuracy in concave and binary populations with 0-1
elements at equal proportions, is a global minimum for all
population types and can therefore be used to formulate lower
accuracy boundaries for concave populations. Such boundaries
will only depend on population size.

(c) Sampling accuracy in flat populations is a global minimum for
convex populations and can thus be used to formulate lower
accuracy boundaries that will only depend on population size.

(d) Global accuracy boundaries offer the major advantage that safe
sampling schemes can be planned in advance (i.e. a priori). No
prior knowledge about the population parameters is required,
except some idea on its size.

4.1 Impact of population density to accuracy

In Section 2.2 a population was described as “convex” when its
density is higher near the mean, “flat” when its density is more or less
uniform, and “concave” when its density is higher near the boundaries.
It was also stated that this categorization would have a direct impact
to the sampling accuracy. In this first of a series of propositions it will
be shown that by making a normalized population more concave, its
variance increases with the result that sampling accuracy decreases
(refer also to Section 3.6).
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Proposition 1

The variance of a normalized population increases when one of its
elements is shifted away from the population mean.

Proof:

Let us consider a normalized population with N elements
u,Us,...,un and population mean p. We also select arbitrarily an

element u such that u<p. By considering all the other N-1 elements

Uy # U, the population mean and variance will be:

uz%Zuk +§u (4.1)
62 =3 (g~ 4 (u-p) @2)
N N

Element u is then shifted away from p and towards 0, by applying a

negative increment du<0 (Figure 4.1). The impact of du on the
population mean and the variance is found by differentiating the above

two expressions with respect to u. We find that:

1
du=—d 4.3
n N u (4.3)

do? =2 32 - D+ 20 -, o

2du 2du
do® == "7 2 Uk =W+~ (u-p(N -1

Since Z (ug =) + (u—p) =0 the last expression is reduced to:



27

2du 2du
do* = 2 W N =D
2du
do? =" (u— 4.4
N (u—p) (4.4)
u
|
0 u I 1
<
|
0 utdu 1
(du<0)

Figure 4.1. Moving an element toward the lower limit and away from
the population mean will make the normalized population more
concave.

Expression (4.4) indicates that the impact of du to the population
variance is positive since we had selected u<p and du<0 (the same

conclusion would have been derived by assuming u>p and du>0).

The new population resulting from the elementary transformation of
the arbitrary element u has the following two properties:
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a) it is more concave than the original population since its density has
decreased near the mean and increased near one of the two
boundaries;

b) its variance is higher than that of the original population.

Proposition 1 is proved. To be noted that in the transformed
population, and because of (4.3), the new element utdu will still
remain to the left (du<0) or to the right (du>0) of the population
mean, which means that if the above process is repeatedly applied on
the same element u, it will finally make it equal to 0 or 1.

4.2 Upper limits for variance
Proposition 2

Any normalized population can be transformed to a concave
population with only 0-1 elements and with a higher variance.

Proof:

According to proposition 1 any set of normalized elements can be
transformed to a population with higher variance through an
elementary increase or decrease of the value of one of its elements.
Repeated transformations of the same element will finally make it
become 0 or 1. By expanding this process to include all the other
elements, the original population will finally become a population with
values 0 and 1 only, and its variance will be higher than that of the
original population.

Proposition 3
The maximum variance in normalized populations is 0.25.

Proof:
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According to propositions (1) and (2), the variance of any normalized
population will always have an upper limit determined by a concave
population with 0- elements. The question then is which proportion of
the 0-1 elements will result in the highest (=global) variance.

If p is the unknown proportion of the zero elements, the population
variance will be p (1-p). It can be seen that its maximum value is

0.25, occurring when p=0.5, that is when the 0 and 1 elements
appear at equal proportions.

Proposition 4

The variance of a normalized and flat population is closely
approximated by:

2N-1 1

cF=——— =
6(N-1) 4

(4.5)
Proof:

A normalized flat population can be approximated by a normalized
population with mean equal to 0.5 and N elements uj,uj,...,uy
i—1
defined as: u; = , i=1,2,..N
N-1

The population variance will thus be:

o2 :§Z(ui ~0.5)° :;Z(i—l)z ;Z(i—m%

N(N - 1) CN(N-1)

Expression (4.5) is derived by recalling the algebraic properties:

i1 :(N—I)I\;(2N—1) o z(i_l):(N—zl)N
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4.3 Accuracy boundaries for concave populations

The results and conclusions of the previous propositions will be the
basis for the formulation of accuracy boundaries that will depend only
on population size.

The first task will be the formulation of accuracy boundaries for
concave populations. This will have immediate application in
populations of boat activities which, as discussed in Section 2.2,
consist of 0-1 elements at varying proportions.

Setting up of a global accuracy boundary should be feasible if a fixed
normalized population with maximum population variance could be
identified. According to Proposition 3 in the previous section, such a
population does exist and consists of 0 and 1 values at equal
proportions. The variance of this population constitutes a global upper
limit for all population categories of the same size N (whether convex,
flat or concave), and this limit is given by:

=0.25 (4.6)

By recalling (3.8), and the fact that the standard deviation ¢ will
always be smaller than 0.5, the general expression for a global lower
boundary for accuracy will take the form:

Gn)=1-z—,[1-— 4.7)

f

It is reminded that z is usually set to 1.96.

Figure 4.2 illustrates the application of expression (4.7) in the case of
a 0-1 population with size N=1000. Also plotted is the population-
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specific boundary defined by expression (3.8). It is recalled that the
sample variable used to clarify the plot is log n / log N.

Accuracy
e 2= 28088 °
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=
-
|

0 + + + + + t + + +
0 010203040506070809 1

Sampling variable x=lognflogN

Figure 4.2. Global accuracy boundary G(n) and population specific
boundary (dotted line) for a 0-1 population with size N=1000.

The practical result of this approach is that for 0-1 populations of equal
size the global boundary G(n) is standard and remains unchanged,
while the population-specific curve is variable and depends on the
population variance.

4.4 Accuracy boundaries for convex populations

A second task is the formulation of accuracy boundaries for convex
populations. This will have immediate application in populations of
landings which, as discussed in Section 2.2, are frequently skewed
and, at times, normal or flat (with uniform density).
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In theory the global boundaries already formulated for 0-1 populations
would also apply to convex populations, as it has been shown that in
the latter category accuracy will always be higher. However this would
lead to a rather “over-pessimistic” selection of sampling approach that
would use far larger samples than actually required.

Therefore the objective here is to identify a fixed normalized
population with maximum population variance among all flat or convex
populations.

Proposition 4 states that the variance of a flat population is closely
approximated by:

2N-1 1

cF=——_— =
6(N-1) 4

(4.8)

On the other hand, Proposition 1 states that all normalized
populations can be transformed to a “more concave” population with
higher variance. Since a flat population will always be “more concave”
than any convex population, it follows that its variance (see above
formula) will be an upper limit for all convex populations. From which it
is concluded that its accuracy boundary will be a global boundary for
all convex populations.

By recalling (3.8), and the fact that the standard deviation ¢ will
always be smaller than the value given in (4.8), the general
expression for a global lower boundary for accuracy will take the form:

Cn)=1-2z2L 1= (4.9)

Jn N

with o defined as in (4.8) and z usually set to 1.96.
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Figure 4.3 illustrates the application of expression (4.9) in the case of
a convex and skewed population with size N=1000. Also plotted is the
population-specific boundary defined by expression (3.8). It is recalled
that the sample variable used in the plot is log n / log N.

The practical result of this approach is that for convex populations of
equal size the global boundary C(n) is standard and remains
unchanged, while the population-specific curve is variable and
depends on the population variance.
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Figure 4.3. Global accuracy boundary C(n) and population specific
boundary (dotted line) for a convex population with size N=1000.
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4.5 Exponential form of accuracy boundaries

It has already been mentioned that to facilitate reading of accuracy
plots, the variable x =1logn/log N is used to denote sample size,

rather than the proportion n/N. In this manner sample size n is written
as:

_logn

logN
and expressions (4.7) and (4.9) for concave and non-concave
populations take the exponential form:

G(X)=1—zj£\/1—N"‘1 =1-0.52,|[N"* —% (4.10)
NX

C(x)=1-o0pz,[N* —% (4.11)

All plots illustrating accuracy boundaries have, in fact, made use of
expressions (4.10) and (4.11).

n=N* with X

4.6 Critical sample size

We will now prove that critical sample size is reached when
logn
X = £
logN
the exponential boundaries reach a breakpoint and start a steady and
slow growth versus 1.

=0.5 (equivalent to n = \/ﬁ), and it is at that value that

We start with the observation that for each A(X) defined in either
(4.10) or (4.11), there exists an associate curve B(x) of the form:
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B(X)=1—021/1—i+GZJNX_1—i (4.12)
N N

The following relations apply:

B(0)=A(0), which means that both A and B start from the same
point.

B(1) = A(1) = 1, which means that both A and B end at the same

point.
W P
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Figure 4.4. Graphical representation of an exponential boundary A(x)
and its associated B(x) function (dotted line)

Figure 4.4 shows two contrary patterns of growth. Curve A shows a
rapid growth up to a certain value of x and from then on it grows
steadily until it becomes 1. Curve B shows a slow and steady growth



36

for small values of X and beyond a certain point it starts a rapid growth
until it also becomes 1. Curve B is the exact inverse of curve A.

The critical value of X is at a point where the difference A(x)-B(x)
becomes maximum since it is from that point on that the growth of A
becomes slower and steadier and that of B faster.

In terms of differential calculus we are seeking a critical point X at

which the difference A(x)-B(x) becomes maximum, which occurs
when:

dA _dB

d — R .
&[A(x)—B(x)]—O or = or

N *logN R logN

\/N—x _i \/Nx—l _i
N N

It is easy to verify that x=0.5 is a solution to the above equation, which
leads to the conclusion that exponential accuracy boundaries have a

(4.13)

breakpoint at sample size n = \/ﬁ .

The practical meaning of accuracy breakpoints is that by just knowing
the population size, users may immediately get an idea about the
minimum sample size at which the accuracy will be expected to
become stable and growing. However, to obtain expected accuracy
levels at variable sample sizes special tables have to be used, and
this aspect will be covered in some detail in the coming sections.
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4.7 Accuracy boundaries in infinite populations

As N —+oo (cases of large or effectively infinite populations),
expression (4.6) for variance remains the same while (4.8) takes its

limit form: G% =1/12. Formulae (4.7) and (4.9) for lower accuracy
boundaries are thus reduced to:

For all populations: G(n)=1- ZE (4.14)

Jn
s I 1
V12 n
The practical conclusion here is that when a population is known to be
very large (i.e. its size is 30 000 elements or more), then even the

knowledge of its exact size is not a requisite for setting up accuracy
boundaries.

For all flat and convex populations: C(n) =1 (4.15)
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SUMMARY

In this section readers were presented with a step-by-step approach
that achieved the following propositions and conclusions:

(@)
(b)

(©)

(d)

(e)
(f)

(@)

At equal sample size accuracy in concave populations is lower
than in flat or convex populations.

Sampling accuracy in concave and binary populations with 0-1
elements at equal proportions, is a global minimum for all
population types and can therefore be used to formulate lower
accuracy boundaries for concave populations. Such boundaries
will only depend on population size.

Sampling accuracy in flat populations is a global minimum for
convex populations and can thus be used to formulate lower
accuracy boundaries that will only depend on population size.
Global accuracy boundaries offer the major advantage that safe
sampling schemes can be planned in advance (i.e. a priori). No
prior knowledge about the population parameters is required,
except some idea on its size.

The two accuracy boundaries described in (c) and (d) are better
described in exponential form.

Sampling in finite populations results in accuracy that is highly
fluctuating up to a certain critical sample size. Beyond that size
accuracy growth becomes slower and stable. This breakpoint
corresponds to the square root of the population size.

In large and infinite populations the accuracy boundaries (c) and
(d) take a simpler limit form and desired accuracy levels are
independent of the population size.
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