CHAPTER 6 - PRODUCTION MODELS

6.1 BASIC ASSUMPTION ABOUT THE EVOLUTION
OF THE BIOMASS OF A NON EXPLOITED STOCK

The production models (also called general production models, global models, sintetic models
or Lotka-Volterra models) consider the stock globally, that is, they do not take into
consideration the structure of the stock by age or size.

The total biomass of a non exploited stock cannot grow beyond a certain limit. The value of
that limit depends, for each resource, on the available space, on the feeding facilities, on the
competition with other species, etc. In conclusion, it depends on the capacities of the
ecosystem to maintain the stock. That size limit of the biomass will be designated by
Carrying Capacity, k.

The total biomass of a non exploited fishery resource has the tendency to increase with the
time towards its carrying capacity, k, with a non constant absolute rate, air(B;). The rate,
air(By), is small when the biomass is small, increases when the biomass grows and is again
small when the biomass gets close to the carrying capacity. Changes, including reductions,
can occur in the biomass due to fluctuations of the natural factors, but, in any case, the
tendency will always be an increase towards its carrying capacity.

The instantaneous rates air(By) or rir(By) are therefore not constant.
In order to formulate the basic assumption of a model for the evolution of the non-exploited

biomass, one can adopt a function H of B, as was done with the basic assumption of the
individual growth, and define it:

riffH(k)-H(B,)] = —r with r constant

natural

r is the intrinsic growth rate of B.. The relative instantaneous rate, rir(B;), of the non-
exploited biomass can therefore be deduced as.

r{H(k) -H(B,)]

rir(B,) = -
naturalt e dH g
¢B.—
¢ dBg

6.2 EXPLOITED STOCK

When the stock is exploited, the rate of variation of the biomass due to all causes, that is, the
total rir(By), can be separated into two components: natural rir(B;) due to all causes but not
fishing and rir(By) due to fishing:

rir(Bt) = rir(Bt )na[ural + rir(Bt)

total fishing

67



In an interval of time T; and with a constant fishing level, it will be:

I‘ir(Bt )ﬁshing = Fi = constant

and:

I'iI'(Bt )total = f(Bt )natural - Fiﬁshing

The natural rate, rir(B;), (which, according to the basic assumption of the natural evolution of
the biomass, B, is supposed to be a function of the biomass, By) is usually designated as f(B;).

Comments

1. Historically, the production models were the first to be used on the analyses of the
evolution of biological populations, Lotka-Volterra (1925-1928).

2. Schaefer (1954) applied a production model to a fish stock subject to fishing.

3. The carrying capacity, k , has been designated in fisheries biology, as B.. and also as B,.
Currently the symbol k is preferred (notice that this symbol is different from the symbols,
K, of the individual growth models and of the relation S-R).

4. The basic assumption about natural rir(B;) previously presented, can be mathematically
formulated in different ways..

5. The production models can only be used in fisheries to analyse the effects of fishing level
changes and not of changes in the exploitation pattern, because the models consider the
biomass in a global way and do not take into consideration the age or size stock
structure.

6.3 VARIATION OF THE BIOMASS IN THE INTERVAL T;

The “total”, “natural” and “by fishing” instantaneous rates can be approximated by the
relative mean rates, rmr(B,). In fact, it can be said that rmr(B,) = rir(B,) relative to the
mean B;. (This relation is exact in the case of the exponential model) .

The following general expression in terms of instantaneous rates

rir(Bt )total = f(Br )natural — Fitiching

can then be approximated, replacing the rates by the respective mean rates in relation to the
mean biomass during the interval T;:

rmr(Bt)=f(§)—F. a

i in relation to B,

or
1 AB (—
== —=1\B; )_ E iohin
Bi total i ¢
and AB, = f(Bi).B.T, - F,Bi.T,
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The variation of the biomass due to all causes of mortality is then decomposed into the
variation due to natural mortality and the variaton due to the fishing mortality:

A Bitotal = f(Bl )B' 'Ti - Yiﬁshing
The value of the biomass, Bi: at the end of the interval Ti; is:

B

i+l i i

6.4 LONG-TERM PROJECTIONS (LT)
(EQUILIBRIUM CONDITIONS)

The situation of equilibrium at the interval T; implies that the biomass of the stock, at the end
of the interval T; (usually 1 year) is equal to the biomass at the beginning of the same interval,
Bi:1=B; or the variation of the biomass is zero AB;=0.

Bringing the instantaneous rates closer to the mean rates, when the stock is in equilibrium,
during Ti, then AB;=0 and rmr(B,)=0. Thus, a equilibrium condition will be:

£.(B)=F,
Then the equilibrium conditions, referred to with the subindex E are:
f(ﬁE )= Fg

Y, =F,.B..T

6.5 BIOMASS AND FISHING LEVEL INDICES

In practice the values of Ei e Fi are not always available and so, one has to look for
quantities that are associated with the biomass, B, and the fishing level, F, preferably
quantities (called indices) proportional to those parameters.

Let U be an index of the mean biomass, E, then during the interval of time T we have:
U=qB

and let fbe the index of fishing mortality coefficient, F;, then during the interval of time T:

f =const.F.T
from Y =F.BT and U= q.E
will have Y =F(1/q)U.T
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_ f= l‘FT
thus, to have Y =f.U  is necessary to be q

A very common index of B is the catch per unit effort (cpue). The index of F will be the
fishing effort in an appropriate unit, in order to be proportional to the fishing level.

The constant of proportionality, q , is designated as the capturability or catchability
coefficient and indicates the fraction of the biomass that is caught by unit of effort.

6.6 BIOLOGICAL TARGET REFERENCE POINTS (TRP)

Long—term (or equilibrium) biological reference points can also be defined for these models.
Fusy is the value of F that makes the long—term capture, Y, maximum.

Fusy is different of Fiax. In fact Fysy maximizes the Catch in weight, while Fp,x, maximizes
the Catch in weight per Recruit. Notice that the value of Fn.x cannot be calculated with
production models, because the age structure of the stock and the recruitment, R are
considered implicit in the basic assumptions of the model.

The biological reference points depend on the basic assumptions of the model , therefore the
value of Fygsy of the structural models is different from the value of Fysy of the production
models because the relation S-R, as well as the natural mortality coefficient, M, are implicit in
the production models.

To compare results of the two types of models one has to take into consideration that each
model is based on different basic assumptions.

For the same reasons, Fo; of the production models is a different concept to Fy; of the
structural models.

Fo1, Bo1 and Yy of the productions models could be calculated directly from the basic
assumptions but it is preferable to obtain those characteristics using the constant relations
between the reference points 0.1 and MSY (Cadima, 1991).

6.7 TYPES OF PRODUCTION MODELS

The most common production models in fishery stocks assessment are the Schaefer model
(1954), the Fox model (1970) and the Pella and Tomlinson model (1969), the latter is also
designated as GENPROD (name of the computer program that the authors elaborated for the
application of their model). Fox mentions that the elaboration of his model was based on an
idea from Garrod (1969).

Each one of these models corresponds to one particular function of H(B; ) of the basic
assumption.
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6.7.1 SCHAEFER MODEL

The function H(By) of the basic assumption of this model is:
H(B,)=B'

Relative instantaneous rate, rir(B;), due to natural causes

The general basic assumption of the Schaefer model is:
I‘irnatural [k_l - B_l] =-T

and then, the instantaneous rate of variation of the “natural” biomass can be mathematically
deduced as:

. e
B =] — Ly
I'lr( t)natural r @ k H

Equilibrium conditions

The relative mean rate , rmr(B;), in relation to E, will be:

—\ & B.#
tmr(B,) = f(BE ): r.el——2
relative to By, g k U

and, as in equilibrium, f(BE )= FE, the equilibrium conditions can then be expressed as:

B, =k.(1-F; /1)
Y, =F,.B..T,

Notice that EE is linear with Fg and for Fg =0, EE = k = carrying capacity = virgin biomass.

Graphically, the relation between B and Fg shows a straight line with interception equal to k
and slope equal to -k/r.

Target point, Fysy

The Schaefer equilibrium conditions during one year are:
YE:FEEE §E=k(1-FE/r)

Y maximum will occur when dY/dF=0, then derivating the previous expression of Yg in order
to F and making it equal to zero the target point Fysy will be:

Target point, Fysy (Schaefer)

FMSY = I'/2 BMSY = k/2 YMSY = I'k/4
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In fact, the derivative

dY/dF = B+ F (dB/dF)
or dY/dF =k(1- F/r) + F (- k/r) =k - 2k.F/r
and then, Fusy =1/2

the relations of the remaining characteristics are obtained by substituting this result in the
equilibrium conditions.

Target point, F

The ratio between Fy ; and Fygy is constant and equal to 0.90, so:

Target point, Fy; (Schaefer)
Fo.1/ Fmsy = 0.90 Bo.1/Bumsy = 1.10 Yo.1/Ymsy =0.99
In fact, as seen before, dY/dF = k - 2k.F/r and, as Fy; corresponds to dY/dF = 0.1k, so:
0.1k =k - 2kFg/r
or 090=2 Fy ./t
or 0.90 =Fy.1/Fumsy

Abundance indices, TJ, and fishing level indices, {

As seen in Section 6.5, the indices U and f, are assumed to be proportional to B and F, so
the equilibrium condition can be written as:

I_JE =a+Db.fg and YE=1E. I_JE (a,b are constants).

The target point, fysy, is obtained by equating to zero the derivative of Y in order to fg:

Target point, fyisy (Schaefer)
fMSY = -a/(2b) EMSY = a/2 YMSY = - 8.2/(4b)

In the proiiuction models, the ratios foi/fusy € 60‘1/ EMSY are equal to the ratios Foi/Fmsy
and Bg 1/ Bumsy. With Schaefer's model we will then have:

Target point, {1 (Schaefer)

fo,]/ sty =0.90 [_J().] / I_JMSY =1.10 Y(),] /YMSY =0.99

72



From U= qg. E, and FT=q.f, the previous expressions of Fy;sy and fyisy , one can also obtain
the relations between the parameters k and r and the coefficients a, b and q:

k=alq r=-aq/(bT) kr = - a%/(bT)
When the value of the interval T is 1 year, T will not appear in these expressions. It is
possible to calculate the parameters k and r, knowing the values of the capturability

coefficient, q. Notice that the product k.r does not depend on q.

6.7.2 FOX MODEL

For the Fox production model the function H(B;) will be:
H(B:) = In(By)

Relative instantaneous rate, rir(B;), due to natural causes

For the Fox model, from the expression of the general basic assumption, we have:
rirnatural [ Ink -InB ] =-T

and then, as previously referred to, the instantaneous rate of variation of the “natural” biomass
can be mathematically deduced from that expression and written as:

1ir(B, ), = 1-In(k/B,)

natural

Equilibrium conditions

The equilibrium condition of the biomass can be expressed by:
rin(k/B,)=F,

Then, the equilibrium conditions will be:

Be =ke " Y = F;.Be.T,

Notice that ln(EE) is linear with Fg and that, for Fg = 0, Bg = k = virgin biomass or carrying

capacity. The relation between ln(ﬁg) and Fg is linear, with interception equal to Ink, and
slope = -1/r.

Target point, Fysy

Derivating Yg in order to F and equating the derivative to zero, Fysy, Busy and Yusy will be:

FMSY =T BMSY =k/e YMSY =rk/e
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Target point, F

In this model the ratio between Fy; and Fygy is constant and equal to 0.7815. So, it can be
written:

FO.I/ FMSY =0.7815 BO.] /BMSY =1.2442 Y(),l /YMSY =0.9724

These results are obtained in a similar way to those for the Schaefer model. The equation to
solve will be:

e ™" (1-F,, /1r)=0.1

which requires iterative methods to find the value of Fy /r. The solution is Fy ;/r = 0.7815 that
is igual to Fo 1/Fumsy.

Abundance indices, U , and fishing level indices,

For the Fox model the equilibrium condition can be written as:

Ug =e*™f or In Ug=a+b.f (a,b are constants)

and B
YE = fE . UE

Target point, fysy

The target point , fyisy,, can be obtained by equating to zero the derivative of Yg in order to fg:
fMSY =-1/b EMSY = ea/e YMSY = - ea/be

Target point, {,,

In the Fox model, the ratios fy 1/fvsy et Us,/ Uy are equal to Fy ;/Fusy and B../ Bus
and then:

fo,]/ sty =0.7815 [_J().] / I_JMSY =1.2442 Y(),] /YMSY =0.9724

From U=qB and from FT=q.f, the following can be deduced:
k =¢%/q. r=-q/(bT) kr = - €*/(bT)
When the value of the interval T is one year, T will not appear in those expressions. The last

expression allows the calculation of the product k.r. To calculate k and r separately it is
necessary to know the value of the coefficient of capturability, q.
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6.7.3 PELLA AND TOMLINSON MODEL (GENPROD)
For this production model the function H(B;) will be:

Relative instantaneous rate, rir(B;), due to natural causes
The expression of the basic assumption of the GENPROD model, will be :

rir (k_p -B™ ) =-r

natural

therefore
rit(B,) .., = (t/p)[1-(k/B)™]

Equilibrium conditions

In equilibrium conditions, Fg will be:
Fg=1f( Be)=(r/p) [ 1-(k/ B)]
Then, the equilibrium conditions can be expressed as:

B, =k[l-pF,/r]"" Y, =F,.B,.T

Notice that the relation between (Bg)” and Fg is linear with intercept equal to k and the slope
equal to -pk/r, in conclusion, for Fg = 0, Bg =k = carrying capacity=virgin biomass.

Target point, Fysy

Derivating Yg in order to F and equating to zero, we will have:

Target point, Fyisy (Pella and Tomlinson)

1 al i}
e 1 gp Y ke 1 ﬂ@p 1Q
Fo. =5 -4 - = o
MY T Rl Busy = T MY TR+ pf

Target point, F

The ratio between Fy; and Fysy is constant for each value of p and can be obtained in a
similar way to the previous cases. The equation to solve by iterative methods is:

X=1-0.1.[1-p/ (1+p).X]"? where X=F,.1/ Fusy
And also Bo.i/ Busy =[14p - p./ (1+p)‘X](1+1/p)

Yo.1/ Ymsy = [Fo.1/ Fmsy].[ Bo.1i/ Busy]
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The following Table summarizes the most important results:

parameter p  Fo1/Fusy  Boa/Bmsy  You/Ywmsy

Fox 0.0 * 0.781521 1.244182 0.972355
0.2 0.819995 1.193441 0.978616

0.4 0.848355 1.158613 0.982915

0.6 0.869888 1.133469 0.985991

0.8 0.886657 1.114599 0.988268

Schaefer 1.0 * 0.900000 1.100000 0.990000
1.2 0.910816 1.088420 0.991350

1.4 0.919724 1.079045 0.992424

1.6 0.927165 1.071323 0.993293

1.8 0.933457 1.064867 0.994008

2.0 0.938835 1.059401 0.994602

2.2 0.94377 1.054720 0.995704

2.4 0.947516 1.050674 0.995531

2.6 0.951059 1.047146 0.995898

2.8 0.954188 1.044045 0.996216

3.0 0.956969 1.041302 0.996494

Notice that (Fo1/Fmsy) + (Bo.i/Busy) = 2. From this result it can be said that when Fy; is
smaller than Fysy by a certain percentage, the equivalent relation of the biomasses will be

bigger by the same percentage.

Abundance indices, U, and fishing level indices, f

For the Pella and Tomlinson model, the equilibrium conditions can be written as:

U=(@+bH"™ or

YE: fE . [_JE

The target point, fmsy, can be obtained by equating to zero the derivative of Y in order to fg:

Target point, fysy

fmsy = -a/(b(1+1/p))

The ratios fy1/fusy and I_Jo,l/ I_JMSY will be equal to the ratios F¢ /Fymsy and Eo_l/ EMsy,
respectively. These last ratios can be observed in the previous Table.

U P= (a + b.f)(a,b are constants).

ﬁMSY =[a/(1+ p)]l/p

Yusy = -(p/b).(a/(1+p))" P

The values of k, r e kr can also be obtained from U =gq. B, and from F.T=q.f
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k= a'?/q t/= - apq /(bT) kr = (-p/bT)a" P

When the size of the interval is one year, T will not appear in those expressions. The last
expression in the previous table allows the calculation of the product k.r.The separate values
of k and r can be calculated if the value of the coefficient of capturability, q is known.

Comments

1. The Pella and Tomlinson model has been criticized in its practical application because
sometimes it produces better adjustments with non reliable values of the parameter p,
resulting in extremely high values of Fysy.

2. Itis also important to notice that p, the additional parameter of that model, is written with
different symbols depending on the authors.

3. The values of the biological reference points relative to F, estimated by Schaefer's model,
are more restrictive than the corresponding values estimated by the Fox or GENPROD
production models.

6.8 SHORT-TERM PROJECTIONS

6.8.1 GENERAL METHODS

Long—term projections have been estimated in fisheries since the 50's using these production
models but in practice, it was only in the 90's that methods were developed for short—term
projections. These methods are based in the Schaefer, Fox and Pella et Tomlinson expressions
for the non-exploited biomass.

By applying production models as referred to in Section 6.3, the variation of the biomass for
1 year can be expressed, in a general way, as:

ABija = f(gi )El T - Y

or Bi+1=B; + Elf( Ei ).Ti -Y;
where Bi = biomass at the beginning of the year i

Bii1= biomass at the end of the year 1

B, = mean biomass during the year 1

Y; = catch in weight during the year 1
f(B;) s the approximation of the mean rate of "natural" variation of the biomass, relative to
B, during the year i.

The expression of the variation of the biomass is the basis for most of the methods for
short—term projections. Computer programs were prepared for the application of these
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methods, which also determine long—term projections, biological reference points, etc. Some
examples are CEDA and BYODIN, Rosenberg et al. (1990), and Punt and Hilborn (1996)
respectively.

Theoretically those methods suppose that B; et Y; are known for a period of years. The
function f(' B;) can be that of Schaefer, Fox or Pella and Tomlinson.

To determine the parameters r and k it would be necessary to adopt one of the expressions of
f( Bj) and the value B in the first interval of the period of years.

In practice, the values of the annual mean biomasses are not available, only the associated
quantities, usually assumed to be proportional to the mean biomasses, that is indices Ui=q. B;
so, the parameters to be estimated are r, k and q (see Chapter 7).

The object function, of the least squares method, to be minimized is ® = % (Ugps - Umoa) > that
is, the sum of the squares of the residuals between the observed values and the estimated
values (designated by error of the process). However, when the the relation U=q. B; is not
determinant, but it is supposed to have an error, designated as observation error, then it is
preferable to adopt the object function ® = 2 (InUps- anmod)2 (Punt and Hilborn, 1996).

6.8.2 PRAGER METHOD (1994)
Prager (1994) adopted the Schaefer model and used the relative instantaneous rate of the
variation of the biomass in the initial basic expression ( not the mean rate approximation) that
18,

rir(Bt) = I‘[l - Bt / k] Bt - Fi. B]'

He integrated this expression during the year i and obtained the relation between B;:; and B;

He also calculated the mean biomass, B;, integrating B, during the year i. Finally the catch in
weight is calculated as:

Yi: Fi Ei .

The estimation of the parameters can then be made using the least squares method. The
computer program prepared for this estiamtion is called ASPIC (Prager, 1995).

6.8.3 YOSHIMOTO AND CLARKE METHOD (1993)

The short—term projections are derived from the basic assumption of the production models,

rir(Bt )total = rir(Bt )natural - (Ft )ﬁshing

or, representing  1ir(By) nawral by f(By):

I“ir(Bt )total = f(Bt ) = (F) fishing
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Integrating this expression during the interval of time T; and considering that:
rir(B¢) = air In(B;) and  F;=F; =constant:
ti+]

fair(InB,)dt =

ti
In (Bi+1) - In (B;) = f(B) cum, - F; Ty = f(By) Ti- F; T
For the next interval Ti;; (which is the interval where one intends to project the stock and the
catch): B
In (Bi+2) - In (Bi+1) = {(Be+1). Tis1 - Fir1. Ting
Calculating the simple arithmetic mean of the two previous expressions and considering that :

1/2[In (Bi+1) + In (Bix2)] - 1/2[In (B;) + In (Bis1)] = In( B*i1y) - In( B*))

where E*i is the geometric mean of B; and Bj.;, and E*Hl is the geometric mean of Bj;; and
Bis2,

Therefore, the mean of the two expressions will be:
In( B*i1) - In( B*) = (1/2) { f(B)) Ti+ f(Bis1) Tisr } - (1/2) {F; Ti + Fist Tt}

The natural rir(Bt) of the Fox model is, as mentioned before f(By) = r (Ink - InBy), so the
approximation, f(B;) can be written as:

r[Ink- In( B')]
where B'jis the geometric mean of B; and Bi..
Therefore, the previous expression relative to the geometric means, can be re-written as:
In ( B*j) - In ( B¥) =
= (1/2) { r(Ink- In( B*)) T; + r(Ink- In( B*i+1)) Tis1 } - (1/2) {F; T + Fis; Ty}

To simplify, and as the intervals of T; are usually constant (and equal to one year), one can
use T instead of T; and Tj;; and the expression will be:

In( B*j41) - In ( B*) = (1T/2) { Ink- In( B*;) + Ink- In( B*;+1) }- (1/2) {F; T + Fjsy T}
or reorganizing the terms of this expression, it will be:

(1+1T/2) . In( B*4,) =T Ink + (1- rT/2) In( B*))) - (T/2) (F; + Fis; )
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Finally, the expression can be written as follows:
In ( B*j) = 2rT/(2+T) . Ink + (2- rT)/(2+1T) . In( B*))) - T/(2+1T) . (F; + Firy )

As seen in the long—term projections (or equilibrium), it is more common to have biomass
indices, U, and fishing level indices, f, rather than B et F values.

Using the indices U=q B and qf=FT

the Yoshimoto and Clarke expression (1993) can be written as :

2T gl + 2L n U, -4
+1T 2+71T 2+1T

InUiy = > (fi + fi+1)

It is useful, in practice, to write this expression in the following way:

In [_Ji+1 =b;+b,.1n [_Ji+b3 . (fl-i- fiﬂ)

where:
2rT
b, = In(gk
24T (ak)

_2-1T
2+1T

2

. q
2+1T

b,

From the coefficients b;, b, and bs one can estimate the parameters g, r and k (keep in mind
that in the long—term projections it was not possible to obtain q separately) as :

q = -4b3/(1+b2)
T =2(1-by) / (1+by)

k = ((1+by)/(-4b3)).e> (")

Comments

1. The fact of having developed, in this manual, the Yoshimoto and Clarke model for the
short—term projections, does not mean a special preference for this model over other
models for the short—term projections.

2. Yoshimoto and Clarke designated their expression by the integrated expression of Fox,
as it is based on the direct integration of the basic assumption.
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3. Notice that F(Bi) and f(BiH) are, in general, different from f ( Ei) and f( Ei+1).
However, the means of f( ) may be considered equal to f(means of B) if another type of
mean of B is used.

e Definition of Ei* through a function

Consider n values B; and the simple arithmetic mean of f(B;), that is,

f(B) =(1/n).2 f(B;)

e Let B be a value such as f( E*) = F(B) .
B*is designated as the mean of B; through the function f.

EXAMPLES

4. Iff(B)=In(B) then In( B") = (1/n).2In(B;) and B* is the mean of the values B; through
the logarithm function, also designated as geometric mean of the values B;

5. If f(B)=B"then ( B*)'=(1/n).3(B;)" and B*is designated as harmonic mean of the
values B;

6. Iff(B)=B7then ( B*)P=(1/n).X(B;)" and B* is designated as the mean of order (-p)
of the values B; .

7. Another approach (Cadima & Pinho, 1995) of the integrated equation of Fox can be:
In Ui =bi+by.In Ui+ by . (f+ fie1)

where:

1-b i
b= (1-e™) In(gk Ke— "9 b
= (o) Intdlo “2-b,-Inb,

b=e™" r T=- Inb,
bs=- q(l-e'rT) / (21T) q=2-Inb, - " b;

2
This last approach of the integrated Fox model can be deduced from the basic assumption of
the model, during the interval T;:

rir(Bl )total = r.(ln k—In Bt )naturalFox - (Fi )ﬁshing

Taking into account the properties of rates and assuming r, k and F; constant during T;
interval, the absolute instantaneous rate of [r.(InK-InBy)-F;] will be:

air[r.(In k - InBy)-Fi] = -r.air (InBy)=-r.rir(By)
So substituting rir (B¢) by the Fox expression mentioned before, one can write:

airf r.(Ink - In By) - Fi] = -r. [r.(Ink - In By) - F; ]
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or air[r.(Ink-InB,)-F, ] L,

[r.(Ink-InB,)-F ]

Finally, by the definition of rir the expression will be:
ritf[ r.(Ink - In By) - F; |= r

showing that [r.(In k - In By)-F;] follows an exponential model, during the interval T; with r
constant.

So, the final value of (r.In k - r.In B; - F;), can be expressed as:
(rInk -r.In By - F) =(rInk - r.ln B; - F)). e
> InBiyy = (1-e™M).Ink + ¢™.In B; - (1- ™). Fi/r
At the following interval, Tj:;, the expression would be:
InBia=(1-e"" N Ink + e In Biyy - (1- ™) Fipy/r
then, the mean of the two previous expressions, considering Ti=T;;=T, will be:
In By =(1-e™N.nk+e™" In B;-((1- ™)/ 2r).(Fi+Fi1)

— % . b= * 3
where Bi = geometric mean of B; and Bj;; and Bi;; = geometric mean of B;;; and Bi;o.

Using the indices [_Ji =q. Ei* and qfi=FT the expression will be:
In Ui = (1-e™N.In (qk) + ™. In Ui - ((1- e™7)/2rT) .q(fitfisr)

which is the initial expression of comment n° 7.
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CHAPTER 7 — ESTIMATION OF PARAMETERS

In the previous chapters, several models used in stock assessment were analysed, the
respective parameters having been defined. In the corresponding exercises, it was not
necessary to estimate the values of the parameters because they were given. In this chapter,
several methods of estimating parameters will be analysed. In order to estimate the
parameters, it is necessary to know the sampling theory and statistical inference.

This manual will use one of the general methods most commonly used in the estimation of
parameters — the least squares method. In many cases this method uses iterative processes,
which require the adoption of initial values. Therefore, particular methods will also be
presented, which obtain estimates close to the real values of the parameters. In many
situations, these initial estimates also have a practical interest. These methods will be
illustrated with the estimation of the growth parameters and the S-R stock-recruitment
relation.

The least squares method is presented under the forms of Simple linear Regression, multiple
linear model and non linear models (method of Gauss-Newton).

Subjects like residual analysis, sampling distribution of the estimators (asymptotic or empiric

Bookstrap and jacknife), confidence limits and intervals, etc., are important. However, these
matters would need a more extensive course.

7.1 SIMPLE LINEAR REGRESSION - LEAST SQUARES METHOD

Model

Consider the following variables and parameters:

Response or dependent variable =Y
Auxiliary or independent variable =
Parameters =AB

The response variable is linear with the parameters

Y = A+BX

Objective

The objective of the method is to estimate the parameters of the model, based on the observed
pairs of values and applying a certain criterium function (the observed pairs of values are
constituted by selected values of the auxiliary variable and by the corresponding observed
values of the response variable), that is :
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Observed values x; and y; for each pair i, where i=1,2,....i,...n

Values to be estimated A and Band (Y1,Y2,...,Yj,...,Yy) for the n observed pairs of
values
(Estimates values: A and B (or a and b) and (3?1, 3?2 s Y, o, Yn)

Object function (or criterium function)

Estimation method

In the least squares method the estimators are the values of A and B which minimize the
object function. Thus, one has to calculate the derivatives 0®/0A ¢ 0®/0B, equate them to
zero and solve the system of equations in A and B.

The solution of the system can be presented as :

x= (1/n).8x y=(1/n).8y
Sxx = A(x -x)(X -X) Sxy =&a(x -x)(y -y)
b = Sxy/Sxx aZ;/-b.;

Notice that the observed values y, for the same set of selected values of X, depend on the
collected sample. For this reason, the problem of the simple linear regression is usually
presented in the form :

y=A+BX+e
where € is a random variable with expected value equal to zero and variance equal to 6°.
So, the expected value of y will be Y or A+BX and the variance of y will be equal to the

variance of €.

The terms deviation and residual will be used in the following ways:
Deviation is the difference between yobserved aNd Yimean (;) 1.e., deviation = (y-?)

while

Residual is the difference between yopserved aNd Yestimated (Y ), 1.€., residual = (yi- SA(i ).

To analyse the adjustment of the model to the observed data, it is necessary to consider the
following characteristics:
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Sum of squares of the residuals:

Py < 2

SQresidual = a(y_Y)
This quantity indicates the residual variation of the observed values in relation to the
estimated values of the response variable of the model, which can be considered as the

variation of the observed values that is not explained by the model.

Sum of squares of the deviations of the estimated values of the response variable of the
model:

. [ —)2

SQmodel = a(Y_Y)
This quantity indicates the variation of the estimated values of the response variable of the
model in relation to its mean, that is the variation of the response variable explained by the

model.

Total sum of squares of the deviations of the observed values equal to:

—\2
SQ residual — a. (y - Y)
This quantity indicates the total variation of the observed values in relation to the mean

It is easy to verify the following relation:

SQtotal = SQmodel + SQresidual

or
1= 5Qumoder , SQresidual
SQuotat SQotal
or 1=r"+(-r)
where

> (coefficient of determination) is the percentage of the total variation that is
explained by the model and

1-* is the percentage of the total variation that is not explained by the model.
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7.2 MULTIPLE LINEAR REGRESSION — LEAST SQUARES
METHOD

Model

Consider the following variables and parameters:

Response or dependent variable =Y
Auxiliary or independent variables = X1, X25eeey Xjpeoey Xk
Parameters =By, Ba,..., Bj,..., Bk

The response variable is linear with the parameters

Y =B XjtBXo+... + BiXiy =2 Bij

Objective

The objective of the method is to estimate the parameters of the model, based on the observed
n sets of values and by applying a certain criterium function (the observed sets of values are
constituted by selected values of the auxiliary variable and by the corresponding observed
values of the response variable), that is:

Observed values X1,iX2,i .., Xj,i,., Xk, and y; for each set 1, where 1i=1,2,...,i,...n

Values to be estimated B,B,,...,B;,....Bxet (Y1,Y2,...,Y,,..., Y,)

The estimated values can be represented by :

AN

Bi, B2 ety Bjyeory Bk (Ou by,bo,. b sbi) €t Y, Yoy Yigeoy Y

Object function (or criterium function)

D= a(}’i - Yi)z
i=1
Estimation method
In the least squares method the estimators are the values of B; which minimize the object

function.

As with the simple linear model, the procedure of minimization requires equating the partial
derivatives of ® to zero in order to each parameter, B;, where j=1, 2, ..., k. The system is
preferably solved using matrix calculus.
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Matrix version

Matrix X, ,, =Matrix of the n observed values of each of the k auxiliary

variables

Vector y,, ) = Vector of the n observed values of the response variable

Vector Y,

model (unknown)

=Vector of the values of the response variable given by the

Vector B, , = Vector of the parameters

Vector B or b, , = Vector of the estimators of the parameters

Model
Y= Xak - B,y ou Y=X.B+e

Object function
D= (y-Y)'.(y-Y) ou  ®g=(y-X.B) .(y-X.B)

To calculate the least squares estimators it will suffice to put the derivative d®/dB of @ in
order to vector B, equal to zero. d®/dB is a vector with components d®/0B;, d®/dB,, ...,
0®/0By. Thus:

d®/dBg. 1) = -2.X" .(y-X.B) =0

or X'y -(X"X).B=0

and b=B =X"x)". X"y

The results can be written as:
b(k,l) = (XT.X)_I.XTy
Yoy =XDb or Yun=X (XT.X)_1 .XTy

residuals) = (y- Y)

Comments

In statistical analysis it is convenient to write the estimators and the sums of the squares using
idempotent matrices. Then the idempotent matrices L, (I - L) and (I - M) with
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Lon =X (XT ) X)'1 ) XT, I = unity matrix and M) = meang,, ;) matrix = 1/n [1] where [1] is a
matrix with all its elements equal to one, are used.

It is also important to consider the sampling distributions of the estimators assuming that the
variables ¢€; are independent and have a normal distribution.

A summary of the main properties of the expected value and variance of the estimators is

presented :
E[citco.u] = c1tcy.E[u]

= Random variable, €
Expected value of €
Variance of €

2—  Observed response variable y
Expected value of y
Variance of y

3- Estimator of B
Expected value of B
Variance of B

4— Estimator of Y of the model

Expected value of Y
Variance of SA(

5— Residual e
Expected value of e
Variance of e

6 —  Sum of squares

V[ci+ca.u] = 2. V[ul.co"

€. (independent)
E[e]=0.
V(€)= E[e.£' =107

y=Y+e
E[y]=Y=XB.
VIylnm= VIelnn = L6

B=X"X)"X"y
E[B]=B
V[BJan=X"X)".c’

SA(ZX. B =Ly
E[Y]=Y.
V[Y]=L.c>

e=y-Y=(-L)y
E[e] =0
V[e] = (-L).c°

6.1 - Residual Sum of squares = SQ residual(; 1) = (y- SA( ) (y- SA() =y' (I-L)y

This quantity indicates the residual variation of the observed values in relation to the
estimated values of the model, that is, the variation not explained by the model.

6.2 - Sum of squares of the deviation of the model = SQ model( 1) = (SA( -§)T(SA( -;) = yT

(L-M)y

This quantity indicates the variation of the estimated response values of the model in relation
to the mean, that is, the variation explained by the model.
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6.3 - Total Sum of the squares of the deviations = SQ total(; 1) = (y-§)T(y-§) =y (I-M) y

This quantity indicates the total variation of the observed values in relation to the mean.
It is easy to verify the following relation:

SQtotal = SQmodel + SQresidual or

1= SQ model + SQresidual
SQ total SQ total

or 1=R*+(1-R?%
where:

R? is the percentage of the total variation that is explained by the model. In matrix terms it
will be:

R*=[y"(L - M)yl.[ (y"(I- M)y]"

1-R? is the percentage of the total variation that is not explained
by the model.

The ranks of the matrices (I-L), (I-M) and (L-M) respectively equal to (n-k), (n-1) and (k-1),

are the degrees of freedom associated with the respective sums of squares.

7.3 NON-LINEAR MODEL — METHOD OF GAUSS-NEWTON -
LEAST SQUARES METHOD

Model

Consider the following variables and parameters:

Response or dependent variable =Y
Auxiliary or independent variable =X
Parameters = By,B»,...,B;,....Bx

The response variable is non-linear with the parameters
Y = f(X;B) where B is a vector with the components B;,B,,...,B;,...,Bx

Objective

The objective of the method is to estimate the parameters of the model, based on the n
observed pairs of values and by applying a certain criterium function (the observed sets of
values are constituted by selected values of the auxiliary variable and by the corresponding
observed values of the response variable), that is:
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Observed values x; and y; for each pair i, where i=1,2,...,i,...n

Values to be estimated By,Bo,...,B;,..,.Bx and (Y1,Y>,...,Y;,...,Ys) form the n pairs of observed
values.

A A

(Estimates = B 1 f32,..., I§j,..., Byor bi,ba,....bj,....bcand Y1, Yo, Yi,..., Yn)
Object function or criterium function

D= al(yi-Yi)Z

Estimation criterium

The estimators will be the values of B; for which the object function is minimum.
(This criterium is called the least squares method).

Matrix version

It is convenient to present the problem using matrices.

So:
Vector X1y = Vector of the observed values of the auxiliary variable
Vector yu,1y = Vector of the observed values of the response variable
Vector Yn,1)= Vector of the values of the response variable given by the

model

Vector B 1) = Vector of the parameters
Vector b 1y = Vector of the estimators of the parameters

Model
Y1) =f(X; B)

Object function

D = (y-Y) (y-Y)

In the case of the non linear model, it is not easy to solve the system of equations resulting
from equating the derivative of the function @ in order to the vector B, to zero. Estimation by
the least squares method can, based on the Taylor series expansion of function Y, use iterative
methods.

Revision of the Taylor series expansion of a function

Here is an example of the expansion of a function in the Taylor series in the case of a function
with one variable.
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The approximation of Taylor means to expand a function Y = f(x) around a selected point, X,
in a power series of X :

Y = f(x) = f(Xo) H(x-X0).F'(x0)/1! + (x-X0)*f’(x0)/2! +... + (x- Xo)' {7 xo)/il+...
where f9(x0) = i"derivatives of f(x) in order to x, at the point X,.

The expansion can be approximated to the desired power of x. When the expansion is
approximated to the power 1 it is called a linear approximation, that is,

Y = (x¢) + (X-X0).f*(X0)

The Taylor expansion can be applied to functions with more than one variable. For example,
for a function Y = f(x;,Xx;) of two variables, the linear expansion would be:

Sf(xl(o),xz(o))
dx,

Of (X,10y»X201)
1(0) > 2 2(0) +

Y = f(XI(O)’XZ(O)) +(x, - X1(0))-
dx,

(x, - X200 ).
which may be written, in matrix notation, as

Y = Y0t A©)-(X-X©)
where Y ) is the value of the function at the point X ,with components X and X»() ,and
Aoy 1s the matrix of derivatives whose elements are equal to the partial derivatives of f(xi,x2)

in order to x;,X; at the point (X(), X2(0))-

To estimate the parameters, the Taylor series expansion of function Y is made in order to the
parameters B and not to the vector X.

For example, the linear expansion of Y = f(x,B) in By, B,, ..., Bx , would be:

Y = f(X,B) = f(X; B(o)) + (Bl‘Bl(O)) é)f/é)Bl (X;B(o)) +..... +
(Bz-Bz(o)) 07f/ &Bz (X;B(O)) +...... F o + (Bk‘Bk(O)) 07f/07Bk (X;B(o))

or, in matrix notation, it would be :
Yo=Y o1 T Ao ok - ABo) k1)
where

A = matrix of order (n,k) of the partial derivatives of the matrix f(x;B) in order to the vector
B at the point B(p) and

ABg) = vector (B - B(p)).
Then, the object function will be:

= (y-Y)'.(y-Y) = (y-Y0)- Ay -AB()) (y-Y(0)- A) -AB(0))
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To obtain the minimum of this function it is more convenient to differentiate ® in order to the
vector AB than in relation to vector B and put it equal to zero. Thus:

or

0="-2(A0) (y-Y0)-Aw -AB) = -2A0) (y-Y(0))+ 2 A(Z)Am) AB(g)

ATAw) .ABo)=A" (y-Y0))
(0) 0)

Therefore:

AT LT
AB, = (A<o>-A(o> ) Alyly-Ye)

If AB(g) is “equal to zero” then the estimate of B is equal to Bg).

(In practice, when we say “equal to zero” in this process, we really mean smaller than the
approximation vector one has to define beforehand).

If AB(g) is not “equal to zero” then the vector B(g) will be replaced by :

B(1)=Bo) *+ AB(g)

And the process will be repeated, that is, there will be another iteration with B replaced by
B (and A replaced by Ay ). The iterative process will go on until the convergence at the
desired level of approximation is reached.

Comments

l.

It is not guaranteed that the process always converges. Sometimes it does not, some other
times it is too slow (even for computers!) and some other times it converges to another
limit!!

The above described method is the Gauss-Newton method which is the basis of many
other methods. Some of those methods introduce modifications in order to obtain a faster
convergence like the Marquardt method (1963), which is frequently used in fisheries
research. Other methods use the second order Taylor expansion (Newton-Raphson
method), looking for a better approximation. Some others, combine the two modifications.

These methods need the calculation of the derivatives of the functions. Some computer
programs require the introduction of the mathematical expressions of the derivatives,
while others use sub-routines with numerical approximations of the derivatives.

In fisheries research, there are methods to calculate the initial values of the parameters, for
example in growth, mortality, selectivity or maturity analyses.

It is important to point out that the convergence of the iterative methods is faster and more
likely to approach the true limit when the initial value of the vector B is close to the real
value.

74 ESTIMATION OF GROWTH PARAMETERS

The least squares method (non-linear regression) allows the estimation of the parameters K,
L.. and t, of the individual growth equations.
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The starting values of K, L.. and t, for the iterative process of estimation can be obtained by
simple linear regression using the following methods :

Ford-Walford (1933-1946) and Gulland and Holt (1959) Methods

The Ford-Walford and Gulland and Holt expressions, which were presented in Section 3.4,
are already in their linear form, allowing the estimation of K and L.. with methods of simple
linear regression on observed L; and T;. The Gulland and Holt expression allows the
estimation of K and L.. even when the intervals of time T; are not constant. In this case, it is
convenient to re-write the expression as:

AL/T;=K L.-K. L

Stamatopoulos and Caddy Method (1989)

These authors also present a method to estimate K, L.. and t, (or L,) using the simple linear
regression. In this case the von Bertalanffy equation should be expressed as a linear relation
of L; against ™",

Consider n pairs of values t;, L; where t; is the age and L; the length of the individual 1 where
=1,2, ....,n.

The von Bertalanffy equation , in its general form is (as previously seen):
L..- L= (Le- L,). e @

It can be written as:
Li=L. - (Lo-L,). ™ ™

The equation has the simple linear form, y = a + bx, where:

y=L, a=L. = - (Lo~ L,). e™®

If one takes L, = 0, then t,=t,, but, if one considers t,= 0, then L,= L.

The parameters to estimate from a and b will be L., t, or L.

The authors propose adopting an initial value K, of K, and estimating a), b and () by
simple linear regression between y (= L) and X(:ek(o)). The procedure may be repeated for
several values of K, that is, K1) K(2),.... One can then adopt the regression that results in the
larger value of 1%, to which Kinax » 8max and buax correspond. From the values of ay,x, bmax and

Kmax one can obtain the values of the remaining parameters.

One practical process towards finding Ky,.x can be:
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(). To select two extreme values of K which include the required value, for example K= 0
and K=2 (for practical difficulties, use K =0.00001 instead of K = 0).

(ii). Calculate the 10 regressions for equally-spaced values of K between those two values
in regular intervals.

(iii). The corresponding 10 values of r* will allow one to select two new values of K which
determine another interval, smaller than the one in (i), containing another maximum
value of I,

(iv). The steps (ii) and (iii) can be repeated until an interval of values of K with the desired
approximation is obtained. Generally, the steps do not need many repetitions.

7.5 ESTIMATION OF M - NATURAL MORTALITY COEFFICIENT

Several methods were proposed to estimate M, and they are based on the association of M
with other biological parameters of the resource. These methods can produce approximate
results.

7.5.1 RELATION OF M WITH THE LONGEVITY, t,,

Longevity: Maximum mean age t; of the individuals in a non-exploited population.

Duration of the exploitable life: t, —t =\ (Figure 7.1)

N:,=R

t, t

Figure 7.1 Duration of the exploitable life

Tanaka (1960) proposes "NATURAL" Survival Curves (Figure 7.2) to obtain the values of M
from longevity.
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A cohort practically vanishes when only a fraction, p, of the recruited individuals survives. In
that case, N, =R - e ™, and it can be written:

P :% =g M* and so M=-(1/A).Inp

Different values of the survival fraction produce different survival curves of M in function
of A.

25 + Survival curves of Tanaka
2 4 p=1%
M 15 +
14
=59
05" "
0 ‘ ‘ \
0 10 20 30
A (years)

Figure 7.2 Survival curves by Tanaka

Any value of p can be chosen, for instance, p = 5%, (i.e. one in each twenty recruits survives

until the age t)) as variable value of the survival curves.

7.5.2 RELATION BETWEEN M AND GROWTH

Beverton and Holt Method (1959)

Gulland (1969) mentions that Beverton and Holt verified that species with a larger mortality
rate M also presented larger values of K. Looking for a simple relation between these two
parameters, they concluded approximately that:

1< % <2 for small pelagic fishes
M
2< E <3 for demersal fishes
Pauly Method (1980)

Based on the following considerations:
1. Resources with a high mortality rate cannot have a very big maximum size;

2. In warmer waters, the metabolism is accelerated, so the individuals can grow up to a
larger size and reach the maximum size faster than in colder waters.

95



Based on data of 175 species, Pauly adjusted multiple linear regressions of transformed
values of M against the corresponding transformed values of K, L_ and temperature, T, and

selected one that was considered to have a better adjustment, that is, the following empirical
relation:

InM =-0.0152-0.0279InL_ +0.6543InK + 0.463In T®

with the parameters expressed in the following units:

M= year'1

L_=cm of total length
K= year'1
T° = surface temperature of the waters in “C

Pauly highlights the application of this expression to small pelagic fishes and crustaceans.
The Pauly relation uses decimal logarithms to present the first coefficient different from the
value -0.0152 which was given in the previous expression, written with natural logarithms.

7.5.3 RELATION BETWEEN M AND REPRODUCTION

Rikhter and Efanov Method (1976)

These authors analysed the dependency between M and the age of first (or 50 percent)
maturity. They used data from short, mean and long life species, and suggested the following
relation of M with the, .., age of | maturity:

(Units)

M=—12L 155

( t )0.720
mat50%

tmatsovs — Year 8
10

a
&
E M — year =

Gundersson Method (1980)

Based on the assumption that the natural mortality rate should be related to the investment of
the fish in reproduction, beyond the influence of other factors, Gundersson established several
relations between M and those factors.

He proposed, however, the following simple empirical relation, using the Gonadosomatic
Index (GSI) (estimated for mature females in the spawning period) in order to calculate M:

M = 4.64xGSI - 0.37
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7.5.4 KNOWING THE STOCK AGE STRUCTURE, AT BEGINNING
AND END OF YEAR, AND CATCHES IN NUMBER, BY AGE,
DURING THE YEAR

The natural mortality coefficients M; , at age i can be calculated from the catch, C; , in
numbers, and the survival numbers, N; and Nj;; at the beginning and end of a year, by
following the steps:

C.

1

calculate Ei=——7—
" N; - Ny,

calculate Z,=InN,-InN,,

calculate M. =Z- (1 -E,)

The several values of M obtained in each age could be combined to calculate a constant value,
M, for all ages.

Paloheimo Method (1961)

Let us consider the supposition that F; is proportional to f; for several years i, that is

F =q- for T, =1 year, E =q-f,,

— |

1

then: Z,=q-f,+M

So, the linear regression between Z. and f; has a slope b =q and an intercept a =M.

7.6 ESTIMATION OF Z - TOTAL MORTALITY COEFFICIENT

There are several methods of estimating the total mortality coefficient, Z, assumed to be
constant during a certain interval of ages or years.

It 1s convenient to group the methods, according to the basic data, into those using ages or
those using lengths.
7.6.1 METHODS USING AGE DATA

The different methods are based on the general expression of the number of survivors of a
cohort, at the instant t, submitted to the total mortality, Z, during an interval of time, that is:

N, =N, e )
t a‘

Z is supposed to be constant in the interval of time (ta,t).
Taking logarithms and re-arranging the terms, the expression will be:

ll’th =Cte-Z.t

where Cte is a constant ( = In N,+Zt,).
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This expression shows that the logarithm of the number of survivors is /inear with the age,
being the slope equal to -Z.

Any constant expression which does not affect the determination of Z will be referred to as
Cte.

1. If 'Z can be considered constant inside the _interval (ta,tv) and, having available abundance
data, N;j, or indices of abundance in number, Uj in several ages, 1, then, the application of the
simple linear regression allows one to estimate the total mortality coefficient Z.

In fact

— 1-e " —

Ni = Ni.T so N; =N;. Constant
and, as |

N, =N, .e 2t
then, by substitution:

N; = Ctee ™ (T;= const = 1 year)
and also

InN; = Cte — 7t

The simple linear regression between InN; and t; allows the estimation of Z (notice that the
constant, Cte 1is different from the previous one. In this case only the slope matters to
estimate 7).

2. [If ages are not at constant intervals, the expression could be approximated and expressed
in terms of the teenua, For T; variable, it will be:

_Ni ~Ni. o ZTi2
and, as N;=N,.e _Z.(ti-ta)
it will be Ni ~ Cte, o Zteentrali
and finally: In N;= Cte - Z. teentrali

3. When using indices U, the situation is similar because U; = q. N;, with q constant, and
then, also:
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InU; = Cte — 7t

The simple linear regression between In Ui and t; allows one to estimate Z.
4. If the intervals are not constant, the expression should be modified to:
In [_Ji = Cte - Z. teentrali

Simple linear regression can be applied to obtain Z, from catches, C; , and ages, t; , supposing
that F; is constant.

C;=F; N; T; and so, InC; = Cte + In N; when T; is constant. So:
InC;=Cte - Z. t;

5. [If the intervals are not constant, the expression should be modified to:
InCy/T; = Cte - Z. teentrali

6. Let V; be the cumulative catch from t; until the end of the life, then:
Vi=a Cx = a Fix Nikcum,

Where the sum goes from the last age until age 1,

As Fy and Zy are supposed to be constant &Ny,m = Ni/Z and so:
V,=FN/Z and InV;= C*+ InN;

Therefore:
InV,=Cte-Z.

7. Following Beverton and Holt (1956), Z can be expressed as :

Then, it is possible to estimate Z from the mean age t
This expression was derived, considering the interval (t,, ty) as (t,, o).

7.6.2 METHODS USING LENGTH DATA

When one has available data by length classes instead of by age, the methods previously
referred to can still be applied. For that purpose, it is convenient to define the relative age.

Using the von Bertalanffy equation one can obtain the age ¢ in function of the length, as:

(the expression is written in the general form in relation to t, and not to to)
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t =t - (1/K).In[(Lo L )/( Lo Ly)]

or

L{-L
t a)

1
t=t,——.In(l-
S N T

a

(This equation is referred to by some authors as the inverse von Bertalanffy equation).

The difference t-ta is called relative age, t*, .
So: t =-(1/K).In[(Le- L; )/( Le- Ly)] or t =-(1/K)In[1-(Li-L,)/ ( Lo Ly)]

Fort,=t, L,=0and:

¢ =L in(1 - Loy
K L.

t" is called a relative age because the absolute ages, t , are related to a constant age, t,.

In this way, the duration of the interval T; can either be calculated by the difference of the
absolute ages or by the difference of the relative ages at the extremes of the interval:

Ti=tig i =t 41 -t
Also:
t*centrali = tcentrali + Cte

t= t+Cte

So, the previous expressions still hold when the absolute ages are replaced by the relative
ages:

In ﬁi =Cte - Z. t*centrali
In ﬁi =(Cte - Z. t*centrali

In V;=Cte - Z. t*i
In Cy/T; = Cte - Z. t contrali

Finally, the expression would also be :

Beverton and Holt (1957) proved that :
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L must be calculated as the mean of the lengths weighted with abundances (or their
indices) or with the catches in numbers.

Comments

l.

The application of any of these methods must be preceeded by the graphical
representation of the corresponding data, in order to verify if the assumptions of the
methods are acceptable or not and also to determine the adequate interval, (t,, ty).

These formulas are proved with the indications that were presented, but it is a good
exercise to develop the demonstrations as they clarify the methods.

It is useful to estimate a constant Z, even when it is not acceptable, because it gives a
general orientation about the size of the values one can expect.

The methods are sometimes referred to by the names of the authors. For example, the
expression In V;= Cte - Z.t ;s called the Jones and van Zalinge method (1981).

The mean age as well as the mean length in the catch can be calculated from the
following expressions:

— a (t centrali* Ci)
ac;

- |

with C; = catch in number in the age class i

a (L centrali Cl)
ac

i:

where C; = catch in number in the length class i

E* — é(t >x<Centrali -Ci)
ac;

with C; = catch in number in the age class.

The relative age should be t* = - (1/K).In[(Le- L; )/( Lo Ly)]
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Summary of the Methods to Estimate the Total Mortality Coefficient, Z

Assumption: Z is constant in the interval of ages, (t,, tp)

T Constant

InN, =Cte-Z-t,
InU, =Cte-Z-t,
InC, =Cte-Z-t,

InV, =Cte-7-t, éV: éiC 8
g i k=ult ke
T, variable
InN, =Cte=Z-t .,
In Ui =Cte—Z2- tcemral. tcentrali — %ti + 38
¢ 2=+
In S Cte—Z-t
T, ‘
InV, =Cte-7Z-t,
7 1 (tb = oo) (Beverton and Holt equation of Z)
t—t

Supposition: Z is constant in the interval of lengths, (L,, Ly)

: . 1  aL_-L,¢§
Relative age t, = ——'ln§°"—t
K (!\Loo —Laz

InN, = Cte— Zt;

* * *

lnNi =Cte—Z-t_a . to+t,

central, 2

*

11'1 Ui = Cte - Z ' tcentrali

In % —Cte—7. t;mli T. =t,, —t. (Gulland and Holt equation)

i

InV, =Cte—Z- t? (Jones and van Zalinge equation)
7-K. L. -L (tz = oo) (Beverton and Holt equation of Z)
L-L
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7.7 ESTIMATION OF THE PARAMETERS OF THE STOCK-
RECRUITMENT (S-R) RELATION

The least squares method (non-linear model) can be used to estimate the parameters, o and k,
of any of the S-R models.

The initial values of the Beverton and Holt model (1957) can be obtained by re-writing the
equation as:

(R/S)" or S_ 1,1y
R o ok

and estimating the simple linear regression between y (= S/R) and x (=S) which will give the
estimations of 1/a0 and 1/(ak). From these values, it will then be possible to estimate the
parameters o and k. These values can be considered as the initial values in the application of
the non-linear model.

In the Ricker model (1954) the parameters can be obtained by re-writing the equation as:
ln5 =lno— 1 S
S k

and applying the simple linear regression between y (= In R/S) and x (=S) to estimate Inc. and
(-1/k). From these values, it will be possible to estimate the parameters (o and k) of the
model, which can be considered as the initial values in the application of the non-linear
model.

It 1s useful to represent the graph of y against x in order to verify if the marked points are
adjustable to a straight line before applying the linear regression in any of these models.

In the models with the flexible parameter, c, like for example, the Deriso model (1980), the
equation can be re-written as:

C
C

R .S
—0 =0 —CcO .—
S k

oo

O 8o

For a given value of ¢ the linear regression between y (= (R/S)° ) and x (=S) allows the
estimation of the parameters o and k.

One can try several values of ¢ to verify which one will have a better adjustment with the line
y against x; for example, values of ¢ between -1 and 1.

The values thus obtained for o, k and ¢, can be considered as initial values in the application
of the iterative method, to estimate the parameters o , k and ¢ of the non-linear Deriso model.
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7.8 ESTIMATION OF THE MATRIX [F] AND OF THE MATRIX [N] —
COHORT ANALYSIS — AC and LCA

7.8.1 COHORT ANALYSIS BY AGE- (AC)

The cohort analysis is a method to estimate the fishing mortality coefficients, F;, and the
number of survivors, Nj, at the beginning of each age, from the annual structures of the stock
catches, in number, over a period of years.

More specifically, consider a stock where the following is known:

Data

age, 1, where1=1,2,....k
year, j, where j=1,2,....n

Matrix of catches [C] with
Ci; = Annual catch, in number, of the individuals with the age 1 and during the year j

Matrix of natural mortality [M] with
M;; = natural mortality coefficient, at the age 1 and in the year j.

Vector [T] where
T; = Size of the age interval i (in general, T=T=1 year)

Objective
To estimate

matrix [F]
and

matrix [N].
In the resolution of this problem, it is convenient to consider these estimations separately; one
interval of age i (part 1); all the ages during the life of a cohort (part 2); and finally, all the
ages and years (part 3).

PART 1 (INTERVAL T))

Consider that the following characteristics of a cohort, in an interval T; are known :
C; = Catch in number
M; = Natural mortality coefficient
T; = Size of the interval

Adopting a value of F;, it is then possible to estimate the number of survivors at the
beginning, N;, and at the end, Nj;;, of the interval.
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In fact, from the expression:

C =i N (1-e W)
" E+M,

1 1

one can calculate N; which is the only unknown variable in the expression.

To calculate Ni:; one can use the expression N.,, = Ni.e_(F‘“\A‘)‘Ti where the values N; , F; and
M; were previously obtained.

PART 2 (DURING THE LIFE)

Suppose now that the catches C; of each age 1, of a cohort during its life, the values of M; and
the sizes of the interval T; are known.

Adopting a certain value, Frnar , for the Fishing Mortality Coefficient in the last class of ages,
it is possible, as mentioned in part 1, to estimate all the parameters (related to numbers) in
that last age group. In this way, one will know the number of survivors at the beginning and
end of the last age .

The number at the beginning of that last class of ages, is also the number Ny, at the end of the
previous class, that is, Ny, 1S the initial number of survivors of the class before last.

Using the C; expression, resulting from the combination of the two expressions above :

Fi F+M;).T;
e M€ D

one can estimate F; in the previous class, which is the only unknown variable in the
expression. The estimation may require iterative methods or trial and error methods.

Finally, to estimate the number N; of survivors at the beginning of the class 1, the following
expression can be used :

_ (F+M;).T,
N; =Ny -€

Repeating this process for all previous classes, one will successively obtain the parameters in
all ages, until the first age.

In the case of a completely caught cohort, the number at the end of the last class is zero and
the catch C has to be expressed as :

F

final

Cﬁnal = + Mi ) 'meal

(F

final
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Pope Method

Pope (1972) presented a simple method to estimate the number of survivors at the beginning
of each age of the cohort life, starting from the last age.

It is enough to apply successively in a backward way, the expression:
Ni~ (i & M2 4 C)).¢ MT2
Pope indicates that the approximation is good when MT < 0.6

Pope’s expression is obtained, supposing that the catch is made exactly at the central point of
the interval T; (Figure 7.3).

N

Nii

0 5 Tcentrali ti+1

Figure 7.3 Number of survivors during the interval T; = ti;; — t; with the catch
extracted at the central point of the interval

Proceeding from the end to the beginning one calculates successively:
N” = Niqe M2
i
N’ — N” + Cl
N: = N, e+MT/2
substituting N” by N”’+C;, the expression will be:
Ni — (N” + Ci).e MT/2

+MTi/2

Finally, substituting N” by Ni.1.e , it will be:

N, = %Ni+1eM% +C, g.eM%
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Part 3 (period of years)

Let us suppose now that the Catch matrix [C], the natural mortality [M] matrix and the vector
size of the intervals [T], are known for a period of years.

Let us also assume that the values of F in the last age of all the years represented in the
matrices and the values of F of all the ages of the last year were adopted. These values will be
designated by Fieimina (Figure 7.4)

Years
Ages 2000 2001 2002 2003
1 C C C C Fterminal
2 C C C C F terminal
3 C C C C F terminal
‘ F terminal F terminal F terminal F terminal ‘
Figure 7.4 Matrix of catch, [C], with Frmina in the last line and in the last

column of the matrix C. The shadowed zones exemplify the catches
of a cohort

Notice that in this matrix the elements of the diagonal correspond to values of the same
cohort, because one element of a certain age and a certain year will be followed, in the
diagonal, by the element that is a year older.

From parts 1 and 2 it will then be possible to estimate successively Fs and Ns for all the
cohorts present in the catch matrix.

Comments

1. The values of M;; are considered constant and equal to M, when there is no information
to adopt other values.

2. When data is referred to ages, the values T; will be equal to 1 year.

3. The last age group of each year is, sometimes grouped ages(+). The corresponding
catches are composed of individuals caught during those years, with several ages. So, the
cumulative values do not belong to the same cohorts, but are survivors of several
previous cohorts with different recruitments and submitted to different fishing patterns. It
would not be appropriate to use the catch of a group (+) and to apply cohort analysis.
Despite this fact, the group (+) is important in order to calculate the annual totals of the
catches in weight, Y, of total biomasses, B, and the spawning stock biomass. So, it is
usual to start with the cohort analysis on the age immediately before the group (+) and
use the group (+) only to calculate the annuals Y, B and (SP). The value of F in that
group (+) in each year, can be estimated as being the same fishing mortality coefficient
as the previous age or, in some cases, as being a reasonable value in relation to the values
of F; in the year that is being considered.

4. A difficulty in the technical application appears when the number of ages is small or
when the years are few. In fact, in those cases, the cohorts have few age classes
represented in the Matrix [C] and the estimations will be very dependent on the adopted
values of Fierminals-
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10.

The cohort analysis (CA) has also been designated as: VPA (Virtual Population
Analysis), Derzhavin method, Murphy method, Gulland method, Pope method,
Sequential Analysis, etc. Sometimes, CA is referred to when the Pope formula and the
VPA are used in other cases. Megrey (1989) presents a very complete revision about the
cohort analyses.

It is also possible to estimate the remaining parameters in an age i, related to numbers,
that 1S, Neumi, N,-, D;, Z; and E;. When the information on initial individual or mean
weights matrices [w] or [ v_v] are available, one can also calculate the matrices of annual
catch in weight [Y], of biomasses at the beginning of the years, [B], and of mean
biomasses during the years [ B]. If one has information on maturity ogives in each year,
for example at the beginning of the year, spawning biomasses [SP] can also be
calculated. Usually, only the total catches Y, the stock biomasses (total and spawning) at
the beginning and the mean biomasses of the stock (total and spawning) in each year are
estimated.

The elements on the first line of the matrix [N] can be considered estimates of the
recruitment to the fishery in each year.

The fact that the Fieminais are adopted and that these values have influence on the
resulting matrix [F] and matrix [N], forces the selection of values of Fierminais to be near
the real ones. The agreement between the estimations of the parameters mentioned in the
points 6. and 7. and other independent data or indices (for example, estimations by
acoustic methods of recruitment or biomasses, estimations of abundance indices or
cpue’s, of fishing efforts, etc) must be analysed.

The hypothesis that the exploitation pattern is constant from year to year, means that the
fishing level and the exploitation pattern can be separated, or Fyp = Fj x s;i . This
hypothesis can be tested based on the matrix [ F ] obtained from the cohort analysis.

It is usual to call this separation VPA-Separable (SVPA).

We have &Fj=F,,
1

al’ld aFi,j = Stoti

]

and aF;=F,
ij

Then, if F; =F,.s; one can prove that F;.s; = (Ftotj S )/ For -

tot;

If the estimated values of F;; are the same as the previous Fsep;; = Fj.s; then the hypothesis
is verified. This comparison can be carried out in two different ways, the simplest is to
calculate the quotients Fsep;; /Fj;. If the hypothesis is true this quotient is equal to one. If
the hypothesis is not verified it is always possible to consider other hypotheses with the
annual vector [s] constant in some years only, mainly the last years.

It is usual to consider an interval of ages, where it can be assumed that the individuals
caught are “completely recruited”. In that case, the interval of ages corresponds to
exploitation pattern constant (for the remaining ages, not completely recruited, the
exploitation pattern should be smaller). For that interval of ages, the means of the values
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of F;; in each year are then calculated. Those means, F;, are considered as fishing levels
in the respective years. The exploitation pattern in each cell, would then be the ratio F;;
/ Fj. The s;, for the period of years considered, can be taken as the mean of the relative
pattern of exploitation calculated before. Alternatively, they can also be taken as referring
to s; of an age chosen for reference.

7.8.2 LENGTH COHORT ANALYSIS - (LCA)

The technique of the cohort ansalysis, applied to the structure of the catches of a cohort
during its life, can be made with non constant intervals of time, T;,. This means that the length
classes structure of the catches of a cohort during its life, can also be analysed.

The methods of analysis of the cohort in those cases is called the LCA (Length Cohort
Analysis). The same techniques; Pope method, iterative method, etc, of the CA for the ages,
can be applied to the LCA analysis (the intervals T;’s can be calculated from the relative

ages).

One way to apply the LCA to the length annual catch compositions, will be: to group the
catches of length classes belonging to the same age interval in each year. The technique CA
can then be applied directly to the resulting age composition of the catches by age of the
matrix [C]. This technique is known as “slicing” the length compositions. To “slice”, one
usually inverts the von Bertalanfty length growth equation and estimates the age # for each
length L; (sometimes using the relative ages t ;) (Figure 7.5). It is possible that when grouping
the length classes of the respective age interval, there are length classes composed by
elements that belong to two consecutive age groups. In these cases, it will be necessary to
“break” the catch of these extreme classes into two parts and distribute them to each of those
ages. In the example of Figure 7.5, the catches of the length class (24-26] belong to age 0 and
to age 1 . So, it is necessary to distribute that catch to the two ages. One simple method is to
attribute to age 0 the fraction (1.00 - 0.98)/(1.06 - 0.98) = 0.25 of the annual catch of that
length class and to age 1 the fraction (1.06 - 1.00)/(1.06 - 0.98) = 0.75. The method may not
be the most appropriate one, because it is based on the assumption that, in the length classes,
the distribution of the individuals by length is uniform. So, it is necessary to use the smallest
possible interval of length classes, when applying this distribution technique.

Another way to do the length cohort analysis is to use the catches in the length classes of the
same age group. It is possible to follow the cohorts in the matrix [C], through the length
classes belonging to a same age, in a certain year, with the length classes of the next age, in
the following year, etc. In this way, the different cohorts existing in the matrix will be
separated and the evolution of each one of them will be by length classes, not by age (see
Figure 7.5).
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Group Years
Age Relative Length 2000 2001 2002 2003
age Classes
1.03 20- 41 30 17 49
0 1.54 22- 400 292 166 472
1.98 24- 952 699 400 1127
2.06 26- 1766~ 1317 757 2108
1 2.30 28- 2222 1702 985 2688
2.74 30- 2357 1872 1093 2902
2.88 32- 2175 1091 1067 2739
3.00 34- 1817 948 1416 1445
3.42 36- 1529 812 1270 1250
2 3.64 38- 1251 684 980 1053
3.83 40- 1003 560 702 710
3.96 42- 787 290 310 558
3 4.01 44- 595 226 179 834
4.25 46- 168 70 71 112
Cohort of the year 2000

Figure 7.5 Example of a matrix [C] with the catches of the cohort shadowed,
written in bold, recruited at year 2000, “sliced” by length classes,

The LCA R. Jones method (1961), of analysing a length composition during the life of a
cohort can then be applied. The different values of T; are calculated as T; = tj+*-t;*, where t;*
e ti* are the relative ages corresponding to the extremes of the length interval i. The vector
[N] can also be obtained as the number of initial survivors in each length class of the cohort,

and in each age class.

Comments on cohort analyses

1. Certain models, called integrated models, combine all the available information (catches,
data collected on research cruises, effort and cpue data, etc) with the matrix [C], and
integrate in a unique model, in order to optimize the previously defined criterium
function. A model integrating CA and the hypothesis of constant exploitation pattern was
developed and called SVPA, separable VPA, because the Fishing level and Exploitation

pattern are “separable”.

2. Fry (1949) considered the cumulative catches of a cohort by age during its life, from the
end to the beginning, as an image of the number of survivors at the beginning of each

age (which the author designated as “virtual population”):

4 C, =V, =N, virtual

k=final
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In the fishery that Fry studied, M was practically equal to zero.

If M is different from zero it can also be said that the number N; of survivors at the
beginning of the interval i will be :

i
N,= & D,
k=final

where Dy represents the number of total deaths at the interval k.

Adopting the initial values, Ey), for the exploitation rates, E , in all the classes, one can
calculate the total deaths:

Dx0) = Ci/Exo).

Nj(0) can be calculated as the cumulative total deaths from the last class up to the ith class,
that 1s:

4D

=ult k(o)

N

i) — .
Then the expression will be:

Z, T = ln(NHl(O) /Ni(O))

i
and:

Fi(l)'Ti = Ei(O)'Zi(l)'Ti

Comparing E;() with E;q), the new values of E will be:

) = Eqo) T /(B T + M. T))

One can then estimate the values of E with the desired approximation by an iterative
method, repeating the five calculations (of D;, N;, Z;T;, F;T; and E;,) using E;;) instead of

In the last class, the number, Ni,, can be taken as equal to the number of deaths, Djag ,

and 1n this case, Nj,i; Will be calculated as :

Nlast = Dlast = Clast /Elast
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Finally, the results of CA and of LCA give a perspective view of the stock in the
previous years. That information is useful for the short and long—term projections.
Usually, data concerning the catches is not available for the year in which the assessment
is done and so it is necessary to project the catches and the biomasses to the beginning of
the present year before calculating the short—term projection.

When the relative ages are calculated, it is usual to adopt zero as the age t,
corresponding to the value of L, , taken as the lower limit of the first length class
represented in the catches.
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CHAPTER 8 — EXERCISES

8.1 MATHEMATICAL REVISION
1. Calculate:

A) 10% ! 8427° 0.01%°
16 2
B) 43 (3_4)4 52 +42 22 x2°
45
0) log 1000 log0.01 a10*0
log&—3f)
¢l1073+
D) Ine lnl Ine™ ene
e
B0 A 0 e A e 0 =

2. Verify that

a) q=end b) a =108
e -1 x_1 =
c) =1 for —0.01 < x < +0.01 d) ¢ =2 for -05<x<+0.5
X X
3. Solve the following expressions applying natural logarithms to both members of the
equality:
a) y =da- xS b) y =a- e_b.<x+2.0) C) y —a= b . e—C'(X—b)

Note: a, b, e c are constants; e is the basis of natural logarithms (e = 2.7183..); x and y are
variables.

4.  Determine the value of x in the following expressions:

a) e ¥=52 b) 10 =55 ©)  y—a=b-eP
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5. Calculate the derivatives of the following expressions:
a)  y=I3 9 5 m)  y=(4+2v)°
b)  )=3-8 h)y  y=e’" n)  y=(x-6)
c) y=x’ i) y=Inx 0) y=a.(3-¢*"y’
d = ) y=In(5x+4) p)  y=(4xt3).(e4)
e) y=x" k) y=1/x
) = ) y=(2+4)/(3-x)
6.  Calculate the indefinite integrals of the following functions:
— _ -05x
a) f(x)=0 f f(x)zl k) f(x)=e
X
— _ 2-x+1
b) f(x)=15.34 o) F(x)= 5 1) f(x)=3-e
2-5-x
c) fx)=x° h  fx __I+2x . m)  f(x)=x-¢’
40+x+x
d  f(x)=1+3-x i) f(x)=¢" n)  f(x)=Inx
e) f(x)=4-x7" i) f(x)=e"* 0) f(x)=x-Inx
7. Calculate the area under the function
a) f(x)=2+5xbetween x =1 and x =4
b) f(x)=e’*between x =0 and x =1
c) f(x)= 2 between x = 1 and x = 3
542x 2 2
d) f(x)=1+3xbetween x =-2 and x =2
8. Calculate the value of ycumulative With

_ 2%
a) Y=¢ between X=0 and x=0.8

f(x) = —
b) 1+ 2xX petween X =0 and x =2

_ 3
c) F(X)=2X" potween X =0 and x =1
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9.  Calculate the Mean Value of y with
a) y=3-e* betweenx=0 and x =1
b) y=4- (1 - e"o‘z"‘) between x=1 and x=3
c) y=2-x between x=0 and x =12

10. Calculate the integral of

a) f(x)=2- ¢ 3% with the initial condition x =1¥ F(x)=4 where F(x) = i f(x)- dx

b) £(x)=" with the initial condition F(l)=2

X

dy . . . -

c) o = 0.2y with the initial condition x=0Y y =10
x

dy . o .\ -

—= with the initial condition x =0Y y=0

dx 1+3x
8.2 RATES 2.2)

Consider the function, y =40-35.¢ ~0-2X 4t the interval (0,10)

1. Calculate:
a) The values of y forx =0,1,2,3,4,5,6,7,8,9,10;
b) Represent graphically the function y at the interval (0,10) of x;
¢) The variation, Ay, corresponding to the interval (1,2) of x;

d) The absolute mean rate of variation of y, amr(y), at the intervals (1,7), (2,5), (5,6) and
(8,9) of x;

e) The absolute instantaneous rate of variation of y, air(y), at the points x=3 and x=4;
f) Calculate the relative mean rate of variation of y, r.m.r.(y), at the interval (8,9) in
relation to the value of y corresponding to the initial point, to the final point and to the

central point of that interval,

g) Calculate a relative instantaneous rate of variation of y, r.i.r.(y) at the central point of
the interval (8,9).
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2. Calculate the air(y) of the following functions:

a) y=1+10x
b) y:x3—2x+3

¢) y=¢'

d) y=Inx

3. Calculate the rir(y) of the following functions:

a) y=4+x

b) y=¢"

c) y=6-¢>

d) y=a-x with a = constant

4. Calculate the air of the air(y) of y=3x" —4x —12

5. Given the function, y = 3-e” ¥ verify that rir(y)=air(In y)

8.3 SIMPLE LINEAR MODEL 2.3)

Consider a model that relates the characteristic y with time ¢, where the basic assumption is:
air(y)=-3, for 0 <t <oo

Adopt the initial conditionl: for # =0, y=30

1. How would you designate this model?
Write the general expression for the value of the characteristic y at the instant ;

2. Calculate the value of y when t = 0,1,2,3,4,5,6 and draw the graph of y against 7.

3. Considering the interval of time, Az, from t=2 to t=4
a) Calculate the variation of y during the mentioned interval Az,
b) Calculate the central value of y in the interval Az,
¢) Calculate the cumulative value of y in that interval, ycym;

d) Calculate the mean value, y, of y, in the interval A

116



e) Calculate the simple arithmetic mean of y in the interval A¢;

f) Verify that the arithmetic mean of y is equal to the mean value, y, and equal to the
central value, yeentral, Of ¥ in that interval.

g) Verify that in the linear model, the amr(y) = air(y) = constant. To do that, calculate,
for the above mentioned interval, At, the amr(y) and the air(y) and compare the
results.

Repeat exercise 3. considering the interval from # = 0 to 7 = 10.

8.4 EXPONENTIAL MODEL 2.4)

Consider a model that relates the characteristic y with time t, through the following basic
assumption:

rir(y) = -0.4 for 0<t<oo

Adopt the initial condition : for # =0, y =100

1.

2.

3.

Write the general expression for the value of the characteristic y at the instant #;

a) Calculate the value of'y at the instants t =1,2,3,4,5,6.

b) Represent, graphically, the values of y calculated above, against the corresponding

values of t.

c) Represent, graphically, the values of Iny against the given values of t.

Considering the interval of time At = (3,6)

a) Calculate the variation of y, Ay, during the interval At.
b) Calculate yeentral in the interval At.

c¢) Calculate the value of y.un in the interval At.

d) Calculate y in the interval At.

e) Show that the geometric mean of the values of y for 1 =3 y 7 = 6 is equal to Yecentral
and approximately equal to ¥ in that interval.

f) Show that, in that interval, rmr(y) =rir(y) =-0.4

relativetoy;

Consider the interval of time from t =0 to t =10. Repeat the calculations of questions 2
item a), ¢) and d) for this interval.
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8.5

COHORT - EVOLUTION IN NUMBER 3.2)

GROUP1

From the stock of megrim, Lepidorhombus whiffiagonis, from Divisions VIIIc and [Xa of the
ICES, the Assessment Working Group of ICES (ICES, 1997a) estimated that the fish recruit
to the exploitable phase, at the beginning of age 1 year, and that in 1996 the instantaneous
rate of total mortality during the exploitable phase was 0.7 year™.

Consider 1000 individuals of a cohort of megrim, recruited to the exploited phase, which
starts at the beginning of age 1 and finishes at the end of age 7 years.

1.

g)

h)

)

What is the value of the rir of the variation of N, in this interval ?
What is the value of the rir of the mortality of N, in this interval ?

Calculate the annual rate of survival during the interval.

Calculate the annual rate of mortality during the interval.

Calculate the number of survivors at the beginning of each age of that interval.
Calculate the number of survivors at the end of 7 years of age.

Draw the graph of the number of survivors in each age of that interval.
Calculate the number of deaths in each age of the interval.

Calculate the number of deaths during all the exploitable phase.

Determine the percentage of the initial number of 3 year-olds that survive until the
beginning of their 6th year.

Determine the percentage of the initial number of 3 year-olds that die before the
beginning of their 6th year.

Calculate the mean number of survivors during each age of the given interval.
Calculate the cumulative number of survivors during ages 3 to 5.

Calculate the mean number of survivors between the beginnings of ages 3 and 6.
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GROUP II

The Working Group of ICES which evaluated the stock of iberic sardine, Sardina pilchardus,
estimated the mortality rates in each age of 1995 (ICES, 1997b), presented in the following
table :

Age Group 0 1 2 3 4 5 6

Annual Rate of| 0.36 0.43 0.54 0.63 0.66 0.68 0.72
Mortality

Suppose that these rates correspond to a cohort.

1. As previously seen, there may be several types of rates (ex: amr, rmr, air and rir and the
relative rates were referred to several values of the characteristics). What type of rate is
the annual rate of mortality?

2. Calculate the survival rate in each age class.
3. Calculate the total mortality coefficient for each age class.
4. Calculate the survival rate between the beginning of age 1 and the end of age 4.

5. Calculate the annual mean rate of survival in the same interval of ages.

GROUP IIT

Consider a cohort of a certain species for which the number of survivors at the beginning of
age 2 years is 4325, while the number of survivors at the end of age 2 years is 2040.

1. Calculate the mean number of 2 year-old individuals and the number of individuals at the
age of 2.5 years. Compare the results.

2. If the annual rate of mortality of this cohort during the ages 3 and 4 is 70 and 60
percent respectively, calculate the percentage of the initial number of individuals at age 3 that
will survive until the end of age 4.

Give the relation between the survival rate during the period that covers the ages 3 and 4
years and the annual survival rates of ages 3 and 4 years.

8.6 COHORT - CATCH IN NUMBER 3.3)

GROUP1

According to the Assessment Working Group of ICES (ICES, 1996a) the relative
instantaneous rates of total and natural mortality for the age of 3 years, of the stock of blue
whiting, Micromesistius poutassou, in 1995, were estimated as being, respectively,
Z,=0.4year" andM, = 0.2 year™ . In that year, the number of survivors at the beginning of

age 3 year was 2600 million individuals.
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1. Calculate, for the cohort of 1992 and for the age of 3 years :
a) The total annual rates of survival and of mortality.
b) The relative instantaneous rate of fishing mortality.
c) The exploitation rate.
d) The number of deaths during the age.
e) The mean number of survivors during the age.
f) The total catch in number of 3 years old individuals.

g) The number of survivors at the end of the age.

GROUP 11
The 4 year-old age group of the stock (Div. ICES VlIle-h) of whiting, Merlangius merlangus

merlangus, is simultaneously exploited by the crustaceans trawl fleet and demersal fish trawl
fleet.

The Working Group of ICES that evaluates this stock estimated (ICES, 1996a) that, in 1995,
the total instantaneous mortality rate of that age (4 years) was Z = 1.3 year™. Suppose, for this
exercise, that the instantaneous rate of fishing mortality caused by the crustaceans trawl fleet
was Fc = 0.5 year”, while the corresponding value for the demersal fish trawl fleet was Fy =
0.6 year'. The Group also considered the natural instantaneous mortality rate, M = 0.2 year ™.

1. In 1995 17.66 million individuals recruited at 4 years of age.
a) Calculate the total number of deaths during that age.
b) Calculate the mean number of survivors during the age.
c¢) Calculate the exploitation rate of each fleet.
d) Calculate the total exploitation rate.
e) Calculate the catch in number by each fleet and the total catch in number.

f) Calculate the number of survivors at the end of the age. (The solutions to the questions
can be done in any order).
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GROUP IIT

For this exercise, suppose that in 1990, the mean number of survivors of the cohort of a stock
of anchovy, Engraulis encrasicholus, during the period of 2 years of age was calculated as
about 50 million individuals. During 1992, 70 million individuals were caught, from which,
40 percent were caught by the national fleet, and it is estimated that 80 million died of natural
causes.

1. For this age and this cohort:

a) Calculate the total exploitation rate and the exploitation rate of the national and
foreign fleets.

b) Calculate the total, natural and fishing mortality coefficients.

c) Calculate the fishing instantaneous mortality rates caused by the national fleet and by
the foreign fleet.

d) Calculate the number of survivors at the beginning and at the end of the age.
(The solutions to the questions can be done in any order).

GROUP 1V

According to the Assessment Working Group of ICES (ICES, 1997a) the fishing mortality
coefficients applied to the 1976 cohort of the stock of common sole, Solea vulgaris, of the
Celtic Sea were estimated in each age from 2 to 8 years (following table). The natural
mortality coefficient for this stock is considered constant and equal to 0.1 year'. It was
estimated that, at the beginning of age 6 years there were 1112 million survivors of this
cohort.

Age 2 3 4 5 6 7 8
F; 0.07 0.22 0.33 0.41 0.45 0.41 0.74

1. Calculate the numbers of survivors of this cohort at the beginning of each of the above
mentioned ages.

Calculate the number of deaths in each age referred in the table.
Calculate the exploitation rates of this cohort in each age.

Calculate the mean numbers of survivors during each of the above ages.

A

Calculate the catches, in numbers, extracted from this cohort during each of the ages
mentioned above, using two different methods.

8.7 INDIVIDUAL GROWTH IN LENGTH AND WEIGHT 34

GROUP1

The parameters of the von Bertalanffy length growth equation of the stock of European
anglerfish (Div. VIllc and 1Xa of ICES), Lophius budegassa, were estimated as (Duarte et al.,
1997):
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Asymptotic length = 101.69 cm
Coefficient of growth in length = 0.08 year™
Theoretical age, when the length is zero = -0.2 year

1. Calculate the theoretical length corresponding to the age 3.84 years.
Calculate the length at the beginning of the ages 1 to 12 years.

Calculate, for each of the above mentioned ages, the central length.

el

Represent, graphically, the Bertalanffy curve of growth in length for this stock.

GROUP II
Using the growth parameters given in Group I:

1.  Calculate the length that corresponds to each age interval between 1 and 12 years as
being the simple arithmetic mean of the length at the beginning and at the end of each
class.

2. Calculate the mean length in each age for the same interval from 1 to 12 years
accordingly to the von Bertalanffy model.

3. Compare the lengths obtained in 1) with those obtained in 2) and with the central values
in each age of the interval, calculated in Group I-3.

GROUP IIT

The data presented in the following table represents the mean length (cm) by age (years)
obtained from direct age reading of individuals of the stock of European anglerfish, Lophius
budegassa, (Div. VIllc and IXa).

t | Li(cm) T | Ldcm)
1 9.2 7 44.4
2 16.5 8 49.0
3 22.9 9 523
4 28.8 10 55.0
5 347 11 60.8
6 38.6 12 63.4

Based on this data the parameters of the growth equation were estimated according to the
Gompertz model as being :

Gompertz: Le=73.7 cm; k=0.22 year™ t* =-2.76 year

(t* is the age corresponding to L=1 cm)
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1. Represent, graphically, the observed values.

2. Calculate, for the interval 1-12 years, the values of the length at the beginning of each age,
according to the Bertalanffy growth model and draw the corresponding growth curve.

3. Calculate, for the interval 1-12 years, the values of the length at the beginning of each age,
according to the Gompertz growth model and draw the corresponding growth curve.
Determine the inflection point of the curve.

4. Say which growth model you consider more appropriate for this case and justify your
answer.

GROUP 1V

The data presented on the following table concern the stock of European anglerfish Lophius
budegassa (Div. VIlIc and [Xa).

Table of individual weights by length class, taken from the samples of European anglerfish,
Lophius budegassa collected by IEO and IPIMAR in 1994.

Li(em) | Wimeai(g) | n || Li(cm) | Wimeani(g)| n
20- 129 3 50- 1685 28
22- 163 2 52- 1896 30
24- 219 4 54- 2107 24
26- 265 14 56- 2345 41
28- 320 8 58- 2569 41
30- 397 10 60- 2848 32
32- 486 9 62- 3126 35
34- 545 57 64- 3407 28
36- 664 60 66- 3700 19
38- 773 61 68- 4056 23
40- 890 58 70- 4411 17
42- 1027 64 72- 4764 13
44- 1122 56 74- 5203 8
46- 1334 50 76- 5587 4
48- 1503 37 78- 5982 3

The mean of the observed weights and the number (n) of individuals, are indicated for each
length class.

Based on this data, the parameters of the weight-length relation were estimated for this stock
as:

a=0.021
b=2.88

1. Calculate the theoretical weight for each length class.

2. On a graph, plot the observed and the theoretical weights against the length classes.
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3. Suppose you want to use the weight-length relation, with b=3 (the constant estimated for
this relation being a=0.013). Calculate, for this case, the theoretical weights for each
length class. Compare these values with the theoretical weights estimated in 1).

4. Using the results obtained up to now, write the Bertalanffy growth equation, in weight,
for this stock.

8.8 COHORT DURING ALL LIFE — BIOMASS AND CATCHIN (3.6)
WEIGHT

GROUP1

The recruitment to the exploitable phase of horse-mackerel, Trachurus trachurus, distributed
in the Ibero-Atlantic waters (Div. VIIIc and 1Xa) occurs at age 1. In order to make the
calculations, let us consider the exploitable phase between the ages 1 and 10 years and the
recruitment of a cohort equal to 1 000 individuals.

The parameters of the von Bertalanffy equation were estimated by the Working Group of
ICES (ICES, 1998a), using the mean lengths, at age of the catch, as being:

L.=34.46 cm
K=0.225 year’l
to =-1.66 year

The weight-length relation was also estimated, using the mean weights by age adopted by the
WG for the long—term projections (ICES, 1998a), as being:

W(g) =0.011 L(cm) **°
The mortality of this stock is characterized as :

e A constant natural mortality coefficient during all the exploitable phase : M = 0.15
-1
year .

e Fishing mortality coefficients in 1996 (ICES, 1998a) are different with age as :

Age(year) | 1 | 2 | 3 | 4 | 5 | 6 | 7| 8 | 9 |10
Fi(year') | 0.24 | 0.26 | 0.10 | 0.08 | 0.06 | 0.09 | 0.12 | 0.14 | 0.18 | 0.24

1. Organize the calculations in a spreadsheet, in order to calculate, for each age of the life
of the cohort (from age 1 to 10):

a) The number at the beginning of the age
b) The individual weight at the beginning of the age
¢) The biomass at the beginning of the age

d) The number of deaths during the age
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e) The mean number of survivors during the age
f) The mean individual weight during the age
g) The mean biomass during the age

h) The Catch in number during the age

1)  The Catch in weight during the age

2. Determine:
a) The cumulative number of survivors during all the exploitable phase
b) The cumulative biomass of the cohort during all the exploitable life
c) The total catch, in numbers, from the cohort during all the exploitable life;
d) The total catch, in weight, from the cohort during all the exploitable life;
e) The mean weight of the individuals caught, during all the exploitable life;

f) The mean weight of the individuals of the cohort, during all the exploitable life.

GROUP II

Present the histograms of :

1.  Mean numbers of survivors of the cohort in each age, during all the exploitable life.
2. Mean biomasses of the cohort at each age, during all the exploitable life.

3. Catches in number by age of the cohort, during all the exploitable life.

4. Catches in weight by age of the cohort, during all the exploitable life.

GROUP IIT

Suppose now, that one intends to analyse the case in which all the fishing mortality
coefficients were 30 percent bigger than those indicated in the table of Group I.

1. Calculate the characteristics of the Group I-2 that could be obtained from the same
cohort during all its life, in this alternative situation.

2. Compare the values of the characteristics obtained under these conditions with those
obtained in Group I-2, calculating the percentage of variation of those characteristics in
relation to the corresponding values of the previous situation.
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8.9 COHORT DURING ITS LIFE - SIMPLIFICATION OF 3.7
BEVERTON AND HOLT MODEL

GROUP1

The recruitment to the exploitable phase of horse-mackerel, Trachurus trachurus, in Ibero-
Atlantic waters (Div. VIlIIc and IXa) occurs at age 1.

The recruitment at the exploitable phase was simplified by adopting the age t.=2 year.

The parameters of the von Bertalanffy equation estimated for this stock are the following :

L. =34.46 cm
K =0.225 year™
to =-1.66 year

The weight-length relation: W(g) =0.011 L(cm) >
The mortality of this stock is characterized as :

e A constant natural mortality coefficient during all the exploitable phase
M =0.15 year';

e Fishing mortality coefficient, F = 0.14 year™, constant during all the exploited phase.

1. Calculate, using the simplification of Beverton and Holt :

a) The recruitment R, to the exploited phase.

b) The number of deaths during all the exploited life.

¢) The cumulative number of survivors during all the exploited life.

d) The cumulative biomass during all the exploited life.

e) The catch in number during all the exploited life.

f) The catch in weight during all the exploited life.

g) The mean weight of the individuals of the cohort during all the exploited life.

h) The mean weight of the individuals caught during all the exploited life.

GROUP II

The data presented in Section 8.8 — Group I show a great variety in the values of F. However,
in Section 8.9, the simplification of an F constant was adopted, F = 0.14 year™. The purpose,
now, is to compare the results from Section 8.8 with those obtained in this exercise, using the
simplification of Beverton and Holt.
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a) Determinate the cumulative number, the cumulative biomass, the total catch in
number, the total catch in weight and the mean weight in the catch.

b) Compare the results with those obtained in Section 8.8 (Group 1-2).

2.

a) Using a 30 percent bigger value of F calculate the cumulative number, the
cumulative biomass, the total catch in number, the total catch in weight and the mean
weight in the catch and compare with the corresponding values obtained in the
Group I-1.a).

b) Compare the percentages of variation of the characteristics obtained in 2.a) with
those obtained in Section 8.8 (Group III).

8.10 STOCK - SHORT-TERM PROJECTION 4.3)

The mortality parameters and the exploitation pattern of the Iberic Stock of hake, Merluccius
merluccius, from Divisions VIlIc and [Xa of ICES were estimated by the Assessment
Working Group of ICES (ICES, 1998b) as :

e Natural Mortality Coefficient = 0.20 year™'

e Fishing Mortality Level in 1996 = 0.24 year™

Exploitation pattern in 1996

age 0 1 2 3 4 5 6 7 8
SI 0.00 [ 0.09 | 0.29 1.31 1.25 1.12 1.32 1.55 1.55

The growth parameters were estimated as being :

Growth parameters of von Bertalanffy | Weight length relation,

(CE, 1994): W (g)= a.L(cm)” (Cardador, 1988):
L.=100 cm a=0.004

K=0.08 year™ b=32

ty =-1.4 year

At the beginning of 1996 the considered stock had the following age structure, with i
representing the age and N; the number of survivors at the beginning of the age i, expressed in
millions of individuals :

age o | 1|2 (3 4|56/ |7 8
N; 83 127 |41 30|22 |11] 6 | 3
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1.

GROUP1

Estimate the individual weights at the beginning of each age, the total number of
individuals and the total biomass of the stock at the beginning of the year.

Estimate the individual mean weight, the mean number of survivors, the mean biomass,
the total catch in number, the total catch in weight and the mean weight in the catch and in
the stock, during 1996.

Supposing there was a recruitment in 1997 equal to 100 million individuals, calculate the
following, for the beginning of 1997:

a) The age structure of the stock, in number
b) The age structure of the stock, in biomass
¢) The total number of individuals of the stock

d) The total biomass of the stock

(notice that the stock at the beginning of 1997 is equivalent to the stock at the end of 1996,
except for the 1997 recruitment).

GROUP II

The scientists drew attention to the fact that the fishing level in 1996 was very high and
should, therefore, be reduced. They suggested a reduction of about 40 percent so that one
could get adequate catches in weight and biomasses in the future.

As an alternative to improve the exploitation of this stock, they also suggested increasing the
mesh size of the fishing nets.

1.

Fishing managers asked the scientists to evaluate the mean biomass of the stock, the catch
in number, the catch in weight and the mean weight in the catch during 1997 in case of :

a) Maintaining the 1996 fishing pattern (status quo situation)
b) Reducing the 1996 fishing level by 40 percent.

Making the necessary calculations in order to estimate a) and b), present the results and
comment on the changes in the catch in weight and mean biomass, relative to 1996.
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2. Fishing managers also asked the scientists to evaluate the catch in weight and the mean
biomass that would result from maintaining the fishing level of 1996 in 1997, but using a
new mesh size of the fishing net. To solve this question, the scientists proposed the
following new exploitation pattern:

age

0

1

2

3

4

5

6

7

8

S1

0.00

0.00

0.03

1.50

1.65

1.75

1.80

1.80

1.80

Make the calculations, present the results and make your comments on the changes in the
catch in weight and the mean biomass relative to 1996.

Evaluate the effects on the catch in weight and on the mean biomass, resulting from the
simultaneous adoption (in 1997) of the reduction by 40 percent of the fishing level in
1996 and the introduction of the new exploitation pattern. Present the results and make

your comments .

8.11 STOCK - LONG-TERM PROJECTION

4.4

The mortality parameters of the Iberic Stock (Div. VIlIc e IXa) of Sardine, Sardina
pilchardus, were estimated by the Assessment Working Group of ICES (ICES, 1997b) as :

e Natural Mortality Coefficient = 0.33 year™'

e Fishing Mortality Level in 1996 = 0.56 year™

Assume that the exploitable phase occurs from the beginning of age zero until the end of age

S1X.

Relative pattern of exploitation, s;, during 1996

So

S1

S2

S3

S4

S5

S¢

0.21

0.41

0.79

1.18

1.34

1.43

1.68
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The parameters of the individual growth and the weight length relation of this stock were
estimated (Pestana, 1989) as :

Von Bertalanffy Weight length relation
growth parameters W=alIl
with L incmand 7 ing
L.=223cm a=0.0044
K = 0.40 year’ b=3.185
to =-1.6 year
GROUP1

1. Calculate the evolution in number and the biomass of a cohort during its life at the
beginning of each age, supposing that growth, natural and fishing mortality parameters are
the given values.

2. The recruitment at age 0 in 1996 was estimated as being 4300 million individuals.
Calculate the cumulative number, the cumulative biomass, the catch in number and in
weight, during all the life of the cohort.

GROUP 11

It was estimated that, at the beginning of 1996, the considered stock had the following age
structure, in number, representing i the age and N; the number of survivors at the beginning of
age 1, expressed in millions of individuals :

I 0 1 2 3 4 5 6
Ny 4300 | 279 591 233 561 384 180

To make a long—term projection of the stock, all the mortality and growth parameters will be
considered stable during the following years. Consider, also, that the recruitment in those
future years will be equal to the recruitment of 1996.

1. Based on these assumptions, project the numbers of survivors at the beginning of each
year and age, until 2006.
2. Compare the structures of the stock in the years 2003 and 2006.

3. Compare the evolution of the 1996 cohort with the structure of the stock at the beginning
of 2003.
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8.12 STOCK - RECRUITMENT RELATION

4.5)

During the meeting of the assessment Working Group (ICES, 1998b) of the Iberic stock
(Div. VIllIc and IXa) of hake, Merluccius merluccius, the following stock parameters were
estimated for the period 1982-1996:

Year N (age 0) Spawning Biomass
(million) (thousand tons)
1982 125 59.8
1983 107 61.4
1984 136 58.8
1985 97 44.1
1986 104 26.4
1987 97 24.2
1988 ’4 228
1989 56 18.9
1990 59 19.4
1991 69 205
1992 86 215
1993 70 21.0
1994 63 16.5
1995 32 152
1996 ]3 18.0

The annual recruitment at the exploitable phase is considered as being the number of
individuals with age 0.

l.

Draw the dispersion graph of the resulting recruitments, against the parental spawning

biomass.

The parameters of Shepherd, Ricker, Beverton & Holt and Deriso S-R relations were
estimated and are shown in the following table, as well as the respective determination

: 2
coefficients, r”:

Parameters Shepherd Ricker Beverton & Holt Deriso
o (R/g) 3.50 4.43 491 4.40
k (1000 tons) 64.94 78.13 45.39 106.27
C 3.52 0.896
r’ 0.71 0.68 0.66 0.75

131



a) Calculate the expected recruitments in each year of the period 1982-1996 using the
four S-R models.

b) The determination coefficient, 1>, can be used as an indicator of a good or bad
adjustment of the model to the observed data, depending on the number of
observations (r* can be interpreted as a percentage of variation of the observed points
that is explained by the model. Values close to 1 indicate a good adjustment and
values close to zero indicate a bad adjustment). Using this indicator, make your
comments about the adjustments of each model.

8.13 Fua (5.2.1)

Consider the stock of cod fish, Gadus morhua, in the Irish sea (Div. VIla). The following
mortality and biological parameters were estimated by the Working Group of ICES (ICES,
1998c¢):

Natural Mortality Coefficient: M =0.20 year™

Fishing Level in 1996: Fos = 0.58 year'1

Mean weight (kg) in the catch and in the stock :

Age 0 1 2 3 4 5 6 7

Wi 0.001 0.883 | 1.778 | 3.597 | 5.695 | 7.904 | 8.502 | 9.200

GROUP1

Assume that the stock was constituted by the age groups 0 to 7 years and that it was exploited
with the following exploitation pattern :

Age 0 1 2 3 4 5 6 7
S 0.80 0.90 096 | 1.00 | 1.00 | 1.00 1.00 1.00

1. Calculate, for 1000 recruits, the long—term annual catch in weight and the annual mean
biomass, corresponding to the fishing level of 1996.

2. Adopting the factor Feeor between 0 and 2.5 year'1 with intervals of 0.1 year'1 draw the
curve of the annual catch in weight against Fg,.r. Represent, in the same graph, the curve
of the mean biomass against Fycior.

3. Calculate the biological reference point Fpx.
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1. Answer the previous questions, but considering the following exploitation pattern.

GROU

PII

Relative pattern of exploitation adopted by the Working Group:

Age

0

1

2

3

4

5

6

7

Si

0.00

0.20

0.96

1.30

1.12

0.67

0.58

0.58

a) Compare the value of F.x of this exercise with the one obtained in the exercise in

Group I.

b) Calculate the biological reference point Fn.x knowing that the Working Group considers
the group of age 7 as a group of cumulative ages (7+). The mean weights in the catch and
in the stock presented at the beginning of the text are maintained, except for the last
group of ages which will now be the age group 7+ with the mean weight equal to 10.873

kg. The exploitation pattern is also maintained with the value 0.58 for the group 7+.

c¢) Compare the two calculated values of Fy,,x, considering the last age group as 7 or as 7+.

8.14 Fy,

(5.2.2)

Consider the Iberic stock (Div. Vlllc e IXa) of four-spot megrim, Lepidorhombus boscii.

The following parameters were estimated by the Working Group of ICES (ICES, 1998b):

Natural Mortality Coefficient:

Fishing mortality in 1996:

Exploitation pattern:

M=0.20 year’l

Fos =0.36 year'l

Age 1 2 3 4 5 6 7+
S 0.06 0.43 0.89 | 1.65 | 1.66 | 1.22 1.22
Mean weight (kg) in the catch and in the stock:
Age 1 2 3 4 5 6 7+
Wi 0.037 | 0.067 | 0.086 | 0.109 | 0.144 | 0.188 | 0.244
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1. Adopting the value 1000 for the recruitment to the fishing area, calculate the long—term
annual catch in weight, the annual mean biomass, and the annual mean weight in the
catch, corresponding to the fishing mortality level of 1996.

2. Adopting the factor Fgycor between 0 and 2.5 year’1 with intervals of 0.1 year’1 draw the
curve of the annual catch in weight against Fg,cor. Represent, in the same graph, the curve
of the mean biomass against Feactor.

3. Calculate the biological reference point Fy ;
4. Calculate the biological reference point Fy,x

5. In the graph of the curves of the annual catch in weight and of the mean biomass against
Fractor, mark the Biological reference points Fyp; and Fp.x which were previously
calculated. Make your comments.

6. Calculate the long—term mean biomass, the catch in weight and the mean weight in the
catch for Fy;. Compare those characteristics with the values obtained in question 1 and
make your comments.

8.15 Fumea and Fysy (5.2.3) and (5.2.4)

During the meeting of the Assessment Working Group (ICES, 1998b) on the Iberic stock
(Div. VlllIc and 1Xa) of hake, Merluccius merluccius, the following population parameters
were estimated :

Natural mortality coefficient: M =0.2 year;

Fishing mortality in 1996: Fos = 0.24 year’

Mean weight in the catch (g):

Age (year) 0 1 2 3 4 5 6 7 8+
W.(g) 4 37 106 | 205 | 358 | 517 | 706 | 935 | 1508

Maturity ogive ( percent):

Age (year) 0 1 2 3 4 5 6 7 8+
% mature; | 0 0 1 6 20 | 49 | 76 | 91 | 100

For the long—term projections, the Working Group adopted the mean exploitation pattern for
the period 1994-1996, as shown in the next table :

Age (year) 0 1 2 3 4 5 6 7 8+
Si 0.001 { 0.11 {0.398 | 1.3 | 1.261 |1.019|1.473|1.874|1.874
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. Calculate the long—term annual mean biomass, the spawning biomass, the annual catch in
weight and the mean weight in the catch.

. Draw the curve of the annual catch in weight and the mean biomass against F, for values
of Fractor between 0 and 2.5 year'l, with intervals of 0.1 year'l. Calculate the TRPS Fpax
and F(),].

. Calculate the biological reference point Fpeq , knowing the recruitments (million
individuals at age 0) and the spawning biomasses (thousand tons) between 1982 and 1996,
estimated by the Working Group, presented in the following table :

Year N (age 0) Spawning biomass
(million) (1000 tons)
1982 125 59.8
1983 107 61.4
1984 136 58.8
1985 97 44.1
1986 104 26.4
1987 97 24.2
1988 84 22.8
1989 56 18.9
1990 59 19.4
1991 69 20.5
1992 86 21.5
1993 70 21.0
1994 63 16.5
1995 32 15.2
1996 83 18.0

Calculate the long—term mean biomass, the spawning biomass, the catch in weight and
the mean weight in the catch for Fp.q. Compare with the values obtained in question 1
and make your comments.

Adopting the Ricker stock-recruitment relation, estimated by the Working Group (o =
443 R/ kg and K = 78.13 thousand tons) , calculate Fysy, Busy and Y msy. and
compare the different F-target estimated.
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8.16 MBAL AND By, (5.3.4 & 5.3.5)

During the meeting of the Assessment Working Group (ICES, 1998b) on the Iberic stock
(Div. VllIc and I[Xa) of hake, Merluccius merluccius, the recruitment (million individuals at
age 0) and the spawning biomass (thousand tons) was estimated for the period 1982-1996.
The values obtained are presented in the following table :

Year N (age 0) Spawning biomass
(million) (1000 tons)
1982 125 508
1983 107 14
1984 136 o
1985 97 44.1
1986 104 26.4
1987 97 242
1988 84 22.8
1989 56 18.9
1990 59 19.4
1991 69 20.5
1992 86 21.5
1993 70 21.0
1994 63 16.5
1995 32 15.2
1996 83 18.0

1. Using the spawning biomasses and the resulting recruitments, calculate the Biological
Reference Limit Points, MBAL and Biss.
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8.17 Fios and Feraan (5.3.5 & 5.3.6)

GROUP1

During the meeting of the Assessment Working Group (ICES, 1998b) on the Iberic stock
(Div. VlIc and IXa) of hake, Merluccius merluccius, the recruitment (million individuals at
age 0) and the spawning biomass (thousand tons) was estimated for the period 1982-1996.
The values obtained are shown in the following table :

Year N (age 0) Spawning biomass
(million) (thousand tons)
1982 125 59.8
1983 107 61.4
1984 136 58.8
1985 97 44.1
1986 104 26.4
1987 97 241
1988 ’4 278
1989 56 18.9
1990 59 19 4
1991 69 20.5
1992 86 215
1993 70 1.0
1994 63 16.5
1995 32 152
1996 83 1.0

The Shepherd S-R relation was adjusted to the pairs of values in the table (1*=0.71), and the
relation parameters are the following :

a=35 Kg
k = 64.94 thousand tons
c=3.52

1. Draw the dispersion graph of the resulting recruitments, against the parental spawning
biomasses.

2. Calculate the expected recruitments in each year of the period 1982-1996 according to the
Shepherd S-R model and in the previous dispersion graph, draw the respective curve.
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GROUP II

1. Calculate the annual catch in weight and the spawning biomass per recruit for the stock of
hake, using the mortality and biological parameters estimated by the Working Group for
the long—term projections (given in Section 8.15), namely :

Natural mortality coefficient :

Fishing mortality in 1996:

Mean weight in the catch (g):

M=0.2 year'1
Fos = 0.24 year'1

Age (year) 0 1 2 3 4 5 6 7 8+
Wi 4 37 106 | 205 | 358 | 517 | 706 | 935 | 1508

Maturity ogive ( percent):

Age (year) 0 1 2 3 4 5 6 7 8+

% mature; 0 0 1 6 20 | 49 | 76 | 91 | 100

Mean relative pattern of exploitation of the period 1994-1996:

Age (year) 0 1 2 3 4 5 6 7 8+

Si 0.001 | 0.11 [0.398 | 1.3 | 1.261 [1.019|1.473|1.874|1.874
GROUP I11

1. Using the results of Groups I and II, calculate biological reference Limit-Points, Fs and

Fcrash-
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8.18 PRODUCTION MODELS (EQUILIBRIUM) - SCHAEFER

(6.7.1)

The following table presents the annual total catch Y, (t) and mean biomass B, (t) for the
fishery of the Iberic stock (Div. VIlIc and 1Xa) of sardine, Sardina pilchardus, between 1977
and1996, used by the Working Group of ICES (ICES, 1998a).

Year Y (t) B(b)
1977 125750 750289
1978 139990 759192
1979 153441 763313
1980 191682 804765
1981 214133 842091
1982 204504 802573
1983 181139 713376
1984 202686 794856
1985 204107 810539
1986 180606 679808
1987 168825 547179
1988 158540 481295
1989 137126 431719
1990 139157 368099
1991 127756 316365
1992 126054 453161
1993 138795 539096
1994 132800 416842
1995 121384 368158
1996 111431 246037
GROUP I

1. Calculate F; corresponding to each year i.

2. Calculate the biomasses, B, at the beginning of each year. (Use the procedure proposed
by Schaefer, that is, the biomass at the beginning of a year is approximated by the

arithmetic mean of the mean biomasses of the previous and the following year).

3. Calculate the equilibrium catches, Yg, which would correspond to the observed values

of F.
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4. Calculate the equilibrium mean biomasses, Bg, which would correspond to the observed
values of F.

5. Draw the graph of B against F;.

GROUP II
The Schaefer model was adjusted and the following parameters were estimated :

k=1562851 t
r=0.426 year’l

1. Calculate the equilibrium biomasses and the equilibrium catches corresponding to the
fishing levels observed in each year, using the Schaefer model.

2. Draw, in the graph of Group I point 5, the equilibrium biomasses calculated with the
Schaefer model.

3. Calculate FMSY , BMSY and YMSY

4. Calculate Fo, Bo1and Yy .

8.19 PRODUCTION MODELS (EQUILIBRIUM) (6.7.1 & 6.7.2)

The following table presents the annual total catches and the corresponding total fishing
efforts of a shrimp stock in the Arabian Sea during the period 1969 to 1978 (Sparre and
Venema, 1992).

Year Catch, Y Total effort
(t) (1000 days)
1969 546.7 1.224
1970 812.4 2.202
1971 24933 6.684
1972 4358.6 12.418
1973 6891.5 16.019
1974 6532.0 21.552
1975 4737.1 24.570
1976 5567.4 29.441
1977 5687.7 28.575
1978 5984.0 30.172
GROUP 1

1. Draw a graph of the annual abundance index against the corresponding fishing mortality
index.

2. The Fox model was adjusted to the data. The following parameters were obtained :
a=6.150 b = - 0.028 with a determination coefficient, ?=0.78.
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a) Calculate and draw the curves of the equilibrium conditions of the abundance index
and of the total catch against fishing effort.

b) Determine the target-points MSY and 0.1.

c) Determine the parameters (kq), (1/q) and (kr).

GROUP II

Knowing that the adjustment of the Schaefer model to the same set of data, resulted in the
following values of the parameters :

a=444.454
b=-8.055
1*=0.77)

1. Repeat the calculations of the previous Group.

8.20 PRODUCTION MODELS - SHORT-TERM PROJECTION (6.8)

The following table presents the annual total catches (in tons) and the corresponding catches
by fishing unit effort (kg/ fishing day of the fleet PESCRUL) of the stock of Deepwater rose
shrimp, Parapenaeus longirostris, of the Algarve during the period 1983 to 1994 (Mattos
Silva, 1995).

Year Y (t) cpue
(kg/day)

1983 538 235
1984 638 131
1985 431 63
1986 99 22
1987 37 8
1988 62 21
1989 437 77
1990 146 28
1991 126 26
1992 53 25
1993 91 41
1994 232 66

Using the following parameters of the integrated Fox model and Yoshimoto & Clarke (1993):
k= 1580 t, q=0.39 thousand days™ and r=0.55 year™ :
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1. Project the cpue and the catch in weight for the year 1995, supposing that the fishing
effort will be maintained equal to that of 1994 (situation status quo).

2. Determine the target reference points, Yusy, EMSY and Fysy and the indices I_JMSY and
fmsy.
3. Determine the target reference points, Y 1, Eo,l and F 1 and the indices I_Jo,l and fo ;.

4. Determine the percentages of the carrying capacity corresponding to the target points
FMSY and FO.I

5. Based on the results obtained in the previous questions, make your comments on the state
of the stock and of its exploitation.

6. Suppose that one intends to reduce the fishing effort in 1995 by about 20 percent relative
to the effort of 1994. Project the catch in weight for 1995 and present the variations
resulting from that effort reduction on the catch in weight and on the biomass.

8.21 SIMPLE LINEAR REGRESSION - ESTIMATION OF THE (7.2)
PARAMETERS OF THE W-L RELATION AND GROWTH
PARAMETERS (FORD-WALFORD, GULLAND AND HOLT
AND STAMATOPOULOS AND CADDY)

GROUP1

Consider the following 10 pairs of values of x and y:

Xj 2 6 7 8 11 |15 16 18 19 21
Vi 13 {40 |52 (56 |78 | 105 |[111 |[130 |132 | 149

Estimate the constants A and B of the straight line.
Estimate the values of Y corresponding to the given values of x.

Calculate the determination coefficient 2.

AW N =

Draw a graph with the observed values and with the estimated line. Observe the
adjustment and say if you consider the linear model adequate.
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GROUP II

The data presented on the following table represent the individual weights by length class of
European anglerfish, Lophius budegassa samples from the Iberic coast in 1994.

Li (cm) We(g) Li (cm) We(g
20- 129 50- 1685
22- 163 52- 1896
24- 219 54- 2107
26- 265 56- 2345
28- 320 58- 2569
30- 397 60- 2848
32- 486 62- 3126
34- 545 64- 3407
36- 664 66- 3700
38- 773 68- 4056
40- 890 70- 4411
42- 1027 72- 4764
44- 1122 74- 5203
46- 1334 76- 5587
48- 1503 78- 5982

1. Using the simple linear regression model, estimate the parameters of the weight-length
relation for this stock, considering that W entra=Wmean. (Notice that the In Wepral 1s linear
to the In Leengrar).

GROUP IIT

The data presented in the following table represent the mean length (cm) of the individuals at
the beginning of the age (years), obtained from direct age reading of the individuals of the
stock of European anglerfish, Lophius budegassa, (ICES Div. VIlIc and [Xa), Section 8.7

T L¢ t L

1 9.2 7 44 .4
2 16.5 8 49.0
3 22.9 9 523
4 28.8 10 55.0
5 34.7 11 60.8
6 38.6 12 63.4
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From this data and using the simple linear regression model, estimate the growth parameters
K and L.. with the expressions :

1. Ford-Walford (1933-1946)
2. Gulland and Holt (1959)

3. Stamatopoulos and Caddy (1989). (The expressions for 1), 2) and 3), were studied in the
Chapter concerning Individual Growth).

4. Comment on the results obtained in the previous questions with the values of the
parameters given in Section 8.7.

8.22 MULTIPLE LINEAR MODEL — REVISION OF MATRICES - (7.3)
ESTIMATION OF THE PARAMETERS OF FOX
INTEGRATED MODEL (IFOX)

REVISION OF MATRICES
GROUPI1
Consider the matrices A and B :
A= 2301 B= 1103
1141 1325
0422 2160
1033 2210

1. Using a spreadsheet, calculate: A + B, A * B, Det(A), Det(B), A'eB!
2. Show that (A.B)' =B'.A™
3. Show that (A.B)" =B".A"

GROUP II

Let the Matrices:

M(4,4): (1/4) 1111 0(4,4) = 0000 1(4,4) = 1000
1111 0000 0100
1111 0000 0010
1111 0000 0001

1. Verify that the matrix null 0 is idempotent.

2. Verify that the matrix identity I is idempotent.

3. Verify that the matrix M is idempotent.
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4. What are the traces of M and 1?
5. Calculate the ranks, r , of M and of 1.

6. What is the value of the determinant of M and 1?
GROUP 111
1. Verify that the product Mx, where x is the vector given by x" =(3481),is a vector
with all elements equal to the arithmetic mean, x, of the 4 elements of vector x.
2. Verify that (I-M)x is the vector of the deviation.
3. Verify that the sum of the squares of x;, &(x;®) can be written as : x’. x
4. Verify that the sum of the squares of the deviations, &(x; - ;)2 , can also be written in

a matricial form, as : x” (I-M)x

GROUP IV
1. Consider the vector x =2 + 0 where 0 is an unknown parameter.
36
5-0

. .. dx
a) Write the derivative 26 of the vector x

b) Calculate x"x

c¢) Calculate % (x"x)

d dx
d) Show that — (x"x) =2 (—)"
) Show tha 10 (x'x) (dé?) X

2. Consider the vector x =2 + 40; - 50, where 0; and 0, are two unknown constants.
1+ 6,+ 6
0, 2 +40,

a) Write the derivative matrix % (take 0, and 0, as variables)

b) Calculate x” x

¢) Transpose a—&a (x" x)
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d) Show that the transposed matrix 54 (x"x)=2 (é) "x
20 20
GROUP V

Consider the following system of 2 equations with 2 unknowns;

5=2A+3B
4= A-2B

1. Show that the equation system can be written in matrix form as,

Yo =Xe2 e
where Y is the vector of the independent terms (5 e 4) of the system,
0 is the vector of the unknowns A and B
and X is the matrix of the coefficients of the unknowns

2. Verify that the solution of the system can be given as 0= X"X)"'X"Y

3. Show that X is a square, non singular matrix, and then that the solution of the system can
be 06=X"Y

ESTIMATION OF THE PARAMETERS OF THE YOSHIMOTO AND CLARKE MODEL
(1993)

4. Estimate the parameters k, q and r, of the Fox integrated model (IFOX) and of
Yoshimoto & Clarke (1993) using the following data :

Year Y CPUE

(t) (kg/day)
1983 538 235
1984 638 131
1985 431 63
1986 99 22
1987 37 8
1988 62 21
1989 437 77
1990 146 28
1991 126 26
1992 53 25
1993 91 41
1994 232 66
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which represent the total annual catches (in tons) and the respective catches by fishing effort
unit (kg/fishing day of the fleet PESCRUL) of the stock of Deepwater rose shrimp,
Parapenaeus longirostris of the Algarve during the period 1983 to 1994 (Mattos Silva, 1995).

Comment on the obtained results comparing them with those presented in Section 8.20.

8.23 NON LINEAR REGRESSION — ESTIMATION OF THE (7.4)
GROWTH PARAMETERS AND OF THE S— R RELATION
(GAUSS-NEWTON METHOD)

The data in the following table represent the mean length (cm) of the individuals at the
beginning of the age (years), obtained from direct age reading of individuals of the stock of
anglerfish, Lophius budegassa, (Div. VIlIc andIXa), Section 8.7.

t L t L¢

1 9.2 7 44 .4
2 16.5 8 49.0
3 22.9 9 523
4 28.8 10 55.0
5 34.7 11 60.8
6 38.6 12 63.4

GROUP1

1. Represent graphically the values of L, against t.

2. Estimate the growth parameters K, L.. and t, for the Bertalanffy growth model using a
non-linear regression model.

3. Estimate the values of L; corresponding to given values of t and mark on a graph the
observed values and the estimate curve. Comment on the adjustment.

4. Compare the results obtained in the previous questions with the values of the parameters
given in Section 8.7.

GROUP II

Using the data on spawning biomass and on recruitments of hake, presented in Section 8.12,
estimate the parameters of the Beverton and Holt, Ricker, Deriso and Shepherd S-R models.

1. Compare the obtained values with those presented in Section 8.12.
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8.24 ESTIMATION OF M (7.6)

GROUP1

1. Estimate the 5 percent Tanaka survival curve for natural mortality coefficients between
0.0 and 5.0 year” and longevities between 0 and 30 years.

2. Calculate the values of M corresponding to the longevity 1, 2, 3, 10, 15 and 30 years.
GROUP 11

The parameters of von Bertalanffy equation for the Iberic stock (Div. VIIIc and IXa of ICES)
of horse-mackerel, Trachurus trachurus, are the following :

L..=34.46 cm, TL (carapace length)
K =0.225 year™

1. Estimate the value of M for this stock, knowing that from 1985-95 in the distribution area
of this stock in the Iberic Peninsula, the mean temperature of the sea water at the surface,

was: T =13°C

GROUP IIT

Consider a certain fishing stock for which the first maturity mean age was estimated as 2.3
year.

1. Obtain an approximate estimate of M for this stock.

GROUP IV

The reproductive biology of the stock of Atlantic mackerel, Scomber scombrus was studied
and it was estimated that the mean gonadsomatic index (gonad weight/total weight) of the
mature females in the spawning period was 0.13.

1. Estimate an approximate value for the natural mortality coefficient M for this stock,
assuming that it is constant for all the ages and years.

GROUP V
The scientists responsible for the evaluation of the stock of a certain fishing resource,
implemented an acoustic cruise every year in January, to estimate the abundance of the stock

by age classes. Fishery statistics are also needed to estimate the catch by age during the year.

The following table presents the estimations of the abundance of the stock, by age classes,
obtained on the cruises in 1993 and 1994, as well as the structure of the catches during 1993.
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Age Number of survivals, N, in million Total catch in 1993
January 1993 January 1994 (million)
2 243 353 11
3 99 189 15
4 86 67 20
5 37 52 9
6 13 22 3
7 6 8 1

Although this information is available, the scientists responsible for this stock have
difficulties applying the assessment models to the resource because they do not have an
estimation of M.

1. So, estimate the natural mortality coefficient for this resource in 1993, and help the
group of scientists responsible for the resource.

GROUP VI

The following table presents the data on fishing effort, in million trawl hours, and the total
mortality coefficent, Z, for a certain fishery for the period 1987 to 1995.

Years Effort Z (year™)
(10° hours)

1987 2.08 1.97
1988 2.80 2.05
1989 3.5 1.82
1990 3.6 2.32
1991 3.8 2.58
1992 - -

1993 - -

1994 9.94 3.74
1995 6.06 3.74

1. Determine M (natural mortality coefficient), assumed to be constant for the period 1987-
1995.

2. Determine the catchability coefficient q.
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8.25 ESTIMATION OF Z 7.7

GROUP1

A swept area cruise allowed the scientists of the Marine Research Institute in Bergen,
Norway, to estimate the abundance of the different age classes of the stock of cod fish, Gadus
morhua, in January of 1995 (following table).

Age (years) 1 2 3,4 |5/6|7 8|9 (10{11|12|13|14/|15

Nos (10%) | 1984|440 | 160 | 103 | 82 |65 |54 |43 (33|27 (26|21 (17|13 10

1. Represent on a graph, the logarithms of the numbers of survivors against the age.

2. Select the age interval from which the total mortality coefficient, Z, can be taken as
constant.

3. [Estimate the total mortality coefficient, Z, of the stock in January 1995.

GROUP II

The following table presents the mean catches by age, in number, of plaice, Pleuronectes
platessa, per 100 trawl hours in two periods, 1929-1938 and 1950-1958.

Age (years) 2 3 4 5 6 7 8 9 10

Cit 1929-38| 125 [ 1355|2352 |1761| 786 | 339 | 159 | 70 | 28

C/t 1950-58| 98 | 959 | 1919|1670 | 951 | 548 | 316 | 180 | 105

1. Estimate the total mortality coefficient, Z, of the stock in each of the periods.

2. Consider that the mean fishing effort on the North Sea plaice during the two periods was 5
million hours of trawl in 1929-1938 and 3.1 million hours of trawl in 1950-1958. Estimate
for each period:

a) the natural mortality coefficient, M;
b) the catchability coefficient, q;
¢) and the fishing mortality coefficient, F.

GROUP IIT

The following table presents the annual composition of the catches by age from 1988 to 1994,
in millions of individuals, for a certain resource :
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A e

CATCHES (million individuals)

Age 1988 1989 1990 1991 1992 1993 1994
0 599 239 424 664 685 478 330
1 678 860 431 1004 418 607 288
2 1097 390 1071 532 335 464 323
3 275 298 159 269 203 211 243
4 40 54 75 32 69 86 80
5 6 9 13 18 8 25 31
6 1 8 3 5 5 3 8
7 6 0 1 0 1 1 1

Estimate Z, based on that mean composition.

Estimate Z for each year of the given period.

GROUP 1V

Calculate the mean annual composition during 1988-1994.

Estimate Z, based on the mean age of the mean composition of the catch.

Compare the annual Zs with the values of Z obtained in questions 2 and 3.

The following table shows the length composition, in equilibrium, of a certain resource, with
L., =100 cmand K =0.2 year.

Length class (cm) 35- | 40- | 45- | 50- | 55- | 60- | 65- | 70- | 75- | 80- | 85- | 90- | 95-
Catch (C;)) in million | 7 | 10 | 20 | 51 | 46 | 44 | 41 | 36 |33 |28 |23 |17 | 8
1. Calculate the relative ages corresponding to the lower limit of each length class.

2. Determine the age interval corresponding to each length class.

3. From which class can one consider Z constant?

4. Determine Z using :

a) The catches in each class.

b) The cumulative catches.

¢) The mean length in the catch.

5.
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GROUP V

The length compositions of the catches for three different periods of time are known for a
certain fishing resource.

Period Length 45- | 50- | 55- | 60- | 65- | 70- | 75- | 80- | 85- | 90- | >95
classes (cm)

1960-69 Catch (Cy)in | 256 | 237 | 211 | 187 | 161 | 138 | 113 87 62 36 12
million

1970-79 268 | 226 | 180 | 141 | 105 | 76 50 30 15 6 1

1980-89 212 | 161 | 116 | 79 52 31 17 8 3 1 0

Consider the 45 cm length class as the first class completely recruited .
Adopt K = 0.3 year" and L. =100cm as the von Bertalanffy growth parameters for this

resource.

1. Estimate the values of the total mortality coefficient, Z, for each period and comment on
the results.

8.26 AGE COHORT ANALYSIS (CA) (7.9.1)

GROUP1

1. Consider a stock and an interval of time 1, (t,-, tiv ) . Knowing that for this interval of
time:

M; = 0.4 year’
T;=2.3 year
C; = 230 million individuals

a) Adopt the value 0.5 year' for the fishing mortality coefficient for the interval and
calculate the numbers of survivors at the beginning and end of the interval.

2. Consider the interval of time i, (1, 7;, ) . Knowing that in this interval of time:

M;=0.6 year'1
T;=0.9 year
C; = 98 million individuals
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Calculate the value of the fishing mortality coefficient, F;, for the interval , taking the number
of survivors, N; , at the beginning of the interval, i, to be 172 million individuals.

3. Consider the interval of time (tj, t 1+1). Knowing that in that interval of time :

M=0.5 year’l
Ti=1 year
C; = 42 million individuals

a) Calculate the value of the fishing mortality coefficient for the interval, knowing
that the number of survivors at the end of the year was Nj;= 85 million
individuals. Calculate the value of F; using the Pope formula.

GROUP II

The data in the following table represent the catches in millions, of a cohort of hake,
Merluccius merluccius, in the Iberic Peninsula waters.

Age (years) 0 1 2 3 4 5 6 7 8
C; (million) 712 | 3941 | 8191 | 10311 | 5515 | 4149 | 3081 | 1185 | 549

Adopt a value of 0.2 year™ for the natural mortality coefficient, constant for all the ages.

1. Suppose that the value of the fishing mortality coefficient at the last age (8 years) was
1.0 year'. Calculate, by an iterative method and by the Pope method, for each age of the
cohort :

a) The value of the fishing mortality coefficient.
b) The number of survivors at the beginning of the age.
¢) Compare the results obtained by the two methods.

d) Represent, on a graph the values of F; estimated against the age, and say what the
recruitment of this cohort is at the exploited phase.

GROUP IIT

1. Aiming to analyse the influence of the chosen Fieminal , repeat the calculations of question
1 of Group II, using one of the previous methods, with 0.3 and 1.5 year™ for the value of

F terminal-
a) Draw a graph with the estimated values of F; and N; against the age.

b) Comment on the differences between the graphs for the different values of Fierminal-

2. Aiming to analyse the influence of the choice of M, repeat the calculations of question 1
of Group II, using one of the previous methods, for values of M of 0.1 and 0.4 year.
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a) Represent, on a graph, the estimated values of F; and N; against the age.

b) Comment on the differences between the graphs for the different values of M.

GROUP IV

The annual catches by age class, of a certain resource, for the years of 1985 to 1994, are
presented in the following table.

Catches by age class (Million individuals)
Years
Age 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994
(years)

0 67 88 104 | 290 | 132 90 63 38 52 90
1 532 | 1908 | 1841 | 1671 | 4172 | 1915 | 1284 | 906 | 541 704
2 2070 | 1756 | 4424 | 3178 | 2534 | 6320 | 2826 | 1911 | 1322 | 741
3 728 | 4016 | 2256 | 4042 | 2499 | 1972 | 4742 | 2115 | 1382 | 890
4 353 | 945 | 3309 | 1273 | 1926 | 1170 | 883 | 2102 | 896 | 540
5 97 | 439 | 733 | 1730 | 558 | 827 | 479 | 356 | 807 | 316
6 16 107 | 300 | 333 | 656 | 207 | 291 166 | 117 | 243
7 25 8 73 136 | 126 | 243 73 101 54 35
8 5 7 5 33 52 47 85 25 33 16

The modus operandi of the fishing fleet was constant during the period, but the number of

vessels increased significantly. It is considered that, at present, the resource is intensively
exploited.

Besides the information on the fishery, the estimates of the growth parameters of this resource
and of the natural mortality coefficient are also available:

L.=385cm a=0.021 of the relation W(g)-L(cm)
K =0.25 year’ b =2.784 of the relation W(g)-L(cm)
to =-0.51 year M =0.3 year”

1. Estimate the fishing mortality coefficient and the number of survivors at the beginning of
the year for each age class and each year. Use the Pope Cohort Analyses method.

a) Start by selecting Fierminat = 0.5 year ' for the last age of every year and for all the ages of
the last year.

b) After analysing matrix F obtained in a), select new values for Fimina and repeat the
application of Pope’s method.
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2. Besides the information given in the previous question, it is also known that the spawning
takes place in a restricted period, around the beginning of the year. Research cruises using
acoustic methods took place during the spawning period, in order to estimate the
spawning biomass (kg/hour of trawl). The results obtained are shown in the following
table :

Years 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994
Spawning
biomass 1270 | 1613 | 1629 | 1424 | 1300 | 1209 | 1000 | 718 | 476 | 326
Index

The biological information collected during those cruises was also used to estimate the
maturity ogive of the stock at the spawning period:

Age (years) 0 1 2 3 4 5 6 7 8
% Matures 0 1 20 50 80 | 100 | 100 | 100 | 100

a) Calculate the spawning biomass in the spawning period of each year from 1985 to 1994
using the results of the Cohort Analyses obtained in question 1.b.

b) Use the information of the acoustic cruises to tune the Cohort Analyses.

¢) Comment on the tuning results.

8.27 LENGTH COHORT ANALYSIS (LCA) (7.9.2)

GROUP1

The following table presents the annual catch length composition, of a cohort of a resource
with L..=130 cm and K = 0.1 year™.
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Length Catch, G,
classes(cm) (million)

6- 1823
12- 14463
18- 25227
24- 8134
30- 3889
36- 2959
42- 1871
48- 653
54- 322
60- 228
66- 181
72- 96
78- 16
84- 0

The natural mortality coefficient was estimated as being M = 0.3 year™.

1.

Calculate the mean number of survivors of the cohort.

GROUP II

Using the Pope method, and adopting E=0.5 as being the exploitation rate in the (78-)
length class of the catch, estimate the number of survivors at the beginning of each length
class, the fishing mortality coefficient F and the exploitation rate E in each class.

The following tables 1 and 2 present the basic information on a hypothetical stock during the
years 1985 to 1994.

1.

Apply the slicing technique to the Catch matrix and comment on the validity of applying
cohort analyses by ages.

Estimate the matrices [F] and [N] by length classes and years.

Calculate the matrix [Fsep] and comment on the hypothesis that the exploitation pattern
can be considered to be constant during those years.

Table 1. Growth parameters of the von-Bertalanffy curve, L. and K Natural Mortality
Coefficient, M and constants a and b of the weight/length relation

Growth Natural Mortality Weight/length relation
wi=a.(L)"
L.. (cm) 42 | M (year™) 0.8 a 0.0023
K (year'l) 0.5 b 3
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Table 2.

Catch matrix in thousands of individuals, by length classes and years
in the period 1985-94

Age Length Years

(sliced) CEZSSS 1985| 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994
0 20- 351 41 30 17| 49 69 34| 6l 46| 29
21- 338| 400 292 167| 472 662 327 593| 442| 276

22- 805 952|  699| 400 1127| 1575 777 1404| 1053| 657

23- | 1500] 1766| 1317|  757| 2108| 2923| 1436 2574/ 1962| 1220

24- | 1901| 2222| 1702  985| 2688 3678| 1795 3175 2485 1535

25- | 2034| 2357/ 1872| 1093| 2902| 3900/ 1886 3276/ 2659| 1627

26- | 1898| 2175 1806| 1067| 2739| 3600 1722 2925 2482| 1502

1 27- | 1951| 1817| 1228| 1416 1445 2932| 3376 1695 1785 2376
28- | 1664| 1529/ 1091| 1276| 1250/ 2467| 2801| 1369 1523| 1999

29- | 1382 1251 948 1125 1053| 2018 2258 1071 1265 1636

30- | 1127| 1003 812| 980, 873| 1619 1782 818 1031 1312

31- 900, 787| 684  841| 710| 1269 1372| 607| 823| 1029

32- 694| 595 560,  702| 558| 959| 1017| 432| 635 778

2 33- 809 565| 290| 389 834| SI1| 759 832| 221| 518
34- 584| 399 226/ 310, 618 361| 522| 544 160 365

35- 403| 267 170 240 439 242 340| 335 110| 245

36- 262| 168 122 178 294/ 152| 207/ 191 72| 154

3 37- 165 168 66 710 175 214] 93| 128] 75| 46
38- 86| 84 40 45| 96| 107| 44/ 55| 39 23

Consider L,=20 cm and

t=0

(Extracted from : Cadima, E. & Palma, C.,1997. Cohort Analysis from annual length catch
compositions. Working document presented to the Working Group of the Demersal Stocks
Assessment of the South Shelf, held in Copenhagen from 1-10 September, 1997.)
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8.28 EXAMINATION - WRITTEN TEST

TRAINING COURSE ON FISH STOCK ASSESSMENT
INSTITUTO DE INVESTIGACAO DAS PESCAS E DO MAR
(LISBON, 3 NOV. -10 DEC. 1997)

QUESTION 1

Consider a certain stock with the following parameters:

Natural Mortality Coefficient:

Fishing mortality in 1996:

Exploitation pattern :

M =0.20 year'1

Fos = 1.08 year'l

Age 1 2 3 4 5 6 7+
S| 0.07 0.23 033 | 049 | 097 | 1.00 1.00
Mean weight (kg) in the catch and in the stock:
Age 1 2 3 4 5 6 7+
W, 0.053 0.076 | 0.111 | 0.125 | 0.158 | 0.204 | 0.337
Maturity ogive (percent):
Age (year) 1 2 3 4 5 6 T+
% matures; | 34 90 100 | 100 | 100 | 100 | 100
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The estimated recruitments and the spawning biomasses between 1986 and 1996 are
presented in the following table :

Table 1
Year N (age 1) Spawning biomass
(thousands) (t)
1986 8751 1957
1987 8305 1591
1988 7123 1956
1989 7596 2073
1990 6013 2287
1991 5054 1506
1992 9713 1400
1993 5520 1275
1994 6000 980
1995 7329 675
1996 6840 917

1. Calculate the biological reference point Fy ;. Indicate the value of the virgin biomass that
you estimated and calculate the percentageBo 1/Byirgin..

2. Calculate the biological reference point Fpa.
Calculate the biological reference point Fyeq

4. Estimate the parameters of the S-R Ricker model and indicate what the value of the
spawning biomass/recruit is, corresponding to Frash.

5. Comment on the present state of the stock and its exploitation.
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QUESTION 2

Consider a stock where the length compositions of the catches during 1986-1995 are known
(Table 2).

The following parameters were estimated from this stock :
Natural mortality coefficient = 1.2 year™
Asymptotic length = 39.8 cm
Growth coefficient= 0.8 year™

Table 2 — Catch Matrix (thousand individuals)

Length Year

classes (€M) ['9g6 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995
14- 0| 9 8| 9| 7 18] 13|12]15] 8
15- 20 | 17 | 15 | 18 | 13 | 35 | 26 | 23 | 29 | 16
16- 29 | 25 | 23 | 26 | 19 | 52 | 39 | 34 | 42 | 24
17- 47 | 41 | 37 | 43 | 31 | 84 | 63 | 56 | 69 | 39
18- 92 | 80 | 72 | 83 | 60 | 164 | 122 | 108 | 134 | 76
19- 224 | 194 | 175 | 202 | 146 | 398 | 297 | 263 | 325 | 185
20- 261 | 226 | 203 | 234 | 169 | 461 | 343 | 305 | 376 | 214
21- 420 | 363 | 326 | 376 | 271 | 736 | 547 | 488 | 601 | 342
22- 335 | 525 | 603 | 506 | 511 | 365 | 983 | 571 | 657 | 741
23- 345 | 540 | 618 | 516 | 520 | 370 | 995 | 581 | 666 | 752
24- 422 | 661 | 751 | 622 | 625 | 444 | 1189 | 699 | 799 | 902
25- 442 | 693 | 781 | 642 | 643 | 454 [1212] 718 | 818 | 923
26- 415 | 650 | 726 | 592 | 590 | 415 [1102| 659 | 747 | 843
27- 388 | 607 | 672 | 542 | 537 | 376 | 995 | 601 | 677 | 765
28- 360 | 564 | 617 | 493 | 486 | 339 | 890 | 543 | 609 | 688
29- 332 | 520 | 563 | 444 | 435 | 301 | 788 | 487 | 543 | 613
30- 304 | 475 | 508 | 396 | 386 | 265 | 689 | 431 | 478 | 539
31- 275 | 430 | 453 | 348 | 337 | 230 | 594 | 377 | 414 | 468
32- 272 | 246 | 509 | 494 | 330 | 314 | 212 | 428 | 351 | 353
33- 239 | 216 | 439 | 419 | 277 | 261 | 174 | 359 | 292 | 294
34- 206 | 186 | 369 | 345 | 226 | 211 | 139 | 293 | 235 | 237
35- 171 | 155 | 300 | 273 | 176 | 162 | 106 | 228 | 181 | 182
36- 136 | 123 | 230 | 202 | 129 | 117 | 75 | 167 | 130 | 131
37- 82 [ 99 | 116 | 196 | 147 | 91 | 80 | 40 | 117 | 83
38- 49 | 60 | 66 | 103 | 75 | 45 | 38 | 21 | 58 | 41
39- ol oo ol o] o] o] o] o] o
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1. Estimate the values of the fishing mortality coefficient in each length class of the cohort
of 1987 (to simplify, adopt Fierminai = 0.5 year'l).

2. Estimate the corresponding values of the number of survivors at the beginning of each
class.

3. Say what the recruitment of this cohort is.

QUESTION 3

The Fox Production model was adjusted to a certain stock and the following parameters were
obtained :

K =300 thousand tons
r=0.50 ye:ar'1
1. Determine the biological reference points Fysy and Fo ;.

2. Knowing that in recent years the biomass of this stock is about 30 percent of the virgin
biomass, comment on the present state of the stock and its exploitation, based on the
adopted model.
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