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4. Global accuracy boundaries 
 
In this section readers will be presented with a step-by-step approach 
aiming at the following propositions and conclusions: 
 
(a) At equal sample size accuracy in concave populations is lower 

than in flat or convex populations. 
(b) Sampling accuracy in concave and binary populations with 0-1 

elements at equal proportions, is a global minimum for all 
population types and can therefore be used to formulate lower 
accuracy boundaries for concave populations. Such boundaries 
will only depend on population size. 

(c) Sampling accuracy in flat populations is a global minimum for 
convex populations and can thus be used to formulate lower 
accuracy boundaries that will only depend on population size. 

(d) Global accuracy boundaries offer the major advantage that safe 
sampling schemes can be planned in advance (i.e. a priori). No 
prior knowledge about the population parameters is required, 
except some idea on its size. 

 
4.1 Impact of population density to accuracy 
 
In Section 2.2 a population was described as “convex” when its 
density is higher near the mean, “flat” when its density is more or less 
uniform, and “concave” when its density is higher near the boundaries. 
It was also stated that this categorization would have a direct impact 
to the sampling accuracy. In this first of a series of propositions it will 
be shown that by making a normalized population more concave, its 
variance increases with the result that sampling accuracy decreases 
(refer also to Section 3.6). 
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Proposition 1 
 
The variance of a normalized population increases when one of its 
elements is shifted away from the population mean.  
 
Proof: 
 
Let us consider a normalized population with N elements  

 and population mean N21 u,...,u,u µ . We also select arbitrarily an 

element u such that  u< . By considering all the other N-1 elements µ
uuk ≠ , the population mean and variance will be: 

   u
N
1u

N
1µ k += ∑    (4.1) 
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Element u is then shifted away from µ  and towards 0, by applying a 
negative increment du<0 (Figure 4.1). The impact of du on the 
population mean and the variance is found by differentiating the above 
two expressions with respect to u. We find that: 
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Since  the last expression is reduced to: 0)µu()µu( k =−+−∑
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Figure 4.1. Moving an element toward the lower limit and away from 
the population mean will make the normalized population more 
concave. 
 
 
Expression (4.4) indicates that the impact of du to the population 
variance is positive since we had selected u<µ  and du<0 (the same 
conclusion would have been derived by assuming u>µ  and du>0).  
 
The new population resulting from the elementary transformation of 
the arbitrary element u has the following two properties: 
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a) it is more concave than the original population since its density has 
decreased near the mean and increased near one of the two 
boundaries; 
b) its variance is higher than that of the original population. 
 
Proposition 1 is proved. To be noted that in the transformed 
population, and because of (4.3), the new element u+du will still 
remain to the left (du<0) or to the right (du>0) of the population 
mean, which means that if the above process is repeatedly applied on 
the same element  u, it will finally make it equal to 0 or 1. 
 
4.2 Upper limits for variance 
 
Proposition 2 
 
Any normalized population can be transformed to a concave 
population with only 0-1 elements and with a higher variance. 
 
Proof: 
 
According to proposition 1 any set of normalized elements can be 
transformed to a population with higher variance through an 
elementary increase or decrease of the value of one of its elements. 
Repeated transformations of the same element will finally make it 
become 0 or 1. By expanding this process to include all the other 
elements, the original population will finally become a population with 
values 0 and 1 only, and its variance will be higher than that of the 
original population. 
 
Proposition 3 
 
The maximum variance in normalized populations is 0.25. 
  
Proof: 
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According to propositions (1) and (2), the variance of any normalized 
population will always have an upper limit determined by a concave 
population with 0- elements. The question then is which proportion of 
the 0-1 elements will result in the highest (=global) variance.  
 
If p is the unknown proportion of the zero elements, the population 
variance will be  p (1-p).  It can be seen that its maximum value is 
0.25, occurring when p=0.5, that is when the 0 and 1 elements 
appear at equal proportions.  
 
Proposition 4 
 
The variance of a normalized and flat population is closely 
approximated by: 
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1
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−

=                 (4.5) 

Proof: 
 
A normalized flat population can be approximated by a normalized 
population with mean equal to 0.5 and N elements  

defined as:   

N21 u,...,u,u

1N
1iui −

−
= ,   i=1,2,...N 

 
The population variance will thus be: 
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Expression (4.5) is derived by recalling the algebraic properties: 
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4.3 Accuracy boundaries for concave populations 
 
The results and conclusions of the previous propositions will be the 
basis for the formulation of accuracy boundaries that will depend only 
on population size. 
 
The first task will be the formulation of accuracy boundaries for 
concave populations. This will have immediate application in 
populations of boat activities which, as discussed in Section 2.2, 
consist of 0-1 elements at varying proportions. 
 
Setting up of a global accuracy boundary should be feasible if a fixed 
normalized population with maximum population variance could be 
identified. According to Proposition 3 in the previous section, such a 
population does exist and consists of 0 and 1 values at equal 
proportions. The variance of this population constitutes a global upper 
limit for all population categories of the same size N (whether convex, 
flat or concave), and this limit is given by: 
 

               (4.6) 25.0σ2
g =

 
By recalling (3.8), and the fact that the standard deviation σ will 
always be smaller than 0.5, the general expression for a global lower 
boundary for accuracy will take the form: 
 

   
N
n1

n
5.0z1)n(G −−=   (4.7) 

 
It is reminded that z  is usually set to 1.96. 
 
Figure 4.2 illustrates the application of expression (4.7) in the case of 
a 0-1 population with size N=1000. Also plotted is the population-
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specific boundary defined by expression (3.8). It is recalled that the 
sample variable used to clarify the plot is log n / log N. 
 

Figure 4.2. Global accuracy boundary G(n) and population specific 
boundary (dotted line) for a 0-1 population with size N=1000. 
 
 
 
The practical result of this approach is that for 0-1 populations of equal 
size the global boundary G(n) is standard and remains unchanged, 
while the population-specific curve is variable and depends on the 
population variance. 
 
4.4 Accuracy boundaries for convex populations 
 
A second task is the formulation of accuracy boundaries for convex 
populations. This will have immediate application in populations of 
landings which, as discussed in Section 2.2, are frequently skewed 
and, at times, normal or flat (with uniform density). 
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In theory the global boundaries already formulated for 0-1 populations 
would also apply to convex populations, as it has been shown that in 
the latter category accuracy will always be higher. However this would 
lead to a rather “over-pessimistic” selection of sampling approach that 
would use far larger samples than actually required. 
 
Therefore the objective here is to identify a fixed normalized 
population with maximum population variance among all flat or convex 
populations. 
 
Proposition 4 states that the variance of a flat population is closely 
approximated by: 
 

   
4
1

)1N(6
1N2σ2

f −
−
−

=    (4.8) 

 
On the other hand, Proposition 1 states that all normalized 
populations can be transformed to a “more concave” population with 
higher variance. Since a flat population will always be “more concave” 
than any convex population, it follows that its variance (see above 
formula) will be an upper limit for all convex populations. From which it 
is concluded that its accuracy boundary will be a global boundary for 
all convex populations.  
 
By recalling (3.8), and the fact that the standard deviation σ will 
always be smaller than the value given in (4.8), the general 
expression for a global lower boundary for accuracy will take the form: 
 

   
N
n1

n
σz1)n(C f −−=   (4.9) 

 
with   defined as in (4.8) and  z  usually set to 1.96. fσ
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Figure 4.3 illustrates the application of expression (4.9) in the case of 
a convex and skewed population with size N=1000. Also plotted is the 
population-specific boundary defined by expression (3.8). It is recalled 
that the sample variable used in the plot is log n / log N. 
 
The practical result of this approach is that for convex populations of 
equal size the global boundary C(n) is standard and remains 
unchanged, while the population-specific curve is variable and 
depends on the population variance. 
 

 
Figure 4.3. Global accuracy boundary C(n) and population specific 
boundary (dotted line) for a convex population with size N=1000. 
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4.5 Exponential form of accuracy boundaries 
 
It has already been mentioned that to facilitate reading of accuracy 
plots, the variable  x = log n / log N is used to denote sample size, 
rather than the proportion n/N. In this manner sample size n is written 
as: 

xNn =  with     
Nlog
nlogx =  

and expressions (4.7) and (4.9) for concave and non-concave 
populations take the exponential form: 
 

N
1Nz5.01N1

N

5.0z1)x(G x1x
x

−−=−−= −−              (4.10) 

 

N
1Nzσ1)x(C x

f −−= −                 (4.11) 

 
All plots illustrating accuracy boundaries have, in fact, made use of 
expressions (4.10) and (4.11).  
 
4.6 Critical sample size 
 
We will now prove that critical sample size is reached when  

5.0
Nlog
nlogx ==  (equivalent to Nn = ), and it is at that value that 

the exponential boundaries reach a breakpoint and start a steady and 
slow growth versus 1. 
 
We start with the observation that for each A(x) defined in either 
(4.10) or (4.11), there exists an associate curve B(x) of the form: 
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N
1Nzσ

N
11zσ1)x(B 1x −+−−= −               (4.12) 

 
The following relations apply:  
 
B(0)=A(0), which means that both A and B start from the same 
point. 
 
B(1) = A(1) = 1, which means that both A and B end at the same 
point. 
 

 
Figure 4.4. Graphical representation of an exponential boundary A(x) 
and its associated B(x) function (dotted line) 
 
 
Figure 4.4 shows two contrary patterns of growth.  Curve A shows a 
rapid growth up to a certain value of x and from then on it grows 
steadily until it becomes 1. Curve B shows a slow and steady growth 
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for small values of x and beyond a certain point it starts a rapid growth 
until it also becomes 1.  Curve B is the exact inverse of curve A. 
 
The critical value of x is at a point where the difference A(x)-B(x) 
becomes maximum since it is from that point on that the growth of A 
becomes slower and steadier and that of B faster. 
 
In terms of differential calculus we are seeking a critical point x at 
which the difference A(x)-B(x) becomes maximum, which occurs 
when: 
 
 

[ 0)x(B)x(A
dx
d

=− ]      or       
dx
dB

dx
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=     or: 
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It is easy to verify that x=0.5 is a solution to the above equation, which 
leads to the conclusion that exponential accuracy boundaries have a 
breakpoint at sample size Nn = . 
 
The practical meaning of accuracy breakpoints is that by just knowing 
the population size, users may immediately get an idea about the 
minimum sample size at which the accuracy will be expected to 
become stable and growing. However, to obtain expected accuracy 
levels at variable sample sizes special tables have to be used, and 
this aspect will be covered in some detail in the coming sections. 
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4.7 Accuracy boundaries in infinite populations 
 
As  (cases of large or effectively infinite populations), 
expression (4.6) for variance remains the same while (4.8) takes its 

limit form: . Formulae (4.7) and (4.9) for lower accuracy 
boundaries are thus reduced to: 

+∞→N

12/1σ2
f =

 

For all populations:                   
n
5.0z1)n(G −=              (4.14) 

For all flat and convex populations: 
n

1
12
1z1)n(C −=          (4.15) 

 
The practical conclusion here is that when a population is known to be 
very large (i.e. its size is 30 000 elements or more), then even the 
knowledge of its exact size is not a requisite for setting up accuracy 
boundaries. 
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SUMMARY 

 
In this section readers were presented with a step-by-step approach 
that achieved the following propositions and conclusions: 
 
(a) At equal sample size accuracy in concave populations is lower 

than in flat or convex populations. 
(b) Sampling accuracy in concave and binary populations with 0-1 

elements at equal proportions, is a global minimum for all 
population types and can therefore be used to formulate lower 
accuracy boundaries for concave populations. Such boundaries 
will only depend on population size. 

(c) Sampling accuracy in flat populations is a global minimum for 
convex populations and can thus be used to formulate lower 
accuracy boundaries that will only depend on population size. 

(d) Global accuracy boundaries offer the major advantage that safe 
sampling schemes can be planned in advance (i.e. a priori). No 
prior knowledge about the population parameters is required, 
except some idea on its size. 

(e) The two accuracy boundaries described in (c) and (d) are better 
described in exponential form. 

(f) Sampling in finite populations results in accuracy that is highly 
fluctuating up to a certain critical sample size. Beyond that size 
accuracy growth becomes slower and stable. This breakpoint 
corresponds to the square root of the population size. 

(g) In large and infinite populations the accuracy boundaries (c) and 
(d) take a simpler limit form and desired accuracy levels are 
independent of the population size.  

 
 
 


	Safety in sampling - Methodological notes
	Preface
	Abstract
	Contents

	1. Introduction
	2. Concepts in estimating catch and effort
	3. Sampling accuracy
	4. Global accuracy boundaries
	5. Accuracy boundaries in small populations
	6. Applicability aspects of accuracy boundaries
	7. A case study
	8. Diagnostics on accuracy
	9. Discussion
	10. Further reading
	Annex A
	Annex B



